

 2

Med hjälp av Programmering 2 med C# kan du nu skriva intressanta applikationer

i mycket större utsträckning än tidigare. Du lär dig Windowsprogrammering samt

objektorienterad modellering och implementation – avgörande för professionell

programutveckling, speciellt för webben. Bl.a. visar boken hur du själv kan ut-

veckla en egen webbläsare, se bokens baksida. Kombinationen av interaktiva gra-

fiska användargränssnitt (GUI) och webben gör dig till en professionell program-

merare.

Programmering 2 med C# är en fortsättning på nybörjarböckerna:

Programmering 1 med C#

Programmering 1+ med C#

De hjälper nybörjaren att komma över den tröskel som är avgörande för att det ska

bli roligt att programmera. För deras innehåll se bokens inre och yttre baksida.

Valet av programmeringsspråket är av underordnad betydelse. C# är ett medel, ett

verktyg för att presentera programmering. Målet är att förmedla tankesättet och

tekniken att programmera, oberoende av språk. Har man en gång förstått de grund-

läggande principer som är gemensamma för alla programmeringsspråk, blir det

närmast en teknikalitet att på egen hand lära sig ett nytt språk.

Printed in Sweden

Published by TechPages Förlag AB

www.techpages.se

ISBN 978-9-197-42043-3

 3

Programmering 2

med C#

Fortsättning på Programmering 1 med C#

Täcker Skolverkets kursplan för Programmering 2

www.techpages.se TechPages Förlag

Med övningar,
fullständiga lösningar

&
projektuppgifter

 4

Titel: Programmering 2 med C#
ISBN: 978-9-197-42043-3

Copyright © 2021 TechPages Förlag AB, Danderyd
All rights reserved

Tel: 08-792 36 28
www.techpages.se

Tryckeri: Eprint, Stockholm

Augusti 2021

Kopieringsförbud!

Denna bok är skyddad av Lagen om upphovsrätt. Kopiering är förbjuden.

Förbudet inkluderar översättning, tryckning, stencilering, kopiering, lagring i elektroniska och digitala media,
visning på bildskärm eller via projektor, bandinspelning osv.

Dessa förbud gäller även för koden i alla programexempel samt övningarnas lösningar som finns i boken.
Den som bryter mot lagen om upphovsrätt kan åtalas av allmän åklagare och dömas till böter eller fängelse i

upp till två år samt bli skyldig att erlägga ersättning till upphovsman/rättsinnehavare.

 5

Välkommen till Programmering 2

Efter att ha lärt sig grunderna i programmering öppnas helt nya möjligheter att skriva

intressanta applikationer i mycket större utsträckning än tidigare. Boken innehåller bl.a.:

 Windowsprogrammering

 Interaktiva grafiska applikationer (GUI)

 En egen webbläsare

 Objektorienterad programmering & modellering

 Language Integrating Query (LINQ)

 Sökning och sortering

 Kryptering med slumptal

 Rekursion

 Generics

För att ha det lite roligt i början startar vi med Windowsprogrammering – små grafiska

applikationer med möjligheter till interaktion och menyval, bl.a. en egen webbläsare.

Boken fortsätter sedan med de teoretiskt tyngre bitarna: objektorienterad programme-

ring och modellering, filhantering, kryptering osv.

Med dessa verktyg i handen kommer det inte längre finnas några gränser för din kreati-

vitet, uppfinningsrikedom och fantasi. Hemligheterna bakom IT kommer att avslöjas för

dig en efter den andra. Kombinationen av grafiska gränssnitt och webben gör dig till en

professionell programmerare.

Denna bok är en fortsättning på Programmering 1 med C# och Programmering 1+ med

C#. Vissa delar kan ha repetitiv karaktär för att underlätta förståelsen. Innehållet täcker

Skolverkets kursplan för Programmering 2. Men precis som nybörjarböckerna innehål-

ler denna bok – utöver Skolverkets kursplan – en hel del extra material för att förmedla

relevant kunskap, befästa samt fördjupa kunskapen och göra pliktlektyren mer intres-

sant.

Programmering 2 med C# utvecklas och uppdateras permanent. Därför tas all form av

kritik, korrekturanmärkningar såväl som förslag till förbättringar av både form och inne-

håll tacksamt emot på adressen info@techpages.se .

 6

Anmärkningar

1. Denna upplaga av boken är förnyad och uppdaterad i många avseenden gent-

emot tidigare versioner. Den har anpassats till de nya kursplanerna. En del av

innehållet har flyttats till Programmering 3. Andra delar har integrerats från

Programmering 1.

2. Alla programexempel inkl. övningarnas fullständiga lösningsförslag är utveck-

lade och testade i Visual Studio 2019. Några av bokens grafiska program-

exempel kan dock innehålla layout (fönster, dialogrutor osv.) som härstammar

från äldre versioner.

3. Instruktioner för installation, konfiguation och användning av Visual Studio

2019 kan hittas i bokens Appendix, sid 265.

4. Denna bok är en fortsättning på Programmering 1 med C# och Programmering

1+ med C#. Alla hänvisningar följer mönstret i följande exempel:

 Progr1+, 5 hänvisar till Programmering 1+ med C#, kapitel 5

 Progr1+, 4.3 kapitel 4, avsnitt 3

På liknande sätt hänvisas till Programmering 1 med C# som är en light version

av Programmering 1+ med C#.

 7

Innehållsförteckning

 Ämne Sida Program

Kapitel 1 Windowsprogrammering 11

1.1 Interaktiva grafiska gränssnitt 12 Interaction

­ Controls 13

­ Windows Forms Application 13

­ Händelsemetoder 17

1.2 TextBoxar, Buttons & Labels 18 PassWdTextBox

1.3 Checkboxar och radioknappar 20 Bartender

1.4 Färgtest med kontrollen HscrollBar 24 ColorTest

1.5 Undantagshantering 28 TryCatchTest

­ Egengenererade undantag 30 ThrowTest

1.6 Listboxar 32 ListBoxes

1.7 Gränssnitt mot kalendern 34 DeliveryDate

1.8 En räntekalkylator med multiline TextBox 36 TaxCalculator

1.9 Geometriska figurer 40 Draw

1.10 Bågar och vinklar 43 Arcs

1.11 En egen webbläsare 45

­ En första webbläsare 48 MyFirstBrowser

1.12 En mer utvecklad webbläsare 49 DevBrowser

­ Dialogrutan Navigate 50

1.13 Grafiskt gränssnitt med menyval 55 Menus

1.14 Multiple Document Interface 59 MDI

Övningar till kapitel 1 och projektuppgifter 63

Kapitel 2 Objektorienterad programmering (OOP) 69

2.1 Vad är objektorienterad programmering? 70

­ Paradigmskifte 70

­ Klassdiagram 72

2.2 Klassbegreppet 76

­ Vad är en klass? 76

­ Vår första klass 77 Password

­ Varför klasser? 77 PasswordUse

2.3 Modularisering 81 P_All_in_Main

 82 P_Method_Module

2.4 Användning av klasser 85 P_Class_Module

­ Deklaration av en klass 85 Emp

­ Definition av ett objekt 87 EmpTest

­ Åtkomst till objektets medlemmar 89

2.5 Klassens konstruktor 91

­ Åtkomstmodifieraren private 91 Circle

 8

 Ämne Sida Program

­ Konstruktorns egenskaper 93 Encapsulation

­ Default konstruktorn 95 AccountD

­ Flera konstruktorer 97 CreateAccountD

2.6 Referensvariabler 100

­ Automatisk initiering av datamedlemmar 101

2.7 Komposition 104 Date / Employ

­ Komposition av klasser och objekt 106 Composition

2.8 Arv 108 Person

­ Arvrelationen 110 Employee

 111 Inheritance

2.9 Polymorfism 113 Account

­ Överskuggning av metoder 115 MinimalAccount

­ Åtkomstmodifieraren protected 116 PolymorphTest

Övningar till kapitel 2 och projektuppgifter 119

Kapitel 3 Metoder i OOP 129

3.1 Accessmetoder 129 Empl & GetSet

3.2 Property i C# 133 EmplP/Property

3.3 Statiska datamedlemmar och metoder 135 StatDemo

­ Klass- och instansvariabler 135 StatDemoTest

­ Allokeringsmodifieraren static 137 RandTest

3.4 Referens i metoder 140 EncryptStr

3.5 Abstrakta klasser och metoder 143 Super

­ Implementation av abstrakt metod 144 Sub1 & Sub2

­ Test av abstrakt metod 145 Override

3.6 Virtuella metoder 146 SuperV

­ Överskuggning av virtuell metod 147 Sub/TestVirtual

Övningar till kapitel 3 149

Kapitel 4 Mer om metoder 153

4.1 Algoritm för platsbyte 156 MiniSort

4.2 Värde- och referensanrop 156 CallByVal/ByRef

4.3 In- och utparametrar 161 Outparam

4.4 Variablers livslängd 164 Block

4.5 Överskuggning av variabler 167 OverrideVar

­ Referensen this 168

4.6 Överlagring av metoder 172 Overload

4.7 Rekursiva metoder 175 Fibonacci

4.8 Lambdauttryck 178 Lambda

4.9 Delegater 180 Delegate

­ Delegat som parameter i metoder 181 DelegateParam

­ Varianter av Console.WriteLine() 183 WriteLineOverl

 9

 Ämne Sida Program

­ Lösningen med LINQ 184 CountLINQ

­ Metodgrupper 185 MethodGroup

Övningar till kapitel 4 och projektuppgifter 187

Kapitel 5 Tillämpning av OOP 189

5.1 Arrays 190

­ Definition och initiering av en array 192 Array

­ foreach-satsen 194

5.2 Arrayens initieringslista 197 ArrayInit

5.3 Array av referenser 199/200 Fish/ArrayOfRef

5.5 Array som parameter i metoder 203 Arrayparam

5.6 Sökning och sortering 207 RandArray

- Slumptal i en array 207 Search

- Bubbelsortering 210 Bubble

5.7 Generiska metoder 214 G_Output/G_Bubble

- Generisk bubbelsortering 217 GenericTest

5.8 Kryptering av text 219 EncryptChar

5.9 2D Array 222 DoubleArray

5.10 Dynamiska arrays: Listor 226 List

Övningar till kapitel 5 230

Fullständiga lösningar till alla övningar (Facit) 231

Appendix Visual Studio 265
Installation & konfiguration av Visual Studio 266 / 267

­ Projekt i Visual Studio 268

­ Console & Windows Forms Application 268 / 273

Projektuppgifter

 Gissa tal 64

 Löpande texten 65

 Pyramiden 66

 Kaffeautomaten 121

 Labyrinten 125

 Master Mind 127

 Kalkylatorn 187

Programförteckning 275

Register 278

 10

 11

Kapitel 1

Windowsprogrammering

 Ämne Sida Program

1.1 Interaktiva grafiska gränssnitt 12 Interaction

­ Controls 13

­ Windows Forms Application 13

­ Händelsemetoder 17

1.2 TextBoxar, Buttons & Labels 18 PassWdTextBox

1.3 Checkboxar och radioknappar 20 Bartender

1.4 Färgtest med kontrollen HscrollBar 24 ColorTest

1.5 Undantagshantering 28 TryCatchTest

­ Egengenererade undantag 30 ThrowTest

1.6 Listboxar 32 ListBoxes

1.7 Gränssnitt mot kalendern 34 DeliveryDate

1.8 En räntekalkylator med multiline TextBox 36 TaxCalculator

1.9 Geometriska figurer 40 Draw

1.10 Bågar och vinklar 43 Arcs

1.11 En egen webbläsare 45

­ En första webbläsare 48 MyFirstBrowser

1.12 En mer utvecklad webbläsare 49 DevBrowser

­ Dialogrutan Navigate 50

1.13 Grafiskt gränssnitt med menyval 55 Menus

1.14 Multiple Document Interface 59 MDI

 Övningar till kapitel 1 och projektuppgifter 63

 12

1.1 Interaktiva grafiska gränssnitt

Windowsprogrammering handlar om att utveckla program som involverar både text och

grafik samt producerar fönster och dialogrutor av olika slag – samma grafiska kompo-

nenter som även används i operativsystemet Windows. Dessutom ska användaren kunna

interagera med sådana program via grafiska gränssnitt, s.k. Graphical User Interfaces

(GUI) som byggs både med förprogrammerade komponenter i Visual Studio och med

egenskriven C#-kod. Det här kapitlet är en fortsättning samt fördjupning på Windows

Forms Applications som introducerades kort i Progr1, 1.3 – 1.5.

Ett grafiskt gränssnitt är en yta som vi kan använda för att kommunicera med program-

met när det körs. Och detta i båda riktningar, dvs från användaren till programmet och

tvärtom. Det är ett slags användarvänligt mellanskikt (gräns) mellan användaren och

den icke-användarvänliga koden. För att kunna kommunicera måste vi väcka de grafis-

ka komponenterna till liv och interagera med dem, när applikationen körs, vilket kräver

att vi förser dem med egenskriven kod och/eller med komponenter som är förprogram-

merade i Visual Studio. I regel ingår i sådana program mer grafik än kod. En konse-

kvens av denna nya form av program blir att körningen till skillnad från konsolapplika-

tioner inte längre till 100% är förbestämd av utvecklarens kod utan kan även styras –

åtminstone delvis – av användaren under programkörningen genom musklickningar och

tangenttryckningar, s.k. händelser. Även andra typer av händelser är tänkbara som på-

verkar både programförloppet och avslutningen i en mycket större utsträckning än det är

fallet med rena textbaserade program. Exekveringen startar i ett fönster med grafiska

komponenter, som visas när programmet körs. Efter en händelse återgår kontrollen till

operativsystemet, vilket dock inte betyder att körningen är avslutad, utan att program-

met är redo att ta emot nästa händelse osv. – därför: händelsestyrd programmering.

I detta avsnitt vill vi bygga en Windows Forms Application som reagerar på musklick-

ning och genererar nedanstående två fönster. Till vänster har vi det s.k. formfönstret,

kort kallat formen, som i sin tur innehåller en knapp (Button). Först när man klickar på

knappen (händelse) får man en meddeladeruta (MessageBox), avbildad till höger:

 13

Controls

Förprogrammerade grafiska komponenter i Visual Studio kallas för Controls. Ex.: Text-

Box, Label, Button, … . Man kan dra dem med musen från verktygslådan Toolbox och

placera dem i formfönstret. För att få funktionalitet i dem skrivs kod ”bakom” dem.

Hur man bygger applikationen ovan ska vi gå igenom nu. Läs om projekt på sid 268.

Windows Forms Application

Starta Visual Studio från Windows Start-meny: Start  Visual Studio 2019. Ett vitt fön-

ster öppnas med rubriken Visual Studio 2019. I kolumnen till höger under rubriken Get

started finns ett antal rutor. Klicka på rutan Create a new project .

En ny dialogruta dyker upp med rubriken Create a new project. Markera i den, rutan

med rubriken Windows Forms App (.NET Framework) som ser ut så här:

Markera rutan ovan. Klicka sedan i dialogrutan Create a new project som omfattar den-

na ruta, på knappen Next längst ned till höger. En ny dialogruta dyker upp med rubriken

Configure your new project. Fyll i den uppgifterna enligt följande:

 14

Fyll i den uppgifterna enligt ovan. Dvs i den övre delen av dialogrutan döper vi vårt

projekt till Interaction. I textrutan Location anger vi den fullständiga sökvägen till den

mapp vi vill placera vårt projekt i. Låt oss säga vi vill samla våra C#-program i en mapp

som vi kallar C# och placerar i enheten C:\. I så fall anger vi som Location C:\C#. I den-

na mapp kommer nu projektmappen Interaction placeras. Visual Studio skapar automa-

tiskt både den nya mappen och projektfilen. Bocka för den lilla rutan Place solution and

project in the same directory. Klicka på knappen Create.

Ett grafiskt gränssnitt kommer upp som liknar en webbsida bestående av en massa me-

nyer, flikar, länkar och fönster som ser ut så här:

Huvudingrediensen i denna samling av komponenter är fliken Form1.cs [Design] som i

sin tur visar ett fönster med rubriken Form1. Detta fönster är en s.k. Windows Form,

kort kallad för form – ett grafiskt användargränssnitt som kommer att utgöra den visuel-

la delen av vår grafiska applikation. Denna form – ibland även kallad formfönstret – är

huvudfönstret (en slags Container) till alla grafiska applikationer som vi kommer att

placera i den och som visas när programmet körs.

Markera formfönstret, gå med musen till Properties-fönstret i formfönstrets nedre högra

hörn, markera egenskapen Text och ändra dess värde från Form1 till Interaction. Obser-

vera att formfönstrets rubrik nu ändrats till Interaction. Scrolla ner Properties-fönstret

till egenskapen Size och sätt dess värde till 930; 660. Därmed har vi gett vårt form-

fönster en ny rubrik och en ny storlek.

Gå till menyraden längst upp och välj menyn: View  Toolbox

 15

Expandera Common Controls och dubbelklicka på kontrollen Button, så att den hamnar i

formfönstret. När du flyttar markören till formen stängs Toolbox-fönstret. Markera den

nya kontrollen button1 på din form för att få fram dess egenskaper i Properties-fönstret.

Egenskaperna i Properties-fönstret är by default grupperade i kategorier (Categorized).

Ändra detta genom att i Properties-fönstrets lilla menyrad strax under button1 klicka på

ikonen (Alphabetical) för att lättare kunna hitta de egenskaper angivna i tabellen nedan.

Ändra button1-egenskapernas värden enligt följande:

 button1:

Egenskap Värde
AutoSize True

Font Tahoma; 12pt; style=Bold

Location 110; 100

Text Detta är en Button. Klicka på den!

Markera knappen med texten Detta är en Button. Klicka på den! och dubbelklicka på

den. En ny flik Form1.cs uppstår till vänster om den gamla fliken Form1.cs [Design].

Den nya fliken visar kod som lagras i filen Form1.cs. Impandera den första raden som

inleds med using. Skriv på det stället där markören står och blinkar, de tre rader kod

som är markerade på denna bild (raderna 20-22):

Kompilera med Build  Build Solution och kör med Debug  Start Without Debugging

applikationen Interaction. Klicka på knappen för att få fram detta:

 16

Nedan följer den fullständiga koden i filen Form1.cs samt kodens förklaring:

// Form1.cs

using System;

using System.Windows.Forms;

namespace Interaction // Namnutrymme

{
 public partial class Form1 : Form // Form1 ärver Form

 {
 public Form1() // Klassens konstruktor

 {
 InitializeComponent();

 }

 private void button1_Click(object sender, EventArgs e)

 {
 MessageBox.Show("Texten till en MessageBox som visas " +

 "varje gång man klickar på Button i formen.",

 "Det här är en egenvald rubrik till MessageBox");

 }
 }
}

I C# är namespace ett reserverat ord som skapar ett namnutrymme, en slags behållare

för klasser. C#:s programbibliotek är organiserat i sådana namnutrymmen som innehål-

ler fördefinierade klasser. Dessa placeras i namnutrymmen som får samma namn som

projektet. T.ex. kan man komma åt klassen Form1 med Interaction.Form1 osv.

Namnutrymmen är ett bra och – i vissa fall – nödvändigt skydd mot namnkonflikter.

De using-direktiven i början inkluderar två namnutrymmen ur C#:s programbibliotek

som behövs för att kompilera denna enkla grafiska applikation. Ursprungligen genererar

Visual Studio några using-direktiv till som vi tagit bort, för de visar sig vara onödiga.

Klasshuvudet public partial class Form1 : Form säger för det första att koden är

en del av klassdeklarationen (partial). För det andra säger det att klassen Form1 som

 17

vi skapar, ärver biblioteksklassen Form. I C# är : koden för arv
*
. Klassen Form i sin tur

är deklarerad i namnutrymmet System.Windows.Forms. Där finns en hel del fördefi-

nierad kod som behövs för att skapa formfönstret. Alla klasser som skapar formfönstret

måste ärva denna fördefinierade kod. Den del av klassen Form1 som deklareras här, in-

nehåller endast två metoder. Den första är klassens konstruktor Form1(). Den andra

metod i vilken vi lade tre rader egen kod, heter button1_Click(). Denna kod gör att

MessageBoxen visas vid musklickning när man kör programmet. Medan konstruktorn

Form1() är en automatisk metod för att initiera klassen Form1:s egenskaper, är but-

ton1_Click() en helt ny typ av metod som kallas för händelsemetod. Den förekom-

mer inte i konsolapplikationer utan är ett verktyg för händelsestyrd programmering och

därför typisk för interaktiva grafiska applikationer.

Händelsemetoder

Vanliga metoder deklareras först och anropas sedan. Både deklarationen och anropet

sker med kod. En händelsemetod (eng.: event handler) deklareras också precis som en

vanlig metod, men anropas inte explicit med en vanlig anropskod utan genom en s.k.

händelse. En händelse är en aktion som utförs antingen av användaren eller av ett

program, vare sig en applikation eller datorns operativsytem. Exempel på händelser är

musklickning, musdragning eller tangenttryckning. Men även en kod kan utlösa en hän-

delse. När händelsen inträffar, anropas metoden som är associerad med händelsen. Me-

toden button1_Click() är associerad med musklickning på button1, en kontroll av

typ Button. Så snart vi skapar en sådan kontroll i formen, t.ex. button1 (sid 15), genereras

kod: Huvudet till metoden button1_Click() i klassen Form1 (filen Form1.cs). Med

dubbelklick på den nya kontrollen (i designläge) får vi fram denna kod i editfönstret och

kan skriva kroppen till metoden. Vi är fria att skriva där vilken kod som helst, för att få

den exekverad när man i körläge klickar på knappen button1. Eftersom vi vill få ut ett

meddelande i ett fönster, skriver vi ett anrop av metoden MessageBox.Show() som vi

stiftade bekantskap med tidigare. Händelsemetoden button1_Click() har två para-

metrar som vi dock inte använder i kroppen i just denna applikation. Ändå måste vi ha

dem med i metodens huvud, för huvudet är fördefinierat i superklassen Form.

Metoden MessageBox.Show()

Till skillnad från button1_Click() är metoden Show() ingen händelsemetod, utan en

vanlig metod. Därför anropas den med kod, inte med en händelse (musklickning). Den

anropande koden står i händelsemetoden button1_Click(). Musklick på knappen

med texten Detta är en Button. Klicka på den! (i körläge) anropar händelsemetoden och

den i sin tur metoden Show(). I den version som används här har metoden Message-

Box.Show() två parametrar: Den första står för själva meddelandet som ska visas i den

lilla rutan, den andra för rubriken som ska stå på rutans ram. Att vi i koden med + kon-

katenerar två strängar på den 1:a parameterplatsen, beror på att meddelandet vi vill skri-

va ut, inte ryms på en rad i editfönstret resp. på sidan i boken. I koden är det som vanligt

kommat som skiljer åt metodens två parametrar.

* Läs om arv och konstruktorn på sid 69 och om metoder på sid 67.

 18

1.2 TextBoxar, Buttons & Labels

Kontrollen TextBox ger oss möjligheten att från ett grafiskt gränssnitt mata in text i en

ruta som vidareförs till programmet och kan bearbetas där. Denna kontroll demonstreras

i ett program som följer och som kommer att ha följande output när det körs:

Först kommer det upp formen till vänster som innehåller tre olika kontroller, en Text-

Box, en Label och en Button. Den sista hade vi redan använt i projektet Interaction (sid

12). Skriver man en text i TextBoxen kommer den att maskeras av stjärnor, men klickar

man på knappen Show Me kommer texten att visas i labeln under textrutan. Här vidare-

förs alltså den inmatade texten till programmet som ser till att den för det första syns

som stjärnor i TextBoxen. För det andra visas den i klartext i Label-kontrollen och detta

endast när man klickar på Show Me som är en kontoll av typ Button. Texten kan ju tän-

kas vara t.ex. ett lösenord eller något annat hemligt meddelande. Alla dessa kontroller

med sina respektive funktionaliteter byggs i ett litet program som vi kallar för Passwd-

TextBox.

Gör så här för att skapa applikationen:

 Skapa en Windows Forms Application och döp den till PasswdTextBox. Hur

man gör har vi lärt oss i projektet Interaction (sid 12).

Sätt följande värde på egenskapen Text till formen Form1 så att formens rubrik

bär programmets (projektets) namn. Låt alla andra värden vara oförändrade.

 Form1:

Egenskap Värde
Text PasswdTextBox

Size 310;420

 Hämta från Visual Studios Toolbox en TextBox-kontroll till formen och ändra

värden till några av dess egenskaper enligt följande:

 19

 textBox1:

Egenskap Värde
(Name) tbPasswd

PasswordChar *

Location.X 20

Location.Y 25

Size.Width 245

Size.Height 26

 Hämta från Toolbox en Label-kontroll till formen och sätt följande värden:

 label1:

Egenskap Värde

(Name) lblShowPasswd

Text

Location.X 20

Location.Y 75

BorderStyle Fixed3D

Autosize False

Size.Width 245

Size.Height 20

 Hämta från Toolbox en Button-kontroll till formen och gör samma sak här:

 button1:

Egenskap Värde
(Name) btnShowMe

Text Show Me

Location.X 90

Location.Y 150

Size.Width 100

Size.Height 40

Kod bakom Show Me-knappen

 Dubbelklicka på Show Me-knappen för att få upp formens kod, klassen Form1

med den nya händelsemetoden btnShowMe_Click().

 Lägg in i den nya händelsemetoden btnShowMe_Click() följande kod:

lblShowPasswd.Text = tbPasswd.Text;

 Kompilera och kör. Skriv något i textboxen. Det visas bara stjärnor. Klickar du

på Show Me-knappen visas texten i labeln.

 20

 1.3 CheckBoxar och radioknappar

I detta avsnitt vill vi bygga ett grafiskt gränssnitt som har ett antal alternativ som man

kan välja mellan. Två sorters val kan förekomma i detta sammanhang: Ett- och flervals-

alternativ. Ettvalsalternativ visas i grafiska gränssnitt ofta med små ringar, s.k. radio-

knappar som man markerar eller avmarkerar. Flervalsalternativ däremot visas med små

rutor, s.k. CheckBoxar som man sätter en bock på eller bockar av. Både radioknappar

och checkboxar är kontroller i Visual Studio och heter RadioButton resp. CheckBox.

Programmet Bartender som vi ska bygga och vars grafiska gränssnitt visas nedan, an-

vänder båda kontroller grupperade under rubrikerna Dryck och Välj glas:

Rubriken Dryck grupperar två checkboxar, medan Välj glas grupperar tre radioknappar.

Även själva grupperingen görs med en kontroll som heter GroupBox. Rutan ovan visas

inledningsvis när programmet Bartender körs, innan någon interaktion gjorts. Sedan kan

man välja dryck och glas samt klicka på knappen Servera för att få de valda alternativen

”serverade” i en MessageBox. Så här kan en sådan dialog se ut:

Här har båda alternativen Vodka och Gin valts, vilket

är möjligt därför att kontrollen CheckBox tillåter det.

Samma sak gäller inte för kontrollen RadioButton. Den

tillåter endast ett alternativ. Den lilla rutan till höger är

en MessageBox som kommer upp först när man klickar på knappen Servera. Knappen

Avsluta är ett alternativ till det röda krysset i rutans högra övra hörn. Båda avslutar kör-

ningen. Innan man avslutar kan man efter att klickat på OK-knappen i MessageBoxen,

göra andra val och få fram det nya resultatet i MessageBoxen osv.

Gör så här för att skapa programmet Bartender:

 21

1. Skapa en Windows Forms Application och döp den till Bartender.

 Form1:

Egenskap Värde
Text Var så god och välj

Size.Width 600

Size.Height 250

2. Hämta från Toolbox (All Windows Forms) en GroupBox-kontroll till formen:

 groupBox1:

Egenskap Värde
(Name) grbDrink

Text Dryck

Location.X 20

Location.Y 25

Size.Width 150

Size.Height 100

3. Hämta två CheckBox-kontroller till formen, placera dem i Dryck-gruppboxen

och ändra följande värden:

 checkBox1:

Egenskap Värde
(Name) chkVodka

Text Vodka

Location.X 15

Location.Y 30

 checkBox2:

Egenskap Värde
(Name) chkGin

Text Gin

Location.X 15

Location.Y 60

4. Hämta en till GroupBox-kontroll till formen:

 groupBox2:

Egenskap Värde

(Name) grbGlass

Text Välj glas

Location.X 200

Location.Y 25

Size.Width 200

Size.Height 140

 22

5. Hämta tre RadioButton-kontroller till formen, placera dem i Glas-gruppboxen

och ändra följande värden:

 radioButton1:

Egenskap Värde
(Name) optShotGlass

Text Snapsglas

Location.X 15

Location.Y 30

 radioButton2:

Egenskap Värde
(Name) optCocktailGlass

Text Cocktailglas

Location.X 15

Location.Y 60

 radioButton3:

Egenskap Värde
(Name) optVineGlass

Text Vinglas

Location.X 15

Location.Y 90

6. Hämta en Button-kontroll till formen:

 button1:

Egenskap Värde
(Name) btnServ

Text Servera

Location.X 440

Location.Y 30

Size.Width 120

Size.Height 70

7. Hämta en till Button-kontroll till formen:

 button2:

Egenskap Värde
(Name) btnFinish

Text Avsluta

Location.X 460

Location.Y 135

Size.Width 75

Size.Height 45

 23

Kod bakom Servera- och Avsluta-knappen

8. Dubbelklicka på Servera-knappen för att få upp Formens kod, klassen Form1

med den nya händelsemetoden btnServ_Click().

9. Lägg in i den nya händelsemetoden btnServ_Click() följande kod:

 string output = "";

 if (chkVodka.Checked && !chkGin.Checked)

 output = "Vodka serveras ";

 if (chkGin.Checked && !chkVodka.Checked)

 output = "Gin serveras ";

 if (chkVodka.Checked && chkGin.Checked)

 output = "Vodka och Gin serveras ";

 if (optShotGlass.Checked)

 output += "i snapsglas.";

 if (optCocktailGlass.Checked)

 output += "i cocktailglas.";

 if (optVineGlass.Checked)

 output += "i vinglas.";

 MessageBox.Show(output, "Bartender svarar:");

10. Dubbelklicka på Avsluta-knappen för att få upp Formens kod, klassen Form1

med den nya händelsemetoden btnFinish_Click().

11. Lägg in i den nya händelsemetoden btnFinish_Click() följande kod:

Application.Exit();

12. Kompilera och kör. Välj dryck, glas och klicka på Servera-knappen.

 24

1.4 Färgtest med kontrollen HScrollBar

Här kommer vi att bekanta oss med Visual Studios kontroll HscrollBar där H står för ho-

rizontal. Programmet ColorTest demonstrerar denna kontroll. Låt oss först titta på dess

grafiska gränssnitt:

Till vänster ser man tre HscrollBar-kontroller. Ordagant betyder scrollbar på svenska

rullningslist, men vi föredrar det engelska originalet. Till höger om dem finns sex la-

bels, två till varje scrollbar, dessutom en button. De första tre labels som på bilden står 0

på, visar resp. scrollbars värde som kan ändras när man kör programmet. Det gör man

genom att med nedtryckt mus dra på scrollbarens reglage och ställa in ett önskat värde

genom att släppa musen. Detta värde kommer då att visas på labeln (istället för 0) så

snart man klickat på knappan Visa färg. Då kan det hela se ut så här:

De andra tre labels som det står Röd, Grön och Blå på, visar de färgkomponenter som

bidrar till bakgrundsfärgen enligt RGB-färgsystemet. I exemplet ovan är bakgrundsfär-

gen en lilanuans – som dessvärre inte kan ses i svart-vit trycket – och sammansatt av

214 röda, 112 gröna och 233 blå andelar. Varje grundfärg i RGB-systemet kan bidra med

0-255 andelar till den sammansatta färgen. Genom en kombination av olika inställningar

kan man få sammanlagt 256
3 = 16 777 216 olika färgnuanser som allihopa är blandnin-

gar (i olika doser) av de grundfärgerna röd, grön och blå, därav namnet RGB.

 25

Programmet ColorTest demonstrerar hur man med enkla medel – några kontroller bl.a.

HScrollBar och lite kod – kan mixa, få fram och se alla möjliga RGB-färgerna.

Gör så här för att skapa programmet ColorTest:

1. Skapa en Windows Forms Application och döp det till ColorTest.

 Form1:

Egenskap Värde
Text ColorTest

Size.Width 600

Size.Height 320

2. Hämta tre HScrollBar-kontroller från Toolbox (All Windows Forms) till formen:

 hScrollBar1, ...2, ...3:

Egenskap Värde
Location.X 25

Location.Y 40

Size.Width 350

Size.Height 17

Maximum 255

LargeChange 1

Egenskap Värde
Location.X 25

Location.Y 100

Size.Width 350

Size.Height 17

Maximum 255

LargeChange 1

Egenskap Värde
Location.X 25

Location.Y 160

Size.Width 350

Size.Height 17

Maximum 255

LargeChange 1

Kontrollen HScrollBar har två egenskaper Minimum och Maximum som repre-

senterar scrollbarens minsta och största värde. Minimum:s defaultvärde är 0. Vi

ändrar inte det, eftersom vi vill ha intervallet [0, 255]. Däremot sätter vi värdet

på Maximum i alla tre scrollbarer till 255, se tabellen nedan. En annan egenskap

av kontrollen HScrollBar är LargeChange som är steget som scrollbarens värde

ändras med när man klickar på de små pilarna på båda sidorna av scrollbaren.

Vi sätter detta steg till 1.

 26

3. Hämta tre Label-kontroller till formen och placera dem höger om HScrollBar-

kontrollerna:

 label1, ...2, ...3:

Egenskap Värde
Text 0

Location.X 420

Location.Y 40

BorderStyle Fixed3D

TextAlign MiddleCenter

BackColor White

Egenskap Värde
Text 0

Location.X 420

Location.Y 100

BorderStyle Fixed3D

TextAlign MiddleCenter

BackColor White

Egenskap Värde

Text 0

Location.X 420

Location.Y 160

BorderStyle Fixed3D

TextAlign MiddleCenter

BackColor White

4. Hämta ytterligare tre Label-kontroller till formen och placera längst till höger:

 label4, ...5:

Egenskap Värde
Text Röd

Location.X 490

Location.Y 40

BackColor White

Egenskap Värde
Text Grön

Location.X 490

Location.Y 100

BackColor White

 27

 label6:

Egenskap Värde
Text Blå

Location.X 490

Location.Y 160

BackColor White

5. Hämta en Button-kontroll till formen som vi i beskrivningen refererar till som

Visa-knappen:

 button1:

Egenskap Värde
(Name) btnShow

Text Visa färg

Size.X 90

Size.Y 40

Location.X 465

Location.Y 210

Kod bakom Visa färg-knappen

6. Dubbelklicka på Visa-knappen för att få upp Formens kod, klassen Form1 med

den nya händelsemetoden btnShow_Click().

7. Lägg in i den nya händelsemetoden btnShow_Click() följande kod:

BackColor = Color.FromArgb(

 hScrollBar1.Value, hScrollBar2.Value,

 hScrollBar3.Value);

label1.Text = Convert.ToString(hScrollBar1.Value);

label2.Text = Convert.ToString(hScrollBar2.Value);

label3.Text = Convert.ToString(hScrollBar3.Value);

8. Kompilera och kör. Dra scrollarna och klicka på Visa-knappen.

 28

1.5 Undantagshantering

Övningarna 1.5 och 1.6 (sid 63) kräver undantagshantering. Undantag (eng. exception)

betyder i programmering fel, närmare bestämt exekveringsfel som uppstår när datorns

processor inte kan utföra programmets instruktioner även om syntaxen är korrekt. Exe-

kveringsfel syns inte vid kompilering. De leder ”bara” till att i bästa fall programmet

och i sämsta fall datorn kraschar. I regel är orsaken okänd och inte lätt att spåra just vid

exekveringstillfället. Däremot borde man kunna förutse dem när man skriver kod. Till

god programmeringsstil hör att man tar hand om ”farlig kod” redan när man program-

merar. Det gäller förstås att förutse i vilka situationer fel kan inträffa vid exekveringen.

I så fall borde man bygga in en felhantering i koden. Alla moderna programmerings-

språk ställer verktyg till förfogande för felhantering som kallas undantagshantering

(eng. exception handling). Detta avsnitt introducerar bara de mest elementära begreppen

och metoderna för undantagshantering i C#.

Automatiskt genererade undantag

I ett av våra program SimpleIf (Progr1, 5.2) hade vi redan skrivit en egen felhantering.

Programmet läste in två tal och dividerade dem med varandra. Men koden tillät division

endast om det andra talet inte var 0. Detta för att förhindra den matematiskt odefiniera-

de divisionen med 0. Inmatning av 0 till det andra talet genererade ”felmeddelandet”:

 OBS! Du har matat in 0 för det andra talet.

 Det går inte att dividera med 0.

Programmeringstekniskt löste vi problemet då med två enkla if-satser. Nu ska vi försö-

ka att göra det med de verktyg för undantagshantering som är inbyggda i C#.

// TryCatchTest.cs

// Förhindrar programavbrott med ett try catch-block

using System;

class TryCatchTest

{
 static void Main()

 {
 int no1 = 8, no2 = 0, div;

 try // try catch-blocket

 {
 div = no1 / no2;

 }
 catch

 {
 Console.WriteLine("\n\t OBS! Du försökte dividera med 0.” +

 "\n\t Det går inte att dividera med 0.");

 }
 Console.WriteLine("\n\t Här fortsätter programmet! \n");

 }
}

 29

Det reserverade ordet try säger: ”Försök att …” dvs försök att utföra det block av sat-

ser som följer, i det här fallet försök att utföra satsen div = no1 / no2; som innebär att

dela 8 med 0. Om det uppstår något fel (undantag) ”fånga upp” – i koden catch – felet

genom att utföra det block av satser som följer efter catch. Man har friheten att skriva i

catch-blocket allt man önskar att det ska ske om try-blocket ”kastar ett undantag” dvs

ger upphov till ett fel. Därför kallas hela konstruktionen try catch-blocket och är un-

dantagshanteringens grundkoncept.

