7.1 Funktionsbegreppet i programmering

Begreppet funktion harstammar fran matematiken: Dar har man en formel y = f(x)
dar f ar ett uttryck som berdknar y utgaende fran x. Vi sager: y ar en funktion av x.
Denna matematiska syn pa funktion har tagits 6ver till programmering som ett un-
derliggande koncept och som en historisk utgangspunkt. Men begreppet har fatt
inom programmering en bredare tolkning da den tillampats pa all datoriserad pro-
bleml6sning. Visserligen kodar man i programmering ockséd matematiska funktio-
ner, men man inkluderar &ven kod som implementerar vilken annan funktionalitet
som helst. Sa blir funktionen en del av programmet — en logiskt sammanhangande
modul som l6ser en specifik uppgift, men som &ven kan anvéandas i andra program.

En funktion ar kod som definieras som en namngiven modul
och placeras utanfér main (), fore, efter eller externt.

Koden utfors inte forran funktionen anropas i main ().

Vid anropet kan funktionen ta emot indata, s.k. parametrar,
bearbeta dem och returnera utdata, ett s.k. returvarde.

Parametrar (indata) — Funktion [—— Returvérde (utdata)

I funktioner stoppar man indata och far ut utdata: Indata kallas dven for paramet-
rar (argument) och utdata for returvarde. En funktion kan ha inga, en eller flera
parametrar. Daremot kan en funktion endast ha ett returvarde, vilket ar ett arv fran
matematiken. | programmeringen finns &ven funktioner utan returvarde, som da
kallas for void-funktioner. Funktionen bearbetar de inkommande parametrarna
och returnerar returvardet eller inget alls. Som separat och namngiven modul kan
en funktion anropas i main () eller i andra funktioner resp. program. | denna be-
markelse ar en funktion ett underprogram, pa eng. subroutine eller procedure.

Man kan jamfora en funktion med en “black” box. “Black” &r den sa lange vi inte
vet hur den fungerar ”inuti”, bl.a. om vi inte sjidlva definierat funktionen. Det gal-
ler t.ex. for de biblioteksfunktioner vi hittills anvént i véra program: sizeof (),
_getch(), rand(), srand() och time (). Dessa &r forprogrammerade och lag-
ras i bibliotek. Vi inkluderar dem i vara program for att dra nytta av deras funk-
tionalitet, utan att behdva veta hur de exakt &r kodade. Biblioteken i alla pro-
grammeringssprak bestar av sddana “’svarta” lador. Fr.o.m. detta kapitel kommer
vi att skriva egna funktioner som fortfarande ar lador, men inte langre svarta.

Den enda funktion som vi hittills definierat sjalva — och det har vi gjort i alla véara
program — &r main (). Den &r unik darfor att den &r programmets exekverings-
punkt. | alla procedurala programspréak bildar funktioner programmets byggstenar
(moduler). Att C++ som ar objektorienterat, d&ven bygger pa funktioner och inte ba-

170



ra pa klasser, beror pa sprakets rotter i C som &r proceduralt, men inte objekt-
orienterat. C# och Java t.ex. bygger endast pa klasser som inkapslar sina funktioner
i klasser och doper dem till metoder. | Python har man atervant till C/C++ mo-
dellen och tillater fristéende funktioner vid sidan av metoder.

Varfor funktioner?

Kan man inte helt enkelt skriva kod rakt ned i main ()? Ar detta med funktioner
inte att kréngla till det hela? Forestall dig en verksamhet som véxer med tiden, ett
expanderande foretag eller en organisation med stigande antal medlemmar. Hur
organiserar man jobbet? Man gor arbetsdelning. Man delegerar uppgifterna. Var
och en far en val definierad arbetsuppgift. Annars skulle man inte kunna klara av
jobbet. Samma sak gér man med program vars kod véxer. Man delar upp det stora
programmet i mindre, logiskt meningsfulla moduler (delproblem), for att kunna
klara av komplexiteten. Fragan, varfor man i programmering sysslar med funktio-
ner, har flera svar. Det forsta ar:

1. Modularisering eller Lego-principen

De flesta har val ndgon gang som barn, eller till-
sammans med sina barn, byggt ett Lego-hus, en
Lego-bil eller liknande. Efter ett tag har huset
kanske rasat och nya tekniska underverk har kon-
struerats. Men dven de har ndgon gang plockats
isar. Det enda som blivit kvar &r sjalva Legobi-
tarna (modulerna) som man samlat i en kartong
for att kunna ateranvanda dem senare.

