
 170

En funktion är kod som definieras som en namngiven modul

och placeras utanför main(), före, efter eller externt.

Koden utförs inte förrän funktionen anropas i main().

Vid anropet kan funktionen ta emot indata, s.k. parametrar,
bearbeta dem och returnera utdata, ett s.k. returvärde.

7.1 Funktionsbegreppet i programmering

Begreppet funktion härstammar från matematiken: Där har man en formel y = f(x)

där f är ett uttryck som beräknar y utgående från x. Vi säger: y är en funktion av x.

Denna matematiska syn på funktion har tagits över till programmering som ett un-

derliggande koncept och som en historisk utgångspunkt. Men begreppet har fått

inom programmering en bredare tolkning då den tillämpats på all datoriserad pro-

blemlösning. Visserligen kodar man i programmering också matematiska funktio-

ner, men man inkluderar även kod som implementerar vilken annan funktionalitet

som helst. Så blir funktionen en del av programmet – en logiskt sammanhängande

modul som löser en specifik uppgift, men som även kan användas i andra program.

 Parametrar (indata) Returvärde (utdata)

I funktioner stoppar man indata och får ut utdata: Indata kallas även för paramet-

rar (argument) och utdata för returvärde. En funktion kan ha inga, en eller flera

parametrar. Däremot kan en funktion endast ha ett returvärde, vilket är ett arv från

matematiken. I programmeringen finns även funktioner utan returvärde, som då

kallas för void-funktioner. Funktionen bearbetar de inkommande parametrarna

och returnerar returvärdet eller inget alls. Som separat och namngiven modul kan

en funktion anropas i main() eller i andra funktioner resp. program. I denna be-

märkelse är en funktion ett underprogram, på eng. subroutine eller procedure.

Man kan jämföra en funktion med en ”black” box. ”Black” är den så länge vi inte

vet hur den fungerar ”inuti”, bl.a. om vi inte själva definierat funktionen. Det gäl-

ler t.ex. för de biblioteksfunktioner vi hittills använt i våra program: sizeof(),

_getch(), rand(), srand() och time(). Dessa är förprogrammerade och lag-

ras i bibliotek. Vi inkluderar dem i våra program för att dra nytta av deras funk-

tionalitet, utan att behöva veta hur de exakt är kodade. Biblioteken i alla pro-

grammeringsspråk består av sådana ”svarta” lådor. Fr.o.m. detta kapitel kommer

vi att skriva egna funktioner som fortfarande är lådor, men inte längre svarta.

Den enda funktion som vi hittills definierat själva – och det har vi gjort i alla våra

program – är main(). Den är unik därför att den är programmets exekverings-

punkt. I alla procedurala programspråk bildar funktioner programmets byggstenar

(moduler). Att C++ som är objektorienterat, även bygger på funktioner och inte ba-

Funktion

 171

ra på klasser, beror på språkets rötter i C som är proceduralt, men inte objekt-

orienterat. C# och Java t.ex. bygger endast på klasser som inkapslar sina funktioner

i klasser och döper dem till metoder. I Python har man återvänt till C/C++ mo-

dellen och tillåter fristående funktioner vid sidan av metoder.

Varför funktioner?

Kan man inte helt enkelt skriva kod rakt ned i main()? Är detta med funktioner

inte att krångla till det hela? Föreställ dig en verksamhet som växer med tiden, ett

expanderande företag eller en organisation med stigande antal medlemmar. Hur

organiserar man jobbet? Man gör arbetsdelning. Man delegerar uppgifterna. Var

och en får en väl definierad arbetsuppgift. Annars skulle man inte kunna klara av

jobbet. Samma sak gör man med program vars kod växer. Man delar upp det stora

programmet i mindre, logiskt meningsfulla moduler (delproblem), för att kunna

klara av komplexiteten. Frågan, varför man i programmering sysslar med funktio-

ner, har flera svar. Det första är:

1. Modularisering eller Lego-principen

De flesta har väl någon gång som barn, eller till-

sammans med sina barn, byggt ett Lego-hus, en

Lego-bil eller liknande. Efter ett tag har huset

kanske rasat och nya tekniska underverk har kon-

struerats. Men även de har någon gång plockats

isär. Det enda som blivit kvar är själva Legobi-

tarna (modulerna) som man samlat i en kartong

för att kunna återanvända dem senare.