För att förenkla testet har vi i programmet ovan tilldelat 0 direkt till no2 för att provo-

cera fram undantaget DivideByZeroException som är ett fördefinierat undantag och

samtidigt en subklass med samma namn i klassen Exception. Detta undantag genere-

ras automatiskt av koden no1/no2 när no2 har värdet 0. Hade vi inte hanterat detta un-

dantag genom att placera koden i try-blocket och fånga upp det i catch-blocket, hade

vi fått följande felmeddelande vid exekvering av programmet TryCatchTest:

Unhandled Exception: System.DivideByZeroException: Attempted to divide by zero.

 at TryCatchTest.Main() in c:\C#\MyProject\TryCatchTest.cs:line 14

Testa gärna detta genom att kommentera bort hela try catch-blocket men behålla sat-

serna div = no1/no2; och Console.WriteLine("\n\tHär fortsätter programmet!

\n");. Samtidigt med felmeddelandet ovan avbryts programkörningen abrupt. Resten

av programmet exekveras inte. Hade den kod som kastar undantaget stått i början av ett

längre program hade stora mängder kod inte exekverats.

Om vi däremot hanterar undantaget som i TryCatchTest sker inget oväntat program-

avbrott. Istället exekveras koden i catch-blocket. Sedan fortsätter programflödet efter

catch-blocket, resten av koden exekveras och programmet slutförs på ett regulärt sätt.

Körresultatet av programmet TryCatchTest visar detta:

 OBS! Du försökte dividera med 0.

 Det går inte att dividera med 0.

 Här fortsätter programmet!

Observera att programflödet inte återgår till den punkt tillbaka där undantaget kastades i

try-blocket utan fortsätter linjärt, dvs efter catch-blocket. Så kod som står efter den

”farliga koden” i try-blocket exekveras endast om inget undantag inträffar. Testa gärna

själv genom att i programmet TryCatchTest lägga in någon utskriftssats i slutet av

try-blocket. Den sats kommer inte att utföras eftersom no1/no2 genererar undantag.

Det finns en uppsjö av automatiskt genererade undantag i C# som är fördefinierade i

subklasser till klassen Exception som finns i namnutrymmet System. Varje gång ett

undantag inträffar skapas ett objekt av en sådan klass där all information om undantaget

lagras. Andra exempel på automatiskt genererade undantag är IndexOutOfRange-

Exception som inträffar när man överskrider en arrays gränser och NullReference-

Exception som uppstår när man använder en referens som har värdet null dvs inte

pekar på något objekt.

 30

Egengenererade undantag

Undantaget DivideByZeroException var i programmet TryCatchTest (sid 28) au-

tomatiskt genererad, förorsakat av koden no1/no2 och av att variabeln no2 hade värdet

0. Men det finns i C# också möjligheten att programmeraren själv genererar ett undan-

tag vilket ger oss friheten att kontrollera våra program med avseende på tillförlitlighet

och stabilitet av kod. Detta kan man göra bl.a. med det reserverade ordet throw (eng.

att kasta). Att kasta ett undantag betyder att generera ett sådant, vilket man kan göra ge-

nom att sätta throw framför ett objekt av någon undantagsklass. Följande program

demonstrerar detta:

// ThrowTest.cs

// Kastar ett undantag med throw och hanterar det med try catch

using System;

class ThrowTest

{
 static double SafeDiv(double no1, double no2) // Metod

 {
 if (no2 == 0)
 throw new DivideByZeroException(); // Undantag kastas

 else // Objekt skapas

 return no1 / no2;

 }

 static void Main()

 {
 try // Undantag hanteras

 {
 Console.WriteLine(SafeDiv(8, 0)); // Anrop

 }
 catch(DivideByZeroException e) // catch + parameter

 {
 Console.WriteLine(e.ToString()); // Undantag skrivs ut

 }
 }
}

throw-satsen

new DivideByZeroException() är ett objekt av typ DivideByZeroException.

Genom att sätta throw framför det genereras (kastas) ett sådant undantag:

throw new DivideByZeroException();

Denna sats ersätter koden no1/no2 som i förra avsnitt förorsakade det automatiskt

genererade undantaget. Därför är denna kod flyttad efter else och utförs därmed endast

om no2 inte är lika med 0. Satsen är inbyggd i metoden SafeDiv() som anropas i

 31

try-blocket. Därmed genereras undantaget där, vilket länkar programflödet till catch-

blocket. Huvudet till catch-blocket ser här annorlunda ut:

catch(DivideByZeroException e)

Det ser ut som en metod med en parameterlista i vilken en referens e definieras till det

ovan skapade undantagsobjektet av typ DivideByZeroException. Vi har alltså att

göra med en annan variant av catch jämfört med programmet TryCatchTest (sid 28)

där catch saknade parameterlista. Med hjälp av referensen e som pekar på det kastade

undantagsobjektet kan vi nu i catch-blocket anropa objektets ToString()-metod:

Console.WriteLine(e.ToString());

Detta anrop resulterar i följande utskrift av programmet ThrowTest :

System.DivideByZeroException: Attempted to divide by zero.

 at ThrowTest.SafeDiv(Double no1, Double no2) in

c:\C#\MyProject\ThrowTest.cs:line 10

 at ThrowTest.Main() in c:\C#\MyProject\ThrowTest.cs:line 19

Observera att detta inte är ett felmeddelande, därför att vi har ju hanterat undantaget

DivideByZeroException i try catch-blocket och skrivit ut dess ToString()-me-

tod. ToString() är en strängrepresentationsmetod definierad i en superklass som ärvs

av alla fördefinierade klasser, så även av klassen DivideByZeroException. Därför

kan vi använda den med referensen e som pekar på det kastade undantagsobjektet av

denna klass. Metoden ToString() innehåller objektets fullständiga information i

strängform. Genom att anropa den i utskriftssatsen ser vi denna information. Den anger

först sin källa: System.DivideByZeroException. Sedan talar den om vilken typ av

undantag det rör sig om: Attempted to divide by zero. Resten av informationen

handlar om var exakt i programmet undantaget inträffade.

Samma information som vi får med e.ToString() ges vidare till det felmeddelande

som automatiskt skrivs ut om vi inte hanterar undantaget. Den enda skillnaden är att det

hela inleds då med att det är ett ohanterat undantag:

Unhandled Exception: ...

Då hade detta varit ett verkligt felmeddelande.

Man kan ju undra vilken praktisk relevans programmet ThrowTest har och varför och i

vilka situationer man använder throw-satsen. När ska man låta C# upptäcka möjliga fel

och generera undantag automatiskt och när ska vi skriva kod för att själva kasta och

hantera undantag? Programmet ThrowTest har endast pedagogisk relevans, dvs att ge

en första introduktion till de elementära grundbegreppen och metoderna inom undan-

tagshantering. I övningarna 1.5 och 1.6 på nästa sida hittar du ytterligare en användning

av undantagshantering.

 32

1.6 ListBoxar

1. Skapa en Windows Forms Application och döp det till ListBoxes.

 Form1:

Egenskap Värde
Text ListboxTest

Size.Width 600

Size.Height 375

2. Hämta en ListBox-kontroll till formen.

 listBox1:

Egenskap Värde
Location.X 40

Location.Y 40

Size.Width 175

Size.Height 224

3. Högerklicka på listBox1, kopiera och klistra in i formen, för att få en till List-

Box-kontroll i samma storlek. Ändra Location:

 listBox2:

Egenskap Värde
Location.X 370

Location.Y 40

4. Markera listBox1, klicka på Smart Tag (lilla pilen), välj Edit Items, skriv in föl-

jande texter i dialogrutan String Collection Editor som dyker upp – en rad i taget

och klicka på OK:

Stockholm

London

Paris

Amsterdam

New York

Wien

Moskva

5. Hämta en Button-kontroll till formen.

 button1:

Egenskap Värde
Location.X 255

Location.Y 110

Size 75; 35

Text ----->

 33

6. Högerklicka på l button1, kopiera och klistra in i formen, för att få en till button

i samma storlek. Ändra Text och Location:

 button2:

Egenskap Värde
Location.X 255

Location.Y 160

Text <-----

Projektets kod

7. Dubbelklicka på button1-kontrollen och skriv in följande:

private void Button1_Click(object sender, EventArgs e)

{
 listBox2.Items.Add(listBox1.Text);

 listBox1.Items.Remove(listBox1.Text);

}

8. Dubbelklicka på button2-kontrollen och skriv in följande:

private void Button2_Click(object sender, EventArgs e)

{
 listBox1.Items.Add(listBox2.Text);

 listBox2.Items.Remove(listBox2.Text);

}

9. Kompilera och kör. Så här kan det se ut när man kör programmet ListBoxes:

 34

1.7 Gränssnitt mot kalendern

Ett grafiskt gränssnitt ska låta användaren välja ett beställningsdatum och skriva ut ett

leveransdatum enligt följande regler:

 Leveransdatum får inte vara före beställningsdatum.

 Leveransdatum ska i regel ligga 2 dagar efter beställningsdatum.

 Det ska tas hänsyn till att söndagar inte kan levereras, dvs:

 Ligger en söndag mellan beställnigs- och leveransdatum, blir leve-

 ranstiden 3 dagar.

1. Skapa en Windows Forms Application och döp det till DeliveryDate.

 Form1:

Egenskap Värde
Text Leveransdatum

Size 410; 430

2. Hämta en Label-kontroll till formen och döp den till orderLabel.

 label1:

Egenskap Värde
(Name) orderLabel

Text Beställningsdatum:

Location 45; 45

3. Hämta en DateTimePricker-kontroll till formen

 dateTimePicker1:

Egenskap Värde
Location 45; 90

Size 300; 26

4. Hämta en andra Label-kontroll till formen och döp den till outputLabel.

 label2:

Egenskap Värde
(Name) outputLabel

AutoSize False

Size 300; 45

Location 45; 230

BorderStyle FixedSingle

Text

TextAlign MiddleCenter

 35

5. Hämta en tredje Label-kontroll till formen och döp den till delivLabel.

 label3:

Egenskap Värde
(Name) delivLabel

Text Leveransdatum:

Location 45; 185

Projektets kod

6. Dubbelklicka på dateTimePicker1-kontrollen och skriv in följande:

private void dateTimePicker1_ValueChanged

 (object sender, EventArgs e)

{
 DateTime orderDate = dateTimePicker1.Value;

 if (orderDate.DayOfWeek == DayOfWeek.Friday ||

 orderDate.DayOfWeek == DayOfWeek.Saturday ||

 orderDate.DayOfWeek == DayOfWeek.Sunday)

 outputLabel.Text =

 orderDate.AddDays(3).ToLongDateString();

 else

 outputLabel.Text =

 orderDate.AddDays(2).ToLongDateString();

}

7. Dubbelklicka på formen Form1 och skriv in följande:

private void Form1_Load(object sender, EventArgs e)

{
 dateTimePicker1.MinDate = DateTime.Today;

 dateTimePicker1.MaxDate = DateTime.Today.AddYears(1);

}

8. Kompilera. Så här ser det ut när man kör programmet DeliveryDate:

 36

1.8 En räntekalkylator med multiline TextBox

1. Skapa en Windows Forms Application och döp det till TaxCalculator.

 Form1:

Egenskap Värde

Text RänteKalkylator

Size.Width 430

Size.Height 430

2. Hämta en Label-kontroll till formen och ändra värden:

 label1:

Egenskap Värde
Text Kapital:

Location.X 17

Location.Y 30

3. Hämta en TextBox-kontroll till formen ... :

 textBox1:

Egenskap Värde
(Name) tbCapital

Location.X 120

Location.Y 27

Size.Width 160

Size.Height 26

TextAlign Right

4. Hämta en Label-kontroll till formen:

 label2:

Egenskap Värde
Text Räntesats:

Location.X 17

Location.Y 80

5. Hämta en TextBox-kontroll till formen:

 textBox2:

Egenskap Värde

(Name) tbTaxRate

Location.X 120

Location.Y 77

Size.Width 160

Size.Height 26

TextAlign Right

 37

6. Hämta en Button-kontroll till formen:

 button1:

Egenskap Värde
(Name) btnCompute

Text Beräkna

Location.X 300

Location.Y 25

Size.Width 90

Size.Height 30

7. Hämta en Label-kontroll till formen:

 label3:

Egenskap Värde

Text Antal år:

Location.X 17

Location.Y 130

8. Hämta en NumericUpDown-kontroll till formen:

 numericUpDown1:

Egenskap Värde
(Name) numUpDownYear

Location.X 120

Location.Y 127

Size.Width 160

Size.Height 26

Minimum 1

Maximum 20

ReadOnly True

TextAlign Right

9. Hämta en Label-kontroll till formen:

 label4:

Egenskap Värde
Text Årliga saldon:

Location.X 17

Location.Y 175

10. Hämta en TextBox-kontroll till formen:

 textBox3:

Egenskap Värde
(Name) tbDisplay

MultiLine True

Location.X 20

 38

Location.Y 200

Size.Width 350

Size.Height 150

ReadOnly True

Scrollbars Vertical

11. Dubbelklicka på Beräkna-knappen för att få upp Formens kod, klassen Form1

med den nya händelsemetoden btnCompute_Click(). Lägg in kod enligt föl-

jande:

// Form1.cs

// Beräknar räntan av kapital efter n år enligt formeln:

// saldo = kapital * FF^n där FF = (1 + räntesats/100)

// Demonstrerar kontrollerna NumericUpDown och TextBox (MultiLine)

// samt formaterad utskrift av decimalttal: Valutaformat

using System;

using System.Windows.Forms;

namespace TaxCalculator

{
 public partial class Form1 : Form

 {
 public Form1()

 {
 InitializeComponent();

 }

 private void btnCompute_Click(object sender, EventArgs e)

 {
 double balance; // Inläsning:

 double capital = Convert.ToDouble(tbCapital.Text);

 double taxRate = Convert.ToDouble(tbTaxRate.Text);

 int years = Convert.ToInt32(numUpDownYear.Value);

 double FF = 1 + taxRate / 100; // Förändringsfaktorn

 string output = "År\t\tSaldo\r\n\r\n";

 // Utskriftsvariabel

 for (int n = 1; n <= years; n++)

 {
 balance = capital * (Math.Pow(FF, n));

 output += n + "\t\t" +

 string.Format("{0:C}", balance) + "\r\n";

 } // Valutaformat:
 // C = Currency

 tbDisplay.Text = output; // Akkumulerad utskrift

 } // dumpas till multi-

 } // line textbox

}

 39

12. Kompilera och kör.

Så här kan det se ut när man kör programmet TaxCalculator:

 40

(0, 0) x

y

1.9 Geometriska figurer

För att kunna rita geometriska figurer och placera dem behöver vi ange bl.a. deras stor-

lek och position, vilket förutsätter ett koordinatsystem på den grafiska ritytan. Ett sådant

koordinatsystem är automatiskt definierat i alla fönster vi får fram i Visual Studio, där

origo dvs positionen (0, 0) är placerad i fönstrets vänstra övre hörn. OBS! formens rubrik

ligger utanför. x-koordinaten växer i horisontell led åt höger och y-koordinaten i verti-

kal led nedåt. Tillämpar vi detta default koordinatsystem t.ex. på formfönstret, kan vi

föreställa oss följande situation:

Denna bild borde man ha i minnet när man arbetar med koordinater i en C# Windows

Application. Som man ser befinner sig alla positioner på formens rena rityta som är grå.

Man kan undra vad koordinatsystemets enhet är. Vi har ju inte satt någon skala på axlar-

na – och detta av goda skäl: Enheten på en grafisk yta är alltid automatiskt en s.k. pixel

som står för picture element. En pixel är en digital bilds minsta komponent – datorgrafi-

kens atom så att säga. Som en bildpunkt med en viss färg och en placering är storleken

beroende av den aktuella tekniska utrustningen som visar bilden – hos oss bildskärmen

och dess upplösning. Vill vi placera en punkt i det default koordinatsystemet ovan anges

punktens x-koordinat som antalet pixlar som den är borta från formens vänstra kant.

Punktens y-koordinat anges som antalet pixlar som den är borta från formens övre kant.

Självklart kan man, om man vill, även skapa sitt eget koordinatsystem som man är van

vid från matematiken, med origo i mitten osv. Men vi kommer i våra program att anpas-

sa oss till detta grafiska koordinatsystem som är standard i all datorgrafik. Därmed slip-

per vi besväret att skriva kod som räknar om uppgifterna i vårt koordinatsystem till de-

fault koordinatsystemet. Priset vi måste betala för denna förenkling är: Det vi då måste

tänka på när vi skriver kod är att enheten är pixlar, att det därför inte kan finnas några

negativa koordinater och att y-koordinaten växer nedåt och inte uppåt. Man vänjer sig

ganska fort till detta nya tankesätt. Ytterligare ett starkt skäl till att anpassa sig till det

befintliga och inte införa ett nytt eget koordinatsystem, är att alla ritmetoder i C# biblio-

 41

teket är formulerade i termer av default koordinatsystemet. Skriver man ett program där

man blandar egen kod med anrop av biblioteksmetoder – och det gör ju nästan alla pro-

gram – är det en stor fördel att tillämpa samma system.

Programmet Draw använder sig av ett antal biblioteksmetoder för att rita linjer, rektan-

glar och ovaler. Vi vill t.ex. åstadkomma följande bild:

Gör så här för att skapa programmet Draw:

1. Skapa en Windows Forms Application och döp det till Draw.

 Form1:

Egenskap Värde
Text Linjer, rektanglar och ovaler

Size.Width 920

Size.Height 465

2. Gå till Solution Explorer, högerklicka på Form1.cs och välj View Code. Ersätt

hela koden i filen Form1.cs med följande:

// Projekt Draw, filen Form1.cs

// Demonstrerar ritning av linjer, rektanglar och ovaler

// Metoden OnPaint() ärvs från basklassen Form och överskuggas

using System.Drawing;

using System.Windows.Forms;

namespace Draw

{
 public partial class Form1 : Form

 {
 public Form1()

 {
 InitializeComponent();

 }

 42

 protected override void OnPaint(PaintEventArgs e)

 {
 Graphics g = e.Graphics;

 Pen pen = new Pen(Color.Black);

 g.DrawLine(pen, 0, 160, 600, 160);

 pen = new Pen(Color.Green);

 g.DrawLine(pen, 0, 265, 600, 160);

 pen = new Pen(Color.Violet);

 g.DrawLine(pen, 0, 160, 600, 265);

 SolidBrush brush = new SolidBrush(Color.Turquoise);

 g.FillRectangle(brush, 90, 30, 150, 90);

 pen = new Pen(Color.Red);

 g.DrawLine(pen, 90, 30, 110, 40);

 g.DrawLine(pen, 90, 120, 110, 130);

 g.DrawLine(pen, 240, 30, 260, 40);

 g.DrawLine(pen, 240, 120, 260, 130);

 g.DrawRectangle(pen, 110, 40, 150, 90);

 brush.Color = Color.Blue;

 g.FillEllipse(brush, 380, 75, 100, 50);

 g.DrawLine(pen, 380, 45, 380, 100);

 g.DrawLine(pen, 480, 45, 480, 100);

 g.DrawEllipse(pen, 380, 20, 100, 50);

 }
 }
}

3. Kompilera och kör.

Metoden OnPaint()

Nästan hela koden till detta program står i metoden OnPaint(). Ordet override i me-

todens huvud betyder att vi definierar om metoden OnPaint() och att denna omdefini-

tion överskuggar (eng. override) den ursprungliga definitionen av metoden i klassen

Form – en klass som vi ärver genom att i klasshuvudet skriva public partial class

Form1 : Form. Dvs all kod som finns fördefinierad i klassen Form finns till vårt

förfogande i klassen Form1 som vi skriver, bl.a. metoden OnPaint(). Vi tar över me-

todens huvud och skriver vår egen kropp till den. Observera att all ritning av geo-

metriska figurer i metoden OnPaint() endast är möjlig om det i början av metoden

skapas ett Graphics-objekt med referensen g som i fortsättninngen refererar till ob-

jektet: Graphics g = e.Graphics;. Detta gäller även för nästa programs OnPaint()-

metod i nästa avsnitt där vi fortsätter att rita. Alla dessa begrepp överskuggning, arv,

objekt, referens, override och andra, är objektorienterade programmeringens termer

som kommer att i detalj behandlas i bokens kapitel 2 (sid 69).

 43

1.10 Bågar och vinklar

1. Skapa en Windows Forms Application och döp det till Arcs.

 Form1:

Egenskap Värde
Text Bågar och vinklar

Size 460; 465

2. Gå till Solution Explorer, högerklicka på Form1.cs och välj View Code. Ersätt

hela koden i filen Form1.cs med följande:

// Form1.cs

using System.Drawing;

using System.Windows.Forms;

namespace Arcs

{
 public partial class Form1 : Form

 {
 public Form1()

 {
 InitializeComponent();

 }

 protected override void OnPaint(PaintEventArgs e)

 {
 Graphics g = e.Graphics;

 Rectangle r1 = new Rectangle(15, 35, 80, 80);

 SolidBrush brush1 = new SolidBrush(Color.Red);

 Pen pen1 = new Pen(brush1, 1);

 SolidBrush brush2 = new SolidBrush(Color.Blue);

 Pen pen2 = new Pen(brush2, 1);

 g.DrawRectangle(pen1, r1);

 g.DrawArc(pen2, r1, 0, -140);

 r1.Location = new Point(100, 35);

 g.DrawRectangle(pen1, r1);

 g.DrawArc(pen2, r1, 0, 120);

 r1.Location = new Point(185, 35);

 g.DrawRectangle(pen1, r1);

 g.DrawArc(pen2, r1, 0, -310);

r1.Location = new Point(15, 120);

 r1.Size = new Size(80, 40);

 44

 g.DrawRectangle(pen1, r1);

 g.FillPie(brush2, r1, 0, -140);

 r1.Location = new Point(100, 120);

 g.DrawRectangle(pen1, r1);

 g.FillPie(brush2, r1, 0, 120);

 r1.Location = new Point(185, 120);

 g.DrawRectangle(pen1, r1);

 g.FillPie(brush2, r1, 0, -310);

 }
 }
}

3. Kompilera och kör.

Så här ser det ut när man kör programmet Arcs:

 45

 1 2

1.11 En egen webbläsare

I detta avsnitt vill vi utveckla en enkel webbläsare med möjligheten att koppla upp sig

till Internet och visa en webbsida samt navigera på den – en typisk grafisk applikation,

som vi i nästa avsnitt ska utvidga med ytterligare funktionaliteter som t.ex. menyer, un-

dermenyer osv. Men just nu ska den räcka till att kunna skriva en webbadress (URL) i

ett textfält och klicka på en knapp för att komma ut på nätet till den angivna adressen.

Själva webbsidan behöver ett lite större fönster för att kunna visas. Om vi till en början

nöjer oss med dessa få ingredienser borde vi klara oss med följande kontroller som vi

ska placera på vårt formfönster:

1. En WebBrowser som visar webbsidan

2. En TextBox för att skriva webbadressen i

3. En Button som vi klickar på för att köra igång

Faktiskt finns det i Visual Studios Toolbox en kontroll som heter WebBrowser och som

bildar grunden till denna applikation – ett gränssnitt mot Internet.

Vi skapar först ett nytt projekt av typ Windows Forms Application – så som vi gick ige-

nom i de föregående avsnitten – och döpar det till, säg MyFirstBrowser. Sedan hämtar vi

kontrollen WebBrowser till formfönstret genom att dubbelklicka på den. Denna finns i

Toolbox under Common Controls som allra sist. OBS! Till skillnad från andra kontroller

kommer denna kontroll inte att lägga sig i formfönstrets övre vänstra hörn, utan den

kommer att sträcka sig över formens hela lediga utrymme, så att man i början inte ens

märker att den kommit till formen. Tittar man däremot noga, kan man se att det ligger

ett vitt skikt över formens ljusgrå yta och täcker hela formen (utom rubriken). Skillna-

den mellan ljusgrå (förr) och vit (nu) är en indikation på förändringen. Det vita skiktet

är den nya WebBrowser-kontroll som vi just hämtade och la i formen. En annan indika-

tion

är den

lilla

 46

triangelformiga pil som (på bilden ovan) pil nr 1 pekar på – kallad Smart Tag. Klicka på

denna Smart Tag för att få fram textrutorna till höger. Klicka sedan på länken Undock in

parent container (pil nr 2). Detta kommer att lösa WebBrowser-kontrollen från formen.

Då kan du för det första identifiera kontrollen bättre och för det andra placera den i

formen var du vill. Självklart kan man även ändra storleken på den osv. Vi måste

faktiskt förstora den, om vi vill visa webbsidor i den. Men för att förstora kontrollen

måste vi först förstora dess behållare (container), formen. Vid det tillfället passar vi på

att även få en lämpligare text på formens rubrik. Därför: Ändra egenskapernas värden

hos formen Form1 enligt följande:

 Form1:

Egenskap Värde
Text Min första webbläsare

Size.Width 1190

Size.Height 760

Observera att formen fortfarande har default namnet Form1. Den kommer att endast

visa texten Min första webbläsare på sin rubrik när vi kör applikationen.

Ändra egenskapernas värden hos WebBrowser-kontrollen som by default har namnet

webBrowser1 enligt följande:

 webBrowser1:

Egenskap Värde
(Name) browserWindow

Size.Width 1150

Size.Height 620

Location.X 12

Location.Y 12

Här ändrar vi verkligen Name-egenskapen och dessutom storleken samt positionen av

WebBrowser-kontrollen relativ till formen. Självklart är alla dessa värden – inklusive

formens storlek i förra tabellen – relaterade till varandra med syftet att få en någorlunda

bra layout på vår webbläsares grafiska utseende. Väljer du andra värden, får du anpassa

dem till varandra layoutmässigt.

Markera formen, skapa en ny TextBox-kontroll och ändra dess värden enligt följande:

 textBox1:

Egenskap Värde
(Name) tbURL

Location.X 12

Location.Y 650

Size.Width 1020

Size.Height 26

Slutligen behöver vi även en Button. Markera formen, hämta den från Toolbox och än-

dra de nedanstående egenskaperna till följande värden:

 47

 button1:

Egenskap Värde
(Name) btnGo

Location.X 1060

Location.Y 650

Size.width 80

Size.height 30

Text Kör

Har du genomfört alla ovan beskrivna åtgärder, kommer din form i stort sett att ha föl-

jande utseende, här i körläge:

Det stora fönstret är WebBrowser-

kontrollen som vi kallat browserWin-

dow och som ska visa webbsidors in-

nehåll. Det avlånga lilla fönstret ne-

dan till vänster är TextBox-kontrol-

len tbURL, där man ska skriva en

webbadress. Den är beredd att ta

emot inmatning av text. Kör-knappen

nedan till höger är Button-kontrollen
btnGo som ska skicka förfrågan till den i tbURL angivna webbplatsen på Internet.

En första webbläsare

Att det inte händer något om du kompilerar och kör programmet och klickar på Kör-

knappen – och inte heller om du först skriver en giltig webbadress i textboxen och sedan

klickar på Kör-knappen – beror på att vi inte ännu lagt någon kod bakom knappen. Dvs

vi har inte än skrivit någon händelsemetod som skulle anropas när händelsen ”Klicka på

Kör-knappen” inträffar. Man kan också säga att det inte finns någon funktionalitet ba-

kom Button-kontrollen btnGo. Och så är det med alla kontroller som skapas: De har ett

antal egenskaper (datamedlemmar) med vissa defaultvärden som vi kan ändra. De har

också ett antal händelsemetoder. Men av dessa metoder är endast huvudet fördefinierat

(signaturen, sid 172, polymorfism, sid 113). Kroppen är tom, varför det inget händer, när

de anropas vid en händelse, t.ex. en musklickning. Det är vi som måste skriva kod i

dessa metoders kropp för att förse våra kontroller med den funktionalitet som är lämplig

just för den aktuella applikationen. För att ge liv åt Kör-knappen i vår webbläsare, måste

den (endast med huvudet) fördefinierade händelsemetoden

private void btnGo_Click(object sender, EventArgs e)

förses med kod i kroppen. För att åstadkomma detta, gör precis som i förra avsnitt:

Markera i designläge Kör-knappen btnGo och dubbelklicka på den. Du får denna kon-

trolls kod presenterad i editfönstret. Den består av en del av klassen Form1:s deklaration

och lagras i filen Form1.cs. Markören står och blinkar i den tomma kroppen till händel-

semetoden btnGo_Click(), redo att ta emot kod. Skriv där endast följande:

 48

browserWindow.Navigate(tbURL.Text);

Satsen är ett anrop av metoden Navigate() tillhörande objektet browserWindow –

vår WebBrowser-kontroll. I så fall måste Navigate() vara en fördefinierad metod i

den klass som browserWindow är ett objekt av. Och den här gången är det en metod

vars både huvud och kropp är förprogrammerade i klassen WebBrowser. Här ser man att

kontrollerna i Visual Studios Toolbox är helt enkelt klasser som är skrivna och integre-

rade i miljön för att underlätta utvecklingsarbetet, för att vi inte skulle behöva att åter-

uppfinna hjulet. Metoden Navigate() gör det egentliga jobbet i denna applikation,

nämligen att gå ut på Internet och navigera oss fram till den server på nätet vars adress

vi angivit, hämta HTML-filen som genererar webbsidan från servern och exekvera den

på vår klientdator. För att kunna förse Navigate() med adressinformationen skickar vi

i anropet ovan den aktuella parametern tbURL.Text, dvs datamedlemmen (Text-egen-

skapen) av TextBox-objektet tbURL. Dvs den sträng som vi skriver i textfältet, när pro-

grammet körs, blir värdet av tbURL:s Text-egenskap. Den har nämligen i designläge

inget värde, vilket man kan övertyga sig av genom att titta i tbURL:s egenskapsfönster.

Platsen där värdet ska stå är tom. Variabeln tbURL.Text blir tilldelad ett värde först

när man exekverar. Värdet tas från textfältet vid inmatning och skickas, när Kör-knap-

pen klickas, till metoden Navigate().

När vår metods förfrågan har besvarats av servern på Internet, visas resultatet i applika-

tionens browserWindow som fortfarande är en del av och integrerad i formfönstret. Stor-

leken vi valt bibehålls under körningen. Är webbsiddan större än den förvalda storleken

får WebBrowser-fönstret horisontella resp. vertikala scrollbars. Även om man maxime-

rar formfönstret, blir det samma sak: Den valda storleken vid designläge kan inte ändras

i körläge. Följande resultat visas när vi kompilerar och kör vår första webbläsare My-

FirstBrowser, skriver en webbadress i textfältet nedan och klickar på Kör-knappen:

 49

1.12 En mer utvecklad webbläsare

1. Skapa en Windows Forms Application och döp den till DevBrowser.

 Form1:

Egenskap Värde
Text Utvecklad webbläsare

Size.Width 1500

Size.Height 1000

2. Hämta från Toolbox (Common Controls) en WebBrowser-kontroll till formen.

Klicka på den lilla triangelformiga pilen (Smart Tag) i det högra övre hörnet av

WebBrowser-kontrollen. Välj Undock in Parent container för att förminska den

och lösa den från formen. Låt browserWindow vara Dock in Parent container.

 webBrowser1:

Egenskap Värde
(Name) browserWindow

Size.Width 1500

Size.Height 1000

Location.X 0

Location.Y 40

Dialogrutan About Box

Vi vill nu för första gången vid sidan av Form1 skapa en ny, andra form i vårt projekt:

3. Högerklicka på projektnamnet DevBrowser i Solution Explorer. Välj Add 

New Item... . Dialogrutan Add New Item dyker upp. Markera i den mellersta

kolumnen About Box (Windows Forms) – den nya formens typ. Döp den nya

formens fil i textfältet Name till AboutBox.cs och klicka på knappen Add längst

ner till höger. Den nya formen About Box skapas.

4. Återgå till fliken bredvid: vår ursprungliga form Form1. Hämta från Toolbox

(All Windows Forms) den nya kontrollen MenuStrip till formen. En tom meny-

radplats läggs till formen och täcker delvis över browserWindow. Samtidigt dy-

ker upp en komponent av den längst ner till vänster i Visual Studio (inte i for-

men) som bär den nya kontrollens namn menuStrip1.

5. Markera MenuStrip-kontrollen, klicka på dess Smart Tag, en liten triangelför-

mig pil som syns invid det lilla röda krysset i det högra övre hörnet av form-

fönstret – men tillhörande MenuStrip-kontrollen. En pop up-ruta med rubriken

MenuStrip Tasks kommer upp. Klicka på Insert Standard Items: En typisk

Windows menyrad med menyer, undermenyer osv. läggs till MenuStrip.

 50

6. Ta bort alla menyer utom Help-menyn genom att högerklicka på dem och välja

Delete.

7. Markera Help-menyn. Välj undermenyn About... och dubbelklicka på den: For-

mens kod dyker upp med den nya händelsemetoden AboutToolStripMenu-

Item_Click().

8. Ta bort alla onödiga using-satser från formens kod, dvs alla utom using Sy-

stem; och using System.Windows.Forms;. Testkör för att se att allt är ok.

Stäng körningen.

9. Skriv i klassen Form1, ovanför raden public Form1(), koden:

AboutBox myAboutBox = new AboutBox();

Därmed skapar du ett objekt av typ AboutBox och döper det till myAboutBox.

10. Lägg in i den nya händelsemetoden aboutToolStripMenuItem_Click()

från punkt 8 följande anrop av det nya objektets metod ShowDialog():

myAboutBox.ShowDialog();

11. Kompilera och kör. Klicka på Help-menyn samt på undermenyn About... för att

se den nya AboutBox-formen om visar rubriken About DevBrowser. Klicka på

OK och stäng körningen.

Dialogrutan Navigate

Här ska vi ersätta textfältet för webbadressen och knappen Kör som fanns i förra projek-

tet MyFirstBrowser, med en dialogruta dvs en ny, tredje form av typ Windows Form.

12. Högerklicka på projektnamnet DevBrowser i Solution Explorer. Välj Add 

New Item... . Välj i dialogrutan Add New Item... typen Form (Windows Forms).
Döp den nya formens fil i textfältet Name till Navigate.cs och klicka på knap-

pen Add längst ner till höger. Den nya formen Navigate skapas.

13. Sätt följande värden till den nya formen Navigate:s egenskaper:

 Navigate:

Egenskap Värde
FormBorderStyle FixedDialog

MaximizeBox False

MinimizeBox False

ShowIcon False

ShowInTaskbar False

Size.Width 800

Size.Height 250

StartPosition CenterParent

 51

14. Hämta från Toolbox (All Windows Forms) en kontroll av typ TableLayoutPanel

till den nya formen Navigate. Använd kontrollens Smart Tag (lilla pilen) och

välj Remove Last Row för att få en rad och två kolumner i den nya kontrollen:

 tableLayoutPanel1:

Egenskap Värde

Size.Width 200

Size.Height 40

Location.X 570

Location.Y 130

Anchor Bottom, Right

15. Lägg in en Button-kontroll i tableLayoutPanel1:s första kolumn:

 button1:

Egenskap Värde
(Name) btnOK

Text OK

Size.Width 75

Size.Height 35

Dialogresult OK

16. Lägg in en Button-kontroll i tableLayoutPanel1:s andra kolumn:

 button1:

Egenskap Värde
(Name) btnCancel

Text Cancel

Size.Width 75

Size.Height 35

Dialogresult Cancel

17. Återgå till Navigate-formen och lägg till följande två värden till egenskaperna:

 Navigate:

Egenskap Värde

AcceptButton btnOK

CancelButton btnCancel

 Det kan vi göra först nu efter att knapparna skapats.

18. Hämta en Label-kontroll till Navigate-formen:

 52

 label1:

Egenskap Värde
(Name) lblURL

Location.X 30

Location.Y 20

Text Mata in en Internet adress:

19. Hämta en TextBox-kontroll till Navigate-formen:

 textBox1:

Egenskap Värde
(Name) txtURL

Location.X 30

Location.Y 50

Size.width 720

Size.height 26

AutoCompleteSource AllUrl

AutoCompleteMode SuggestAppend

Modifiers Public

De Auto-egenskaperna gör att textfältet beter sig liknande adressfältet i Internet

Explorer, t.ex. att den kommer ihåg och kompletterar adresser som man använt

tidigare. Public gör att txtURL som finns i Navigate-formen (en klass för sig), är

åtkomlig från formen Form1 (en annan klass) där Navigate-menyn kommer att

läggas.

Menyn Navigate

Här ska vi koppla Navigate-formen till projektet DevBrowser.

20. Återgå till formen Form1 med rubriken Utvecklad webbläsare. Där finns redan

en Help-meny. Klicka till höger om Help-menyn så att hela menyraden syns.

Klicka i det lilla textfält som dyker upp och skriv &Navigate. En ny meny ska-

pas med texten Navigate.

21. Flytta med musen den nya Navigate-menyn till vänster om Help-menyn.

22. Dubbelklicka på Navigate-menyn för att få upp Formens kod, klassen Form1

med den nya händelsemetoden NavigateToolStripMenuItem_Click().

23. Skriv i klassen Form1, ovanför raden AboutBox myAboutBox = ... , koden:

Navigate myNavigateBox = new Navigate();

Därmed skapar du ett objekt av typ Navigate och döper det till myNavi-

gateBox.