Vill man l6sa ett komplext problem, t.ex. bygga ett
hus eller en bil, bryter man ned det i ett antal mindre
problem som &r enklare att 16sa. Sedan satter man
ihop de sma enkla losningarna till den stora kom-
plexa lésningen. Principen heter modularisering och kan anvéndas vid néstan all
problemldsning. Ett stort komplext problem bryts ned i mindre moduler — mots-
varande Lego-bitarna — och bearbetas en i taget. VVarje modul l6ser ett delproblem
som dr oberoende av andra, & mindre &n det stora problemet och dérmed enklare
att 1osa. Sedan galler det att satta ihop modulerna till den stora I6sningen. | pro-
grammering ar dessa moduler funktioner.

For att att satta ihop det hela maste varje modul kommunicera med sin omgivning.
Awven har kan man lira av Lego: Varje Lego-bit ar konstruerad s att den passar in
i en annan Lego-hit. De delar av Lego-biten som tillater denna passning, kan anses
som Lego-bitens granssnitt mot andra Lego-bitar. P4 samma satt har en funktion
ett granssnitt mot andra funktioner for att kunna kommunicera med dem. Aven
detta granssnitt har tva delar: For det forsta funktionens parametrar som impor-
terar varden frdn omgivningen och for det andra funktionens returvarde som ex-
porterar ett varde till omgivningen. Men sedan maste Lego-bitarna “sattas ihop”
vilket i programmeringstermer innebar att anropa den ena fran den andra. Ett an-

171



rop av en funktion innebér att aktivera funktionen. Detta sker genom att ev. skicka
ujtill den parametrar, utféra koden som stér i funktionen och ev. fa tillbaka retur-
vardet. Generellt finns det i ett program flera funktioner som anropar varandra.
Det enklast tdnkbara exemplet &r att main () anropar en Function () dvS main ()
ar den anropande och Function () den anropade funktionen. D3 kan program-
flodet mellan dem se ut s& har:

main () - Function()

!

2. Ateranvandning av kod

ar det andra svaret pa fragan varfor man i programmering sysslar med funktioner.
Samma idé finns bakom Lego-biten som minsta ateranvandbara modul for att byg-
ga i princip vad som helst. Har man i ett program Iost ett litet delproblem som
aven dyker upp i andra sammanhang och vars kod kan vara relevant i andra pro-
gram, sa vill man ju helst inte satsa tid och resurser for att koda det en gang till.
Man vill undvika att ateruppfinna hjulet. Detta &r inte bara av teoretiskt-estetiskt
intresse utan &ven av stort ekonomiskt intresse. Man l6ser koden for det lilla del-
problemet frén det aktuella programmet och skriver den som en funktion for att
kunna ateranvinda koden i vilket annat program som helst. Det kraver att den ur-
sprungliga koden som kanske var skraddarsydd for just det speciella programmet
da, nu maste formuleras om sa att den kan kommunicera med andra program. Dvs
koden maste kompletteras med parametrar och ev. returvardet. Hela tanken bakom
standardbibliotek — inte bara i C++ utan i alla programsprak — bygger pa idén om
ateranvandning av kod. Aven om man viljer att inte skriva egna funktioner kan
man i alla fall inte komma ifran att anvanda redan fordefinierade funktioner fran
standardbiblioteket.

3. Strukturering av program

ar det tredje svaret pa fragan varfor funktioner, narmare bestamt egendefinierade
funktioner, anvands i programmering. Genom att modularisera ett komplext pro-
blem som ska l6sas med hjalp av datorn underlattar man inte bara sjalva lésningen
(innehéllet) utan kan &ven lattare fa en strukturering av programkoden (formen).
Det enklast tdnkbara sattet att strukturera vilket program som helst &r t.ex. att dela
in det i inmatning — bearbetning — utmatning. Dessa tre delar kan skrivas i var sin
funktion vilka sedan anropas av main(). Denna huvudfunktion kan da besta av ett
fa antal satser som endast anropar programmets olika funktioner. P sa satt har
man fran main() en évergripande kontroll éver hela programflodet. Dessutom kan
funktionerna lagras i separata filer och inkluderas med #include-direktiv i den fil
som innehaller main(). S& kan man bygga upp sitt eget bibliotek av egendefinie-
rade funktioner.

Utdrag ur boken Progammering 1 med C++

172


https://sharedfiles.mathonline.se/Boken%20Programmering%20i%20C%20och%20Cpp.pdf