Vill man lösa ett komplext problem, t.ex. bygga ett

hus eller en bil, bryter man ned det i ett antal mindre

problem som är enklare att lösa. Sedan sätter man

ihop de små enkla lösningarna till den stora kom-

plexa lösningen. Principen heter modularisering och kan användas vid nästan all

problemlösning. Ett stort komplext problem bryts ned i mindre moduler – mots-

varande Lego-bitarna – och bearbetas en i taget. Varje modul löser ett delproblem

som är oberoende av andra, är mindre än det stora problemet och därmed enklare

att lösa. Sedan gäller det att sätta ihop modulerna till den stora lösningen. I pro-

grammering är dessa moduler funktioner.

För att att sätta ihop det hela måste varje modul kommunicera med sin omgivning.

Även här kan man lära av Lego: Varje Lego-bit är konstruerad så att den passar in

i en annan Lego-bit. De delar av Lego-biten som tillåter denna passning, kan anses

som Lego-bitens gränssnitt mot andra Lego-bitar. På samma sätt har en funktion

ett gränssnitt mot andra funktioner för att kunna kommunicera med dem. Även

detta gränssnitt har två delar: För det första funktionens parametrar som impor-

terar värden från omgivningen och för det andra funktionens returvärde som ex-

porterar ett värde till omgivningen. Men sedan måste Lego-bitarna ”sättas ihop”

vilket i programmeringstermer innebär att anropa den ena från den andra. Ett an-

 172

rop av en funktion innebär att aktivera funktionen. Detta sker genom att ev. skicka

ujtill den parametrar, utföra koden som står i funktionen och ev. få tillbaka retur-

värdet. Generellt finns det i ett program flera funktioner som anropar varandra.

Det enklast tänkbara exemplet är att main() anropar en Function() dvs main()

är den anropande och Function() den anropade funktionen. Då kan program-

flödet mellan dem se ut så här:

2. Återanvändning av kod

är det andra svaret på frågan varför man i programmering sysslar med funktioner.

Samma idé finns bakom Lego-biten som minsta återanvändbara modul för att byg-

ga i princip vad som helst. Har man i ett program löst ett litet delproblem som

även dyker upp i andra sammanhang och vars kod kan vara relevant i andra pro-

gram, så vill man ju helst inte satsa tid och resurser för att koda det en gång till.

Man vill undvika att återuppfinna hjulet. Detta är inte bara av teoretiskt-estetiskt

intresse utan även av stort ekonomiskt intresse. Man löser koden för det lilla del-

problemet från det aktuella programmet och skriver den som en funktion för att

kunna återanvända koden i vilket annat program som helst. Det kräver att den ur-

sprungliga koden som kanske var skräddarsydd för just det speciella programmet

då, nu måste formuleras om så att den kan kommunicera med andra program. Dvs

koden måste kompletteras med parametrar och ev. returvärdet. Hela tanken bakom

standardbibliotek – inte bara i C++ utan i alla programspråk – bygger på idén om

återanvändning av kod. Även om man väljer att inte skriva egna funktioner kan

man i alla fall inte komma ifrån att använda redan fördefinierade funktioner från

standardbiblioteket.

3. Strukturering av program

är det tredje svaret på frågan varför funktioner, närmare bestämt egendefinierade

funktioner, används i programmering. Genom att modularisera ett komplext pro-

blem som ska lösas med hjälp av datorn underlättar man inte bara själva lösningen

(innehållet) utan kan även lättare få en strukturering av programkoden (formen).

Det enklast tänkbara sättet att strukturera vilket program som helst är t.ex. att dela

in det i inmatning – bearbetning – utmatning. Dessa tre delar kan skrivas i var sin

funktion vilka sedan anropas av main(). Denna huvudfunktion kan då bestå av ett

få antal satser som endast anropar programmets olika funktioner. På så sätt har

man från main() en övergripande kontroll över hela programflödet. Dessutom kan

funktionerna lagras i separata filer och inkluderas med #include-direktiv i den fil

som innehåller main(). Så kan man bygga upp sitt eget bibliotek av egendefinie-

rade funktioner.

Utdrag ur boken Progammering 1 med C++

Function()

)

main()

https://sharedfiles.mathonline.se/Boken%20Programmering%20i%20C%20och%20Cpp.pdf