 53

24. Lägg in i den nya händelsemetoden navigateToolStripMenuItem_-

Click() följande kod:

if (myNavigateBox.ShowDialog() == DialogResult.OK)

{
 browserWindow.Navigate(myNavigateBox.txtURL.Text);

}

25. Kompilera och kör. Klickar du på Navigate-menyn visas Navigate-formen:

Skriv in en webbadress i textfältet till Navigate-formen ovan och klicka på OK för att få

upp sidan i browserWindow. Så här kan det se ut:

Här följer sammanfattat all kod till detta projekt i filen Form1.cs:

 54

// Form1.cs till projektet DevBrowser

// Utvecklad webbläsare med en Navigate- och en About-meny

// Tar in webbadressen via en dialogruta och

// kopplar upp sig till Internet

using System;

using System.Windows.Forms;

namespace DevBrowser

{
 public partial class Form1 : Form

 {
 Navigate myNavigateBox = new Navigate(); // Objekt av typ

 // Navigate

 AboutBox myAboutBox = new AboutBox(); // Objekt av typ

 // AboutBox

 public Form1()

 {
 InitializeComponent();

 }

 private void aboutToolStripMenuItem_Click(

 object sender, EventArgs e)

 {
 myAboutBox.ShowDialog();

 }

 private void navigateToolStripMenuItem_Click(

 object sender, EventArgs e)

 {
 if (myNavigateBox.ShowDialog() == DialogResult.OK)

 {
 browserWindow.Navigate(myNavigateBox.txtURL.Text);

 }
 }
 }
}

 55

1.13 Grafiskt gränssnitt med menyval

1. Skapa en Windows Forms Application och döp det till Menus.

 Form1:

Egenskap Värde
Text Menyer

Size.Width 610

Size.Height 360

2. Hämta från Toolbox, All Windows Forms, en MenuStrip-kontroll till formen: En

tom menyradplats lägger sig till formen direkt under rubriken. Längst ner till

vänster i component tray dyker upp en annan del av den nya kontrollen med

namnet menuStrip1. Den kan användas för att synliggöra MenuStrip-kontrollen

om den försvinner, t.ex. när man (av misstag) markerat formen

3. En annan metod att skapa menyer än den vi lärde oss i projektet DevBrowser,

är följande: Gå in med musen till textfältet Type Here som dyker upp på den

nya kontrollen menuStrip1. Om du inte ser den, klicka på den tomma meny-

radplatsen längst till höger. Klicka i textfältet Type Here och skriv där File och

tryck på Enter för att skapa en File-meny.

4. Markera menyradplatsen och skriv i textfältet Type Here som dyker upp till

höger om File-menyn, Format. Tryck på Enter för att skapa en Format -meny.

Att skapa under- och under-undermenyer

5. Markera File-menyn och skriv i textfältet Type Here som dyker upp under den

(OBS! inte bredvid den) About och tryck på Enter. Skriv i det textfält som dy-

ker upp direkt under About-textfältet, Exit och tryck på Enter (upprepas kanske

inte alltid explicit i fortsättningen). Så har du skapat två undermenyer under

File-menyn.

6. Gör samma sak under Format-menyn. Markera den och skriv i textfältet Type
Here som dyker upp under den (OBS! inte bredvid den) Color. Skriv i det text-

fält som dyker upp direkt under Color-textfältet, Font.

7. Gå till Format-menyn och markera undermenyn Color i den. Skriv i textfältet

Type Here som dyker upp till höger om den, Black. Skriv i det textfält som

dyker upp direkt under Black-textfältet, Blue. Skapa på samma sätt ytterligare

två under-undermenyer under Format-Color-menyn, nämligen Red och Green.

8. Gå till Format-menyn och markera undermenyn Font i den. Skriv i textfältet

Type Here som dyker upp till höger om den, Times New Roman. Skriv i det

textfält som dyker upp direkt under det, Courier och under det, Comic Sans.

 56

9. Efter du skrivit Comic Sans och tryckt på Enter, klicka på den lilla pilen till

höger om textfältet Type Here under Comic Sans och välj Separator. Så har du

skapat under-undermenyn Separator i undermenyn Font.

10. Fortsätt med att skapa två under-undermenyer till under Separatorn, nämligen

Bold och Italic.

11. Kompilera och kör. Testa dina menyer samt undermenyer.

12. Hämta en Label-kontroll till formen och döp den till displayLabel.

 label1:

Egenskap Värde
(Name) displayLabel

Text
Använd Format-menyn för att
ändra denna texts utseende.

Autosize False

Size 435; 135

Font Times New Roman; 14pt

Location 80; 120

Projektets kod

Lägg in koderna i filen Form1.cs, klassen Form1 i den här ordningen:

13. Gå till formen, menyn File och undermenyn About. Dubbelklicka på About-

undermenyn och skriv in kroppen till följande händelsemetod:

private void AboutToolStripMenuItem_Click(

 object sender, EventArgs e)

 {
 MessageBox.Show("Detta program demonstrerar\n" +

 "användningen av menyer.",

 "About", MessageBoxButtons.OK,

 MessageBoxIcon.Information);

 }

14. Gå till formen (fliken bredvid), menyn File och undermenyn Exit. Dubbelklicka

på Exit och skriv in kroppen till följande händelsemetod (OBS! endast en rad):

private void ExitToolStripMenuItem_Click(

 object sender, EventArgs e)

 {
 Application.Exit();

 }

15. Skriv in följande i filen Form1.cs:

private void ClearColor()

 {
 blackToolStripMenuItem.Checked = false;

 57

 blueToolStripMenuItem.Checked = false;

 redToolStripMenuItem.Checked = false;

 greenToolStripMenuItem.Checked = false;

 }

16. Gå till undermenyn Format-Color, dubbelklicka på Black och skriv in följande:

private void BlackToolStripMenuItem_Click(

 object sender, EventArgs e)

 {
 ClearColor();

 displayLabel.ForeColor = Color.Black;

 blackToolStripMenuItem.Checked = true;

 }

17. Gå till undermenyn Format-Color, dubbelklicka på Blue och skriv in följande:

private void BlueToolStripMenuItem_Click(

 object sender, EventArgs e)

 {
 ClearColor();

 displayLabel.ForeColor = Color.Blue;

 blueToolStripMenuItem.Checked = true;

 }

18. Skriv motsvarande händelsemetoder till de andra färgerna Red och Green.

OBS! Händelsemetoder kommer inte att fungera om du bara klipper, klistrar

och ändrar i koden. Du måste dubbelklicka på undermenyerna från formen och

koda sedan, för att få en automatisk koppling mellan grafiken och koden.

19. Skriv in följande i filen Form1.cs:

private void ClearFont()

 {
 timesNewRomanToolStripMenuItem.Checked = false;

 courierToolStripMenuItem.Checked = false;

 comicSansToolStripMenuItem.Checked = false;

 }

20. Gå tillundermenyn Format-Font, dubbelklicka på Times New Roman och skriv

in följande:

private void TimesNewRomanToolStripMenuItem_Click(

 object sender, EventArgs e)

{
 ClearFont();

 timesNewRomanToolStripMenuItem.Checked = true;

 displayLabel.Font = new Font("Times New Roman", 14,

 displayLabel.Font.Style);

}

 58

21. Skriv motsvarande händelsemetoder till de andra fonterna Courier och Comic

Sans.

OBS! Ändra i koden det fysiska namnet på fonten Comic Sans till "Comic

Sans MS". Så heter fontens namn i den nya versionen av Visual Studio.

Samma sak här: Händelsemetoder kommer inte att fungera om du bara klipper,

klistrar och ändrar i koden. Du måste dubbelklicka på undermenyerna från

formen och koda sedan.

22. Gå tillundermenyn Format-Font, dubbelklicka på Bold-undermenyn i och skriv

in följande:

private void BoldToolStripMenuItem_Click(

 object sender, EventArgs e)

{
 boldToolStripMenuItem.Checked =

 !boldToolStripMenuItem.Checked;

 displayLabel.Font = new Font(displayLabel.Font,

 displayLabel.Font.Style ^ FontStyle.Bold);

}

23. Dubbelklicka på Italic-undermenyn i Format-Format-menyn och skriv in följan-

de:

private void ItalicToolStripMenuItem_Click(

 object sender, EventArgs e)

{
 italicToolStripMenuItem.Checked =

 !italicToolStripMenuItem.Checked;

 displayLabel.Font = new Font(displayLabel.Font,

 displayLabel.Font.Style ^ FontStyle.Italic);

}

24. Kompilera och kör. Testa menyerna.

Så här kan det se ut när man kör programmet Menus:

 59

1.14 Multiple Document Interface (MDI)

1. Skapa en Windows Forms Application och döp den till MDI.

 Form1:

Egenskap Värde
Text Multiple Document Interface

Size 1100; 770

IsMdiContainer True

När egenskapen IsMdiContainer sätts till True blir denna form en Container el-

ler en s.k. förälderform. Lägg märke till att formens bakgrundsfärg ändras till

grå. Så länge IsMdiContainer är False har vi en ”vanlig” form, även kallad

barnform. By default är IsMdiContainer alltid False.

Skapa en barnform

2. Skapa en ny, andra form i projektet, så här: Högerklicka på projektnamnet MDI

i Solution Explorer:  Add  New Item... . Välj i dialogrutan Add New Item...
den nya formens typ: Form (Windows Forms). Döp den till ChildForm genom

att skriva i textfältet Name: ChildForm.cs. Klicka på knappen Add.

Barnformens design

3. Markera barnformen ChildForm och ändra dess storlek:

 ChildForm:

Egenskap Värde

Size 650; 340

4. Hämta från Toolbox, All Windows Forms, en PictureBox-kontroll till ChildForm:

 pictureBox1:

Egenskap Värde
BackColor (Web) White

Dock Fill (mellersta rutan)

SizeMode StrechImage

Lägg märke till att PictureBox-kontrollen lägger sig över hela barnformen.

Barnformens kod

5. Markera ChildForm.cs i Solution Explorer, högerklicka och välj View Code för

att se barnformens kod. Byt ut hela koden i childForm.cs till följande:

using System.Drawing;

using System.Windows.Forms;

using System.IO;

 60

namespace MDI

{
 public partial class ChildForm : Form

 {
 public ChildForm(string title, string fileName)

 {
 InitializeComponent();

 Text = title;

 pictureBox1.Image =

 Image.FromFile(Directory.GetCurrentDirectory()

 + fileName);

 }
 }
}

Skapa menyer i Form1

6. Lämna ChildForm och återgå till Form1 (fliken bredvid). Hämta från Toolbox,

All Windows Forms, en MenuStrip-kontroll till Form1: En tom menyradplats

lägger sig till formen direkt under rubriken. Längst ner till vänster i component

tray dyker upp en annan del av den nya kontrollen med namnet menuStrip1.

Den kan användas för att markera MenuStrip-kontrollen.

7. Markera MenuStrip-kontrollen. Gå in med musen till textfältet Type Here på

den nya kontrollen menuStrip1 och skriv där File. Tryck på Enter.

8. Markera menyradplatsen och skriv i textfältet Type Here till höger om File-

menyn, Window. Tryck på Enter (upprepas inte längre i beskrivningen).

9. Markera File-menyn och skriv i textfältet Type Here som dyker upp under den

(OBS! inte bredvid den) New. Klicka i textfältet som dyker upp direkt under

New-textfältet och skriv Exit.

10. Markera New-menyn och skriv i textfältet Type Here som dyker upp till höger

om den, Child1. Skriv i det textfält som dyker upp direkt under Child1-text-

fältet, Child2. Skriv i det textfält som dyker upp direkt under Child2-textfältet,

Child3.

11. Skapa på samma sätt även undermenyer under Window-menyn: Markera den

och skriv i textfältet Type Here som dyker upp under den (OBS! inte bredvid

den) Cascade. Skriv i det textfält som dyker upp direkt under Cascade, Tile
Horizontal. Skriv i det textfält som dyker upp direkt under Tile Horizontal, Tile

Vertical.

Form1:s kod

12. Gå till File-menyn och markera Exit-undermenyn. Dubbelklicka på den och

skriv in kroppen (endast en rad) till händelsemetoden:

 61

private void exitToolStripMenuItem_Click(

 object sender, EventArgs e)

 {
 Application.Exit();

 }

13. Gå tillbaka till formen Form1, där till File-menyn och undermenyn New. Klicka

på den och markera Child1-undermenyn. Dubbelklicka på den och skriv in:

private void child1ToolStripMenuItem_Click(

 object sender, EventArgs e)

{
 ChildForm child = new ChildForm("Första bilden",

 "\\Valkomst.gif");

 child.MdiParent = this;

 child.Show();

}

OBS! Koden kan kompileras, men inte exekveras just nu, därför att filen Valkomst.-

gif som anges i koden ovan, inte finns i projektet. Vi kommer att fixa det senare.

14. Gör samma som i punkten ovan med Child2-undermenyn. Markera den, dub-

belklika på den och skriv in följande.

private void child2ToolStripMenuItem_Click(

 object sender, EventArgs e)

{
 ChildForm child = new ChildForm("Andra bilden",

 "\\Valkomst.gif");

 child.MdiParent = this;

 child.Show();

}

15. Gör motsvarande med Child3-undermenyn. Glöm inte "Tredje bilden".

OBS! Det går inte att klippa, klistra och ändra i koden. Du måste dubbelklicka på under-

menyn från formen och koda sedan, för att få en koppling mellan grafiken och koden.

16. Gå tillbaka till formen Form1, där till Window-menyn och undermenyn Cas-

cade. Dubbelklicka på den och skriv in följande:

private void cascadeToolStripMenuItem_Click(

 object sender, EventArgs e)

{
 this.LayoutMdi(MdiLayout.Cascade);

}

17. Dubbelklicka på Tile Horizontal-undermenyn i Window-menyn och skriv in föl-

jande:
private void tileHorizontalToolStripMenuItem_Click(

 object sender, EventArgs e)

{
 this.LayoutMdi(MdiLayout.TileHorizontal);

}

 62

18. Dubbelklicka på Tile Vertictal-undermenyn i Window-menyn och skriv in föl-

jande:

private void tileVerticalToolStripMenuItem_Click(

 object sender, EventArgs e)

{
 this.LayoutMdi(MdiLayout.TileVertical);

}

Infoga bildfilen i projektet

19. Gå till webbsidan www.taifun.se. Klicka där på bokens bild Programmering 2

med C#, scrolla ned och klicka på länken Valkomst.gif. En zip-fil laddas ned

som innehåller filen Valkomst.gif. Klicka på zip-filen och extrahera den på din

dator.

20. Återgå till Visual Studio, projektet MDI. Markera projektnamnet MDI i Solution

Explorer, högerklicka på det och välj Open Folder in File Explorer. MDI:s pro-

jektmapp på din dator öppnas. Navigera till den plats på din dator där du sparat

bildfilen Valkomst.gif. Kopiera filen Valkomst.gif.

21. Återgå till MDI:s projektmapp du öppnade ovan, undermappen bin  Debug.

Klistra in bildfilen Valkomst.gif i den. Nu finns bildfilen i projektet.

22. Kompilera och kör. Så här kan det se ut när man från File-menyn väljer alla tre

barnformer samt Cascade från Window-menyn:

 63

Övningar till kapitel 1

1.1 Skapa en Console Application och kalla den för AdditionC. Den ska definiera och

initiera två heltalsvariabler och producera t.ex. följande utskrift till konsolen:

 Summan av 9 och 2 är 11

9 och 2 ska vara de värden som variablerna blivit inirierade till i programmet.

1.2 Skapa en Windows Forms Application och kalla den för AdditionW. Den ska göra

samma sak som lösningen i övning 1.1, bara att utskriften inte hamnar i konsolen

utan i en MessageBox och visas när man klickar på en knapp (med texten Visa

MessageBox) i formfönstret. Förse MessageBoxen med rubriken Windows Addi-

tion.

1.3 I både övn 1.1 och 1.2 är heltalsvärdena 9 och 2 hårdkodade. Vidareutveckla des-

sa övningar genom att skapa ett användarvänligt, interaktivt grafiskt gränssnitt

där man kan mata in vilka tal som helst och få summan utskriven i en Message-

Box när man klickar på en knapp med texten Addera. Välj lämpliga rubriker för

formen och MessageBoxen. Kalla projektet för Addition.

1.4 Skapa en Windows Forms Application och kalla den Division. Modifiera lösningen

i övn 1.3 så att beräkningens resultat inte skrivs ut till en MessageBox utan pla-

ceras i ett textfält som läggs till i formen. Välj den här gången division som räk-

neoperation.

1.5 Skapa en Windows Forms Application och kalla den för SafeDivision. Skapa sam-

ma grafiska gränssnitt som i projektet Division (övn 1.4). Applikationen ska ge-

nomföra säker division, dvs ta hand om en eventuell division med 0. Modifiera

koden i Form1.cs genom att införa ett egengenererat undantag för fallet att an-

vändaren matar in 0 i det andra textfältet. Styr meddelandena från undantags-

hanteringen till en MessageBox.

1.6 Vidareutveckla övningsseri-

en 1.1-1.5 till en komplett

kalkylator som inkluderar de

fyra räknesätten. Det grafis-

ka gränssnittet kan se ut som

bilden till höger. Förse divi-

sionen med en undantags-

hantering (sid 28) som vid

division med 0 skriver ut ett

felmeddelande till en Mes-

sageBox.

 64

1.7 Grafiska applikationer (projekt) Gå igenom dina konsolapplikationer

som du skrivit hittills. Undersök vilka av dem som är lämpliga för att skriva om

dem till grafiska applikationer. Integrera all inläsning från och utskrift till konso-

len helt och hållet i en grafisk miljö. OBS! En befintlig konsolapplikation kan inte

laddas i Visual Studio och göras om till en Windows Forms Application. Man

måste skapa en ny Windows Forms Application och förse den både med grafik

och kod som gör samma sak som den ursprungliga konsolapplikationen. Skillna-

den är bara att användaren kommunicerar med programmet via ett grafiskt gräns-

snitt istället för via konsolen. Har du inga konsolapplikationer fortsätt här.

De projektuppgifter som nu följer är konsolapplikationer. Repetera hur man skapar en

C# Console Application i Appendix, sid 265.

1.8 Gissa tal – ett spel (projekt)

Skriv en Console Application som slumpmässigt genererar ett heltal mellan 1 och

100. Låt användaren i flera försök gissa detta hemliga tal. För att stödja gissnin-

gen, låt programmet efter varje gissningsförsök skriva ut, om det gissade talet var

mindre eller större än programmets hemliga slumptal. Låt användaren försöka

igen. Gissningen ska pågå tills man gissat rätt. Vid rätt gissning skriv ut ett

”Grattis!”-meddelande följt av ett datorljud, t.ex. med \a . Förse programmet

med ytterligare två funktionaliteter:

a) Vid rätt gissning skriv även ut ett meddelande om antalet gissningsförsök.

b) Ge möjligheten att avsluta spelet och få reda på programmets hemliga tal, vil-

ket kan ske genom att mata in t.ex. 0 .

Ett exempel på en omgång av Gissa tal-spelet kan se ut så här:

 Gissa ett heltal mellan 1 och 100 (Avsluta med 0): 50

 För LITET, försök igen! 75

 För LITET, försök igen! 87

 För STORT, försök igen! 81

 För LITET, försök igen! 84

 Grattis, du har gissat rätt efter 4 försök.

 Eller om spelaren blivit trött och vill avluta genom att mata in t.ex. 0 :

 Gissa ett heltal mellan 1 och 100 (Avsluta med 0): 0

 Avbrott: Programmets hemliga tal var 66

 65

Ledning:
a) Hantering av slumptal i C#:

 För att slumpmässigt generera ett heltal mellan 1 och 100 kan man skriva:

Random r = new Random();

 int secret = r.Next(1, 101);

Första raden skapar ett objekt av klassen Random. Variabeln r av typ Random

refererar till detta objekt. I den andra raden anropas metoden Next() som är

definierad i klassen Random. Därför måste anropet ske med referensvariabeln

r via punktnotation. Parametrarna 1 och 101 bestämmer att metoden returne-

rar ett heltal mellan 1 och 100. Returvärdet tildelas heltalsvariabeln secret,

programmets hemliga slumptal.

b) Resten består huvudsakligen av en loop som tillåter spelaren gissa upprepade

gånger. I loopen kan en kontrollstruktur användas som är lämplig för fler-

vägsval, för att skilja mellan de olika alternativen. Du kan styra loopens för-

lopp samt avslutning t.ex. med en logisk variabel av typ bool.

Extrauppgift:
 Fundera och testa på en spelstrategi som kan minimera antalet gissningsförsök. I

körexemplet ovan med bara 4 försök har en sådan strategi använts. Hur skulle du

beskriva den?

1.9 Löpande texten (projekt) Skriv ett program som simulerar en löpande

text, t.ex.: C# är kul> som horisontellt rör sig i konsolfönstret tills den ”träffar”

på ett hinder, t.ex. ett kryss i form av ett X. Så här kan ett körresultat se ut:

Ledning:
a) Skriv ut med hjälp av ett antal mellanslag krysset i slutet av en rad i konsolen

utan radbyte. Anteckna antalet mellanslag krysset har avstånd från konsolens

vänstra rand. Stanna på samma rad, gå med hjälp av escapesekvensen \r (car-

 66

riage return) till början av raden och skriv ut texten C# är kul>. Gör experiment

med \r för att bekanta dig med dess funktion. Så här borde ett körresultat se ut:

+

b) Skriv en for-loop. Ta bort (dvs skriv ut) i varje varv av loopen med 10 styck

\b texten C# är kul> som ritats i förra varvet (initialt texten ovan), följt av ett

eller flera mellanslag (vilket påverkar rörelsens ”hastighet”). Skriv sedan om tex-

ten C# är kul>. Välj som antal varv i loopen kryssets avstånd från konsolens

vänstra rand (antecknat i a) minus textens längd – i det föreslagna exemplet 10.

Då kommer rörelsen att stoppas strax innan texten ”träffar” på X.

Även om du gjort allt rätt kommer du inte se texten att röra sig om du inte lägger

in en fördröjning i loopen, eftersom allt går så fort och ögat inte hinner se något

förlopp. Fördröjningen kan du åstadkomma genom att lägga in i loopen satsen:

System.Threading.Thread.Sleep(100);

Detta ger en fördröjning på 100 milisekunder i varje varv av loopen.

1.10 Pyramiden (projekt) Slutmålet med detta projekt är att utveckla ett

program som skriver ut en pyramidliknande figur med tal, t.ex. så här:

Programmet ska vara så generellt att det skriver ut talpyramider även om man

matar in mindre antal rader. Men om användaren inte följer ledtextens instruk-

tion att mata in tal mellan 1 och 13 ska programmet inte skriva ut talpyramiden

utan uppmana användaren att hålla sig till det föreskrivna talintervallet [1, 13].

Anledning till denna restriktion är att talpyramiden inte ryms i konsolen om man

överskrider detta intervall . Så här kan då en dialog t.ex. se ut:

 67

Tips till Pyramiden:

För att komma igång med talpyramiden, börja med att skriva ett program som ritar en

stjärnpyramid:

Strunta till att börja med även på hanteringen av felinmatning av antal rader och jobba

med ett fast antal rader. Du kan lägga till det senare.

Använd en nästlad for-sats med en yttre loop och tre inre loopar:

 En för de tomma platserna i pyramiden (mellanslagen)

 En för stjärnorna i pyramidens högra halvan (räknat från den vertikala

mittlinjen (symmetriaxeln))

 En för stjärnorna i pyramidens vänstra halvan.

Räkna med att du måste använda i de inre looparna den yttre loopens räknare och

slutvärde. T.ex. kan villkoret i den första inre loop som ritar de tomma platserna, se ut

så här:
column <= numberOfRows - row;

Där column är den inre loopens, row den yttre loopens räknare och numberOfRows

hela pyramidens antal rader, t.ex. 13 som ovan. Då kan den här första inre loopen skriva

ut tre mellanslag i varje varv. I de två andra inre looparna kan två mellanslag och en *

skrivas ut.

Observera att alla dessa tips inte ska förhindra att du använder dina egna idéer för att

lösa projektuppgiften. Det finns inte endast ett tillvägagångssätt. Uppgiften kan lösas på

väldigt många olika sätt.

 68

 69

Kapitel 2

Objektorienterad Programmering

 Ämne Sida Program

2.1 Vad är objektorienterad programmering? 70

2.2 Klassbegreppet 76

­ Vad är en klass? 76

­ Vår första klass 77 Password

­ Varför klasser? 80 PasswordUse

2.3 Modularisering 81 P_All_in_Main

 82 P_Method_Module

2.4 Användning av klasser 85 P_Class_Module

­ Deklaration av en klass 85 Emp

­ Definition av ett objekt 87 EmpTest

­ Åtkomst till objektets medlemmar 89

2.5 Klassens konstruktor 91

­ Åtkomstmodifieraren private 91 Circle

­ Konstruktorns egenskaper 93 Encapsulation

­ Default konstruktorn 95 AccountD

­ Flera konstruktorer 97 CreateAccountD

2.6 Referensvariabler 100

­ Automatisk initiering av datamedlemmar 101

2.7 Komposition 104 Date / Employ

­ Komposition av klasser och objekt 106 Composition

2.8 Arv 108 Person

­ Arvrelationen 110 Employee

 111 Inheritance

2.9 Polymorfism 113 Account

­ Överskuggning av metoder 115 MinimalAccount

­ Åtkomstmodifieraren protected 116 PolymorphTest

Övningar till kapitel 2 och projektuppgifter 119

 70

2.1 Vad är objektorienterad programmering?

En given definition på programmering är problemlösning med hjälp av datorn. Om man

då beskriver problemets lösning i form av en algoritm kan man säga Program = algo-

ritm + data. Denna definition ställdes upp av Niklaus Wirth på 60-talet och återspeglar

den procedurala synen på programmering. Fokuset ligger på algoritmen dvs att inte bara

hitta utan även beskriva tillvägagångssättet (proceduren) för att lösa ett problem. Sedan

återstår bara att koda denna beskrivning. En annan definition som kom upp på 80-talet

och återspeglar den objektorienterade synen på programmering är:

Program = Modell av verkligheten

Om man i formeln Program = algoritm + data lägger betoningen på data istället för på

algoritmen och inte längre betraktar data som ett slags bihang till algoritmen utan som

objekt kommer man till objektorienterad programmering. Denna nya programmerings-

filosofi genomsyr alla våra program, eftersom C# med alla sina fördefinierade biblio-

teksprogram är i högsta grad objektorienterade.

Paradigmskifte

Det som i programmeringshistorien gjorde att man behövde objektorienterad program-

mering var den växande komplexiteten hos program under 70-talet. Programmens stor-

lek var avgörande för den växande komplexiteten. Man insåg att det inte längre räckte

till att skriva och testa program som fungerade just då. Det var nödvändigt att med rim-

liga kostnader kunna även underhålla stora program, förnya och vidareutveckla dem så

att de fungerade även i flera år och att de framför allt kunde anpassas till nyuppkomna

situationer utan oöverkomliga svårigheter. Det i sin tur krävde att man redan i design-

stadiet behövde ett annorlunda upplägg. Fokuset förskjöts från problemlösning till mo-

dellering av verkligheten. Objektorienterad design kom in i bilden. Allt detta var endast

med procedural programmering inte längre möjligt. Ett s.k. paradigmskifte hade blivit

nödvändigt, dvs en ändring av helhetssynen på programmering.

Objektorienterad programmering syftar åt att efterlikna verkligheten. Man vill avbilda den

reala världen – åtminstone den del som tillåter datorisering – och konstruera en modell av

den i sina datorprogram för att kunna simulera verkligheten genom att testa modellen. För

att undvika filosofiska diskussioner kan vi anta att den reala världen består kort sagt av

objekt. Världen kring oss är full med sådana objekt: Människor, byggnader, bilar, tåg,

flygplan, träd, möbler, böcker, butiker, skolor, bibliotek, kontor, anställda, kunder, varor,

fakturor, order, bokningar, kurser osv. Objekten kan vara verkliga eller virtuella. Ett da-

torprogram försöker att beskriva dessa objekt. Låt oss precisera detta:

Objekt, klass och metod

Ett objekt har vissa egenskaper. Generellt kan man säga att ett objekt är summan av alla

sina egenskaper. Ett annat ord för egenskap är attribut. Ett objekt består av alla sina attri-

but. Attributen tillhör objektet. T.ex. har objektet bil som attribut fabrikat, modell, färg,

årsmodell, antal körda mil, antal hästkrafter, maximala hastigheten, antal och storlek på

 71

cylindrar i motorn osv. Alla dessa data ger svar på frågan ”Vad är det för bil?”. Men bil-

den vore ofullständig om vi nöjde oss med dessa intressanta, men statiska data. Vi vill

också veta vad man kan göra med bilen. Ett objekt kan i regel även utföra vissa aktioner

eller operationer. I den objektorienterade programmeringens terminologi kallas de för me-

toder. Typiska metoder för en bil är t.ex. att köra fram, att backa, att accelerera, att brom-

sa, att parkera, att byta olja osv. Den fullständiga definitionen på en bil som objekt vore

alltså att ange både dess attribut och metoder. Bilfabrikanten måste förse bilen med alla

dessa färdigheter för att kunna sälja den. Därför går man i bilfabriken efter en plan när

man tillverkar bilen. I den objektorienterade programmeringens terminologi kallas denna

plan för bilens klass. När vi skriver ett program måste vi först formulera klassen Bil för att

sedan kunna skapa objekt av den. Klassen skrivs bara en gång, medan objekt kan skapas

enligt klassens beskrivning i obegränsat antal. I klassen måste vi ta upp alla attribut och

metoder som är relevanta eller av någon anledning önskvärda för en bil. Den praktiska an-

vändningen avgör från fall till fall vad som är relevant eller önskvärt.

Vad är skillnaden mellan objekt och klass? Om vi byter ut bilar mot pepparkakor kan

man säga att pepparkaksformen är klassen och själva pepparkakorna är objekten. Klas-

sen är alltså en slags mall, en förskrift för produktion av objekt: En enda pepparkaks-

form kan producera tusentals pepparkaksgubbar. Gubbarna kan skiljas från varandra i

vissa detaljer, t.ex. materialet, smaken osv. Man kan t.o.m. måla dem i olika färger eller

modifiera på annat sätt efteråt. De förblir pepparkaksgubbar av den ursprungliga for-

men. I formen ingår det som är gemensamt hos alla pepparkaksgubbar. Man har, när

man byggde formen, bortsett från oväsentliga skillnader och tagit hänsyn endast till det

väsentliga, det gemensamma hos alla pepparkakor.

Att bortse från skillnader och att bibehålla det gemensamma hos olika verkliga objekt, är

en abstraktion (abstrahera betyder på latin: att ta bort, att dra av). Man tar bort allt som

skiljer saker och ting av samma kategori eller typ och kommer på det viset till själva kate-

gorin. Abstraktion leder till begreppsbildning, till klassificering eller kategorisering av

den reala världen. Ett växande barn går igenom samma abstraktionsprocess, ser först sina

föräldrar (objekt), abstraherar sedan via erfarenhet så småningom till begreppet människa

(klassen) och inser att sina föräldrar är två konkreta exemplar av den abstrakta klassen

människa. Så gör barnet med alla saker och ting omkring sig och lär sig vuxenvärldens

begreppsapparat. Det abstrakta begreppet penna (klassen) t.ex. bildas efter att man sett

hundratals verkliga pennor (objekt). Objektorienterad programmering återspeglar denna

naturliga tankeprocess från det konkreta till det abstrakta, från objekt till klass.

Metoder

En metod är en funktionalitet som definieras i en klass. Den talar om vad ett objekt av

denna klass kan göra. Det finns två steg i hantering av metoder: Först definierar man

dem dvs skapar man deras kod i en klass. Sedan anropar dvs aktiverar man dem i ett

objekt av denna klass. Ofta är det första steget redan genomfört av andra, så vi behöver

bara anropa en redan fördefinierad metod. I klassen Bil t.ex. är metoderna att köra fram,

att backa, att accelerera, att bromsa osv. definierade i huvuden på bilkonstruktörerna

och i deras konstruktionsritningar och dokumentationer. Sedan har man tillverkat mas-

sor med objekt av klassen Bil i fabriken och byggt in dessa metoder i alla bilar. Vi be-

 72

höver bara anropa dem i den bil vi kör. Den bil vi kör är ett specifikt objekt av klassen

Bil. Låt oss kalla det för minVolvo. Objektet minVolvo har ett antal attribut som t.ex.

fabrikat, modell, färg, årsmodell osv., men också ett antal metoder, bl.a. metoden

Kör(). Parenteserna i metodens namn brukar man skriva för att karakterisera Kör()

som en metod och skilja den från klassens attribut. I C# skriver man ett anrop av meto-

den Kör() så här:
minVolvo.Kör();

Observera att före punkten står ett objekt, inte klassen. Det är ju den specifika bil som

jag använder just nu som ska köras. Först efter punkten står själva anropet av metoden

kör(). Det här sättet att skriva kallas punktnotation. Metoder måste alltid anropas med

punktnotation, vilket har sin grund i att de endast är deklarerade i klasser, så att de en-

dast existerar i objekt av en klass. Till skillnad från fristående funktioner kan metoder

varken definieras utanför klasser eller anropas utanför objekt. I C# finns endast meto-

der, inga funktioner. Om vi bortser från bilexemplet kan det i andra sammanhang även

förekomma en klass (istället för objekt) före punkten i anropet av en metod. I så fall är

metoden definierad i klassen på ett speciellt sätt nämligen som en statisk metod, vilket

tas upp senare när vi behandlar metoder i detalj.

En annan variant av metoden Kör() kan anropas på fäljande sätt:

minVolvo.Kör(40);

Det kan t.ex. betyda: Kör bilen med hastigheten 40 km/h. Värdet 40 kallas då en para-

meter som skickas till metoden när den anropas. I så fall måste även metoden Kör() va-

ra definierad så att den har beredskapen att ta emot denna parameter. Så det kan inte va-

ra samma metod som anropades utan parameter. Det måste vara en annan variant av

den, exakt talat en annan metod med samma namn. Konceptet kallas överlagring av me-

toder och innebär två eller flera metoder med samma namn, men olika parametrar.

Klassdiagram

Låt oss ta som exempel en algoritm som beskriver hur man går upp, duschar, tar på sig

kläderna och åker till jobbet (algoritmen Morgonsyssla i Progr1+, 1.4). Detta är ett typiskt

fall av problemlösning: Det löser problemet hur man tar sig till jobbet. Tillvägagångssät-

tet och framför allt hur vi beskriver det, är föremål för algoritmer. Men vem eller vilka gör

det, dvs vilka objekt som är involverade i algoritmen och hur man beskriver dessa objekt,

är en annan aspekt på saken. Objektorienterad programmering prioriterar objektaspekten

framför algoritmaspekten. Den primära frågan är inte längre vad man gör utan vem man

är dvs hur kan personen beskrivas? Hur man gör för att ta sig till jobbet kommer att ingå

som en del i denna beskrivning. Algoritmen Morgonsyssla blir en metod i objektet Per-

son. Det är objektet som utför metodens instruktioner för att ta sig till jobbet.

Personen kan t.ex. vara en anställd vilket förresten skulle förklara varför han tar sig till

jobbet. I så fall är personen ett objekt av kategorin eller klassen Employee. Därför definie-

ras en klass som beskriver alla anställda. Personen i fråga görs till ett objekt, ett exemplar

av denna klass. På så sätt kan koden återanvändas även för andra anställda. Återanvänd-

ning av kod gör utvecklingsarbetet av programvara effektivare och är en av den

objektorienterade synens fördelar. I klassen Employee ingår all typ av information som är

 73

Person

- firstName

- lastname

- birthDate

+ Present()

+ MorningActivity()

Employee

- hireDate

- workingHour

+ Salary()

+ MorningActivity()

Employee

- firstName

- lastname

- birthDate

- hireDate

- workingHour

+ Salary()

+ Present()

+ MorningActivity()

relevant för en anställd, det vi kallar för attribut, t.ex. för- och efternamn, födelse- och

anställningsdatum, arbetstid osv. Dessutom tar vi

upp allt som en anställd kan göra, det vi kallar för

metoder, t.ex. att få lön, att presentera sig eller också

att ta sig till jobbet. På så sätt blir algoritmen

Morgonsyssla i den objektorienterade programme-

ringens terminologi en metod i klassen Employee.

Ett verktyg speciellt för objektorienterade modelle-

ringar är UML (Unified Modeling Language). Enligt

det här modelleringsspråket skulle klassen Employee

beskrivas med diagrammet till höger som kallas för

klassdiagram. Där står tecknet – för attribut och +

för metoder. Andra beteckningar för attribut är data-

medlem eller egenskap. Dessa termer är synonymer. En klass består av datamedlemmar

och metoder. Klassen Employee t.ex. har fem datamedlemmar och tre metoder.

Klassens konstruktor

Eftersom klassens datamedlemmar i regel är inkapslade (privata) och inte åtkomliga uti-

från klassen – detta gör man bl.a. ur datasäkerhetssynpunkt – måste programmeraren an-

vända sig av ett verktyg för att på ett kodat sätt ändå

kunna komma åt dem, läsa och ändra dem osv. Detta

verktyg kallas klassens konstruktor och är en speciell

metod vars namn är identiskt med klassens namn. Den

initierar automatiskt klassens privata datamedlemmar

när ett objekt skapas. För enkelhetens skull har vi inte

tagit upp den i klassdiagrammet ovan bland klassens

metoder. Konstruktorn har ju endast programmerings-

teknisk karaktär och behandlas i detalj på sid 93.

Arv

I den reala världen som vi vill efterlikna, finns inga

isolerade objekt. Alla objekt är mer eller mindre re-

laterade till andra objekt. En klok modellering måste

dra nytta av de befintliga relationer mellan objekt

för att effektivisera och optimera utvecklingsarbetet.

En sådan relation är arvrelationen.

Man kan alltid etablera en arvrelation mellan två be-

grepp om de står i en ”är”-relation till varandra. I

exemplet ovan kan vi konstatera ett en anställd är en

person. Därför kan klassen Employee ärva klassen

Person, närmare bestämt ärver klassen Employee klassen Person:s alla datamedlem-

mar och metoder. Klassen Person kallas bas- eller superklass. Klassen Employee kal-

las härledd eller subklass. Subklassen ärver superklassens alla datamedlemmar och me-

toder, vilket i praktiken innebär att klassen Employee tar över all kod som redan finns i

 74

klassen Person och lägger till ny kod som närmare specificerar en anställd. På så sätt

slipper man skriva om kod som redan finns. T.ex. har en person ett för- och efternamn

samt ett födelsedatum. Vid modellering av en anställd ärvs dessa attribut, och man läg-

ger till de nya attributen hireDate och workingHour som är speciella för en anställd.

Klassdiagrammet ovan (till vänster) visar modellen där arvrelationen ritats med en pil

riktad mot superklassen. Följer man pilens riktning underifrån kan man avläsa att det är

klassen Employee som ärver klassen Person.

Observera att klassen Employee inte har två utan fem attribut därför att den via arvrela-

tionen även har Person-klassens tre attribut. Samma gäller för metoderna: Employee-

klassen ärver metoden Present() från klassen Person. Modellen ovan går utifrån att

personer presenterar sig på samma sätt som anställda. Sedan har anställda en lönebe-

räkningsmetod som icke-anställda personer saknar. Men varför står metoden Morning-

Activity() i båda klasser? Närmare bestämt: Varför förekommer den i Employee-

klassen fast den ärver den från superklassen? Svaret ges av ett annat koncept inom ob-

jektorienterad programmering:

Polymorfism

Modellen ovan går utifrån att icke-anställda personer har en annan form av morgon-

syssla än anställda. De kanske inte tar sig till jobbet, i alla fall inte alla, utan har en an-

nan morgonsyssla. Så vi har här att göra med två olika morgonsysslor tillhörande två

olika klasser, men med samma namn. För objekt av typ Person kommer den ena och

för objekt av typ Employee kommer den andra att gälla. Men varför har de samma

namn? Vore det inte bättre, för att undvika namnkonflikt, att ge dem olika namn, när de

ändå är olika metoder? Faktiskt inte!

Anledningen till att de har samma namn är följande: För det första blir det ingen namn-

konflikt därför att de tillhör olika typer av objekt. De är inte fristående utan inkapslade i

var sitt objekt som skiljer åt dem. För det andra ska vi inte i onödan göra utvecklings-

arbetet komplicerat genom att hitta på nya namn på metoder som skiljer sig från varan-

dra endast i detaljer. Ingen människa skulle kunna komma ihåg så många namn. För det

tredje vill vi efterlikna verkligheten där det bara kryllar av beteckningar som är identis-

ka, men har olika innebörd i olika sammanhang. Inte heller det vanliga språket har olika

namn på dem. Ta följande exempel: Att bromsa en lastbil görs på ett annat sätt än att

bromsa en båt. Det finns ingen anledning att hitta på ett annat namn för funktionaliteten

"att bromsa" hos olika typer av fordon. Tvärtom, det vore förvirrande att använda olika

namn. Man vill ju helst slippa att tänka på de tekniska skillnaderna mellan olika typer

av fordon när man pratar om bromsning. En och samma funktionalitet är realiserad på

olika sätt. Med andra ord, man gör "samma sak", fast på annorlunda sätt. Objektoriente-

rad programmering tar över detta koncept genom att välja ett och samma namn för olika

metoder. När metoderna dessutom finns i klasser som ärver varandra kallas konceptet

för polymorfism.

Polymorfism modifierar helt eller delvis funktionaliteten hos metoder

med samma namn som förekommer i en arvhierarki.

 75

”Poly” betyder många och ”morf” är form eller gestalt på latin och antik grekiska. Poly-

morfism handlar om en sak som har många olika gestalter, t.ex. ett ord som har många

olika betydelser. En metod beskriver alltid någon funktionalitet. Polymorfism förändrar

denna funktionalitet genom att definiera en metod i superklassen och definiera om inne-

hållet, men behålla namnet i subklassen.

Objektorienterad programmering har kommit till för att förverkliga programmeringens

gamla önskedrömmar om modularisering, återanvändning av kod och strukturering av

program. Allt för att kunna underhålla stora program, förnya och vidareutveckla dem,

så att de fungerar över längre tid och snabbt kan anpassas till nyuppkomna situationer.

De sista två har vi försökt att introducera här utan att behöva skriva kod. För att förstå

inkapsling behöver vi mer detaljerade kunskaper om objektorientering samt skriva lite

kod, vilket vi gör i de kommande avsnitten. Sedan ska vi återkomma till arv och poly-

morfism, för att förse aven dem med kod.

Objektorienterad programmering bygger på tre hörnstenar:

 Inkapsling

 Arv

 Polymorfism

 76

En klass är kod som på ett generellt och modulärt sätt beskriver en

kategori av verkliga eller virtuella saker och ting. Den består av data-

medlemmar samt metoder och används som en mall för att skapa

objekt av klassen.

using System;

class First

{
 static void Main()

 {
 Console.WriteLine("\n\tMitt första C#-program!\n");

 }
}

2.2 Klassbegreppet

Ett första C#-program:

Hela programmet är en klass som inleds med det reserverade ordet class om vi bortser

från using-direktivet. Den innehåller Main(). En funktion som definieras i en klass

kallas för metod. Det som står här är Main()-metodens definition. Den anropas auto-

matiskt av C#-interpretatorn, den s.k. Virtual Machine, när vi exekverar programmet

efter att vi kompilerat koden. Kompilatorn översätter källkoden till maskinkod. Inter-

pretatorn tolkar maskinkoden till ettor och nollor och skickar dem till datorns processor

för exekvering. Klassens centrala roll framgår av följande definition för C#-program.

Vad är ett C#-program?

Ett C#-program är en samling av klasser, av vilka en och endast en

måste innehålla metoden Main() som är exekveringens startpunkt.

Alla C#-program måste innehålla metoden Main() för att kunna exekveras, annars har

exekveringen ingen startpunkt. För att exekveringen ska kunna starta i Main() måste

metodens huvud skrivas så här: static void Main() för att kunna kännas igen av

C#-interpretatorn. Metodens kropp (innehåll) däremot kan vi helt och hållet program-

mera själva. Klassen First är det enklast tänkbara C#-program därför att det endast be-

står av en klass med metoden Main(). Denna metod – och inte heller någon annan –

kan definieras fristående, utanför en klass. En metod måste alltid inbäddas i en klass.

Det beror på att C#-programmens primära byggstenar är klasser, medan metoder är

delar av en klass. I andra programmeringsspråk som C++ finns även funktioner som kan

definieras fristående. I C# finns inga funktioner utan endast metoder.

Vad är en klass?

 77

Generell är en klass därför att den beskriver en kategori av saker och ting som är före-

mål för datorisering. Enligt klassens mall skapas sedan objekt av denna kategori. Me-

dan klassen är ett abstrakt begrepp, en abstrakt idé, är objekten verkliga eller virtuella

saker och ting i den reala världen.

Modulär är en klass därför att den kodas som en namngiven modul så att den kan an-

vändas av vilka andra program som helst. Programmen byggs med dessa moduler som

minsta beståndsdelar som sedan kan användas för att konstruera andra program – lik-

nande Lego-principen (sid 81).

Vår första klass utan Main()

Låt oss realisera klasskonceptet genom att skapa en egen klass utan Main(): I alla våra

program hittills finns all kod rakt nedskriven i Main() vilket inte är objektorienterat,

även om C#:s objektorienterade klassbibliotek används flitigt. Här är vårt första pro-

gram som inte innehåller Main(). Vi kallar den för Password:

// Password.cs

// Deklarerar klassen Password med metoden Ok() som returnerar

// true eller false

using System;

class Password

{
 public bool Ok(string passwd) // Metoden Ok():s huvud,

 {

 return passwd == "hemligt" || passwd == "HEMLIGT"; // kropp

 }
}

Klassen Password skrivs i en fil som vi döper till Password.cs. I en separat fil som

döps till PasswordUse.cs skriver vi klassen PasswordUse som endast innehåller me-

toden Main(). Den i sin tur skapar ett objekt av klassen Password.

// PasswordUse.cs

// Använder klassen Password, skapar ett objekt av den och

// anropar metoden Ok() som är definierad i klassen Password

// Utgör tillsammans med klassen Password ETT program

using System;

class PasswordUse

{
 static void Main()

 {
 string input;

 Password p = new Password(); // Objekt skapas

 78

 do // do-loop

 {
 Console.Write("\n\tSkriv ditt lösenord:\t");

 input = Console.ReadLine();

 if (!p.Ok(input)) // Metoden Ok() anropas

 Console.WriteLine("\n\tFel lösenord. Försök igen!");

 } while (!p.Ok(input)); // Metoden Ok() anropas

 Console.WriteLine("\n\tOK, nu är du inloggad!\n");

 }
}

Båda klasser laddas i ett Visual Studio-projekt av typ Console Application. En körning

av programmet ger t.ex.:

 Skriv ditt lösenord: HEMLIGT

 OK, nu är du inloggad!

Med inmatningen HEMLIGT i versaler lyckas inloggningen. Inmatningen hemligt i ge-

mener skulle ge samma resultat. Alla andra inmatningar kommer att misslyckas.

Klassen Password kan endast kompileras men inte exekveras, för exekveringen startar

i Main(). Och någon Main() finns ju inte i Password. Så Main() får skrivas endast i

en av dem – i vårt fall finns den i PasswordUse. Paret Password/PasswordUse utgör

nu ett program bestående av två klasser:

1. Klassen Password

Namnet Password är beskrivande för det som programmet är tänkt för. Här följer vi

både de vanliga namngivningsreglerna för identifierare som gäller i C# (Progr1+ 4.3) och

konventionen att inleda klassnamn med versaler för att skilja dem från andra identi-

fierare som variabler osv. Valet av filnamnet Password.cs som klassen Password

lagras i är inte obligatoriskt utan en konvention vi följer.

Klassen Password innehåller metoden Ok(). Av metodens huvud framgår att den re-

turnerar ett värde av typ bool. I C# finns möjligheten att definiera inte bara logiska

variabler utan även metoders returvärde med datatypen bool som är en enkel datatyp

och representerar sanningsvärdena sant (true) och falskt (false). Metoden Ok() är en

sådan och har den formella parametern passwd av typ string som tar emot strängen

input från klassen PasswordUse när metoden Ok() anropas. Metodens return-sats

returnerar följande logiska uttryckets sanningsvärde:

 passwd == "hemligt" || passwd == "HEMLIGT"

Koden || står i C# för den logiska operatorn ELLER. Logiska uttrycket ovan har värdet

true om strängen passwd är identisk med programmets hårdkodade lösenord hemligt

 79

eller HEMLIGT. Är däremot passwd varken lika med hemligt eller med HEMLIGT blir

uttryckets värde false. Det är den logiska innebörden av ELLER.

Klassen Password beskriver begreppet lösenord som en abstrakt idé utan att skapa ett

verkligt lösenord. Den är en mall för att testa verkliga lösenord, en föreskrift om hur ett

verkligt lösenord med en viss inmatning och ett testvärde skulle verifieras om det skapa-

des. Den typiska operationen för verifiering av lösenord definieras i metoden Ok().

Klassen Password har inga datamedlemmar.

2. Klassen PasswordUse

Även denna klass består endast av en enda metod – nämligen Main(). I den deklareras

först variabeln input av typ string. Sedan skapas ett objekt av klassen Password:

Password p = new Password();

Koden som skapar själva objektet är new Password() som sedan tilldelas variabeln p

av typ Password. Dvs klassen Password spelar här rollen av en datatyp och används

för att deklarera variabeln p. Pga att variabelns datatyp är en klass och dess värde ett ob-

jekt skiljer den sig från vanliga variabler. p kallas för en referensvariabel – kort referen-

sen till objektet new Password(). I C++ kallas p för pekaren som pekar på objektet, i

hårdvarumässiga termer adressen till objektets minnesutrymme. Man kan uppfatta p

även som objektets namn. Vi kommer i fortsättningen att använda termen referens.

Ett verkligt, konkret lösenord är ett objekt. Det är objektet som behöver minnesutrymme

för att lagras. Klassen definierar inga objekt utan ställer bara till förfogande modellen

för framtida objektdefinitioner. Om man byter ut lösenord mot pepparkakor kan man

säga att pepparkaksformen är klassen och själva pepparkakorna är objekten. Formen

behöver ingen pepparkaksdeg – motsvarigheten till minne – den framställs bara en gång

medan kakorna kan bakas i tusentals. Även klassen skrivs endast en gång, objekt däre-

mot kan skapas hur många som helst. I exemplet PasswordUse skapas bara ett Pass-

word-objekt. Hur man gör det med det reserverade ordet new och hur man sedan kan

komma åt objektet samt vad parentesen i new Password() betyder, kommer att be-

handlas i de kommande avsnitten.

Resten av koden i PasswordUse-klassens Main() består av en do-loop och en utskrift.

Loopen börjar med att läsa in strängen input som användaren vill logga in med. Detta

inloggningsförsök skickas till metoden Ok() för verifiering. Dvs metoden Ok() anropas

med strängen input i parameterlistan: Ok(input). Men eftersom Ok() är definierad i

klassen Password måste anropet göras med referensen p till objektet av typ Password,

därför: p.Ok(input). Detta anrop står i villkoret till en if-sats. Och dessutom är

anropet som pga av meoden Ok():s returtyp bool ger ett sanningsvärde, negerat. Dvs

det föregås av den logiska negationen ! : if (!p.Ok(input)) Detta för att själva

meoden Ok() returnerar true om input är identisk med programmets hårdkodade lö-

senord och false om det inte är fallet. Samma logiska uttryck används i do-loopens

avslutningsvillkor: while (!p.Ok(input)) och styr logiken i både do-loopen och if-

satsen som ingår i den. Loopen ser till att dialogen mellan program och användare fort-

 80

sätter så länge p.Ok(input) returnerar true. Och det är samma sak som att säga: när

!p.Ok(input) blir false, dvs så länge man matar in felaktigt lösenord, någon sträng

som varken är hemligt eller HEMLIGT.

Två filer eller en fil ?

Slutligen kan man undra om det hade varit möjligt resp. rimligt att lagra båda klasser

Password och PasswordUse i en och samma fil. Svaret är: Möjligt ja, men inte rimligt

ur den objektorienterade programmeringens synpunkt. Därför att det går både att

kompilera och köra programmet när båda klasser lagras i en fil. Men fullt objektoriente-

rat är det inte längre, för då går man miste om hela idén med modularisering och återan-

vändning av kod. Meningen med att skriva separata klasser var ju att kunna återanvända

koden i andra program. Det kan man inte längre om man stoppar allt i en fil.

Varför klasser?

Frågan är berättigad: Varför ska man krångla till programmeringen med klasser? Är det

inte enklare att skriva kod rakt ned i Main()? Så länge man skriver små program kan

frågan bejakas. Det som i programmeringshistorien gjorde att man behövde klasser var

den växande komplexiteten hos program under 70-talet. Programmens storlek var avgö-

rande för den växande komplexiteten. Man förstod att det inte längre räckte till att skri-

va och testa program som fungerade just då. Man insåg nödvändigheten att med rimliga

kostnader även kunna underhålla stora program, förnya och vidareutveckla dem så att

de fungerade även i flera år och att de framför allt kunde anpassas till nyuppkomna si-

tuationer utan oöverkomliga svårigheter. Men varför måste man använda sig av klasser

för att uppnå detta mål? Föreställ dig en verksamhet som dynamiskt växer med tiden,

ett expanderande företag eller en organisation med stigande antal medlemmar. Hur or-

ganiserar man jobbet? Man genomför arbetsdelning och delegerar uppgifterna. Var och

en får en väl definierad specifik arbetsuppgift. Annars skulle man inte kunna klara av

jobbets komplexitet. Samma sak gör man med program vars kod växer, vilket händer

när man utvecklar program efter behov och behoven bara blir större och större. Man de-

lar upp det stora programmet i mindre moduler för att kunna klara av komplexiteten. På

vilket sätt ska vi nu diskutera i termer av Modularisering och återanvändning av kod.

Vi kan i denna lärobok aldrig komma upp till att kunna presentera sådana komplexa

program som motiverade användningen av klasser i programmeringshistorien. Men

idén bakom klasser och principerna i objektorienterad programmering kan även illustre-

ras med de små program som vi brukar använda för att förklara programmeringens kon-

cept.

 81

2.3 Modularisering

De flesta har väl någon gång som barn, eller tillsammans

med sina barn, byggt ett hus, en bil eller liknande med

Lego-bitar. Efter ett tag har huset kanske rasat och nya

tekniska underverk har konstruerats. Men även de har nå-

gon gång plockats isär. Det enda som blivit kvar är själva

Lego-bitarna som man så småningom samlat i en kartong

för att kunna återanvända dem senare.

Lego-principen

Vill man lösa ett komplext problem, t.ex. bygga ett hus

eller en bil, bryter man ned det i ett antal mindre problem

som är enklare att lösa. Sedan sätter man ihop de små

enkla lösningarna till den stora komplexa lösningen. Princien heter modularisering och

kan användas vid både modellering och problemlösning. Ett stort komplext problem

bryts ned i mindre moduler – motsvarande Lego-bitarna – och bearbetas en i taget. I

objektorienterad programmering är dessa moduler klasser. Program bryts ned i ett antal

klasser. Varje klass beskriver endast en kategori av saker och ting som är oberoende av

andra och antagligen enklare att koda än det stora programmet. Sedan gäller det att sätta

ihop modulerna till det stora programmet.

Återanvändning av kod

är det andra svaret på frågan varför man i programmering sysslar med klasser. Samma

idé finns bakom Lego-biten som minsta återanvändbara modul för att bygga i princip

vad som helst. Har man i ett program redan beskrivit en kategori av saker och ting som

även dyker upp i andra sammanhang och vars kod kan vara relevant i andra program, så

vill man ju helst inte satsa tid och resurser för att koda den en gång till. Man vill und-

vika att återuppfinna hjulet. Detta är inte bara av teoretiskt-estetiskt intresse utan även

av stort ekonomiskt intresse. Det man gör är att separera koden för denna kategori från

det aktuella programmet och skriva den som en klass för att kunna återanvända koden i

vilket annat program som helst. Det kräver att den ursprungliga koden som kanske var

skräddarsydd för just det speciella programmet, nu som klass måste formuleras på ett

mer generellt sätt. Hela C#:s klassbibliotek bygger på idén om återanvändning av kod.

Utan modularisering

I förra avsnitt 2.1 Klassbegreppet presenterades ett program bestående av två klasser

som redan var objektorienterat. Men hur kommer man dit om man börjat koda icke-ob-

jektorientrat, vilket de flesta nybörjare gör? Här ska vi visa vägen från "vanlig" till ob-

jektorientrad programmering (OOP). Om det inte hade varit för pedagogikens skull –

nämligen att med enkla små program illustrera principerna i OOP – hade vi kanske inte

skrivit programparet Password/PasswordUse objektorienterat. Vi hade nöjt oss med

att skriva all kod rakt ned i Main() i ett enda program, vilket i alla fall hade varit enkla-

 82

re. Vi ska göra det nu och sedan modularisera upp till klassnivå steg för steg. Så hade

det sett ut om vi hade struntat i all modularisering:

// Password_All_in_Main.cs

// Verifierar lösenord inmatat i versaler eller gemener

// Ingen modularisering: All kod skriven rakt ned i Main()

using System;

class Password_All_in_Main

{
 static void Main()

 {
 String input; // Lokala variabler i Main()

 bool ok;

 do

 {
 Console.Write("\n\tSkriv ditt lösenord:\t");

 input = Console.ReadLine();

 ok = (input == "hemligt" || input == "HEMLIGT");
 if (!ok)

 Console.WriteLine("\n\tFel lösenord. Försök igen!");

 } while (!ok);

 Console.WriteLine("\n\tOK, nu är du inloggad!\n");

 }
}

Programmet ovan är inte ett dugg objektorienterat, men har exakt samma funktionalitet

och ger exakt samma utskrift som det objektorienterade programparet Password/-

PasswordUse (sid 77). I nästa steg ska vi modularisera programmet genom att lyfta en

del av det, skriva den som en namngiven modul – närmare bestämt en metod – utanför

Main() och anropa den i Main(). Denna del är framhävd i do-loopen med vit bak-

grund i koden ovan och utgör det logiska uttryck som styr både if-satsen och do-loo-

pens avslutning.

Modularisering på metodnivå

// Password_Method_Module.cs

// Verifierar lösenord inmatat i versaler eller gemener

// Modulariserad på metodnivå: Inte objektorienterad

using System;

class Password_Method_Module

{
 static bool Ok(string passwd) // Metodens definition

 {
 return passwd == "hemligt" || passwd == "HEMLIGT";

 }

 83

 static void Main()

 {
 string input;

 do

 {
 Console.Write("\n\tSkriv ditt lösenord:\t");

 input = Console.ReadLine();

 if (!Ok(input)) // Metodens anrop

 Console.WriteLine("\n\tFel lösenord. Försök igen!");

 } while (!Ok(input)); // Metodens anrop

 Console.WriteLine("\n\tOK, nu är du inloggad!\n");

 }
}

Klassen Password_Method_Module innehåller två metoder: Ok() och Main(). Meto-

den Main() anropar metoden Ok() två gånger. Vid anropet skickas den aktuella para-

metern input:s värde som är en sträng till den formella parametern passwd. Där jäm-

förs den med programmets hårdkodade lösenord hemligt resp. HEMLIGT. Sedan retur-

nerar metoden Ok() ett sanningsvärde true eller false, vilket i Main() används för

att skriva ut om inloggningen lyckats eller ej. Programmet är inte objektorienterat än,

därför att det inte skapats något objekt av de befintliga klasserna. Men programmet har

tagit ett första steg mot OOP genom att separera en bit kod och skriva den som en namn-

given modul – en metod – utanför Main(), men fortfarande i samma klass. Nästa steg:

Modularisering på klassnivå

// Password.cs

// Deklarerar klassen Password med 2 datamedlemmar och en metod

// Klassen Password med metoden Ok(): returnerar true eller false

// Kan kompileras men inte exekveras eftersom Main() saknas

using System;

class Password

{
 public bool Ok(string passwd) // Metoden Ok()

 {
 return passwd == "hemligt" || passwd == "HEMLIGT";

 }
}

Klassen Password är förstås samma som på sid 77 och skrivs i en separat fil. Som man

ser innehåller den samma metod Ok() som vi vid modularisering på metodnivå hade

flyttat ut ur Main(). I en annan fil skrivs den klass som endast innehåller metoden

Main() där objekt av klassen Password skapas och som är identisk med Password-

Use på sid 77:

 84

// Password_Class_Module.cs

// Verifierar lösenord inmatat i versaler eller gemener

// Modulariserad på klassnivå: Objektorienterad

// Använder klassen Password, skapar ett objekt av den och

// anropar metoden Ok() som är definierad i klassen Password

// Utgör med klassen Password ETT program bestående av 2 klasser

using System;

class Password_Class_Module

{
 static void Main()

 {
 string input;

 Password p = new Password(); // Objekt skapas

 do

 {
 Console.Write("\n\tSkriv ditt lösenord:\t");

 input = Console.ReadLine();

 if (!p.Ok(input)) // Metod anropas

 Console.WriteLine("\n\tFel lösenord. Försök igen!");

 } while (!p.Ok(input)); // Metod anropas

 Console.WriteLine("\n\tOK, nu är du inloggad!\n");

 }
}

Den uppmärksamme läsaren har väl konstaterat att vi vid övergången från modularise-

ring på metodnivå (sid 82) till klassnivå (sid 83) har ändrat i metoden Ok():s huvud

modifieraren från static till public. Här följer en förklaring:

Anledningen varför vi vid övergången från modularisering på metodnivå till klassnivå

ändrade metoden Ok():s modifierare från static till public är att vi i klassen

Password_Class_Module (sid 84) redan har ett objekt av denna typ. Därför kan vi

anropa metoden Ok() med hjälp av detta objekts referens: p.Ok(input). Pga meto-

dens non-static egenskap tillhör metoden objektet och inte klassen. Dessutom måste

metoden Ok() ha egenskapen public i sin definition i klassen Password för att kunna

kommas åt från en annan klass, nämligen Password_Class_Module.

Anledningen varför metoden Ok() i sin definition i klassen Password_Method_Mo-

dule (sid 82) har egenskapen static är att vi vill slippa skapa ett objekt när vi anropar

den. Därför kan vi anropa metoden Ok() direkt: Ok(input). Egenskapen static gör

att metoden tillhör klassen och inte ett objekt av den. Vi vill ju i detta program demon-

strera modularisering på metodnivå och medvetet inte koda objektorienterat. Annars är

det fullt möjligt att slippa static och istället skapa ett objekt av klassen Password-

_Method_Module direkt efter deklarationen av variabeln input. Testa gärna!

 85

1. Deklaration av en klass
2. Definition av ett objekt
3. Åtkomst till objektets medlemmar

2.4 Användning av klasser

På sid 76 ställdes upp en defnition för klassbegreppet. Här följer en annan:

Kan ett begrepp ha flera definitioner? Ja, om de inte motsäger varandra och belyser oli-

ka aspekter av begreppet. Vilken som är relevant i en viss situation avgörs av samman-

hanget begreppet används i. Det finns ingen begränsning på vilka, hur många eller vilka

kategorier av saker och ting man kan involvera i sin klass, inkl. andra klasser

(Komposition). Allt beror på den verkliga miljön man vill modellera i sitt program.

Följande steg måste tas när man använder class för att skapa nya, egna datatyper:

1. Deklaration av en klass

Med deklaration av en klass menas själva koden man skriver för klassen. Denna kod al-

lokerar (reserverar) inget minnesutrymme utan introducerar endast ett nytt ord, en ny

identifierare i programmet, nämligen en ny datatyp: Deklarationen av en klass kan med

hjälp av det reserverade ordet class generellt skrivas så här:

class KlassNamn

{
 Deklaration av datamedlemmar

 Deklaration av metoder

}

KlassNamn är ett namn som vi kan välja fritt med hänsyn till de kända regler och rekom-

mendationer som gäller för all namngivning (Progr1, 2.2) samt konventionen att inleda

klassnamn med en versal. Sedan kan vi använda namnet som datatyp i programmet för

att – och endast för att – definiera nya typer av variabler som kallas referensvariabler.

Det är variabler som kan lagra adresser till objekt av klassens typ. Med koden ovan

skapas den nya datatypen. Pga den speciella styrkan att kunna beskriva vad som helst

betecknas class själv inte längre som datatyp utan som datastruktur, abstrakt datatyp

eller kort som klass då den fungerar på en kvalitativt högre nivå än vanliga datatyper.

Här har vi ett exempel på en klass som beskriver kategorin Anställd:

// Emp.cs

// Deklarerar klassen Emp med 4 datamedlemmar och 2 metoder

// Båda metoder returnerar strängar med return-satsen

// AsString() är klassens strängrepresentationsmetod

En klass är en ny, egendefinierad och sammansatt datatyp som skapas

med det reserverade ordet class.

 86

using System;

class Emp

{
 public int empNo; // Datamedlemmar

 public String firstName, lastname;

 public float salary;

 public String Email() // Metoden Email()

 {
 return (firstName.Substring(0, 1) + lastname).ToLower();

 }

 public String AsString() // Metoden AsString()

 {
 return "\t" + firstName + " " + lastname + "\n" +

 "\tLön: " + salary + "\n" +

 "\tE-mail: " + Email() + "\n" +

 "\tAnställningsnr: " + empNo + "\n" ;

 }
}

I filen Emp.cs ovan deklareras den nya klassen Emp som har fyra datamedlemmar emp-

No, firstName, lastname och salary. Observera att syntaxen för deklarationen av

datamedlemmarna är som i vanliga deklarationssatser för variabler – med skillnaden att

de dessutom måste deklareras som public för att en annan klass ska kunna komma åt

dem. Annars hade de by default varit private. Man ser också att man i en klass kan

blanda data av helt olika typer, här: int, String och float. Man kan ha datamedlem-

mar inte bara av fördefinierade klasser som String, utan även av egendefinierade klas-

ser. I regel är datamedlemmar i en klass endast deklarerade, men inte initierade än, det

görs först när ett objekt skapas. Skälet är att klassen enligt definition ska vara generell.

Skulle ett värde till någon datamedlem vara hårdkodad i klassen, skulle alla objekt få

detta värde, vilket just i exemplet ovan inte vore önskvärt. Det finns däremot situationer

där man uttryckligen vill initiera vissa datamedlemmar i klassen. Möjligheten till det

finns vilket vi kommer att återkomma senare till.

Metoden Email() konstruerar en sträng bestående av förnamnets initial och hela efter-

namnet – en ganska vanlig policy för e-mailadresser – genom att anropa metoden Sub-

string() som tar ut den första bokstaven från firstName. Den konkateneras med

lastname. Låt oss anta att man vill ha hela e-mailsträngen i gemener. Då kan en annan

String-metod vara till hjälp, nämligen ToLower(). På så sätt uppstår foljande kod:

firstName.Substring(0, 1) + lastname).ToLower()

Den konstruerar en sträng, t.ex. strängen acarlsson om firstName refererar till Anders

och lastname till Carlsson. Denna sträng returneras av metoden Email() när den an-

orpas – tack vare reserverade ordet return som står framför hela koden ovan. Därför

kallas Email() för en metod med returvärde, till skillnad från void-metoder som inte

returnerar något värde (Progr1, 6.6).

 87

Även Emp-klassens andra metod AsString() har en return-sats – snarare består

endast av den – och är därför en metod med returvärde. Returvärdet är en konkatenerad

sträng bestående av Emp-klassens datamedlemmar med lite förklarande text och layout

(radbyten). Denna metod är till för att ge en strängrepresentation av objektet, dvs för att

få en sträng med en anställds alla uppgifter, kort för att ”skriva ut” en anställd, när den

skapas som ett Emp-objekt. Det finns även möjligheten att använda C#:s fördefinierade

metod ToString().

2. Definition av ett objekt

När en klass definierar en ny datatyp kan objekt av denna klass anses som variabler av

denna nya datatyp. Att definiera ett objekt är således samma sak som att definiera va-

riabler av den datatyp som definieras av klassen. Därför kan man anse ett objekt som en

ny, mer sofistikerad (sammansatt) typ av variabel. Programmet EmpTest nedan demon-

strerar definition av objekt av klassen Emp, tilldelning och utskrift av de skapade ob-

jektens datamedlemmar samt anrop av deras metoder.

Att en klass är en ny sammansatt datatyp som skapas med det reserverade ordet class

ser man i klassen Emp (sid 85) som är sammansatt av klassen String och datatyperna

int och float. I programmet EmpTest (sid 87) ser man dessutom att satsen Emp a; att

klassen Emp används som en datatyp för att definiera variabeln a som en referens till

ett Emp-objekt. Förutsättning är förstås att klassen Emp är definierad innan.

// EmpTest.cs

// Använder klassen Emp för att skapa ett objekt av klassen Emp

// Tilldelar objektets datamedlemmar värden och skriver ut dem

// Ändrar lönen och skriver ut löneskillnaden samt nya data

using System;

class EmpTest

{
 public static void Main()

 {
 float oldSalary, procent = 15; // Lokala variabler

 String output;

 Emp a; // Referens skapas

 a = new Emp(); // Objekt definieras

 // och tilldelas a

 a.empNo = 123; // Tilldelning av

 a.firstName = "Anders"; // datamedlemmar

 a.lastname = "Carlsson";

 oldSalary = a.salary = 21450;

 output = a.AsString(); // Lagring av gamla data

 a.salary = a.salary * (1 + procent/100); // Löneförhöjning

 88

 // Utskrift av data:

 Console.WriteLine("\n\tAnställden\n" + output +

 "\n\tfår en löneförhöjning på " + procent +

 "%.\n\tVåra lönekostnader kommer att öka med " +

 (a.salary - oldSalary) + ".\n\n\t" +

 "Uppdaterad anställd:\n" + a.AsString());

 }
}

Själva objektet som skapas av klassen Emp är den med vit bakgrund framhävda koden

new Emp(), medan a är en referens till objektet som i sin tur definieras med koden Emp

a. I programmet ovan kopplas de med varandra med tilldelning vilket gör att a får det

nya objektets adress och kan därför i fortsättningen användas för att referera till objek-

tet. Parenteserna i Emp() måste vara med, annars kan koden inte kompileras vilket

förklaras senare. Ett objekt kan ha flera referenser. T.ex. skulle Emp b = a; ge ytterli-

gare en referens till samma objekt eftersom den får samma adress till objektet. Program-

met ovan använder bara en referens och producerar följande resultat när det exekveras:

 Anställden

 Anders Carlsson

 Lön: 21450

 E-mail: acarlsson

 Anställningsnr: 123

 får en löneförhöjning på 15%.

 Våra lönekostnader kommer att öka med 3217,5.

 Uppdaterad anställd:

 Anders Carlsson

 Lön: 24667,5

 E-mail: acarlsson

 Anställningsnr: 123

Efter att ha skapat en anställd dvs ett objekt av typ Emp och tilldelat till den vissa vär-

den, anropas objektets strängrepresentationsmetod AsString() för att lagra dem i

strängen output:
output = a.AsString();

Denna sträng skrivs ut i slutet av programmet. Vi får den anställdas oförändrade uppgif-

ter. Vid tilldelning av den anställdes lön lagras värdet dessutom i variabeln oldSalary

för att kunna beräkna skillnaden efter löneförhöjningen:

a.salary = a.salary * (1 + procent/100);

a.salary - oldSalary ger sedan löneskillnaden som skrivs ut. Den sista utskriften av

den anställdas nya uppgifter med den ändrade lönen görs med anropet av AsString()

direkt i utskriftssatsen.

 89

3. Åtkomst till objektets medlemmar

Efter att ha skapat ett objekt vill man kunna arbeta med objektets medlemmar. När man

generellt pratar om medlemmar måste man skilja mellan två typer av medlemmar,

datamedlemmar och metoder. Dvs: Att komma åt objektets datamedlemmar och att an-

ropa objektets metoder. För båda ändamål används samma teknik som redan nämnts i

olika sammanhang och som vi tar upp nu i detalj:

Punktnotation

Som redan tidigare nämnts betyder notation sättet att skriva. Sättet att skriva kod för att

komma åt både ett objekts datamedlemmar och metoder kallar vi för punktnotation. Om

vi tar vårt exempel i programmet EmpTest med objektet av typ Emp som a refererar till,

har vi redan sett att koden new Emp() skapar objektet genom att allokera minne åt det

och fylla det med default-initialvärden. Vill vi sedan tilldela objektets datamedlemmar

våra egna värden, kan vi skriva:

 a.empNo = 123;

 a.firstName = "Anders";

 a.lastname = "Carlsson";

 a.salary = 21450;

empNo till den anställd som a refererar till, ska vara 123 osv. empNo är en datamedlem i

objektet och inte en fritt tillgänglig variabel. Objektet kan jämföras med en behållare

som innehåller medlemmar bl.a. medlemmen empNo. För att komma åt empNo måste vi

först öppna behållaren. Sättet i koden att komma åt datamedlemmen empNo är att först

skriva objektets referens, sedan en punkt och sist medlemmens namn. Samma sak gäller

för de andra datamedlemmarna firstName, lastname och salary. Punktnotation

förutsätter förstås objektets och referensens existens dvs kan endast användas efter att

objektet skapats med new:

Klass referens = new Klass();

Då ser punktnotation ut så här för åtkomst till objektets datamedlem:

referens.datamedlem

Till vänster om punkten måste alltid finnas namnet på en referens till ett objekt och till

höger någon datamedlem tillhörande detta objekt. Punktnotation skrivs för att referera

till just detta objekts datamedlem och kan därför användas antingen för att tilldela den

ett värde (skriva till minnescellen) eller för att hämta värdet (läsa från minnescellen).

Satserna ovan kan även ersättas av en enda:

new Klass().datamedlem

Då har man skapat ett anonym objekt utan referens och kan därför inte heller referera

till det efteråt.

 90

Anrop av metoder med punktnotation

Samma teknik används i princip på ett objekts metoder. När ett objekt av typ Emp ska-

pats kan vi anropa dess metod AsString() även med punktnotation. Skillnaden är bara

att efter punkten skrivs ett vanligt anrop av metoden istället för datamedlemmen:

a.AsString()

Metoden AsString() anropas i objektet som a refererar till enligt deklarationen i

klassen Emp. Eftersom AsString() är en metod inkapslad i en klass och inte fritt till-

gänglig, måste man först (före punkten) referera till objektet för att sedan (efter punk-

ten) kunna anropa metoden i detta objekt. Generellt har anropet av en metod i ett objekt

som redan skapats, en syntax som liknar den för åtkomst av datamedlemmar:

referens.metodanrop

Till skillnad från datamedlemmar allokerar metoder inte minnesutrymme i objektet. När

objektet skapas allokeras minne endast för datamedlemmar, inte för metoder. De är bara

deklarerade i klassen och deklarationen skapar inget minne. Först när metoden anropas,

allokeras minne åt de parametrar och variabler som är involverade i metoden. Men detta

sker inte i objektet utan i det program som anropar metoden. En närmare titt på metoden

AsString() i klassen Emp (sid 85) visar att den varken har parametrar eller lokala va-

riabler. Men den involverar klassens alla datamedlemmar som vid anropet tas från ob-

jektet. Därför säger vi att metoden AsString() anropas i objektet som a refererar till

och har därmed direkt tillgång till datamedlemmarna. Det är också därför de får skrivas

i metoden AsString():s kropp utan punktnotation. Båda befinner sig inuti objektet

och har tillgång till varandra direkt. De är medlemmar i samma klubb – ”insiders” så att

säga – och kan därför hälsa varandra utan att ange klubbens namn. Även om de hade

förekommit i parameterlistan hade de angetts utan punktnotation. Punktnotation måste

och får användas endast utanför objektet.

I programmet EmpTest anropas metoden AsString() två gånger, första gången i till-

delningssatsen output = a.AsString(); andra gången sist i programmet inbakad i

en utskriftsstas (sid 87). Anledning till dessa anropsmiljöer är att AsString() är en me-

tod med returvärde. Därför måste ett meningsfullt anrop bakas in antingen i en till-

delnings- eller utskriftssats. Anropsmiljön måste ta hand om returvärdet (Progr1, 6.2).

 91

2.5 Klassens konstruktor

Objektorienterad programmering bygger på tre hörnstenar:

 Inkapsling

 Arv

 Polymorfism

Nu när vi inte bara lärt känna utan även sysslat en hel del med klasser och objekt kan vi

gå vidare och börja med att stifta bekantskap med koncepten ovan. I detta avsnitt kom-

mer vi att gå igenom det första: Inkapsling, medan Arv och Polymorfism kommer att i

detalj behandlas senare (sid 108/113). Följande klass demonstrerar inkapsling genom att

introducera privata datamedlemmar och klassens konstruktor:

// Circle.cs

// Deklarerar klassen Circle som inkapslar den privata data-

// medlemmen radius och kommer åt den via publika metoder

// En av dem är klassens konstruktor med parametern r

using System;

class Circle

{
 private double radius; // Privat datamedlem

 public Circle(double r) // Klassens konstruktor

 { // Publik metod med r som
 radius = r; // formell parameter

 } // Initierar datamedlemmen

 public double Area()

 {
 return Math.PI * radius * radius;

 }

 public double Circumference()

 {
 return 2 * Math.PI * radius;

 }
}

Åtkomstmodifieraren private

I objektorienterad programmering brukar man deklarera klassens datamedlemmar som

private och klassens metoder som public. Tanken är att via klassens offentliga me-

toder kunna komma åt och styra de privata datamedlemmarna. På så sätt kan gradvis in-

kapsling uppnås. I klassen Circle deklareras datamedlemmen radius som private

dvs kan endast nås från klassen. private är en åtkomstmodifierare i C# som spärrar

åtkomsten till klassens medlemmar utifrån klassen. Den gäller endast för datamedlem-

 92

mar och metoder, inte för klasser (förutom s.k. inre klasser), inte heller för lokala

variabler. private spärrar strikt åtkomsten till datamedlemmar och metoder från andra

klasser, vare sig dessa deklareras i samma fil eller ej, vare sig de ärver varandra eller ej.

För att ändå kunna initiera den privatdeklarerade datamedlemmen radius utifrån med

ett explicit värde, definieras en s.k. konstruktor, se nästa sida.

Det man vill åstadkomma med denna teknik är att kunna efterlikna verkligheten i sina

datorprogram så mycket som möjligt. I verkligheten är det självklart att vissa egenska-

per hos objekt är eller ska vara ”hemliga”. T.ex. vem känner till en persons religion eller

politiska inställning när man ser personen? Allt man kan se, är personens offentliga

egenskaper, utseendet, hårfärgen, storleken, klädseln osv. Allt annat är okänt – så länge

man inte ställer frågor. Och även då är det upp till personen att svara, inte svara eller

svara delvis, tala sanning eller ljuga. Egenskaperna kan jämföras med klassens datamed-

lemmar. Att ”ställa frågor” kan jämföras med att anropa klassens metoder. Offentliga

metoder används för att via dem kunna efterfråga de privata datamedlemmarna.

Observera att detta inte är någon absolut regel utan en attityd att jobba med klasser i alla

objektorienterade språk. Det finns säkert i många specialfall skäl nog att använda in-

kapsling även på andra sätt. Men gör man det som beskrivet ovan, bildar datamedlem-

marna klassens kärna som är skyddad mot direkta oönskade tillgrepp vare sig från andra

program eller även andra programmerare. Metoderna däremot kan tänkas som ett skal

kring kärnan som är till för att hantera klassens datamedlemmar. Man pratar om att me-

toderna bildar klassens gränssnitt mot användaren. Det är via dessa metoder man ska

kunna kommunicera med den inkapslade kärnan. I så fall måste gränssnittet vara offent-

ligt. Självklart kan man tänka sig även olika grader av inkapsling. Inte alla datamedlem-

mar måste vara privata. Lika bra kan det finnas skäl att även deklarera några metoder

som privata. Vissa applikationer kräver kanske mer, andra mindre inkapsling. Detta är

av betydelse med tanke på att inkapsling alltid innebär en viss overhead dvs mer pro-

grammeringsarbete. På vilket sätt ska vi diskutera nu:

Ett problem som generellt uppstår när man arbetar med klasser som har privata data-

medlemmar är: Hur ska dessa datamedlemmar initieras när de är oåtkomliga? Svaret

ligger i det offentliga gränssnittet. Man utnyttjar publika metoder för att initiera klassens

privata datamedlemmar. Initieringsproblematiken är redan viktig för enkla variabler

och därför ännu viktigare för objekt. Dessutom är den så generell – den dyker upp i alla

objektorienterade program – att man i C# har konstruerat ett automatiskt verktyg som

kallas klassens konsruktor. ”Automatiskt” därför att den alltid finns med i varje C#-

klass, vare sig vi definierar den själva eller kompilatorn gör det åt oss by default.

Inkapsling innebär att deklarera klassens datamedlemmar som private

för att spärra åtkomsten till dem från andra klasser.

I objektorienterad programmering brukar man deklarera datamedlemmar-

na som private och metoderna som public.

Både private och public kallas för åtkomstmodifierare.

 93

Konstruktorns egenskaper

Som namnet antyder är konstruktorn en byggare, närmare bestämt en objektbyggare. I

klassens deklaration kan man definiera en egen konstruktor som en av klassens publika

metoder. Den anropas automatiskt när man skapar ett objekt av klassen. Konstruktorns

uppgift är att initiera objektets datamedlemmar. Det speciella som skiljer konstruktorn

från klassens alla andra metoder kan beskrivas med följande tre egenskaper:

1. Namnet är inte fritt väljbart. Konstruktorn och

klassen måste ha samma namn. Om man själv

definierar konstruktorn har man inget val än

att ge konstruktorn samma namn som klassen.

2. Returtypen saknas. Konstruktorns definition

får inte börja som hos alla andra metoder med

en returtyp. För det första kan en konstruktor

inte returnera ett värde. För det andra får den

inte ens ha returtypen void framför sitt namn

som alla andra void-metoder.

3. Anropet av konstruktorn sker i samma sats

som objektet skapas. För att initiera objektets

datamedlemmar anropas konstruktorn samti-

digt som objektet skapas. Man kan varken ska-

pa ett objekt utan att anropa konstruktorn eller

anropa konstruktorn utan att skapa ett objekt.

De två första egenskaperna måste beaktas när man definierar en konstruktor i klassen.

Den tredje egenskapen måste tillämpas när man utanför klassen anropar konstruktorn

och samtidigt skapar ett objekt. Med konstruktorn erbjuds en bekväm möjlighet att för-

hindra oinitierade datamedlemmar dvs allokera minne åt dem utan att tilldela dem vär-

den. Därmed minskas risken för icke-väl definierade objekt.

Klassen Circle har en egendefinierad konstruktor som är framhävd med vit bakgrund

(sid 91). Med den vill vi testa egenskaperna 1-3 ovan. Som man ser är de två första egen-

skaperna givna: konstruktornamnet Circle = klassnamnet och konstruktorn har ingen

returtyp, inte ens void, vilket gör att både kompilatorn och vi kan känna igen Cir-

cle() som konstruktor och kan skilja den från klassens andra metoder Area() och

Circumference(). Varje försök att sätta en datatyp eller void framför metodnamnet

kommer att leda till kompileringsfel. Den tredje egenskapen kan vi se när ett objekt av

typ Circle skapas vilket görs i programmet Encapsulation på nästa sida.

Konstruktorn Circle() har en formell parameter r av typ double. Den gör i kroppen

inget annat än att vidarebefordra parametern r:s värde till klassens privata datamedlem

radius. Vid anrop av konstruktorn i programmet Encapsulation:s metod Main() på

nästa sida överförs (kopieras) värdet av den aktuella parametern input till den formella

parametern r.

 94

Observera att både konstruktorn Circle() och metoderna Area() och Circumfe-

rence() refererar till datamedlemmen radius utan punktnotation. Orsaken till att de

inte behöver punktnotation är att de refererar inifrån klassen där det inte kan råda någon

tvivel om att vilken datamedlem som är menad. Alla involverade variabler och metoder

är medlemmar i en och samma klass och kan referera till varandra utan punktnotation.

Refererar man däremot till ett speciellt objekts medlemmar vare sig i eller utanför

klassen måste punktnotation användas.

// Encapsulation.cs

// Skapar ett objekt av typ Circle och anropar konstruktorn med

// en parameter vars värde läses in för att via konstruktorn

// initiera Circle-objektets privata datamedlem

using System ;

class Encapsulation

{
 static void Main()

 {
 Console.Write("\n\tMata in radien till en cirkel: ");

 double input = Convert.ToDouble(Console.ReadLine());

 Circle c; // Referensvariabel

 c = new Circle(input); // Ett objekt skapas och

 // konstruktorn anropas

 // som initierar radius

 // till inputs värde

 // c.radius = input; // Ger kompileringsfel

 // pga radius privat

 Console.WriteLine("\n\tCirkeln med radien " + input +

 " har\n\n\tarean\t\t" + c.Area() + "\n\n\t" +

 "och omkretsen\t" + c.Circumference() + '\n');

 }
}

En körning ger följande utskrift:

 Mata in radien till en cirkel: 1

 Cirkeln med radien 1 har

 arean 3,14159265358979

 och omkretsen 6,28318530717959

Programmet Encapsulation testar konstruktorns tredje egenskap (sid 93) genom att

anropa konstruktorn i samma sats som ett objekt skapas:

Circle c;

c = new Circle(input);

Den första satsen skapar en referensvariabel c till av typ Circle.

 95

Den andra satsen skapar ett objekt av typ Circle och anropar konstruktorn Cir-

cle()med den aktuella parametern input. Det nyskapade objektet initieras till värdet

av den inlästa variabeln input. Definition av objektet och anrop av konstruktorn kan

inte separeras utan måste ske i en och samma sats – allt enligt konstruktorns tredje egen-

skap. Sist tilldelas referensvariabeln c det nya objektet.

I sin struktur liknar satsen ovan det som vi alltid gör för enkla datatyper, nämligen:

int number = 5;

Denna sats definierar number som en variabel av typ int och initierar den samtidigt.

Så gör vi också nu: Vi definierar ett objekt av typ Circle och initierar den samtidigt.

Skillnaden är bara att objektet inte har något namn utan en referens som också måste

skapas eftersom datatypen inte längre är en fördefinierad enkel datatyp – som i fallet av

int – utan en egendefinierad klass. Jämförelsen visar än en gång att objektorienterad

programmering är en naturlig och logisk fortsättning på traditionell programmering.

När konstruktorn i satsen ovan anropas med Circle(input) skickar den den aktuella

parametern input till den formella parametern r i objektet där den tilldelas till objek-

tets datamedlem radius, se konstruktorns definition i klassen Circle (sid 91). På så

sätt blir radius initierad fast den är private. Konstruktorn gör det möjligt att indirekt

initiera den privata datamedlemmen. Varje försök att initiera den direkt – ja överhuvud-

taget att referera till den med punktnotation – kommer att leda till kompileringsfel. Det-

ta försök finns som kommentar i programmet Encapsulation. Testa!

Programmet Encapsulation har vissa begränsningar: I utskriftssatsen har vi hämtat

endast värdena till area och omkrets från objektet genom att anropa de resp. metoderna

med punktnotation. Det var möjligt eftersom de var offentliga. Värdet till radius

kunde vi inte hämta från objektet utan från inmatningen med hjälp av den lokala varia-

beln input, eftersom radius är privat. Därför kan vi inte komma åt den i Main().

Konstruktorn tillåter bara initiering, den skickar endast en första gång ett initialvärde till

objektet. Vad som händer efteråt har konstruktorn ingen möjlighet att påverka. Det be-

hövs andra offentliga metoder som tar hand om att hämta ut (exportera) privata data-

medlemmar. Även om vi vill ändra privata datamedlemmarnas värden efter initieringen

behöver vi speciella offentliga metoder. Med en exportmetod hade vi kunnat hämta ut

värdet till radius från Circle-objektet efter att ha initierat den med konstruktorn.

Frågan om hur sådana problem löses diskuteras i kapitlets kommande avsnitt.

Default konstruktorn

Experiment:

1. Kommentera bort hela konstruktorns definition i klassen Circle (koden som

är inramad och framhävd med vit bakgrund, sid 91).
2. Ersätt i klassen Encapsulation konstruktorns anrop:

 c = new Circle(input);

med: c = new Circle();

 96

Detta ersätter den egendefinierade konstruktorn med parametern input med en annan

konstruktor nämligen Circle() utan parameter. Men har vi definierat en sådan i klas-

sen Circle? Självklart inte! Slutsats: Den är automatiskt definierad – by default – vil-

ket bekräftas av en testkörning av programmet Encapsulation efter ändringen ovan:

 Mata in radien till en cirkel: 1

 Cirkeln med radien 1 har

 arean 0,000000

 och omkretsen 0,000000

För att förstå detta resultat måste vi förstå default konstruktorn:

Därför finns den alltid där i bakgrunden, I vårt exempel ser den ut så här:

 Circle()

 {
 radius = 0;

 }

Default-värdet till en float är 0. Definierar man ingen egen konstruktor i sin klass, blir

den ”osynliga” default konstruktorn automatiskt klassens konstruktor. Skriver man dä-

remot sin egen konstruktor sätts default konstruktorn ur funktion. I klassen Circle:s

ursprungliga version har vi definierat en egen konstruktor. Om vi nu aktiverar den och

försöker samtidigt att skapa ett objekt av den med c = new Circle(); kommer vi att få

kompileringsfelet There is no argument given that corresponds to the required formal parame-

ter 'r' of 'Circle.Circle(double)'. Det som sker är att vi samtidigt som vi definierat en egen

konstruktor, anropar default konstruktorn. Men kompilatorn hittar den inte eftersom vi

har satt den ur spel genom att explicit definiera vår egen konstruktor. Kommenterar vi

däremot bort den egendefinierade konstruktorn i klassen Circle, går det alldeles ut-

märkt att kompilera och köra. Men att resultatet blir som ovan dvs med värdet 0 för are-

an och omkretsen, beror på att default konstruktorn – som nu aktiveras automatiskt –

nollsätter cirkelns radius så att inmatningen 1 till input inte förs vidare via r till

radius. Man kan säga att vi i alla program hittills, före behandlingen av konstruktorn,

har anropat default konstruktorn varje gång vi skapat ett objekt. Självklart kan man, om

man vill, definiera i sina klasser även en egen konstruktor utan parameter som i dess

kropp initierar datamedlemmarna till andra än defaultvärden. Lika bra kan man definie-

ra en konstruktor utan parameter som initierar datamedlemmarna till defaultvärden – en

slags simulering av default konstruktorn för att testa dess egenskaper.

En default konstruktor är en konstruktor utan parametrar som automa-

tiskt definieras när man skapar en klass. Default konstruktorn initierar

klassens alla datamedlemmar till defaultvärden.

 97

Flera konstruktorer

En klass kan ha flera konstruktorer som kan användas för att skapa objekt med olika ini-

tieringar. Följande klass innehåller tre datamedlemmar och två konstruktorer, en av dem

utan parameter med en kropp som simulerar default konstruktorn, den andra med lika

många parametrar som klassen har datamedlemmar. Denna kan användas för att initiera

ett objekts datamedlemmar med vilka värden som helst som skickas vid anrop:

// AccountD.cs

// Klass med två konstruktorer, en av dem en simulerad default-

// konstruktor, den andra med tre parametrar

using System;

class AccountD

{
 int accountNo;

 String accountName;

 double balance;

 public AccountD() // Simulerar default konstruktorn

 { // Så här skulle den se ut
 accountNo = 0; // Den är gömd men kan även skrivas

 accountName = "";

 balance = 0.0;

 }

 public AccountD(int aNo, String aName, double b)

 {
 accountNo = aNo; // En andra konstruktor

 accountName = aName;

 balance = b;

 }

 public String AsString() // Strängrepresentation av AccountD-

 { // objekt
 return "\tKontonr " + accountNo + '\n' +

 "\tKontonamn " + accountName + '\n' +

 "\tSaldo " + balance + '\n' ;

 }
}

Det är ganska vanligt med flera konstruktorer. Anledningen är att man vill ha möjlighe-

ten att initiera sina objekt på olika sätt i olika sammanhang. Man vill inte begränsa sig

på endast ett sätt att konstruera objekt. Men pga konstruktoregenskapen ”konstruktor-

namn = klassnamn” måste alla konstruktorer i en klass ha samma namn. Eftersom kon-

struktorer är speciella metoder, blir det flera metoder med samma namn. Det program-

meringstekniska koncept som gör detta möjligt, är överlagring av metoder som vi kom-

mer att behandla i detalj senare (sid 173). Kort sagt, innebär överlagring av metoder att

ha samma namn på olika metoder i en och samma klass, men skilja dem genom olika

parameterlistor. Därför kan vi ha flera konstruktorer i en klass, bara vi förser dem med

olika parameterlistor. I klassen AccountD har den första konstruktorn ingen parameter,

den andra har tre parametrar. De skulle kunna ha även lika många parametrar, men då

 98

måste datatypen till minst en av parametrarna vara olika. Flera konstruktorer är en av de

viktigaste tillämpningarna av överlagring. Klassen AccountD testas i följande program:

// CreateAccountD.cs

// Anropar en simulerad default konstruktor i samma sats som

// ett objekt skapas och skriver ut defaultvärdena

// Skapar nytt objekt med annan konstruktor och skriver ut de

// nya värdena. Ompekning av referensvariabeln till nya objektet

// Garbage collector dödar automatiskt det orefererade objektet

using System;

class CreateAccountD

{
 static void Main()

 {
 AccountD myAccount = new AccountD(); // Anrop av simulerad

 // default konstruktor

 Console.WriteLine("\n\tDefaultvärden:\n" +

 myAccount.AsString());

 myAccount = // Ompekning till

 // nytt objekt

 new AccountD(123456, "Kalle", 100); // Anrop av den andra

 // konstruktorn

 Console.WriteLine("\tNya värden:\n" + myAccount.AsString());

 }
}

Programmet ovan vars körexempel kan beskådas på nästa sida, demonstrerar använd-

ningen av flera konstruktorer i en klass. Två objekt av klassen AccountD skapas där:

Det första initieras till defaultvärden genom anrop av den simulerade default

konstruktorn utan parameter (framhävd med vit bakgrund). Det andra objektet initieras

till nya värden som skickas vid anropet av den andra konstruktorn som har tre para-

metrar (även det framhävd med vit bakgrund). Utskriften bekräftar detta. Vi vet att data-

medlemmen accountName:s datatyp är String. C# tolkar dock accountName inte

som en sträng utan som en referens till ett String-objekt, därför att String är en

klass. Referensernas defaultvärde är null, se sid 102.

 Defaultvärden:

 Kontonr 0

 Kontonamn

 Saldo 0

 Nya värden:

 Kontonr 123456

 Kontonamn Kalle

 Saldo 100

En annan intressant observation som dock tyvärr utskriften inte visar, är att objekten i

programmet CreateAccountD lagras vid två olika adresser fast vi refererar till dem i

 99

båda fall med en och samma referensvariabel myAccount. Att de två objekten lagras

vid två olika adresser, är inte konstigt därför att var och ett skapas med en new-sats och

varje new genererar en annan adress. Men vi har använt för båda objekt samma refe-

rensvariabel myAccount. Dvs det har skett en ompekning: Först lagrar myAccount det

första objektets adress, men sedan överskrivs den av det andra objektets adress. En kon-

sekvens av denna ompekning är att det första objektet tappat sin referens, dvs den kan

inte längre nås. Det som sker i sådana fall är att C#:s s.k. garbage collector automatiskt

rensar den från minnet. Så det behövs ingen speciell åtgärd från programmet (som

destructor i C++) att ta bort oanvända eller orefererade objekt.

 100

2.6 Referensvariabler

En referensvariabel – kort referens – är en ny typ av variabel:

Ett exempel är variabeln a i programmet EmpTest (sid 87) där a deklareras till Emp som

är en klass: Emp a; Med satsen Emp a; skapas inget objekt utan endast en referens till

ett objekt. Självaste objektet skapas med koden new Emp().

Den allmänna formen hur referensvariabler kopplas till objekt, kan beskrivas så här:

Exempel med klassen Emp: Emp a = new Emp();

Själva objektet skapas med new höger om tilldelningstecknet. Till vänster deklareras re-

ferensvariabeln a, som tilldelas objekteta adress. Här ser man också att operatorn new

inte följs av parenteser. Klasserna på tilldelningens båda sidor måste vara identiska: new

Emp() allokerar minne för lagring av ett Emp-objekt och returnerar minnets adress till

referensen a av samma datatyp (klass) Emp. Tilldelning till en referens av en annan typ

(klass) skulle ge kompileringsfel.

Referensvariabler är ett verktyg för att kunna komma åt objekt. Objekten själva kan en-

dast skapas med new som är en minnesallokeringsoperator. Allokering betyder reserve-

ring av minnesutrymme. Objektens namn är inga vanliga variabler av enkel datatyp,

utan referensvariabler. Man kan jämföra detta med tyglar till en häst, där tyglar är refe-

rensen och hästen objektet. Eller fjärrkontrollen (referens) till en TV (objekt). Båda är

lätthanterade verktyg för styrning av tunga objekt. Andra jämförelser länkar till webbsi-

dor eller namnskyltar: Den lilla skylten Gamla Stan (referens) pekar på den stora ön

Gamla Stan (objekt). En referens lagrar nämligen minnesadressen till ett objekt och tar

jämfört med det tunga objektet så litet minne som en vanlig int: 4 bytes, vilket minnes-

ekonomiskt innebär en stor effektivitet vid exekvering av minneskrävande program.

När det gäller vanliga variabler av enkel datatyp hänvisar vi till minnescellerna med va-

riabelnamn. När det gäller objekt gör vi det med deras adresser i form av objektens

referenser. När man vant sig vid att använda referenser kan man t.o.m. tycka att

hanteringen av data via adresser är det naturliga sättet, vilket inte är någon dum idé med

tanke på att variabelnamn ändå är en slags mjukvarulänk till hårdvarans minnesadress.

Man kan, om man inte har behov av att komma åt objektet senare, även skapa s.k. ano-

nyma objekt direkt, när man behöver dem, t.ex.: new Emp().AsString() där metoden

AsString() anropas i objektet new Emp(). Testa gärna själv att i programmet Emp-

Test (sid 87) byta ut a.AsString() mot new Emp().AsString().

Klass referensvariabel = new Klass();

Referens är en variabel vars datatyp är en klass.

 101

De tomma parenteserna efter klassnamnet i exemplet Emp() och även i den allmänna

formuleringen Klass() får absolut inte utelämnas även om de är tomma. De anropar klas-

sens konstruktor (sid 91), närmare bestämt default konstruktorn (sid 95).

Referensen ”pekar” på objektet

Vad händer exakt när satsen Emp a = new Emp(); exekveras i programmet EmpTest?

För det första definieras referensen a, för det andra skapar new ett Emp-objekt dvs allo-

kerar minnesutrymme för objektet. För det tredje tilldelas minnesadressen till referensen

a. Adressen tilldelas referensen a vilket gör att a nu pekar på den av new allokerade

minnescellen, så att minnesbilden i datorns RAM efter satsen ovan ser ut så här:

 new Emp() allokerar: minnesceller: vid en adress, t.ex.:

 empNo 0 422ede

 firstName null

 lastname null

 salary 0

 pekar på

 Emp a allokerar:

 a 422ede

Tilldelningsoperatorn mellan Emp a och new Emp() gör att objektets adress hamnar i

referensvariabeln a:s minnescell vilket resulterar i att a pekar på objektet och vi därför

kan och måste referera till objektet genom att använda refrensen a. Alla objekt i C# kan

endast hanteras med referenser. Det är avgörande att inte förväxla objekt med referens:

Det är två helt olika typer av saker och ting med två olika minnesplatser och olika egen-

skaper som relateras till varandra på det beskrivna sättet. Men varför hamnar 0 och

null i objektets minnesceller? Och vad är överhuvudtaget null? Att de hamnar där

beror på anropet av default konstruktorn Emp() som automatiskt initierar datamedlem-

marna empNo, firstName, lastname och salary till s.k. defaultvärden.

Automatisk initiering av datamedlemmar

Samtidigt som new allokerar minne för objektet anropar koddelen Emp() en metod som

initierar objektets datamedlemmar med vissa defaultvärden som beror på deras dataty-

per. Denna metod som heter klassens konstruktor har samma namn som klassen samt

den viktiga uppgiften att initiera objektets datamedlemmar. En s.k. default konstruktor

skapas alltid automatiskt med när man deklarerar en klass utan att själv skriva en kon-

struktor. Vi kommer att behandla konstruktorer senare i detalj. Default konstruktorn ini-

tierar datamedlemmarna, när ett objekt skapas, automatiskt till följande defaultvärden:

0 om de är tal,

null om de är referenser,

nolltecknet om de är tecken,

false om de är av typ bool.

 102

Exempel på 0 och null har vi i programmet EmpTest: datamedlemmen a.firstName

initieras till null eftersom den är av typ referens, a.empNo initieras till 0 eftersom den

är av typ int och a.salary som är en float får 0 som initieralvärde. Utskriften i

konsolfönstret ovan visar dessa värden. Observera att vi får dessa defaultvärden ut-

skrivna eftersom vi i programmet EmpTest placerade Console.WriteLine()-satsen

direkt efter objektets definition av och före den nya tilldelningen av datamedlemmarna.

Källan till datatypinformationen är förstås klassen Emp där dessa datamedlemmar är

deklarerade till sina resp. datatyper (sid 85). Alla objekt är ju kopior av klassen. Vi hittar

där bl.a. deklarationen String firstName; men hävdar ändå att datamedlemmen

a.firstName inte är en sträng utan en referens till strängar. Anledningen är att

String är en klass och inte en enkel datatyp som int och float. Men har vi inte lärt

oss tidigare att String är en datatyp och skrivs så här: string? Jo, det har vi och det

gäller fortfarande: string är en sammansatt datatyp och samtidigt en klass, närmare

bestämt ett alias till klassen String, precis som de enkla datatyperna är alias till sina

resp. klasser. Att den tomma platsen efter Referens: i körexemplet av programmet

EmpTest (förförra sidan) är det osynliga tecknet null och inte den tomma strängen, kan

testas om man lägger in följande rader i programmet mellan utskriften av defaultvärde-

na och tilldelningen av nya värden till objektet a:s datamedlemmar:

 if (a.firstName == null) Console.WriteLine("null");

 if (a.firstName == "") Console.WriteLine("tom sträng");

Referensen null

null i C# betyder inget objekt, dvs en referens som inte pekar på något objekt. Själva

ordet null hittar man bland språkets reserverade ord (Progr1+, 2.3). null är ett värde

som kan tilldelas referensvariabler, nämligen när referensen inte lagrar någon adress till

ett objekt. Just därför kallas null för referensernas defaultvärde. Även om null repre-

senteras i datorn med 0, får det inte förväxlas varken med talet 0 eller med tecknet '0'.

null:s datatyp är varken int eller char, utan null är av referenstyp, dvs ett värde

som endast kan tilldelas referenser. Och vi vet ju att referensvariablernas datatyper alltid

är klasser. En variabel av referenstyp kan endast lagra minnesadresser.

null-referenser kan jämföras med parkerade bilar, om bilar i fart jämförs med referen-

ser som pekar på objekt. Man kan ”sätta igång” null-referenser när som helst genom

att tilldela objektadresser till dem. Omvänt kan man ”parkera” dem igen genom att till-

dela null till dem. Observera att null-referenser inte alls är samma sak som oinitiera-

de referenser. Till skillnad från null-referenser leder oinitierade referenser precis som

alla andra oinitierade variabler till kompileringsfel när de används. Till skillnad från

oinitierade referenser har null-referenser ett värde, bara att deras värde null inte är en

adress till ett befintligt objekt utan bara en symbol som betyder ”referens i väntan på att

få en objektadress” precis som en parkerad bil i väntan på att sättas i fart. Man använder

null-referenser i C#-program för att initiera referensvariabler direkt efter deklarationen

En referens med värdet null pekar på inget objekt.

I C# är null referensvariablernas defaultvärde.

 103

när det vid deklarationens tidpunkt inte kan avgöras vilket objekt de ska bindas till. På

så sätt vill man förhindra oinitierade referenser som alltid bär risken med sig att de an-

vänds av misstag innan de binds till ett objekt. Det är rekommenderad att alltid initiera

sina lokala referensvariabler till null om de inte kan tilldelas ett objekt när de skapas.

Förväxla inte null med nolltecknet:

Nolltecknet

I listan över defaultvärden till de olika datatyperna på förra sidan dyker upp nolltecknet

som defaultvärdet för teckenvariabler dvs till datatypen char. Man stöter på det när

man försöker skriva ut datatypen char:s undre gräns och använder sig av explicit typ-

konvertering för att omvandla den till ASCII-koden 0. Sedan kan man framställa det

oskrivbara och osynliga nolltecknet med hjälp av escapesekvensen '\0'. Då känns det

naturligt att det allra första tecknet i ASCII-tabellen med koden 0 används som default-

värde för teckenvariabler. Fysiskt består det alltså av av 2 bytes dvs 16 bitar fyllda med

endast nollor. På den fysiska bitnivån representeras även null av nollor. Däremot skil-

jer de sig på den logiska programnivån via sina datatyper: Medan nolltecknet är av typ

char är null av typ referens.

Nolltecknet är i C# char-variablernas defaultvärde

med ASCII-koden 0.

 104

2.7 Komposition

Komposition betyder sammansättning och är relaterad till modularisering, Lego-princi-

pen och den diskussion vi hade om att bygga program med hjälp av redan skrivna och

testade moduler dvs klasser som kan ingå som komponenter i andra klasser. Den över-

gripande strukturen av ett C#-program är fortfarande en samling av klasser som i sin tur

innehåller datamedlemmar och metoder. Objektorienterade program har för det mesta

bara Main()-metoden kvar och resten är klasser i vilka man definierar och anropar sina

metoder. Komposition är sammansättning av ett objekt med ett annat objekt. Tänk på en

bil som har en motor. Man sätter ihop bilen som ett objekt av klassen Bil genom att byg-

ga in i den bl.a. en motor som i sin tur är ett objekt av en annan klass, klassen Motor.

En bil har en motor. En anställd har arbetstider. En sådan relation mellan två begrepp

kallas i objektorienterad design för en ”har”-relation och är den grundläggande förut-

sättningen för komposition av klasser. Om två begrepp står i en ”har”-relation till va-

randra kan man bygga det ena (stora) med hjälp av det andra (lilla). Ett hus har en dörr

och andra komponenter. En cykel har hjul. En bil har en motor, en motor har i sin tur

cylindrar osv. I praktiken bygger man också alla dessa enkla komponenter separat först

och sammansätter dem sedan till det mer komplexa objektet.

En annan viktig relation mellan objekt i den reala världen kallas i objektorienterad de-

sign för ”är”-relation och måste begreppsmässigt noggrant skiljas från ”har”-relationen.

Båda är relevanta klassificeringsverktyg vid modellering och design av en verklig miljö.

”Är”-relationen är den grundläggande förutsättningen för arv hos klasser som efter in-

kapsling är den andra hörnstenen i objektorienterad programmering. Klasser kan ärva

varandra om de står i en ”är”-relation till varandra. En lastbil är en bil, därför kan klas-

sen lastbil ärva klassen bil dvs ta över bilens delar och metoder, modifiera och anpassa

dem till lastbilen. Komposition är vid modellering ibland ett alternativ och ibland en

konkurrent till arv. Vi behandlar först komposition. I nästa avsnitt tas upp arv.

Komposition av klasser

För att bättre kunna förstå skillnaden mellan komposition och arv vill vi i båda avsnitt

behandla samma exempel, nämligen en anställd som förutom för- och efternamn, också

har ett födelse- och ett anställningsdatum. Medan för- och efternamn är strängar och kan

deklareras som sådana, har födelse- och anställningsdatum inte några fördefinierade ty-

per. De är båda av typ datum, så vi måste först deklarera en sådan klass. Observera att

datum och tid inte är samma sak, så vi kan inte använda klassen Time från tidigare. Me-

dan tid är en varaktighet bestående av ett antal tidsenheter, ett intervall med en början

och ett slut, är datum en viss tidpunkt. En tid består av många tidpunkter. I praktiskt

sammanhang är det i regel tillräckligt att modellera datum som en klass med datamed-

lemmarna dag, månad och år. I koden använder vi engelska beteckningar:

 105

// Date.cs

// Deklarerar klassen Date med två konstruktorer (överlagring),

// en allmän konstruktor och en simulerad default konstruktor

// Metoden AsString() formaterar datum till en sträng

using System;

class Date

{
 int day, month, year;

 public Date(int d, int m, int y)

 {
 day = d; // Allmän konstruktor

 month = m;

 year = y;

 }

 public String AsString() // Strängrepresentation

 {
 return year + "-" + month + // Svenskt datumformat

 "-" + day;

 }
}

Datamedlemmarna i klassen Date är privata. Därför finns det en konstruktor som vi

kommer att anropa t.ex. i klassen Composition med new Date(12, 10, 1969) för att

skapa ett Date-objekt och initiera det till 1969-10-12, födelsedatumet till en antälld.

Set-metoder behöver vi inte i Date därför att vi i vårt exempel inte kommer att ha något

behov för ändringar av varken födelse- eller anställningsdatum. För andra ändamål där

det behövs kan man lätt komplettera klassen med Set-metoder. Vad gäller Get-metoder

ersätter metoden AsString() alla sådana när den konkataenerar alla tre datamedlem-

mar och representerar datum som en sträng, dessutom i svenskt datumformat.

Nu, när vi har klassen Date till förfogande, kan vi använda den i följande klass för att

deklarera en anställds födelse- och anställningsdatum med den nya datatypen Date:

// Employ.cs

// Komposition av klasser: Klassen Employ sätts ihop (komponeras)

// bl.a. med hjälp av klassen Date

// Mellan klasserna Employ och Date finns en "har"-relation:

// Employ "har" två Dates som datamedlemmar

using System;

class Employ

{
 String firstName, lastname;

 Date birthDate; // Komposition

 Date hireDate;

 106

 public Employ(String f, String l, Date b, Date h)

 {
 firstName = f; // Konstruktorn

 lastname = l;

 birthDate = b;

 hireDate = h;

 }

 public String AsString() // Objektens

 { // strängrepre-
 return "\n\tDen anställde " + // sentation

 firstName + " " + lastname;

 }
}

I klassen Employ har en anställd ett för- och efternamn som båda är av typ String.

Faktiskt är även String en klass, även om en fördefinierad sådan, så att vi redan här

har att göra med komposition. Sedan kommer den självgjorda kompositionen med klas-

sen Date. En anställd har också ett födelse-och ett anställningsdatum, båda av typ Da-

te. I koden utgörs denna ”har”-relation av deklarationen av datamedlemmarna birth-

Date och hireDate som Date-objekt (framhävd med vit bakgrund). Metoden As-

String() returnerar en sträng som konkateneras med operatorn + .

Komposition av objekt

Nu har vi två klasser till förfogande – Employ och Date – där den ena är en komponent

i den andra. Därmed kommer varje objekt av typ Employ att vara ett sammansatt objekt,

sammansatt av två objekt av typ String och två objekt av typ Date. Som en konse-

kvens har även konstruktorn två String-objekt och två Date-objekt som parametrar:

public Employ(String f, String l, Date b, Date h)

Parametrarna skapas inte här som objekt utan deklareras endast här. Som komponenter

(delobjekt) skapas de först när ett helt Employ-objekt skapas i följande testprogram:

// Composition.cs

// Komposition av objekt: Ett Employ-objekt byggs upp med hjälp

// av 2 Date-objekt: För att kunna skapa Employ-objektet måste

// först komponenterna av typ Date skapas och initieras med resp.

// konstruktor. Date-objektens referenser kan sedan skickas till

// konstruktorn Employ() för att initiera Employ-objektet

using System;

class Composition

{
 static void Main()

 {

 107

 Date birthday = new Date(12, 10, 1969);

 Date hireday = new Date(15, 11, 2001);

 Employ emp =

 new Employ("Kalle", "Karlsson", birthday, hireday);

 Console.WriteLine(emp.AsString() + " är född " +

 birthday.AsString() + "\n\n\toch har jobbat sedan " +

 hireday.AsString() + '\n');

 }
}

Objekten birthDate och hireDate ingår som komponenter i objektet Employ. Där-

för måste de skapas först. Det gör vi genom att initiera dem med vissa datum och anropa

Date-klassens allmänna konstruktor med 3 parametrar. Sedan skickas de som paramet-

rar till Employ-konstruktorn när objektet emp skapas. Observera att Date-klassens

default konstruktor inte anropas här. Den behövs bara i fall man i någon annan

applikation vill skapa ett Date-objekt med default-initiering och tilldela det nya värden

senare, t.ex. genom att läsa in vissa datum.

Slutligen får vi följande utskrift när vi kör Composition:

 Den anställde Kalle Karlsson är född 1969-10-12

 och har jobbat sedan 2001-11-15

Namnet skrivs ut med anrop av emp.AsString() som returnerar den konkatenerade

strängen med för- och efternamn med mellanslag däremellan. Därför kan den integreras

i utskiftssatsen. Datumen däremot skrivs ut med Date-klassens strängrepresentations-

metod som har samma namn. Det är alltså två olika metoder med sammma namn

AsString(), definierade i två olika klasser.

I nästa avsnitt kommer vi att vidareutveckla exemplet med anställda genom att flytta en

del av koden från klassen Employ till en överordnad klass och etablera en arvrelation

mellan dem. Komposition med klassen Date bibehålls så att resultatet blir en kombina-

tion av arv och komposition.

 108

Person

- firstName: String

- lastname: String

- birthDate: Date

+ Person(): <constructor>

+ AsString(): String

Employee

- hireDate: Date

+ Employee(): <constructor>

2.8 Arv

Arv är efter inkapsling den andra hörnstenen i objektorienterad programmering. Medan

inkapsling har att göra med dataskydd och dataintegritet, är arv ett koncept som förverk-

ligar modularisering, återanvändning av kod och strukturering av program – mål som

är svårt att uppnå och som i praktiken ofta uppnås endast delvis. Man skapar en ny klass

som en underkategori av en annan, redan befintlig klass. Man återanvänder den befint-

liga klassens kod i den nya klassen. Den nya klassen ärver den befintliga klassen.

I klassdiagrammet, till höger, ritas arvrelationen

med en pil från subklassen Employee riktad

uppåt mot superklassen Person.

”Är”-relationen

Man kan etablera en arvrelation mellan två begrepp, om de står i en en ”är”-relation till

varandra: En anställd är en person. Därför kan en ny klass Employee ärva klassen

Person. Då tar den över all kod som redan finns där och lägger till ny kod som är

speciell för en anställd. På så sätt slipper man skriva om kod som redan finns. T.ex. har

en person ett för- och efternamn samt ett födelsedatum. Vid modellering av en anställd

ärvs dessa datamedlemmar, och man lägger till den nya datamedlemmen hireDate

som är speciell för en anställd. Subklassen Employee ärver superklassen Persons alla

datamedlemmar och metoder.

Dock behöver en inte alla arvrelationer motiveras av en ”är”-relation. T.ex. kan en cy-

linder ärva en cirkel genom att utvidga den med en höjd, utan att behöva vara en cirkel.

Det som har hänt med Employee-exemplet jämfört med förra avsnitt är att en del av

koden har flyttats från klassen Employee till klassen Person. Det som är specifik för

en anställd, datamedlemmen hireDate, är kvar i Employee. Allt som är relevant för

alla personer har flyttats till klassen Person. Arvrelationen garanterar att dessa data-

Arv är en relation mellan två

klasser. Ex.: Klassen Employee

ärver klassen Person, eftersom en

anställd är en person.

Subklassen Employee tar över all

kod från superklassen Person och

lägger till ny kod som specificerar

en anställd.

 109

medlemmar och metoder kan nås även från ett Employee-objekt – självklart upp till åt-

komstreglerna. Arv upphäver inte åtkomstmodifierarnas giltighet: En privat medlem är

absolut oåtkomlig utifrån klassen, även från en subklass.

Observera att klassen Date är helt oberörd av denna omplacering av kod (arvkonstruk-

tionen). Fortfarande ”har” en anställd ett anställningsdatum. En person ”har” ett födelse-

datum. Detta är oberoende av att en anställd ”är” en person. Båda relationer förekom-

mer parallellt. Därför har vi nu att göra med en kombination av komposition och arv.

Komposition är något helt naturligt och ställer inga speciella krav på syntaxen, medan

arv introducerar ny kod i C#. Frågan är: Hur ser syntaxen ut för pilen i klassdiagrammet

ovan? Och hur påverkar arvrelationen konstruktorns kod speciellt i subklassen? För att

få svar implementerar vi modellen ovan genom att börja med klassen Person. Observe-

ra att denna klass förutsätter att klassen Date från förra avsnitt (sid 105) redan är dekla-

rerad innan och infogat i samma projekt i Visual Studio.

// Person.cs

// Deklarerar klassen Person som en bas- eller superklass till

// alla subklasser av Person, bl.a. Employee

using System;

class Person

{
 String firstName, lastname;

 Date birthDate;

 public Person(String f, String l, Date b) // Konstruktorn

 {
 firstName = f;

 lastname = l;

 birthDate = b;

 }

 public String AsString() // Person som

 { // sträng
 return "\n\t" + firstName + " " + lastname;

 }
}

Klassen Person kan användas som en överordnad kategori, kallad superklass, till

klassen Employee då varje anställd ”är” en Person. Därför kan klassen Employee ärva

klassen Person och bli subklass till den. Person kan även användas som superklass till

andra subklasser, t.ex. Elev, Dessutom används komposition för att definiera klas-

sen Person med bl.a. en datamedlem birthDate av typ Date: Varje Person ”har” ett

födelsedatum.

Som man ser är klassen Person exakt samma som klassen Employ minus datamedlem-

men hireDate (sid 105). Bara att den även fungerar nu som en superklass i den ovan

beskrivna UML-modellen. Men av denna roll finns det inget spår i koden. Arvrelationen

skrivs alltid in i subklassen, inte i superklassen. Klassen Person måste vara så generell

 110

att den även kan användas i andra program som behöver en sådan klass. Det är ju just

meningen med återanvändning av kod. Självklart kan man tänka sig en ännu mer gene-

rell version av klassen Person med fler medlemmar som t.ex. personnr, postadress,

mailadress, telnr osv. Vi nöjer oss dock för enkelhetens skull med versionen ovan.

Arvrelationen

Som ett resultat av återanvändning av kod blir nu subklassen Employee mycket kort för

det mesta är redan kodad i superklassen Person:

// Employee.cs

// Deklarerar Employee som en subklass till superklassen Person

// Alla datamedlemmar och metoder ärvs automatiskt från Person

// utom konstruktorn. En ny datamedlem hireDate tillkommer.

// Konstruktorn måste explicit ärva och anropa superklassens kon-

// struktor samt lägga till initieringen av den nya datamedlemmen

using System;

class Employee : Person // Employee ärver Person

{
 Date hireDate; // Ny datamedlem

 public Employee(String f, String l, Date b, Date h)

 : base(f, l, b) // Arv & anrop

 // Konstruktorn ärver och an-

 // ropar superklassens kon-

 // struktor explicit

 // base = referens till super-

 // eller basklassen Person

 {
 hireDate = h; // Initiering av ny datamedlem

 }
}

Employee ärver Person: first- och lastname samt birthDate tas över från Per-

son. En anställd ”är” en Person som dessutom har ett anställningsdatum. Därför lägger

vi till den nya datamedlemmen hireDate till de ärvda datamedlemmarna. Konstruk-

torn måste nu initiera inte bara denna nya datamedlem utan även de som är ärvda. Men

eftersom Employee ärver Person:s metoder, utom konstruktorn, måste vi explicit ärva

och anropa Person-klassens konstruktor för initiering av de ärvda datamedlemmarna

med tillägget : base(firstName, lastname, birthDate) i konstruktorns huvud

där base är en referens till super- eller basklassen. Alltså är base en referens till Per-

son. För att koppla ihop klasserna Employee och Person och etablera en arvrelation

mellan dem måste alltså två saker göras:

1. I klasshuvudet måste tilläggas information om att en arvrelation ska etableras uti-

från den här klassen (subklassen). Namnet på den klass som relationen ska kopplas

till (superklassen) måste anges. Så här ser den allmänna syntaxen ut:

class subklass : superklass

 111

Detta innebär att subklass ärver superklass. : är i C# symbolen för ”arv”. Att

subklass ärver superklass innebär att subklassen fortsätter att koda superklas-

sen, fast i subklassen.

2. I konstruktorns huvud måste så många parametrar tas upp i parameterlistan som

det finns privata datamedlemmar både i super- och subklassen. Det räcker inte bara

med subklassens privata datamedlem. Man måste nämligen från ett Employee-ob-

jekt kunna initiera inte bara hireDate, utan även firstName, lastname och

birthDate. Man måste kunna initiera ett fullständigt Employee-objekt med kon-

struktorn. Därför måste denna ha fyra parametrar:

 public Employee(String f, String l, Date b, Date h)

De tre första parametrarna vidarebefordras till superklassens konstruktor med tilläg-

get : base (f, l, b) till koden ovan vilket innebär både explicit arv och anrop

av Person-konstruktorn. Slutligen initieras den fjärde parametern, datamedlemmen

hireDate, i Employee-konstruktorns kropp.

Så här kan subklassen Employee testas. Observera att det inte finns ett spår kvar av

superklassen Person fast hela dess kod används i programmet:

// Inheritance.cs

// Testar klassen Employee

// För att kunna skapa ett Employee-objekt skapas först två

// Date-objekt, ett födelse- och ett anställningsdatum vars

// referenser skickas till konstruktorn Employee() med 4 para-

// metrar, varav 3 vidarebefordras till superklassen Person

using System;

class Inheritance

{
 static void Main()

 {
 Date birth = new Date(16, 6, 1978);

 Date hire = new Date(12, 3, 2001);

 Employee emp = new Employee("Anders", "Larsson",

 birth, hire);

 Console.WriteLine(

 emp.AsString() + " är född " + birth.AsString() +

 "\n\n\toch har jobbat sedan " + hire.AsString() +

 '\n');

 }
}

Programmet ovan testar klassen Employee och är, när det gäller koden, nästan identiskt

med Composition (sid 106). Enda skillnaden är att klassen Employ (sid 105) har byts ut

mot Employee som är helt annorlunda nu i och med att den tillämpar arv. T.ex. har den

ingen metod AsString(). Ändå kan vi i utskriftssatsen anropa denna metod i objektet

emp som är av typ Employee:
emp.AsString()

 112

Kompilatorn tittar i klassen Employee och hittar där ingen metod AsString. Men

eftersom Employee tillämpar arv och är subklass till Person, går kompilatorn ”upp”

till superklassen och hittar där AsString som en metod i klassen Person. För första

gången anropar vi en metod i ett objekt som inte är definierad i objektets klass utan i su-

perklassen till objektets klass.

Att kompilatorn går ”upp” i klasshierarkin kan man ta som en analogi till att pilen i

klassdiagrammet är riktad uppåt från subklassen till superklassen.

Programmet Inheritance producerar följande utskrift:

 Anders Larsson är född 1978-6-16

 och har jobbat sedan 2001-3-12

 113

2.9 Polymorfism

I följande exempel ärver klassen MinimalAccount klassen Account:

 Polymorfism

Man har två olika typer av konto i en bank, ett vanligt konto och ett konto med begrän-

sad uttagsrätt. Operationen ”att ta ut pengar” definieras på olika sätt i dessa två kontoty-

per, men operationens namn ska alltid vara Withdraw(). Metoden Withdraw() är de-

finierad både i superklassen Account och i subklassen MinimalAccount. Utan arvre-

lation skulle detta varit ett exempel på vanlig överlagring av metoder (avsn. 3.7, sid 172).

Men eftersom MinimalAccount ”är” ett speciellt Account kan MinimalAccount är-

va klassen Account. Etablerar vi arvrelationen blir det polymorfism.

”Poly” betyder många och ”morf” betyder form på gammal grekiska. Polymorf är något

som har många former, t.ex. ett ord som har olika betydelser. Det vanliga språket är fullt

med sådana ord: Ta bara ordet köra. Man kan köra bil, köra tåg, köra program osv. Det

är sammanhanget som avgör den aktuella betydelsen.

En metod beskriver en funktionalitet. Polymorfism definierar en metod i superklassen,

definierar om funktionaliteten i subklassen, men behåller namnet (eng. overriding).

Account

- accountNo: int

- accountName: String

- balance: double

+ Account():

<constructor>

+ Withdraw(): double

+

MinimalAccount

- myBalance: double

+ MinimalAccount(): <constructor>

+ Withdraw(): double

Polymorfism modifierar helt eller delvis funktionaliteten hos metoder

med samma namn som förekommer i en arvhierarki.

Subklassens metod kommer då att överskugga superklassens metod.

 114

Överlagring av metoder som togs upp tidigare (3.7, sid 172) innebär samma namn för

olika metoder. Skillnaden mellan polymorfism och överlagring av metoder är följande:

I vanlig överlagring (eng. overloading) definieras i samma klass metoder med samma

namn, som skiljs åt genom olika antal eller olika typer av parametrar. Polymorfa meto-

der definieras i olika klasser som dessutom ärver varandra. Dvs polymorfa metoder fö-

rekommer endast i klasser som står i arvrelation till varandra. De har samma namn och

samma parameterlista, medan deras kroppar (innehåll) är olika.

Vi implementerar modellen ovan i C#. Så här kan t.ex. klassen Account se ut:

// Account.cs

// Super- eller basklass till subklassen Minimalkonto

// Definierar bl.a. metoden Withdraw() med en vanlig uttags-

// policy: Uttag medges ej om uttagsbloppet är större än saldo

// Definieras om i subklassen som har en striktare uttagspolicy

using System;

class Account

{
 protected int accountNo;

 protected String name;

 protected double balance;

 public Account(int no, String n, double b)

 {
 accountNo = no; // Konstruktorn

 name = n;

 balance = b;

 }

 public String Withdraw(double amount) // Metod som defi-

 { // nieras om i
 if (balance - amount < 0) // subklassen

 return "\n\tIngen täckning\n\tför uttag på " +

 amount.ToString("c") + " på " + name + "s konto\n";

 else

 {
 balance = balance - amount;

 return "\n\tUttag på " + amount.ToString("c") +

 " genomfört på " + name + "s konto\n" ;

 }
 }

 public String AsString()

 {
 return "\tKontonr " + accountNo + '\n' +

 "\tNamn " + name + '\n' +

 "\tSaldo " + balance.ToString("c") + '\n' +

 "***************************\n\n" ;

 }
}

 115

Överskuggning av metoder (eng. overriding)

Klassen Account beskriver ett vanligt bankkonto med en Withdraw()-metod som inte

tillåter uttag av pengar om uttagsbeloppet överstiger saldot. En bank har däremot många

olika typer av konton. Tänkbart är t.ex. ett konto som alltid behåller ett visst minimal-

belopp på kontot och inte tillåter uttag av pengar om saldot efter uttag understiger detta

minimalbelopp. Ett sådant specialkonto beskrivs nedan i klassen MinimalAccount

som ett Account med en Withdraw()-metod som implementerar denna affärslogik.

// MinimalAccount.cs

// Subklass som ärver superklassen Account, men definierar om

// den ärvda metoden uttag() med en striktare uttagspolicy

// Uttag medges ej om saldo efter uttag är mindre än minimalSaldo

// Withdraw() har samma huvud, men en annan kropp än superklassen

using System;

class MinimalAccount : Account // Ärver klassen Account

{
 double myBalance; // Ny datamedlem

 public MinimalAccount(int no, String n, double b, double minB)

 : base(no, n, b) // Superklassens kon-

 { // struktor
 myBalance = minB;

 }

 public String Withdraw(double amount) // Definierar om super-

 { // klassen Kontos me-
 if (balance - amount < myBalance) // tod: Inte längre < 0

 return "\n\tIngen täckning\n\tför uttag på " +

 amount.ToString("c") + " på " + name + "s konto\n";

 else

 {
 balance = balance - amount;

 return "\n\tUttag på " + amount.ToString("c") +

 " genomfört på " + name + "s konto\n";

 }
 }
}

MinimalAccount ärver klassen Account genom att lägga till den nya datamedlemmen

myBalance och definiera om Account-klassens Withdraw()-metod. Vi har med två

olika metoder Withdraw() att göra. I alla objekt av typ Account kommer den ena –

den ursprungliga – att gälla, i alla objekt av typ MinimalAccount kommer den andra

att gälla. Man säger: Den nya, modifierade metoden Withdraw() överskuggar den

gamla. Dvs en metod i en subklass överskuggar (slår ut temporärt) metoden med samma

namn i sin superklass. Överskuggning (eng. overriding) är ett koncept som vi redan lärt

känna och använt när vi diskuterade lokala variabler. Men då handlade det om över-

skuggning av variabler medan nu har vi att göra med överskuggning av metoder.

 116

En konsekvens av att metoderna Withdraw() inte längre befinner sig i samma klass, är

att de inte längre behöver skiljas åt genom olika parameterlistor. De är redan skilda

genom sin placering i olika klasser och kommer därför att anropas i objekt av olika

klasser. De måste tvärtom ha t.o.m. samma parameterlista. För att subklassens metod

ska kunna överskugga (slå ut temporärt) superklassens metod, måste metodhuvuden va-

ra exakt identiska. Därför har Withdraw() i MinimalAccount samma huvud som

Withdraw() i Account (framhävd med vit bakgrund). De skiljer sig endast genom

kroppen, närmare bestämt i if-satsens villkor: I superklassen implementeras den vanli-

ga policyn för uttag av pengar med if (balance - amount < 0), medan i subklassen

ska den speciella uttagpolicyn gälla: if (balance - amount < myBalance). Över-

skuggning av metoder är en konsekvens och en väsentlig ingrediens av polymorfism.

Åtkomstmodifieraren protected

När vi diskuterade inkapsling lärde vi känna åtkomstmodifieraren private. Innan dess

hade vi använt åtkomstmodifieraren public. Det finns ytterligare en åtkomstmodifiera-

re i C# som heter protected. De reglerar åtkomsten till medlemmarna i en klass

utifrån klassen. Ställer man upp dem i en rangordning från restriktiv till liberal får man

följande lista:

 private

 protected

 public

private är den mest restriktiva modfieraren och spärrar åtkomsten absolut. Inte ens en

subklass har tillgång till superklassens privata medlemmar fast den ärver allt ovanifrån.

public är den mest liberala modfieraren och friger åtkomsten åt alla utifrån. protec-

ted är en kompromiss som friger åtkomsten till klassens medlemmar från en subklass

och spärrar åtkomsten från alla andra klasser. Subklassen kan finnas i samma eller i en

annan fil.

I klassen Account är det ganska naturligt att deklarera datamedlemmarna som pro-

tected. På så sätt skyddas uppgifterna om accountNo, accountName och balance

från all kod som inte har att göra med klassen Account. Samtidigt är de tillgängliga

från alla klasser som ärver klassen Account dvs är också konton, fast mer speciali-

serade. Alla dessa specialkonton kommer att ha åtminstone dessa tre grund-datamed-

lemmar. Med protected slipper man skriva Set- och Get-metoder i subklassen Mini-

malAccount, vilket underlättar programmeringen. Subklassen MinimalAccount kan

t.ex. i sin Withdraw()-metod komma åt superklassens datamedlemmar name och ba-

lance tack vare protected. Annars, om name och balance hade varit private, ha-

de vi behövt definiera och anropa Get-metoder.

Nu när vi testar både Account- och MinimalAccount-klassen i en väldigt enkel appli-

kation kan vi konstatera att kompilatorn automatiskt väljer rätt Withdraw()-metod vid

anrop – trots samma namn och samma parameterlista:

 117

// PolymorphTest.cs

// Demonstrerar anrop av den polymorfa metoden uttag()

// En gång anropas uttag() i ett Account-objekt (kalle)

// den andra gången i ett MinimalAccount-objekt (pelle)

using System;

class PolymorphTest

{
 static void Main()

 {
 Account kalle = new Account(12345, "Kalle", 200);

 MinimalAccount pelle =

 new MinimalAccount(67890, "Pelle", 100, 50);

 Console.Write("\nKalles konto före uttag:\n" +

 kalle.AsString() +

 "\tTa ut ett belopp från Kalles konto: ");

 double out = Convert.ToDouble(Console.ReadLine());

 Console.Write(kalle.Withdraw(out) + // Här anropas super-

 // klassens Withdraw()

 "\nKalles konto efter uttag:\n" + kalle.AsString() +

 "Pelles konto före uttag:\n" + pelle.AsString() +

 "\tTa ut ett belopp från Pelles konto: ");

 out = Convert.ToDouble(Console.ReadLine());

 Console.Write(pelle.Withdraw(out)+ // Här anropas sub-

 // klassens Withdraw()

 "\nPelles konto efter uttag:\n" + pelle.AsString());

 }
}

På den första raden i Main() skapas objektet kalle av typ Account, på den andra

raden objektet pelle av typ MinimalAccount. De initieras med var sin konstruktor.

kalle får 200 kr insatt på sitt konto, pelle 100. Eftersom pelle har ett Minimal-

Account måste hans konto initieras även med ett värde till den nya datamedlemmen

myBalance. Därför skickas som sista parameter till pelle-konstruktorn värdet 50 som

enligt affärslogiken alltid ska vara kvar på ett MinimalAccount. Så, pelle får

maximalt ta ut 50 kr från sitt konto. Försöker han ta ut t.ex. 100 kr – vilket vi gör i kör-

exemplet på nästa sida – godtas inte uttaget och han får meddelandet Ingen täckning

på Pelles konto som har sitt ursprung i anropet pelle.Withdraw(out). Efter det

misslyckade uttagsförsöket är pelle:s saldo fortfarande 100.

I programmet PolymorphTest förekommer två anrop av den polymorfa metoden

Withdraw(), en gång superklassens och en gång subklassens Withdraw()-metod:

kalle.Withdraw(out) och pelle.Withdraw(out)

Att vi kallar metoden för polymorf beror på att det är två olika metoder med två olika

funktionaliteter (två olika kroppar) med samma namn och samma huvud. Det är de två

 118

olika objekten kalle och pelle som gör att kompilatorn väljer rätt metod. Men det

finns i programmet även två gånger två anrop av metoden AsString():

kalle.AsString() och pelle.AsString()

Är det här också två olika metoder? Är även metoden AsString() polymorf? Svaret är

nej, därför att det endast finns en metod AsString() som är definierad i superklassen

Account. Hur kommer det sig då att vi kan anropa den även i pelle-objektet som inte

är av typ Account? Det kan vi göra därför att MinimalAccount som pelle är ett

objekt av, ärver Account och därmed även den publika metoden AsString(). Därför

är metoden Withdraw() polymorf, men inte metoden AsString(). Så här kan en kör-

ning av PolymorphTest se ut:

Kalles konto före uttag:

 Kontonr 12345

 Namn Kalle

 Saldo 200,00 kr

 Ta ut ett belopp från Kalles konto: 200

 Uttag på 200,00 kr genomfört på Kalles konto

Kalles konto efter uttag:

 Kontonr 12345

 Namn Kalle

 Saldo 0,00 kr

Pelles konto före uttag:

 Kontonr 67890

 Namn Pelle

 Saldo 100,00 kr

 Ta ut ett belopp från Pelles konto: 100

 Ingen täckning

 för uttag på 100,00 kr på Pelles konto

Pelles konto efter uttag:

 Kontonr 67890

 Namn Pelle

 Saldo 100,00 kr

 119

Övningar till kapitel 2

2.1 Skriv ett program som består endast av klassen All_in_Main som i sin tur inne-

håller endast Main()-metoden. Läs in radien r till en cirkel och beräkna samt

skriv ut cirkelns area r2 och dess omkrets 2r, där = 3.14159. Du kan an-

vända konstanten Math.PI från C#:s klassbibliotek för . Programmet ska inte

vara objektorienterat eftersom du inte skapar några objekt, utan endast lokala

variabler (radie, area, omkrets). Programmet ska inte heller vara modulariserat

eller proceduralt eftersom all kod (inmatning-bearbetning- utmatning) finns i en

enda metod Main() som definieras i en klass. Dessa steg ska tas i de efterföljan-

de två övningarna. Deklarera alla variabler till double.

2.2 Modularisera programmet All_in_Main från övn 2.1 på metodnivå, dvs: Flytta

bearbetningsdelen dvs beräkningen av area och omkrets ur Main() till separata

metoder Area() och Circumference(), men stanna i samma klass. Döp om

klassnamnet till Procedural. I Main() ska finnas kvar variabeln för radien, in-

matning, utmatning och anropen av Area() och Circumference(). Förse de

nya metoderna med en parameter som överför radiens värde från Main() till

dem. Välj olika namn för den aktuella än för den formella parametern. Dessutom

ska Area() och Circumference() returnera ett double-värde och vara statis-

ka. För att testa, mata in 1 för radien. Då ska arean bli pga r 2 = och om-

kretsen bli 2pga 2 r = 2.

2.3 Modularisera programmet All_in_Main från övn 2.1 på klassnivå, dvs: Dela

upp programmet i två klasser, lagrade i två separata filer. Kalla den ena klassen

för Circle, den andra för CircleTest. Samla all information om begreppet

cirkel i klassen Circle, dvs: Deklarera radien r som datamedlem samt Area()

och Circumference() som metoder. Ta bort från metoderna både static och

parametern för radien. Den andra klassen CircleTest ska endast innehålla

metoden Main(). Skapa i den ett objekt av klassen Circle. Läs in ett värde till

objektets datamedlem r och anropa samt skriv ut returvärdena till objektets me-

toder Area() och Circumference(). Klassfilerna borde ligga i samma projekt.

2.4 Skriv en klass Fish som beskriver en fisk med datamedlemmarna sort, weight

och size. Testa din klass i en annan klass FishTest i en separat fil som endast

innehåller metoden Main() där två objekt av klassen Fish skapas. Tilldela det

första objektets datamedlemmar värdena Laxforell, 719 (gram) och 38,5 (cm). En-

heterna gram och cm behöver inte anges. Välj själv andra värden till det andra

objektets datamedlemmar. Skriv ut dessa värden till konsolen i en tabell av typ:

 120

2.5 Ta klassen Fish från övn 2.4. Förse den med en metod som beräknar priset på

fisken oberoende av sort, t.ex. 7,25 kr per hekto. Lägg till även en metod som be-

räknar och returnerar frakten utifrån fiskens vikt och längd genom att t.ex. mul-

tiplicera en viss kostnadsfaktor, säg 0,02, med vikten, en annan, säg 0,1, med

längden och addera dem. Metoderna ska returnera priset och frakten i hela kronor

utan ören. Anropa metoderna från klassen FishTest:s Main()-metod för de två

Fish-objekten. Lägg till nya rubriker Pris och Frakt i tabellen ovan och skriv ut

deras värden till tabellens två rader.

2.6 Modifiera programmet från övn 2.5 så att datamedlemmarnas värden inte hård-

kodas utan läses in. Utskriften ska skickas till konsolen och läggas till tabellen

från övn 2.4. Skriv din kod så att den lätt kan generaliseras så att man kan mata in

flera fisksorter med hjälp av en loop och en array av referenser till Fish-objekt

som vi kommer att lära oss senare. Dessutom ska programmet kunna modifieras

till att skriva ut till en tabell i en databas istället för att skriva till konsolen.

2.7 Deklarera en klass Triangle med datamedlemmarna side_a, side_b,

side_c, height_b av typ int och metoderna Area(), Circumference().

Skapa i en annan klass som innehåller Main(), ett objekt av klassen Triangle

och tilldela datamedlemmarna värden. Anropa metoderna och skriv ut denna tri-

angels area och omkrets. Skapa en andra referens som pekar på samma objekt

och anropa metoderna samt skriv ut deras returvärden med denna referens. Du

borde få samma resultat som med den första referensen. Anropa sedan metoderna

Area() och Circumference() med två anonyma objekt (utan referenser). Kol-

la om du får de förväntade resultaten som är baserade på objektens default-

initiering. Sist, peka om Triangle-objektets första referens till null och försök

att anropa metoderna med denna referens. Vad händer?

2.8 Skriv en klass Rectangle med datamedlemmarna width, height samt meto-

derna Area() och Circumference(). Deklarera datamedlemmarna en gång

som private och en annan gång med ingen åtkomstmodifierare alls. Deklarera

metoderna som public. Förse klassen med en konstruktor och välj andra namn

för konstruktorns parametrar än för datamedlemmarna. Testa din klass i en annan

klass genom att i Main() skapa ett Rectangle-objekt vars datamedlemmar ini-

tieras till konstanta värden. Skriv ut dess area och omkrets.

2.9 Modifiera klassen Rectangle från övn 2.8 genom att lägga till Get- och Set-me-

toder i klassen. Testa den nya klassen i Main() genom att läsa in värden till da-

tamedlemmarna. Efter utskriften av area och omkrets, fördubbla rektangelns

längd och bredd med anrop av Get- och Set-metoderna. Skriv ut en gång till rek-

tangelns area och omkrets. Med vilken faktor växer arean resp. omkretsen?

2.10 Modellera en klass Cylinder som subklass till klassen Circle. Förse super-

klassen Circle med en privat datamedlem radius, en konstruktor, en Get-me-

tod och med beräkningsmetoderna Area() och Circumference(). Betrakta

Cylindern som en ”utvidgad” Circle som ärver Circle och lägger till den en

 121

privat datamedlem height. Förse även subklassen med en konstruktor och en

Get-metod. Cylindern ska dessutom ha metoderna Volume() och Surface().

Implementera din objektorienterade modell så att du vid beräkning av Cylin-

derns Volume() och Surface() kan återanvända koden till – dvs anropa – cir-

kelns metoder Area() och Circumference(). Testa dina klasser i Main() ge-

nom att läsa in radius och height samt skriva ut Volume() och Surface().

2.11 Employee – en arvhierarki (projekt) Modellera en arvhierarki över olika

typer av anställda och använd den polymorfa metoden Salary() i alla klasser

för att beräkna lönen för de olika anställdtyper. Skriv en superklass Employee

som ärvs av subklasserna PermEmployee, Seller och Employee. Varje sub-

klass ska ha privata datamedlemmar, en konstruktor, Properties till varje ny data-

medlem, en AsString()-metod som skriver ut en anställds typ, namn och

anställningsnummer samt metoden Salary() som i varje subklass definierar om

superklassens metod Salary(). Introducera privata datamedlemmar till klasser-

na PermEmployee, Seller och Employee. Skriv dessutom en subklass

PermSeller som ärver klassen Seller och har den nya privata datamedlem-

men permSalary. Testa dina subklasser genom att skapa och initiera en instans

av varje subklass och ändra lönen till en av dem samt skriva ut deras gamla och

nya data.

2.12 Kaffeautomaten (projekt) Du får i uppdrag att programmera en kaffeauto-

mat. Uppdragsgivaren förväntar sig ett professionellt program som lätt kan upp-

dateras, om man skulle byta till en nyare automatmodell om något år. Därför

anlitar man en objektorienterad programmerare. Skriv koden så generellt som

möjligt så att programmet även kan modifieras för vilken varuautomat som helst,

dessutom enkelt kan översättas till vilket programmeringsspråk som helst.

Programmet ska inte simulera själva automaten

utan en aktion i automaten, dvs snarare det man

gör med den. I händelsernas centrum ska finnas

en klass som beskriver det som pågår i automa-

ten efter att användaren stopppat in pengar i den

och valt en dryck. Deklarationen till denna klass

kan – i stora drag – se ut så här:

class Automat_action

{
 string productName;

 double price;

 double payment;

 double change;

 public Automat_action(double money, char product)

 {
 switch(product)

 {
 . . .

 }

 122

 payment = money;

 change = payment - price;

 }

 public void Change_in_coins()

 {
 . . .

 }
}

 Konstruktorn Automat_action() ska tilldela de by default privata datamed-

lemmarna productName och price värden beroende på valet av dryck och skri-

va ut ett meddelande om inlagt belopp samt drycken som ska levereras. Detta kan

kodas med hjälp av en switch-sats (ovan). Men istället för switch kan man lika

bra använda nästlade if-else-satser. Skapa objekt av klassen Automat_ac-

tion i en annan klass i en separat fil som endast innehåller Main().

 Börja i Main() med att skriva ut en meny över alla varor samt priserna, t.ex.:

K(affe) 8.00 kr

E(spresso) 9.50 kr

C(hoklad) 7.50 kr

L(Kaffe Latte) 9.00 kr

P(Cappuccino) 9.50 kr

 Låt sedan användaren lägga in pengar. Läs in beloppet till en double-variabel.

Låt användaren även välja en dryck genom att läsa in begynnelsebokstaven till

varorna ovan med en char-variabel. Sedan kan ett objekt av den ovan deklarera-

de klassen Automat_action skapas in inkl. anrop av konstruktorn Automat-

_action(). Vid detta anrop skickas de inlästa värdena till det inlagda beloppet

och den valda varan som aktuella parametrar till Automat_action(). Efter att

objektet skapats och datamedlemmarna initierats kan metoden Change_in-

_coins() anropas.

 Komplettera programmet med att ta hand om en eventuellt felaktig eller otill-

räcklig betalning från användarens sida. Metoden Change_in_coins()
*

 är till

för att dela upp växeln i automatens ”tillåtna” myntslag (10-kr, 5-kr, 1-kr och 50-

öringar) och skriva ut hur många av varje ”tillåtet” myntslag som ska ges

tillbaka. Växelbeloppet måste omvandlas till detta mynt”system”. För att åstad-

komma det, kan följande algoritm användas:

 Myntbetalningen inkl. behandlingen av 50-öringen beror inte på nostalgi utan på internationali-

sering. Vi vill hålla möjligheten öppen för en överföring av programmet till andra länder där auto-

mater med myntbetalning fortfarande finns. Även ett ev. byte till Euro eller andra valutor där den

halva valutaenheten finns kvar, ska vara möjligt. Omvandlingen av växelbeloppet till automatens

myntsystem inkluderar en programmeringsteknisk finess som kan vara värd att lära sig. Logiken

inkl. användningen av modulooperatorn ligger till grund även för en generell omvandling av det

decimala talsystemet till andra system. Läs mer om det på nästa sida: Modulooperatorn % .

 123

Algoritm för omvandling av ett belopp till olika myntslag

Eftersom denna algoritm endast fungerar för heltal, måste change som är ett be-

lopp i kronor och ören av typ double, först räknas om till ett rent örebelopp av

typ int, vilket kan göras genom att multiplicera det först med 100 och sedan av-

runda resultatet till heltal:

int total = (int) Math.Round(change * 100);

I fortsättningen kommer alltså den givna växeln att stå som ett örebelopp i int-

variabeln total. Anledningen till konverteringen till int i satsen ovan är att den

fördefinierade metoden Round() som avrundar till närmaste heltal, ändå returne-

rar ett värde av typ double.

1. För att få antalet 10-kronor heltalsdivideras total med 1000 eftersom 10-

kronor är 1000 ören:
int ten = total / 1000;

Hur många gånger ryms 1000 – eller 10-kronor – i total? Det antalet tilldelas

till ten. Eller med andra ord: 1000 dras av från total så många gånger tills

resten blivit mindre än total. Det antalet som tilldelas till ten blir antalet 10-

kronor. Divisionen ovan är inte vanlig division utan heltalsdivision eftersom både

total och 1000 är heltal. Dvs total divideras med 1000, resultatet tas, resten

ignoreras, t.ex. 6975/1000 ger 6. Resten 975 ignoreras här, men används i fort-

sättningen. Om heltalsdivision läs på nästa sida: Modulooperatorn % .

2. För att få antalet 5-kronor divideras just resten som blev kvar från punkt 1

med 500 eftersom 5-kronor är 500 ören:

int five = (total % 1000) / 500;

Här används modulooperatorn %. Läs om den nedan. ”Resten som blev kvar från

punkt 1” är just (total % 1000). T.ex. 6975 % 1000 ger 975. Efter att ha dra-

git av alla 10-kronor från total divideras resten med 500 för att få reda på hur

många 5-kronor som finns i total. T.ex. 975/500 ger 1. Resultatet av denna di-

vision ges till five, resten ignoreras och används i fortsättningen.

I ytterligare tre steg kan de övriga formlerna för beräkning av antalet 1-kronor

(one), 50-öringar (half) och resten i öre (rest) skrivas, när mönstret i algorit-

men (förhoppningsvis) har trätt fram:

int one = ((total % 1000) % 500) / 100;

int half = (((total % 1000) % 500) % 100) / 50;

int rest = (((total % 1000) % 500) % 100) % 50;

Man tar förra stegets formel, ersätter / med % och lägger till en heltalsdivision

med den nya enhetens örebelopp. I det allra sista steget däremot, där man är ute

efter allra sista resten i öre, måste % användas hela vägen. Självklart är restöre-

beloppet inte av praktiskt intresse när automaten inte kan spotta ut det. Mer om

modulooperatorn och heltalsdivision kan du läsa här:

 124

Modulooperatorn %

% har i C# ingenting med procenträkning att göra utan är symbolen för ett räk-

nesätt som kallas modulo och innebär resten vid heltalsdivision. Exempel:

Idag är det fredag, och du vill träffa din kompis om 11 dagar.

Vilken veckodag blir det?

Om vi numrerar veckodagarna stigande från 1 med början på måndag så att fre-

dag blir den 5:e veckodagen, får du svaret på frågan ovan genom att räkna modu-

lo 7:

(5 + 11) % 7 = 2

Dvs veckodagen i frågan är tisdag. Man lägger till aktuell veckodag 5, antalet

dagar 11 vilket ger 16, men räknar modulo 7 dvs 16 % 7 = 2, som är veckodag

nr. 2: tisdag.

I själva verket handlar det om en omvandling av det decimala talsystemet med

basen 10 och siffrorna 0-9 – det talsystem vi är vana vid att räkna med – till vec-

kodagarnas system dvs till talsystemet med basen 7 och siffrorna 0-6.

Modulo dividerar två heltal (utan att gå vidare till decimaler), tar resten och igno-

rerar resultatet. T.ex. 16 % 5 ger 1, därför att 16 heltalsdividerat med 5 ger 3,

och en rest på 1 blir kvar. Modulooperatorn % ignorerar 3 och returnerar resten

1. Resten vid heltalsdivision kallas modulo: 9 modulo 2 ger 1. Man kan uppfatta

räknesättet modulo även som en upprepad subtraktion: Man drar av 2 från 9 så

många gånger det bara går och tar det som blir kvar. Fyra gånger går det att ta

bort 2 från 9, kvar blir 1. Därför är 9 % 2 = 1. Generellt innebär att räkna modu-

lo a att man bortser från alla multipler av heltalet a och behåller resten.

Räknesättet modulo har många tillämpningar, speciellt vid övergång mellan två

system, t.ex. mellan talsystem med olika baser som det decimala talsystemet med

basen 10 och det binära med basen 2. Man kan användsa modulo för att omvand-

la ett antal sekunder till antal timmar, minuter och sekunder.

 125

2.13 Labyrinten (projekt) Visst är det roligt att med ett C# program låta datorn

rita en labyrintartad figur på skärmen som kan se ut så här:

Visserligen är detta ingen riktig labyrint. För en sådan skulle det krävas mycket

mer. En riktig labyrint skulle kunna vara föremål t.ex. för ett spelprojekt, som un-

derliggande grafik, självklart med lite andra finesser, färg osv. Bilden ovan visar

snarare om en labyrintartad figur som är slumpmässigt ihopsatt av ett antal tec-

ken som vi kallar för dubbla linjegrafiktecken (LGT). De är tagna ur teckentabel-

len Unicode som är den gällande teckenstandarden i hela världen. I figuren ovan

är de ordnade som en sorts tabell (50 rader, 20 kolumner). I koden gör man det

med en dubbel- eller nästlad for-loop, som är helt enkelt en (inre) for-loop i en

(yttre) for-loop. Denna nästlade kontrollstruktur används i alla programmerings-

språk för att åtstadkomma en 2D utskrift – typ tabell – där den yttre loopen skri-

ver ut raderna och den inre loopen kolumnerna.

Tecknen i figuren ovan är slumpvis valda. Därför borde varje körning av pro-

grammet generera en lite annorlunda labyrintartad figur. Du kan gärna försöka

med en egen algoritm att åstadkomma ett program som ritar en labyrintartad fi-

gur. Men följer du instruktionerna i övningarna har du i alla fall ett förslag till en

algoritm som fungerar.

 126

Gör så här för att rita ”labyrinten”:

 Steg 1 Bekanta dig med hantering av tecken i C# inkl. explicit typkonvertering

och Unicode, genom att mata in och testa följande program:

// Int2char.cs

// Ger tecknet till en inmatad Unicode genom explicit

// typkonvertering från int till char

using System;

class Int2char

{
 static void Main()

 {
 Console.Write("\n\tMata in ett heltal:\t");

 int code = int.Parse(Console.ReadLine());

 Console.WriteLine("\n\t" +

 "Det inmatade talet " + code + " är " +

 "Unicode till tecknet " + (char) code +

 "\n\n"); // Explicit typkonvertering

 }
}

Kör programmet Int2char (ovan) för koderna 9552-9580. För att se alla

tecken till dessa koder i en översikt genomför Stegen 2-3 :

 Steg 2 Studera programmet RandTest i kursboken, sid 137-138, som visar hur

man nästlar en inre for-sats i en yttre for-sats. Jämför den nästlade

for-satsens kod med programmets körexempel på sid 138. Använd idén

till nästlade for-satser för att konstruera en egen sådan, som du kommer

att behöva i Steg 3 :

 Steg 3 Skriv ett C# program som producerar följande utskrift:

 127

Dessa tecken finns i den standardiserade teckentabellen Unicode och an-

vänds i text mode för att rita raka linjer, ramar osv. i konsolen. Vi kallar

dem för linjegrafiktecken (LGT). Deras koder som är angivna ovan, an-

vänds i Steg 5 där du ska rita den labyrintliknande figuren på förra sidan

med dessa tecken. Den fullständiga Unicode-tabellen som är den gällan-

de teckenstandarden i hela världen, hittar du t.ex. på Internet under ad-

ressen: unicode.coeurlumiere.com.

Jämför gärna koderna ovan med denna tabell som är den gällande tec-

kenstandarden i hela världen, och konstatera de små skillnaderna. C#

följer inte exakt Unicode-standarden.

Steg 4 Bekanta dig med hantering av slumptal med klassen Random och meto-

den Next(), bl.a. i programmet RandTest i kursboken, sid 137-138.

Steg 5 Skriv slutligen det program som med hjälp av de dubbla linjegrafikteck-

nen från Steg 3, C#:s slumpgenerator och en dubbel- eller nästlad for-

sats ritar en labyrintliknande figur i konsolen som är slumpmässigt ihop-

satt av de nämnda LGT-tecknen, se projektets presentation.

2.14 Master Mind (projekt) är ett litet spel som låter användaren gissa ett slump-

mässigt genererat fyrsiffrigt heltal genom att leda spelaren med en inbyggd hjälp-

procedur vars regler är beskrivna nedan. Även här gäller det att försöka hitta egna

lösningar. Följande ska anses som ett förslag till lösning:

Börja med att behandla fyrsiffriga heltal som en serie av fyra ensiffriga tal dvs

som en array av heltal med fyra element.

Skriv först en metod med huvudet void Create(int[] secretNo) som ska

generera det hemliga fyrsiffriga talet och lagra det i en int-array, säg secretNo,

med 4 element. Varje element i arrayen secretNo kan genereras som ett slump-

tal mellan 0 och 9. Dessutom ska metoden Create() kontrollera spelets regel

enligt vilken alla fyra siffror måste vara olika.

 Skriv sedan en metod med huvudet void Help(int[] guessedNo, int[]

secretNo) som ska bearbeta spelarens gissning enligt följande regler:

 För varje rätt siffra på rätt plats från vänster till höger skrivs ut ett R

 För varje rätt siffra på fel plats från vänster till höger skrivs ut ett S

 För varje fel siffra från vänster till höger skrivs ut ett mellanslag ?

 Om t.ex. det hemliga talet är 4693 och spelaren gissar 7498, så erhålls hjälpen:

? S R ?

 När hjälpen skriver ut RRRR har spelaren lyckats och programmet avslutas med

att skriva ut ett lämpligt meddelande. Skriv ett program som tillåter flera spelom-

gångar.

 128

 129

Kapitel 3

Metoder i OOP

 Ämne Sida Program

3.1 Accessmetoder 129 Empl & GetSet

3.2 Property i C# 133 EmplP/Property

3.3 Statiska datamedlemmar och metoder 135 StatDemo

­ Klass- och instansvariabler 135 StatDemoTest

­ Allokeringsmodifieraren static 137 RandTest

3.4 Referens i metoder 140 EncryptStr

3.5 Abstrakta klasser och metoder 143 Super

­ Implementation av abstrakt metod 144 Sub1 & Sub2

­ Test av abstrakt metod 145 Override

3.6 Virtuella metoder 146 SuperV

­ Överskuggning av virtuell metod 147 Sub/TestVirtual

 Övningar till kapitel 3 149

3.1 Accessmetoder

 130

Här återanknyter vi till vår diskussion kring inkapsling och klassens konstruktor (sid

91). Accessmetoder är nämligen direkta konsekvenser av inkapsling dvs att man vill ha

privata datamedlemmar. Konstruktorn kan ju lösa problemet med de privata datamed-

lemmarnas oåtkomlighet endast i initialfasen, dvs när objekten skapas. Men man vill ju

även i fortsättningen kunna komma åt de inkapslade datamedlemmarna. För detta ända-

mål har man i C# accessmetoder till förfogande.

Det finns tre sorters accessmetoder: Get-metoder för att hämta (läsa), Set-metoder för att

ändra (skriva) värden till privata datamedlemmar och s.k. strängrepresentationsmetoder

för att få ut och kunna visa de privata datamedlemmarna i läsbar textform. Följande

program visar exempel på alla tre typer av accessmetoder:

// Empl.cs

// Deklarerar klassen Empl med 3 privata datamedlemmar, en

// konstruktor, en Get- och Set-metod till datamedlemmen salary

// och metoden AsString() som ger ett Empl-objekt i strängform

using System;

class Empl

{
 String name;

 int empNo;

 double salary;

 public Empl(String n, int e, float s)

 {
 name = n; // Konstruktorn

 empNo = e;

 salary = s;

 }

 public double GetSalary() // Get-metod

 {
 return salary;

 }

 public void SetSalary(double newSalary) // Set-metod

 {
 salary = newSalary;

 }

 public String AsString() // Strängrepresentation

 {
 return "\tNamn " + name + '\n' +

 "\tAnst nr " + empNo + '\n' +

 "\tLön " + salary + '\n' ;

 }
}

 131

Som man ser handlar det hos den sista metoden AsString() konkret om att skriva ut

klassens data som en konkatenerad sträng, en slags representation av klassens objekt i

strängform.

Förfarandet som visas här kan generaliseras, ja t.o.m. automatiseras: Till varje privat

datamedlem kan en Get- och en Set-metod definieras, medan en utskriftsmetod räcker

för hela klassen. Om man sedan faktiskt utnyttjar alla dessa verktyg i varje program,

måste avvägas från fall till fall. Get-metoder ska ha ett returvärde med samma returtyp

som den privata datamedlemmen, inga parametrar och endast en return-sats som re-

turnerar den privata datamedlemmens värde. Alla Get-metoder har detta utssende. Man

kan t.o.m. standardisera namngivningen genom att döpa Get-metoden till GetX, där X

är den privata datamedlemmens namn som man inleder med en versal. Set-metoden dä-

remot är en void-metod med en parameter som har samma datatyp som den privata

datamedlemmen och innehåller endast en tilldelningssats som tilldelar parametern till

den privata datamedlemmen. Namnet ska vara SetY där Y är den privata datamedlem-

mens versala initial. Utskriftsmetoden är av void-typ utan parametrar och skriver ut

alla privata datamedlemmar i en användarvänlig layout. Självklart behöver man inte i

alla fall genomföra det ”fulla” förfarandet ovan. I klassen Empl som vi testar i följande

program har vi nöjt oss med att definiera en Get- och Set-metod endast för den privata

datamedlemmen salary:

// GetSet.cs

// Använder klassen Empl för att skapa en anställd, ändra dess

// salary (som är privat) med Get- och Set-metoden samt skriva ut

// data, bl.a. den gamla och nya lönen, med AsString()

using System;

class GetSet

{
 static void Main()

 {
 Empl emp = new Empl("Kalle Karlsson", 349, 22500);

 Console.WriteLine("\n\tFöre löneförhöjning:\n" +

 emp.AsString());

 emp.SetSalary(emp.GetSalary()*1.25); // Ändrar lön

 Console.WriteLine("\tEfter löneförhöjning:\n" +

 emp.AsString());

 }
}

Ändringen av salary görs via anrop av Set-metoden SetSalary(). Som parameter

skickas den gamla lönen höjd med 25%. För att få tag i den gamla lönen hämtas den pri-

vata datamedlemmen salary med ett anrop av Get-mtoden GetSalary().

Programmet GetSet:s körresultat blir:

 132

 Före löneförhöjning:

 Namn Kalle Karlsson

 Anst nr 349

 Lön 22500

 Efter löneförhöjning:

 Namn Kalle Karlsson

 Anst nr 349

 Lön 28125

 133

3.2 Property i C#

Property i C# är inte längre en vanlig egenskap (attribut) eller datamedlem i den bety-

delse vi använt begreppet hittills, utan ett koncept i C# som automatiserar Get- och Set-

metoder i klasser med privata datamedlemmar för att underlätta programutvecklingen

och minska den overhead av kod som behövs för att hantera inkapsling. Property i C# är

motsvarigheten till Beans i Java. Istället för att till varje privat datamedlem skriva en

Get- och en Set-metod, kan man definiera en Property till den. Vi tar upp klassen Empl

från förra avsnitt, döper om den till EmplP och ersätter dess Get- och Set-metoder till

datamelemmen salary med en Property:

// EmplP.cs

// Klassen Empl med Property som automatiserar den privata data-

// medlemmen salary:s Get- och Set-metoder

using System;

class EmplP

{
 String name;

 int empNo;

 double salary;

 public EmplP(String n, int e, float s)

 {
 name = n; // Konstruktor samma som för Empl

 empNo = e;

 salary = s;

 }

 public double Salary // Property Salary av typ double

 { // till privat datamedlem salary
 get // Kan skrivas till alla privata

 { // datamedlemmar
 return salary;

 }
 set

 {
 salary = value;

 }
 }

 public String AsString() // Strängrepresentation

 {

 return "\tNamn " + name + '\n' +

 "\tAnst nr " + empNo + '\n' +

 "\tLön " + salary + '\n' ;

 }
}

 134

Propertyn är framhävd med vit bakgrund. get, set och value är reserverade ord. Pro-

pertys namn Salary däremot kan man välja fritt. Inga parenteser förekommer, för Pro-

perty är inte någon metod. Den liknar mycket mer en datamedlem, ja man kan säga, det

är en slags generaliserad datamedlem, dessutom en publik sådan. Den är till för att

utanför klassen kunna läsa värdet av och skriva ett nytt värde till en privat datamedlem.

Operationerna läsa och skriva är implementerade i Propertyns delar get och set. Deras

innehåll inom { } liknar metoder, fast även de skrivs utan parenteser och därmed inte

kan vara metoder. get:s kod är identisk med kroppen till vår ”manuella” Get-metod i

klassen Empl dvs består endast av en return-sats. Även set:s kod är nästan identisk

med kroppen till vår gamla Set-metod, bara att parametern som skickar det nya värdet,

har ersatts av value. Den stora programmeringstekniska fördelen av Property kan först

ses när man använder den, t.ex. i följande program som testar klassen EmplP:

// Property.cs

// Använder klassen EmplP, skapar en anställd, ändrar dess

// salary (som är privat) med Propertyn Salary och skriver ut

// data, bl.a. den gamla och nya lönen, med AsString()

// Propertyn Salary anropar automatiskt Get- resp. Set-metod

using System;

class Property

{
 static void Main()

 {
 EmplP emp = new EmplP("Kalle Karlsson", 349, 22500);

 Console.WriteLine("\n\tFöre löneförhöjning:\n" +

 emp.AsString());

 emp.Salary = emp.Salary*1.25; // Ändrar privat salary

 // med Propertyn Salary

 Console.WriteLine("\tEfter löneförhöjning:\n" +

 emp.AsString());

 }
}

Ändringen av den anställdas lön görs inte längre via anrop av någon metod, utan med

hjälp av Propertyn Salary. Om man inte kände till klassen EmplP:s kod, skulle man

kunna misstänka att Salary vore en vanlig datamedlem. Det enda som ”stör” bilden är

det stora S. Man är van vid små initialer till datamedlemmar. Det stora S avslöjar Sala-

ry som en Property, för en metod kan den ju inte vara pga avsaknaden av parenteser.

Det intressanta är nu att emp.Salary till höger om tilldelningstecknet automatiskt läser

den privata datamedlemmen salary:s värde dvs exekverar Propertyns Get-del, medan

emp.Salary till vänster om tilldelningstecknet automatiskt skriver det nya värdet som

bildats till höger, till den privata datamedlemmen salary dvs exekverar Propertyns Set-

del. På så sätt ändras lönen till den anställd som får en 25%-ig löneförhöjning. En

körning av programmet Property ger samma utskrift som programmet EmpTest.

 135

3.3 Statiska datamedlemmar och metoder

När vårt allra första C# program First introducerades i Progr1 sades så här om meto-

den Main():

”Det är Virtual Machine (VM) som exekverar vårt program

First genom att anropa metoden Main(). För att detta anrop

ska kunna utföras behövs de s.k. modifierarna public och

static i metodens huvud.” (Progr1, 1.1)

Sedan dess har vi använt static tillsammans med void i alla våra program i huvudet

till metoden Main():
static void Main()

En allra första förklaring gavs i Progr1 så här:

public innebär att man kan anropa denna metod utifrån klassen First,

static att den kan anropas utan att skapa objekt av klassen First,

void att metoden Main() inte returnerar något värde.

Men nu när vi har mer kunskap om klasser och objekt ska vi precisera dessa förklarin-

gar. void behandlas i detalj när vi i nästa kapitel närmare går in på metoder. public

kommer att tas upp i samband med private och andra s.k. åtkomstmodifierare. Men

static kommer vi att behöva snart när vi vill skriva egna metoder som ska anropas

från Main() utan att skapa ett objekt. Se även Åtkomstmodifieraren static på sid 137.

Klass- och instansvariabler

En icke-statisk datamedlem kallas för instansvariabel. Följande klass visar ett exempel:

// StatDemo.cs

// Klass med två datamedlemmar, en statisk och en icke-statisk

class StatDemo

{
 public static int klassVar; // Klassvariabel allokeras här

 // i klassen. Behöver inget objekt.

 public int instVar; // Föreskrift om att en instansvariabel

 // med namnet instVar skall allokeras i

 // varje objekt som skapas av denna klass

}

Programmet nedan demonstrerar skillnaden mellan klass- och instansvariabler i en loop:

// StatDemoTest.cs

using System;

class StatDemoTest

{

 136

 static void Main()

 {
 int i = 0;

 Console.WriteLine("\nKlassvariabeln skapas och initieras" +

 " i klassen till: " + StatDemo.klassVar + '\n');

 do

 {
 StatDemo obj = new StatDemo(); // Nytt objekt i

 // varje varv

 Console.WriteLine(

 "Samma klassvariabel ökar i varje varv:\t\t " +

 StatDemo.klassVar + '\n' +

 "Ny instansvariabel skapas i varje objekt: " +

 obj.instVar + '\n');

 StatDemo.klassVar++; // Ökar löpande

 obj.instVar++; // Ökar i varje objekt från 0-1

 } while (i++ < 4); // Fem varv

 }
}

Programmet ovan producerar följande resultat när det exekveras:

Klassvariabeln skapas och initieras i klassen till: 0

Samma klassvariabel ökar i varje varv: 0

Ny instansvariabel skapas i varje objekt: 0

Samma klassvariabel ökar i varje varv: 1

Ny instansvariabel skapas i varje objekt: 0

Samma klassvariabel ökar i varje varv: 2

Ny instansvariabel skapas i varje objekt: 0

Samma klassvariabel ökar i varje varv: 3

Ny instansvariabel skapas i varje objekt: 0

Samma klassvariabel ökar i varje varv: 4

Ny instansvariabel skapas i varje objekt: 0

På första raden skrivs ut klassvariabeln klassVar:s initialvärde 0 genom att i program-

mets första utskriftssats före loopen referera till StatDemo.klassVar dvs klassen

StatDemo:s statiska datamedlem klassVar. Modifieraren static framför deklara-

tionen av klassVar i klassen StatDemo gör att vi kan referera till denna variabel med

klassnamnet utan att behöva att skapa ett objekt.

I utskriften ovan visas klassen StatDemo:s både statiska och icke-statiska datamedlem-

mar. Man ser att klassvariabelns värde löpande ökar, medan instansvariabeln visar vär-

det 0. Utskrifterna är resultat av en loop i programmet som har fem varv motsvarande

 137

räknaren i:s fem värden 0-4. I varje varv skapas ett objekt av typ StatDemo. Både

objektets (dvs instansens – instans är bara ett annat ord för objekt) och klassens variabel

ökar sina värden med 1 i varje varv av loopen. Detta sker i satserna StatDemo.klass-

Var++; och obj. instVar++; som står sist i loopen. Klassvariabeln kommer ihåg si-

na gamla värden från loopens gångna varv eftersom dess ökning sker i en och samma

minnescell genom hela programmet och därför löpande. Instansvariablerna däremot

skapas i varje varv av loopen i sina objekt på nytt, initieras till 0 och skrivs ut, ökar

sedan till 1, men ”dör” i början av nästa varv när ett nytt objekt skapas. Närmare be-

stämt, överskrivs deras adress i referensen obj med det nya objektets adress. Därför får

de bara värdena 0 och 1 tilldelade av vilka endast 0 skrivs ut eftersom utskriftssatsen

står före ökningen. Det handlar om olika objekt med olika instansvariabler i varje varv

lagrade vid olika adresser.

I programmet ovan behandlades static för datamedlemmar. Nu ska vi undersöka

static för metoder. Låt oss först sammanfatta vad vi vet om static.

Allokeringsmodifieraren static

Allokering betyder reservering av minnesutrymme i datorns RAM-minne under pro-

gramkörningen. Med modifierare menas en egenskap som ges till en datamedlem, en

metod eller en klass, genom att skriva modifieraren framför namnet. Medan public är

en åtkomstmodifierare, därför att den ger en status angående åtkomsten, är static en

allokeringsmodifierare, därför att den talar om på vilket sätt minnesutrymme ska alloke-

ras åt en datamedlem, en metod eller en klass. Regler för static:

Statiska datamedlemmar kallas för klassvariabler, därför att de tillhör klassen och inte

något specifikt objekt och instansvariabler används för icke-statiska datamedlemmar,

därför att de tillhör objekten och inte klassen. Instans är synonym till objekt. Alla objekt

som skapas av en icke-statisk klass kommer att dela minnesutrymme vid en och samma

adress för sina statiska medlemmar. Ändrar man något objekt via sin referens kommer

alla objekt i fortsättningen att ha detta ändrade värde. Kommer inget objekt att skapas

av denna klass kan man nå datamedlemmen direkt via klassnamnet, därför att minnesal-

lokeringen pga static har gjorts i klassen och inte i objekten. Vid punktnotation skrivs

klassnamnet före punkten. Ett exempel är konstanten  som kodas med Math.PI. I

klassen Math är PI en statisk datamedlem. Därför behöver vi inte skapa objekt av klas-

sen Math för att kunna komma åt PI.

Klasser, datamedlemmar & metoder kan deklareras som static, men

inte lokala variabler. I en statisk klass är alla medlemmar statiska. Av

en statisk klass kan man inte skapa objekt. Statiska medlemmar

allokeras i klassen och inte i objekten. Därför används de med

klassnamnet.

Statiska datamedlemmar kallas även för klassvariabler. Ett annat namn

för icke-statiska datamedlemmar är instansvariabler (instans = objekt).

 138

Statiska medlemmar kan användas med klassnamnet.

Icke-statiska medlemmar kan bara användas genom att först skapa

ett objekt. De kan sedan användas med obkjetreferenser.

Den mest förekommande användningen av static är framför metoden Main(). Som

en konsekvens kan man anropa statiska metoder i Main(). T.ex. är biblioteksmetoden

Console.Write() som ofta anropas i Main(), statisk. Bland våra egendefinierade

metoder är Encrypt() deklarerad som static (sid 140).

Statiska metoder

Precis som hos datamedlemmar allokerar static minne för en metod en gång för alla i

klassen och inte i varje enskilt objekt som skapas. Därför används också ibland beteck-

ningen klassmetoder för statiska metoder, parallellt till klassvariabler. Att allokera min-

ne för en metod innebär att allokera minne för alla dess parametrar och lokala variabler.

Av det följer att även en statisk metods parametrar och lokala variabler är statiska.

Självklart kan man inte längre anropa en icke-statisk metod med klassnamnet. Hela

Main() är ett statiskt kodområde i vilket man inte kan referera till icke-statiska vare sig

metoder eller datamedlemmar. För att slippa deklarera en metod som static är det

därför nödvändigt att skapa ett objekt av referens istället för med klassnamnet. Regler:

Dessa regler är logiska ur minnesallokeringssynpunkt: En metod är en modul som i sin

helhet kan allokeras antingen i klassen eller i enskilda objekt. En blandning är omöjligt.

Följande program visar att en icke-statisk metod måste i den statiska miljön Main()

anropas med en objektreferens:

// RandTest.cs

// Simulerar 150 tärningskast: slumpar heltal mellan 1 och 6

// Icke-statisk metod Next() behöver ett objekt för att anropas

// Nästlad for-sats ordnar utskrifterna i en (10 x 15)-tabell

using System;

uclass RandTest

{
 public static void Main()

 {
 Random r = new Random(); // Random-objekt

 Console.WriteLine("\n\t150 tärningskast:");

 for (int rad = 1; rad <= 10; rad++) // 10 rader

 {
 Console.Write("\n\t"); // Radbyte i tabellen

 for (int kol = 1; kol <= 15; kol++) // 15 kolumner

 Console.Write(r.Next(1, 7) + " "); // Anrop av icke-

 } // statisk metod
 Console.WriteLine("\n");

 }
}

 139

Programmet RandTest:s körresultat blir t.ex.:

 150 tärningskast:

 5 2 1 2 3 1 5 4 4 3 4 3 1 3 2

 2 4 6 2 6 3 6 4 1 2 2 3 4 1 2

 2 2 5 5 1 4 4 5 4 3 4 3 5 2 5

 6 2 3 4 2 4 2 2 5 2 6 5 1 1 3

 6 2 4 3 3 3 6 3 4 5 5 1 4 1 4

 1 2 4 3 3 1 2 1 1 6 1 2 2 5 2

 1 4 5 3 5 3 1 3 1 4 2 6 1 6 4

 5 5 3 3 3 5 3 6 5 3 5 3 5 5 3

 3 5 6 3 6 3 3 3 3 2 1 1 4 6 3

 3 2 3 4 3 3 6 1 4 4 5 5 1 1 1

När ska man deklarera en metod som statisk?

Behovet av statiska metoder uppstår när en metod från modelleringssynpunkt inte kan

relateras till ett specifikt objekt med specifika datamedlemmar utan är en allmän rutin

som kan utföras helt fristående i objekt av alla möjliga slag. Ett exempel är metoder i

klasser som antingen inte har några datamedlemmar alls eller vars datamedlemmar inte

är relaterade till och därför inte förekommer i metoderna. En stor grupp statiska metoder

är rena beräkningsmetoder. T.ex. är alla metoder i klassen Math, bland dem alla mate-

matiska metoder, statiska därför att de är generella och inte bundna till andra data än

sina egna parametrar (argument). Det vore slöseri med minnesutrymme och datortid om

man behövde skapa först ett objekt av någon klass för att bara beräkna t.ex. sinusmeto-

den för ett visst värde, när denna beräkning inte har att göra med objektet: Math.-

Sin(x) exekverar endast kod som är nödvändigt för beräkning av sinusmetoden och

kan anropas i både statiska och icke-statiska metoder.

Statiska metoder i C# ersätter de fristående funktioner som man har i andra, mindre ob-

jektorientorienterade programmeringsspråk som C++. Ur den objektorientorienterade

programmeringens synpunkt är statiska metoder förstås av mindre intresse. Men deras

flitiga förekomst i C#:s klassbibliotek visar att det finns behov för dem.

 140

3.4 Referens i metoder

Kan en metod ha endast enkla datatyper som parametrar och returvärde, eller kan man

skicka också objekt som indata (parametrar) till en metod och få även tillbaka objekt

som utdata (returvärde)? Även om frågan kan bejakas utan vidare, måste svaret precise-

ras i den bemärkelse att det inte är själva objekten som skickas och fås tillbaka utan sna-

rare deras referenser. Vi känner också till att man i C# hanterar objekten med hjälp av

deras adresser och inte direkt. Det vore slöseri med datorns resurser (minnesutrymme)

om man kommunicerade tunga objekt (TV-apparaten) istället för lätthanterade referen-

ser till objekt (fjärrkontrollen). Så, det är inget nytt utan snarare det normala att använda

referenser som företrädare för objekt – ett slags namn, precis som man använder vanliga

namn för variabler av enkel datatyp.

Följande klass visar ytterligare ett exempel på en metod som har en referens t till ett

String-objekt som parameter, men även en String-referens som returvärde. Dessu-

tom har den också en vanlig int-parameter. Krypteringsmetoden Encrypt() skrivs i

denna klass och anropas från Main() i klassen EncryptStrTest på nästa sida. Den är

väldigt enkel, men kan lätt ersättas av mer sofistikerade krypteringsalgoritmer.

// EncryptStr.cs

// Metoden Encrypt() tar emot en sträng t och krypterar den

// genom att förskjuta alla tecken med n steg i teckentabellen

// Den krypterade strängen skrivs teckenvis till platsen temp

// Sedan returneras den krypterade strängen från metoden

using System;

class EncryptStr

{
 public static String Encrypt(String t, int n)

 {
 char ch;

 String temp = null; // null-referensen

 for (int i=0; i < t.Length; i++)

 { // Läser tecknen från t
 ch = Convert.ToChar(t.Substring(i, 1));

 ch = (char) (ch + n); // Ändrar tecknen

 temp += ch; // Lagrar tecknen i temp

 }
 return temp; // Skriver till Encrypt

 }
}

Med den första parametern t får metoden Encrypt() tillgång till det String-objekt

som skapas i den anropande metoden Main(). Adressen till detta objekt kopieras över

till referensvariabeln t när Encrypt() anropas. Samma sak sker med krypteringsnyc-

keln vars värde kopieras till den andra parametern n. Sedan har vi i kroppen av metoden

två lokala variabler ch och temp. Den första som är av typ char initieras i for-loopen

och lagrar varje tecken från den inkommande okrypterade strängen t, men även det

 141

krypterade tecknet för att slutligen överföra det via konkatenering till strängen temp.

for-satsen går igenom alla tecken i t genom att initiera sin räknare i till 0 och avsluta

loopen när räknaren har nått strängens sista tecken. Att man börjar med 0 beror på att

C# räknar strängens första tecken med index 0, det andra med index 1 osv. så att det

sista tecknet får t.ex. index 25 om strängen innehåller 26 tecken. Length är en

String-egenskap som ger antalet tecken i strängen, här t. Därför har vi i for-loopen

avslutningsvillkoret i < t.Length. I varje varv av den läggs det uttagna tecknet från t

i den lokala char-variabeln ch och görs om till ett nytt tecken med satsen ch = (char)

(ch + n); där tecknet ch:s Unicode adderas med heltalet n (se teckenaritmetik, Progr1,

3.2). Resultatet omvandlas med explicit typkonvertering till char för att sedan tilldelas

ch och överskriva dess gamla värde. Utan explicit typkonvertering skulle vi få kompile-

ringsfel pga C#:s vägran att automatiskt typomvandla nedåt från int till char (Progr1+,

5.7). for-loopens sista sats bygger den krypterade strängen temp som efter for returne-

ras när Encrypt() anropas i följande klass:

// EncryptStrTest.cs

// Krypterar strängen text med en slumpad krypteringsnyckel

// Återställer sedan den krypterade texten med den negativa

// krypteringsnyckeln, båda med samma metod Encrypt()

using System;

class EncryptStrTest

{
 public static void Main()

 {
 String text = "abcdefghijklmnopqrstuvwxyz";

 Random r = new Random();

 int nyckel = r.Next(40, 200); // Krypterings-

 // nyckeln

 Console.WriteLine("\n\tKryptering av text: ");

 Console.Write("\n\tOkrypterad text: " + text);

 text = EncryptStr.Encrypt(text, nyckel); // 1:a anropet

 // krypterar

 Console.Write("\n\n\tKrypterad text: " +

 text + "\n\n\tKrypteringsnyckeln: " + nyckel);

 text = EncryptStr.Encrypt(text, -nyckel); // 2:a anropet

 // återställer

 Console.WriteLine("\n\n\tÅterställd text: " +

 text + "\n");

 }
}

 142

Ett körresultat visar följande utskrift:

 Kryptering av text:

 Okrypterad text: abcdefghijklmnopqrstuvwxyz

 Krypterad text: ¥¦§¨©ª«¬­®¯°±²³´µ¶·¸¹º»¼½¾

 Krypteringsnyckeln: 68

 Återställd text: abcdefghijklmnopqrstuvwxyz

Det engelska alfabet som använts som teststräng har krypterats med slumpnyckeln 68

och återställts med -68. Båda operationer utförs i programmet ovan med anrop av me-

toden Encrypt(), definierad i klassen EncryptStr (sid 140). Det första anropet sker

med den key som anropet r.Next(40, 200) genererar, dvs ett heltalsslumpvärde mel-

lan 40 och 199.

Initieringen av datamedlemmen temp till null är nödvändig därför att den sedan an-

vänds i satsen temp += ch; som pga den sammansatta tilldelningsoperatorn += är

identisk med temp = temp + ch; . Därför måste den vara initierad när den initialt kon-

kateneras med char-variabeln ch som av + automatiskt typkonverteras till String.

Även här är det avgörande att skilja mellan referensen temp och den tomma strängen

som ett String-objekt.

 143

3.5 Abstrakta klasser och metoder

När du får instruktionen ”Rita en geometrisk figur!” kommer du antagligen att ställa frå-

gan ”Vilken geometrisk figur ska jag rita?”. För, utan en närmare specificering är det in-

te klart, om du ska rita en cirkel, en kvadrat, en triangel eller … . Vilken geometrisk fi-

gur du än ritar, kommer den att vara ett exemplar av någon underkategori (cirkel, kvad-

rat, triangel, …) av huvudkategorin geometrisk figur. Detta beror på att geometrisk figur

är en abstrakt kategori som inte kan exemplifieras direkt utan endast via sina underkate-

gorier. Endast cirkel, kvadrat, triangel, … kan exemplifieras. Ytterligare exempel på en

abstrakt kategori är levande väsen, fordon, biljett eller transportmedel.

Världen är full med abstrakta kategorier. Man programmerar dem som abstrakta klasser.

Det vi sa ovan innebär i programmeringstermer att man inte kan skapa objekt av ab-

strakta klasser. Endast deras subklasser kan instansieras. Ändå är abstrakta klasser av

intresse, därför att de tillåter att förverkliga några av den objektorienterade programme-

ringens viktigaste mål, nämligen att återanvända kod, att modularisera och strukturera

program. Abstrakta klasser förenar alla egenskaper och metoder som är gemensamma

för alla objekt av denna typ – och med objekt menar vi objekt av de subklasser som är-

ver den abstrakta superklassen. T.ex. har alla geometriska figurer de gemensamma me-

toderna att rita, att beräkna arean och att beräkna omkretsen. Men även dessa metoder

kommer att vara abstrakta, eftersom man inte kan utföra dem förrän någon subklass har

specificerats. Abstrakta klasser ger alltså automatiskt upphov till abstrakta metoder, var-

för vi behandlar dem tillsammans i följande enkelt exempel:

// Super.cs

// Abstrakt superklass som deklarerar en abstrakt metod

// Endast metodens huvud (signatur) skrivs i klassen

// Överskuggning sker med abstrakt metod i superklassen OCH

// override i subklasserna

abstract class Super

{
 public int number; // Datamedlem: Initieras autom. till 0

 public abstract void Method(); // Abstrakt metodhuvud

}

Det är det reserverade ordet abstract i klasshuvudet som gör att man t.ex. i Main()

eller i någon annan metod inte kan skriva Super a = new Super(); Dvs försöket att

skapa ett objekt av klassen Super som är deklarerad som abstract kommer att leda

till kompileringsfel. Klassen Super har en datamedlem som deklareras, men inte expli-

cit initieras. Till skillnad från lokala variabler i metoder som måste initieras explicit, blir

datamedlemmar automatiskt initierade till 0 (om de är number). Sedan har klassen Su-

per en klass som vi själva valt att deklarera som abstract. Abstrakta metoder är såda-

na som inte har sin kropp i samma klass som huvudet. Huvudet (signaturen) skrivs här

och avslutas med semikolon. Kroppen kommer att definieras i subklasser till klassen

Super. En mycket strikt regel för abstrakta metoder är att de måste implementeras (få

en kropp) i alla subklasser som ärver superklassen. Självklart kan en abstrakt klass även

 144

innehålla icke-abstrakta metoder (vilket inte förekommer i exemplet ovan). Men ab-

strakta metoder kan endast skrivas i abstrakta klasser. En annan regel för abstrakta me-

toder är att de inte får deklareras som privata.

Implementation av abstrakt metod

För att testa och bättre förstå de ovannämnda reglerna skapar vi följande subklass som

ärver klassen Super och implementerar den abstrakta metoden Method() i den:

// Sub1.cs

// Subklass till klassen Super som implementerar den abstrakta

// metoden Method(): number ökar med 1

// Method() överskuggar (override) klassen Super:s metod Method()

using System;

class Sub1 : Super // Sub1 ärver Super

{
 public override void Method() // override ersätter abstract

 {
 Console.WriteLine("\n\tSub1:s Method(): " +

 "Initialvärde = " + number);

 number++; // number ökar med 1

 Console.WriteLine("\tSub1:s Method(): " +

 "Uppdaterat värde = " + number);

 }
}

Implementeringen består av en ökning av datamedlemmen number:s värde med 1, inra-

mad av två utskriftssatser som skriver ut värdet, en gång före och sedan efter ökningen.

I huvudet av metoden Method() ersätts abstract (i klassen Super) av det reservera-

de ordet override, vilket innebär att subklassens Method() ska överskugga dvs åsido-

sätta superklassens Method() och utföra den kod som vi skriver i denna kropp. På lik-

nande sätt skapar vi en andra subklass till klassen Super och implementerar den ab-

strakta metoden Method() i den på ett lite annorlunda sätt:

// Sub2.cs

// En andra subklass till klassen Super som implementerar den

// abstrakta metoden Method(): number minskar med 1

using System;

class Sub2 : Super // Sub2 ärver Super

{
 public override void Method() // override ersätter abstract

 {
 Console.WriteLine("\n\tSub2:s Method(): " +

 "Initialvärde = " + number);

 number--; // number minskar med 1

 Console.WriteLine("\tSub2:s Method(): " +

 "Uppdaterat värde = " + number + "\n\n");

 }
}

 145

Även här överskuggar Method() klassen Super:s metod Method(). Den enda skillna-

den till den första subklassen är att datamedlemmen number:s värde nu minskar med 1.

Test av abstrakt metod

Vi ska nu testa om den rätta metoden anropas när vi med samma namn Method() en

gång anropar metoden med ett objekt av den ena, en annan gång med ett objekt av den

andra subklassen. Detta gör vi genom att i Main() skapa objekt av den ena och den an-

dra subklassen. Klassen Override ser endast subklasserna Sub1 och Sub2, inte super-

klassen Super:

// Override.cs

// Testar de överskuggade metoderna i subklasserna Sub1 och Sub2

// new Super() kan inte skrivas pga abstract class Super

// Objekten avgör vilken av metoderna Method() som ska anropas

class Override

{
 static void Main()

 {
 Sub1 a = new Sub1();

 a.Method(); // Anrop av Sub1:s Method()

 Sub2 b = new Sub2();

 b.Method(); // Anrop av Sub2:s Method()

 }
}

Så här ser en körning av Override ut:

 Sub1:s Method(): Initialvärde = 0

 Sub1:s Method(): Uppdaterat värde = 1

 Sub2:s Method(): Initialvärde = 0

 Sub2:s Method(): Uppdaterat värde = -1

De två första raderna kommer från anropet av a.Method() dvs från Method() tillhö-

rande objektet a av den första subklassen Sub1. De två sista raderna kommer från anro-

pet av b.Method() dvs från Method() tillhörande objektet b av den andra subklassen

Sub2. Att datamedlemmen number uppdateras till 1 först och till -1 sedan visar att

Sub1:s Method() med number++ i kroppen har anropats först och Sub2:s Method()

med number-- i kroppen sedan. Så båda metoder i de två subklasserna har verkligen

överskuggat den abstrakta metoden med samma namn Method() i superklassen.

 146

3.6 Virtuella metoder

Reglerna kring abstract är ganska strikta, speciellt regeln att man måste implemente-

ra superklassens abstrakt metoder i alla subklasser. I vissa applikationer vill man inte

göra det. Man vill kanske implementera superklassens metoder i några, men inte i alla

subklasser. Då kan man inte använda abstrakta metoder. Eller kanske vill man ha en del

av metodkroppen i superklassen och en annan del i en subklass. För att kunna använda

objektorientering grad- eller delvis, finns det i C# en lite svagare variant av abstract

som kallas virtual. Med virtuella metoder kan man överskugga superklassens metod,

man måste inte göra det. Som vi vet innebär polymorfism att man även kan delvis modi-

fiera superklassens metod. Här är definitionen från Progr1, Appendix A:

Vi ska nu ge ett exempel på en virtuell metod. Eftersom den inte är abstrakt, utan ”bara”

virtuell, behöver den inte heller definieras i en abstrakt klass. Därför skriver vi den i föl-

jande icke-abstrakt klass:

// SuperV.cs

// Icke-abstrakt superklass som definierar en virtuell metod som

// sedan ska överskuggas i en subklass

// Överskuggning sker med virtuell metod här i superklassen OCH

// med override i subklasserna

using System;

class Super

{
 public int number; // Datamedlem: Initieras

 // automatiskt till 0

 public virtual void Method() // Virtuell metod med kropp

 {
 Console.WriteLine("\n\tSuper:s Method(): Initialvärde = " +

 number);

 number++;

 Console.WriteLine("\tSuper:s Method(): Uppdaterat värde = "

 + number);

 }
}

Metoden Method() är vituell och behöver – till skillnad från en abstrakt metod – inte

vara i en abstrakt klass. Därför är klassen Super inte abstrakt. En annan skillnad är att

Method():s kropp definieras i klassen Super och inte utanför. Men precis som abstrak-

ta metoder får även Method() inte vara privat. Så långt till skillnaderna och de gemen-

samma egenskaperna hos abstrakta och virtuella metoder. Förresten, någon virtuell

klass finns inte. Det finns bara virtuella metoder.

Polymorfism modifierar helt eller delvis funktionaliteten hos metoder

med samma namn som förekommer i en arvhierarki.

 147

Överskuggning av virtuell metod

Nu ska klassen Super få en subklass där vi definierar om den virtuella metoden Me-

thod():

// Sub.cs

// Subklassen Sub ärver Super och modifierar dess metod Method()

// Överskuggning sker med virtual i superklassen OCH

// med override här i subklassen

// Testa gärna: Ta bort virtual från Super:s Method() och

// override från Sub:s Method()

using System;

class Sub : Super // Sub ärver Super

{
 public override void Method() // override nödvändigt för

 { // överskuggning
 Console.WriteLine("\n\tSub:s Method(): Initialvärde = " +

 number);

 number--;

 Console.WriteLine("\tSub:s Method(): Uppdaterat värde = " +

 number + "\n");

 }
}

Metoden Method() får i subklassen Sub en ny kropp som skiljer sig från superklas-

sens Method() i och med att datamedlemmen number inte uppdateras till 1 utan till -

1. För att Sub-klassens Method() ska kunna överskugga Super-klassens Method(),

när den anropas, måste vi förse metodhuvudet med det reserverade ordet override.

Test av virtuell metod

Nu ska vi testa om överskuggning verkligen sker, dvs om vi med samma namnet Me-

thod() anropar två olika metoder, en gång Method() med ett Super-objekt, en annan

gång med ett Sub-objekt:

// TestVirtual.cs

// Testar överskuggning av den virtuella metoden Method()

using System;

class TestVirtual

{
 static void Main()

 {
 Super a = new Super();

 a.Method(); // Anrop av Super:s Method()

 Sub b = new Sub();

 b.Method(); // Anrop av Sub:s Method()

 a = new Sub(); // a pekas om till ett Sub-objekt

 148

 a.Method(); // Anrop av Sub:s Method()

 } // Men: Anrop av Super:s Method()

} // om Method() är icke-virtuell

Följande körning av TestVirtual visar att anropet a.Method() uppdaterar datamed-

lemmen number:s värde till 1 och att anropet b.Method() ändrar värdet till -1:

 Super:s Method(): Initialvärde = 0

 Super:s Method(): Uppdaterat värde = 1

 Sub:s Method(): Initialvärde = 0

 Sub:s Method(): Uppdaterat värde = -1

 Sub:s Method(): Initialvärde = 0

 Sub:s Method(): Uppdaterat värde = -1

Detta visar att det första anropet a.Method() anropar Super-klassens Method(), ef-

tersom a är en referens till ett Super-objekt, medan det andra anropet b.Method()

anropar Sub-klassens Method(), eftersom b är en referens till ett Sub-objekt. Det andra

anropet är ett exempel på överskuggning. Därför är resultaten olika.

I det tredje och sista anropet a.Method() har a genom ompekningen a = new Sub()

strax innan blivit en referens till ett Sub-objekt. Även här sker som väntat en överskugg-

ning dvs a.Method() anropar Sub-klassens Method(), eftersom a pekar på ett Sub-

objekt.

Men skulle man ta bort virtual från Super:s Method() i filen SuperV.cs (sid 146)

och override från Sub:s Method() i filen Sub.cs (sid 147) blir det tredje anropets

körresultat annorlunda:

 Super:s Method(): Initialvärde = 0

 Super:s Method(): Uppdaterat värde = 1

 Sub:s Method(): Initialvärde = 0

 Sub:s Method(): Uppdaterat värde = -1

 Super:s Method(): Initialvärde = 0

 Super:s Method(): Uppdaterat värde = 1

I det tredje anropet a.Method() blir Super:s Method() anropad, fast a pekar på Sub.

Det uppdaterade värdet 1 visar att det inte sker någon överskuggning. Detta beror på att

vi inte explicit skriver virtual i Super:s Method() och inte heller override i Sub:s

Method(). Och referensen a pekar pga sin Super-typ på ett Super-objekt och inte på

ett Sub-objekt. Testa detta gärna själv.

 149

Övningar till kapitel 3

3.1 Följande program är inte modulariserat:

// Non_modularized_1.cs

// Läser in två heltal, gör beräkningar med dem och skriver ut

// resultaten med förklarande text.

// Om du t.ex. matar in 3 till det första och 4 till det

// andra heltalet, ska programmet skriva ut: 3 gånger 4 är 12 osv.

// Innehåller ytterligare räkneoperationer

// Kan så småningom vidareutvecklas till en liten kalkylator

using System;

class Non_modularized_1

{
 static void Main()

 {
 Console.Write("\n\tMata in ett heltal:\t\t"); // Ledtext

 int no1 = Convert.ToInt32(Console.ReadLine()); // Input

 Console.Write("\n\tMata in ett heltal till:\t");

 int no2 = Convert.ToInt32(Console.ReadLine());

 Console.WriteLine("\n\n\t" +

 no1 + " plus " + no2 + " är " + (no1 + no2) + "\n\t" +

 no1 + " minus " + no2 + " är " + (no1 - no2) + "\n\t" +

 no1 + " gånger " + no2 + " är " + (no1 * no2) + "\n\t" +

 no1 + " heltalsdividerad med " +

 no2 + " är " + (no1 / no2) + "\n\t" +

 no1 + " modulo " + no2 + " är " + (no1 % no2) + "\n\t");

 }
}

Modularisera programmet Non_modularized_1 för att vidareutveckla det till en

liten kalkylator (fast i konsolen): Separera beräkningarna, t.ex. multiplikationen

från kodens andra delar dvs från input och output.

a) Flytta multiplikationen till en metod med returvärde med huvudet static

int Mult(int a, int b) i samma klass som Main(). Anropa metoden

Mult() från Main(). Bibehåll alla andra beräkningar. Se upp med att inte

placera den nya metoden i Main(), utan före eller efter.

b) Fortsätt med att flytta metoden Mult() till en annan klass i samma fil. Anro-

pet ska fortfarande göras från Main(). Även här: Se upp med att inte placera

den nya klassen i den gamla, utan före eller efter.

c) Flytta den nya klassen samt metoden Mult() till en separat fil.

d) Gör samma sak med alla andra beräkningssätt. Lagra var och en klass med

resp. metod i en separat fil. Anropa alla metoder från Main().

 150

3.2 Modularisera programmet Non_modularized_2 genom att skriva dess bearbet-

ningsdel som en ny metod i samma klass. Bibehåll in- och utmatnigsdelen i

Main() och anropa den nya metoden från Main(). Avgör själv om den nya me-

toden ska returnera ett värde och om den ska vara statisk. Ge metoden ett beskri-

vande namn.

// Non_modularized_2.cs

// Läser in tiden i antal år, månader och veckor, omvandlar den

// till antal dagar och skriver ut resultatet.

// Använder ett aritmetiskt uttryck för beräkning av antal dagar.

// Inmatning - bearbetning – utmatning. Nästlat anrop av metoder.

using System;

class Non_modularized_2

{
 static void Main()

 {
 int years, months, weeks, days, totalDays;

 /* I n m a t n i n g */

 Console.Write("\n\tAnge antal år:\t\t"); // Ledtext

 years = Convert.ToInt32(Console.ReadLine()); // Nästlat anrop

 Console.Write("\n\tAnge antal månader:\t");

 months = Convert.ToInt32(Console.ReadLine());

 Console.Write("\n\tAnge antal veckor:\t");

 weeks = Convert.ToInt32(Console.ReadLine());

 Console.Write("\n\tAnge antal dagar:\t");

 days = Convert.ToInt32(Console.ReadLine());

 /* B e a r b e t n i n g */ // Aritm. uttryck

 totalDays = 365*years + 30*months + 7*weeks + days;

 /* U t m a t n i n g */

 Console.WriteLine("\n " +

 years + " år, " + months + " månader, " +

 weeks + " veckor och " + days + " dagar är " +

 totalDays + " dagar totalt.\n");

 }
}

3.3 a) Vänd om problemet från övn 3.2. Dvs Omvandla en tid som är angiven i dagar

till år, månader, veckor samt resterande dagar. Skriv ett icke-modulariserat pro-

gram Non_modularized_3, som frågar efter en tid i antal dagar, läser in den, och

sedan beräknar samt skriver ut resultatet i antal år, månader, veckor samt reste-

rande dagar.

b) Modularisera programmet Non_modularized_3 (lösningen från a) genom att

flytta bearbetnings-och utmatnigsdelen till en void-metod. Dvs skriv ett program

som läser in tiden i ett antal dagar, anropar void-metoden som omvandlar tiden

till antal år, månader, veckor och restdagar och skriver ut resultaten. Använd för

 151

omvandlingen den algoritm som är implementerad i programmet Non_modula-

rized_3. Varför är det inte lämpligt här att använda en metod med returvärde?

3.4 Skriv först ett program med endast Main()-metoden som läser in side till en

kub samt beräknar och skriver ut kubens volymside 3 och dess yta 6 x side 2 .
Flytta sedan dessa beräkningar till två metoder, en för volymen, en för ytan, båda

i en separat klass Cube. Deklarera side som en datamedlem i klassen Cube. Av-

gör om metoderna Volume() och Surface() ska returnera eller vara av void-

typ. Anropa dem från Main(). Skriv först en variant med statiska metoder, byt

sedan till icke-statiska metoder. Testa båda varianter. Avgör slutligen själv vilken

variant som ska föredras om lösningen ska vara objektorienterad.

3.5 Modularisera programmet Non_modularized_3 efter eget godtycke.

 152

 153

Kapitel 4

Mer om metoder

 Ämne Sida Program

4.1 Algoritm för platsbyte 156 MiniSort

4.2 Värde- och referensanrop 156 CallByVal/ByRef

4.3 In- och utparametrar 161 Outparam

4.4 Variablers livslängd 164 Block

4.5 Överskuggning av variabler 167 OverrideVar

­ Referensen this 168

4.6 Överlagring av metoder 172 Overload

4.7 Rekursiva metoder 175 Fibonacci

4.8 Lambdauttryck 178 Lambda

4.9 Delegater 180 Delegate

­ Delegat som parameter i metoder 181 DelegateParam

­ Varianter av Console.WriteLine() 183 WriteLineOverl

­ Lösningen med LINQ 184 CountLINQ

­ Metodgrupper 185 MethodGroup

 Övningar till kapitel 4 och projektuppgifter 187

 154

4.1 Algoritm för platsbyte

Hur kan man byta plats på två objekt när de står i ”fel” ordning? Detta är kärnfrågan i

alla försök att sortera data. Och sortering är en av de mest efterfrågade uppgifterna i

programmering som är dessutom besläktad med sökning. Vi vill här lägga grunden till

en sök- och sorteringsalgoritm som vi kan använda på alla möjliga objekt. Men vi börjar

med teckentabellen för att lära känna principen och begränsar oss till två tecken – till att

börja med. I följande program formulerar vi algoritmen för platsbyte av två tecken först

utan metoder och kommer i nästa avsnitt att modularisera koden, för att ha algoritmen

som en metod som kan anropas av andra program.

Algoritmen

Låt oss anta vi har två tecken char1 och char2 som vi vill byta pltas på. För att kunna

göra det behövs en tredje, temporär plats. Vi börjar med att lägga undan char1 på den

temporära platsen temp (steg 1). Sedan byter vi plats på char2 och lägger det i char1

som tömdes i steg 1 (steg 2). Och slutligen, i steg 3, lägger vi char1 som under tiden

mellanlagrats i temp, in i char2 som tömdes i steg 2:

 1

 2 3

 char1 char2 temp

Illustrationen ovan är en grafisk beskrivning av algoritmen där 1, 2 och 3 anger ordnin-

gen i den. Den tredje platsen temp, behövs, för att temporärt lägga undan det felplace-

rade tecknet. I följande program inplementerar vi algoritmen ovan.

Programmet

// MiniSort.cs

// Läser in 2 tecken och sorterar dem i teckentabellens ord-

// ning med hjälp av en algoritm för platsbyte av två objekt

using System;

class MiniSort

{
 static void Main()

 {
 char char1, char2, temp;

 Console.Write("\n\tTvå osorterade tecken:\n\n\t" +

 "Mata in två tecken skilda med mellanslag:\t");

 string str = Console.ReadLine();

 155

 char1 = text[0]; // Första tecknet tas ut

 char2 = text[2]; // Andra tecknet tas ut

 if (char1 > char2) // tecknen tolkas som tal

 {
 temp = char1; // Algoritm för platsbyte

 char1 = char2; // av två tecken char1, char2

 char2 = temp;

 }

 Console.WriteLine("\n\tDe två tecknen sorterade:\t\t\t" +

 char1 + ' ' + char2 + "\n\n");

 }
}

Själva sorteringsalgoritmen finns i if-satsen av programmet MiniSort. Om de två

tecknen blir inmatade i rätt ordning, ska de inte byta plats utan skrivas ut i oförändrad

ordning. Därför tas upp i if-satsens villkor endast fallet char1 > char2 dvs när

tecknen är inmatade i fel ordning. Följande körexempel sorterar de inmatade tecknen Z

och A i rätt dvs i Unicode-tabellens ordning:

 Två osorterade tecken:

 Mata in två tecken skilda med mellanslag: Z A

 De två tecknen sorterade: A Z

Algoritmens kärna ligger i if-satsen med sina tre satser. I den första satsen lägger vi

undan char1:s värde i temp (steg 1 i bilden ovan). I den andra satsen byter vi plats på

char2:s värde och lägger det i char1 (steg 2). Och slutligen läggs temp som under ti-

den har mellanlagrat char1:s värde, in i char2 (steg 3). Platsbytet på char1 och

char2 äger endast rum om de inmatade teckenvärdena är felplacerade dvs endast om

char1 > char2. Annars behåller de sina platser.

I körexemplet ovan jämför if-satsens villkor char1 > char2 värdena Z och A med

varandra. Men tecken kan inte sättas i en relation av typ ”större än” till varandra. I

själva verket är det Unicode-koderna till Z och A som jämförs med varandra. Det är en-

dast tal som kan jämföras med varandra. Jämförelseoperatorn > behandlar char-

variablerna char1 och char2 som tal precis som aritmetiska operatorer gör.

 156

4.2 Värde- och referensanrop

I det här avsnittet ska vi lära oss på vilket sätt parametrar överförs mellan metoder. Det

finns nämligen i C# olika typer för parameteröverföring, en av dem är värdeanrop (Call

by Value) som demonstreras i följande program där Main() anropar en metod där man

kan studera parametereröverföringen.

// CallByVal.cs

// Demonstrerar Värdeanrop: Vid metodanrop överförs VÄRDENA

// De formella parametrarna (kopior) ändras i metoden

// Men ändringen påverkar inte aktuella parametrarna (originalen)

using System;

class CallByVal

{
 static void Main()

 {
 int hour = 5, min = 35, sec = 49;

 Console.WriteLine("\nI Main() FÖRE anrop av metod:\ttim=" +

 hour + ", min=" + min + ", sec=" + sec);

 int total = totalsek(hour, min, sec); // Anrop av metoden: De

 // aktuella parametrar-

 // nas VÄRDEN skickas

 Console.WriteLine("\nI Main() EFTER anrop av metod:\ttim=" +

 hour + ", min=" + min + ", sec=" + sec + "\n\t\t\t\tger " +

 total + " sekunder totalt.\nVÄRDEANROP:\n\nÄndringen av" +

 " de formella parametrarna (kopior)\npåverkar inte de " +

 "aktuella parametrarna (originalen).\n") ;

 }
/***/

 static int totalsek(int t, int m, int s)

 {
 Console.WriteLine("\n\tI metoden FÖRE ändringen:\n\tt=" +

 t + ", m=" + m + ", s=" + s);

 int resultat = 3600 * t + 60 * m + s;

 t = m = s = 0; // Ändring av formella

 // parametrar

 Console.WriteLine("\n\tI metoden EFTER ändringen:\n\tt=" +

 t + ", m=" + m + ", s=" + s);

 return resultat;

 }
/***/

}

Varför har vi valt andra namn för de aktuella hour, min, sec än för de formella para-

metrarna t, m, s fast de lagrar samma värden? Båda representerar timmar, minuter och

sekunder. Frågan är: Lagras dessa värden i 3 eller 6 minnesceller? Om det är 3 vore va-

let av samma namn motiverat, därför att de lagrar samma värden. Men om det är 6 vore

 157

det bättre att återspegla verkligheten även i koden genom att välja olika namn för de

aktuella än för de formella parametrarna.

Parametrar som skrivs i en metods anrop – i vårt exempel hour, min, sec – kallade vi

för aktuella parametrar

, en beteckning som ska framhäva deras skillnad till de for-

mella parametrar som skrivs i metodens definition. Med aktuell menas att de har ak-

tuella värden som gäller vid anropet för att skickas till metodens formella parametrar.

Därför måste de vara väl definierade variabler eller konstanter. I exemplet ovan läses in

de i Main(). De formella parametrarna – i vårt exempel t, m, s – måste alltid vara va-

riabler som definieras i metoden totalsek():s parameterlista när denna skapas. Sina

värden får de första gången inte tilldelade i metodens kropp utan från de aktuella pa-

rametrarna vid metodens anrop. Sedan ändras deras värden i metoden: De sätts allihop

till 0 för att testa vilken påverkan denna ändring har på de formella parametrarna. Men

för att ändå kunna få resultatet med de ursprungliga värdena beräknas antalet totalse-

kunder och sparas undan i variabeln resultat som slutligen returneras från metoden.

Innan dess skrivs ut värden som ändrats till 0.

I Main() skriver vi ut de aktuella parametrarnas värden före och efter anropet av meto-

den för att se om de formella parametrarnas ändring i metoden påverkar de aktuella

parametrarna. Följande körexempel visar att detta inte är fallet:

I Main() FÖRE anrop av metod: hour=5, min=35, sec=49

 I metoden FÖRE ändringen:

 t=5, m=35, s=49

 I metoden EFTER ändringen:

 t=0, m=0, s=0

I Main() EFTER anrop av metod: hour=5, min=35, sec=49

 ger 20149 sekunder totalt.

VÄRDEANROP:

Ändringen av de formella parametrarna (kopior)

påverkar inte de aktuella parametrarna (originalen).

Körexemplet visar att de formella och aktuella parametrarna har var sitt eget liv. Det

enda som relaterar dem till varandra är att de tar över värdena från varandra. Ändringen

av de formella parametrarna påverkar inte alls de aktuella parametrarna. Av detta kan

man dra slutsatsen att hour, min, sec och t, m, s är två olika uppsättnigar variabler.

De lagras i 6 olika minnesceller. Även om vi skulle välja samma namn för dem – vilket

vore tillåtet då de ligger i två olika metoder och därmed i två olika block – kommer

 Andra beteckningar som förekommer i litteraturen är anropsparametrar eller argument. Spe-

ciellt argument används ofta då det är en inkörd matematisk term: T.ex. är 3 ett anrop av funk-

tionen x där x – i matematiska termer – är ”variabeln” och 3 ”argumentet”. I programmerings-

termer skulle x kallas för den formella och 3 den aktuella parametern.

 158

namnen fortfarande beteckna 6 olika minnesceller. Även om beteckning är av sekundär

betydelse vill vi i fortsättningen välja andra namn för de aktuella än för de formella pa-

rametrarna för att återspegla denna verklighet. Kodens läsare ska inte luras som om de

vore samma variabler pga namnvalet.

En annan slutsats av körningen ovan är: Parameteröverföringen mellan metoderna

totalsek() och Main() realiseras genom kopiering av värdena från de aktuella till

de formella parametrarna. Denna parameteröverföringsmetod kallas värdeanrop därför

att det är själva värden som kopieras över när metoden aropas. Minnesbilden av vär-

deanrop ser ut så här:

Värdeanrop:

 hour t

 min m

 sec s

Ändring av kopiorna, de formella parametrarna t, m, s, påverkar inte

originalen, de aktuella parametrarna hour, min, sec.

Vid denna parameteröverföringsmetod skapas alltid en dubbel uppsättning av minnes-

celler: 6 om vi har 3 parametrar. Därför leder värdeanrop oundvikligen till fördubblad

minnesåtgång. Datatypen till respektive parameter är avgörande för den automatiska til-

lämpningen av värdeanrop. Det gäller följande regel:

Fördubblingen av minnesåtgången anses inte som ett stort problem eftersom enkla data-

typer i alla fall tar upp relativt litet minnesutrymme. För datatyper som kräver större

minnesutrymme används en annan teknik som undviker denna fördubbling och som he-

ter referensanrop.

Ur minnessynpunkt är förstås fördubblingen av minnesåtgången en nackdel. Men värde-

anrop har även fördelen att just pga minnesbilden ovan de formella och de aktuella pa-

rametrarna har var sitt liv och inte påverkar varandra. I vissa sammenhang är detta önsk-

värt, i andra inte. Så, beroende på applikationen kan man välja bland de två parameter-

överföringsmetoderna värde- och referensanrop genom att välja rätt datatyp till sina pa-

rametrar. Enkel datatyp leder automatiskt till värdeanrop. Vilken datatyp som automa-

tiskt leder till referensanrop ska vi ta upp på de följande sidorna.

35 0

49 0

5 0 5

Kopiering

I C# väljs automatiskt värdeanrop (Call by Value) för parameter-

överföring vid metodanrop, om parametern är av enkel datatyp.

35

49

 159

Referensanrop (Call by reference)

Värdeanrop använder sig av kopiering av parametervärdena till nya minnesceller och

tillämpas när parametrarna är enkla datatyper. Nackdelen med värdeanrop är att den

medför fördubbling av minnesåtgången. Alternativet till det är referensanrop som över-

för minnesadressen istället för värdet och där man slipper denna nackdel. Referensanrop

är relaterad till datatypen referens som behandlades tidigare varifrån också namnet här-

stammar. Anledningen är att parametrarnas datatyp automatiskt styr valet av överfö-

ringsmetoden. Det gäller nämligen:

Samtidigt kommer vi att se att det för vissa problem t.o.m. är nödvändigt att använda re-

ferensanrop då det inte går att modularisersa dem med värdeanrop. Man vill t.ex. skicka

vissa parametrar till en metod där de ändras och man vill få tillbaka ändringen till

huvudprogrammet. Ta följande exempel: Vi vill skicka två parametrar till en metod som

ska sortera dem. Skickar vi dem i fel ordning ska metoden ställa dem i rätt ordning och

skicka tillbaka dem i den rätta ordningen – grunden till alla sorteringsalgoritmer. Ett

exempel på ett sådant problem som vi ska ta upp här, är modulariseringen av program

MiniSort (sid 154) som presenterade en algoritm för platsbyte mellan två tecken. Vi ska

nu separera själva algoritmen och skriva den som en metod med tanke på att den

kommer att utvecklas till en allmän sorteringsalgoritm för större datamängder senare.

Det programmeringstekniska verktyget för att få parametrar av typen referens är det

reserverade ordet ref som sätts framför parameterdeklarationerna och fungerar som en

slags adressoperator: ref char t1 blir adressen till char-parametern t1:

// Swapping.cs

// Klass med metoden Swap() som tar in 2 tecken och byter plats

// på dem om de kommer in i fel ordning enligt Unicode-tabellen

// De ombytta parametrarna i Swap() blir även ombytta i den

// anropande metoden pga parametrarna är deklarerade som

// referenser med det reserverade ordet ref: Referensanrop

class Swapping

{
 public static void Swap(ref char t1, ref char t2)

 {
 char temp;

 if (t1 > t2)

 {
 temp = t1; // Algoritm för platsbyte

 t1 = t2; // av de två teckenvärdena

 t2 = temp; // t1 och t2

 }
 }
}

I C# väljs automatiskt referensanrop (Call by reference) för parameter-

överföring vid metodanrop, om parametern är av datatypen referens.

 160

Bearbetningsdelen av MiniSort (sid 154) har flyttats till en void-metod. Parametrarna

t1 och t2 är definierade som referenser. De tar inte emot några teckenvärden från

char1 och char2 (se nedan) utan endast deras adresser. t1 och ref char1 är två olika

referenser till samma värde char1. Samma sak är det med t2 och ref char2. När

värdena ändras i metoden med hjälp av referenserna t1 och t2 kan ändringen ses i

Main() med char1 och char2:

// CallByRef.cs

// Läser in 2 tecken, skickar dem till metoden Swap() i klassen

// Swapping som sorterar dem i teckentabellens ordning

// Ändringen är synlig i Main() pga referensanrop som påtvingas

// med ref så att adresserna skickas vid anrop, inte värdena

using System;

class CallByRef

{
 static void Main()

 {
 char char1, char2;

 Console.Write("\n\tTvå osorterade tecken:\n\n\t" +

 "Mata in två tecken skilda med mellanslag:\t");

 string str = Console.ReadLine();

 char1 = str[0]; // Första tecknet tas ut

 char2 = str[2]; // Andra tecknet tas ut

 Swapping.Swap(ref char1, ref char2); // Metodanrop

 Console.WriteLine("\n\tDe två tecknen sorterade:\t\t\t" +

 char1 + ' ' + char2 + '\n');

 }
}

Metoden Swap() ställer i rätt ordning tecken som är inmatade i fel ordning vilket en

körning av ovanstående program visar:

 Två osorterade tecken:

 Mata in två tecken skilda med mellanslag: Z A

 De två tecknen sorterade: A Z

Gör gärna följande test: Ta bort ref från definitionen av båda parametrarna i parameter-

listan av metoden Swap(), så att t1 och t2 blir vanliga char-variabler. Ta även bort

ref från de aktuella parametrarna i anropet av metoden Swap() i Main() så att

värdena skickas och inte adresserna. Du kommer inte få tecknen sorterade i rätt ordning

om du matar in dem i fel ordning. Anledningen är att genom borttagningen av ref blir

t1 och t2 variabler av enkel datatyp så att värdeanrop tillämpas automatiskt. Ändringen

av t1 och t2 i metoden kommer inte att påverka char1 och char2 i Main().

 161

4.3 In- och utparametrar

Nu har vi lärt oss en hel del om metoder, med och utan returvärde, med en, flera eller

inga parametrar, värde- och referensanrop osv. Ändå kan vi inte returnera flera värden

från en metod. Det beror på att alla metoder i C# returnerar endast ett eller inget värde.

Men för att vara mer noggrant, borde vi lägga till med return-satsen. Begreppet

returvärde används i programmeringsterminologin endast för värden som skickas med

return-satsen via metodnamnet. I denna bemärkelse finns det inga metoder med flera

returvärden. Men metodens gränssnitt mot omgivningen dvs mot andra metoder är inte

begränsad till metodnamnet. Även parameterlistan tillhör gränssnittet och kan användas

för kommunikation med andra metoder. Hittills har denna kommunikation varit enkel-

riktad: Våra parametrar importerade data bara in i metoden. Frågan är: Kan man inte

använda dem även för export av data ut ur metoden? I så fall skulle vi kunna få tillbaka

även flera värden från en metod genom att använda flera parametrar. Detta är möjligt

fast man kallar sådana data inte längre för returvärden då de inte skickas med return-

satsen via metodnamnet, utan via parametrarna. De kallas för utparametrar. Hittills har

vi använt bara inparametrar. I detta avsnitt ska vi lära känna utparametrar. Verktyget

som behövs för det är datatypen referens som behandlats tidigare (sid 100). Det enda

som behövs för att känneteckna en parameter som utparameter är nämligen att definiera

den i parameterlistan som referens vilket kan göras med ref eller out.

I följande metod finns det en inparameter som tillför metoden ett värde och fem ut-

parametrar vars värden exporteras ur metoden. De kommer in i metoden oinitierade, ini-

tieras där och används sedan i Main() som anropar metoden. I själva verket är utpara-

metrarna endast referenser till de aktuella parametrarna i Main(). Där är de endast defi-

nierade. I metoden sker initieringen med referenserna.

// Outparam.cs

// Tar in växelbeloppet a och delar upp det i antalet t 10-

// kronor, f 5-kronor, o 1-kronor, h 50-öringar och

// resten r i öre. Endast b är en inparameter pga enkel datatyp

// t, f, o, h och r är utparametrar pga referensdatatypen out int

class Outparam

{
 public static void Change(double a, out int t, out int f,

 out int o, out int h,

 out int r)

 {
 int total = (int) (a * 100); // växel som int

 t = total / 1000; // 10-kronor

 f = (total % 1000) / 500; // 5-kronor

 o = ((total % 1000) % 500) / 100; // 1-kronor

 h = (((total % 1000) % 500) % 100) / 50; // 50-öringar

 r = (((total % 1000) % 500) % 100) % 50; // rest i öre

 }
}

 162

Den reala bakgrunden till metoden är följande problem: I en automat erbjuds vissa va-

ror. Man väljer en vara och stoppar in en viss summa pengar, i regel mer än varan kos-

tar. Sedan ska automaten ge tillbaka växelpengar vilket endast är möjligt med ett antal

myntslag som är föreskrivna i automaten. Låt oss säga det är 10-, 5-, 1-kronor och 50-

öringar (Läs fotnot på sid 122). I så fall måste växelbeloppet omvandlas till detta mynt-

”system”. Just denna beräkning utförs av void-metoden Change() ovan. Men hur ge-

nomförs omvandlingen med de uttryck för t, f, o, h och r som står i metoden? Föl-

jande algoritm som redan nämndes i Automaten, övn 8.8 (sid 123), löser problemet:

Algoritm för omvandling av ett belopp till olika myntslag

Eftersom denna algoritm endast fungerar för heltal måste växelbeloppet b som är en

double först konverteras till int, vilket görs i metoden Change():s första sats explicit

eftersom automatisk typkonvertering inte kan omvandla nedåt i datatypshierarkin.

Växelbeloppet i kronor och ören konverteras till ett rent örebelopp som lagras i int-va-

riabeln total. I fortsättningen står alltså det givna växelbeloppet i variabeln total.

1. För att få antalet 10-kronor divideras total med 1000 då 10-kronor är 1000 ören:

t = total / 1000;

Hur många gånger ryms 1000 – eller 10-kronor – i total? Det antalet tilldelas till t.

Eller med andra ord: 1000 dras av från total så många gånger tills resten blivit mindre

än total. Det antalet som tilldelas till t blir antalet 10-kronor. Divisionen ovan är inte

vanlig division utan heltalsdivision då både total och 1000 är heltal. Dvs total

divideras med 1000, resultatet tas, resten ignoreras, t.ex. 6975/1000 ger 6. Se kör-

exemplet på nästa sida. Resten 975 ignoreras här, men används i fortsättningen.

2. För att få antalet 5-kronor divideras resten som blev kvar från punkt 1 med 500 då

5-kronor är 500 ören:
f = (total % 1000) / 500;

”Resten som blev kvar från punkt 1” är just (total % 1000). Här används en annan

operator som är besläktad med heltalsdivision, nämligen modulooperatorn % (sid 124).

% har ingenting att göra med procenträkning utan ger resten vid heltalsdivision. T.ex.

6975 % 1000 ger 975. Efter att ha dragit av alla 10-kronor från total divideras resten

med 500 för att få reda på hur många 5-kronor som finns i total. T.ex. 975/500 ger

1. Resultatet av denna division ges till f, resten ignoreras och används i fortsättningen.

I ytterligare tre steg skulle man kunna förklara de övriga formlerna för beräkning av e,

h och r. Men nu har mönstret i algoritmen kommit fram: Man tar förra stegets formel,

ersätter / med % och lägger till en heltalsdivision med den nya enhetens örebelopp. I

det allra sista steget däremot, där man är ute efter allra sista resten i öre, måste % använ-

das hela vägen. Självklart är restörebeloppet inte av praktiskt intresse när automaten inte

kan spotta ut det. Läs om heltalsdivision / och modulooperatorn % på sid 124.

För att testa algoritmen ovan anropas metoden Change() av följande program:

 163

// OutparamTest.cs

// Efter inköp av en vara i en automat ska växeln ges tillbaka

// i form av ett antal föreskrivna myntslag:

// 10-kronor, 5-kronor, 1-kronor, 50-öringar (och en rest i öre)

// Main() läser in ett växelbelopp, skickar det till metoden

// Change() i klassen Outparam som omvandlar växeln till mynt

using System;

class OutparamTest

{
 static void Main()

 {
 double amount;

 int ten, five, one, half, rest; // Ingen initiering behövs

 Console.Write("\nAnge ett växelbelopp i kronor, ören: ");

 amount = Convert.ToDouble(Console.ReadLine());

 Outparam.Change(amount, out ten, out five, // Endast ut-

 out one, out half, // parametrar-

 out rest); // nas adresser

 // skickas

 Console.WriteLine("\n" + amount + " kr =\t" +

 ten + " tio-kronor\n\t\t" +

 five + " fem-krona\n\t\t" +

 one + " en-kronor \n\t\t" +

 half + " femtio-öring\n\nDet blir\t" +

 rest + " ören kvar\n");

 }
}

Växelbeloppet läses in. Metoden Change() anropas varvid förutom belopp de aktuella

parametrarna ten, five, one, half och rest:s adresser skickas. Dessa tas emot i

Change() av t, f, o, h och r, dvs referenserna till ten, five, one, half och rest.

När beräkningen görs där med hjälp av referenserna kan man komma åt resultaten i

Main() därför att t är en referens till ten. Samma sak är det med de övriga parametrar-

na.

Ett körexempel visar att vi verkligen får tillbaka till Main() de värden som beräknas i

metoden pga referensanrop som automatiskt tillämpas vid utprametrar av referenstyp.

Ange ett växelbelopp i kronor, ören: 69,75

69,75 kr = 6 tio-kronor

 1 fem-krona

 4 en-kronor

 1 femtio-öring

Det blir 25 ören kvar

Vad man sedan gör med det sista restörebeloppet beror på teknikaliteter i automaten.

 164

Regler för livslängden (scoping) av variabler:

Variablers livslängd börjar med deklarationen och slutar med det

block i vilket de är deklarerade. De är giltiga (synliga) i det block de

är deklarerade och i alla underblock, men inte i överordnade block.

Variabler "söker" efter sin deklaration uppåt i blockstrukturen.

Ett antal satser som omsluts av klamrarna { och } kallas för ett

block. … Klamrarna är gränser mellan programmets olika

block. De sätter gräns för variablers livslängd. För att överskri-

da dem måste vissa regler beaktas, se nedan.

4.4 Variablers livslängd

Alla program i C# går ut på att ett antal objekt kommunicerar med varandra genom att

använda vissa egenskaper, funktionaliteter eller färdigheter de förfogar över – precis

som i det verkliga livet. Programmeringstekniskt sett sker denna kommunikation i och

med att objekt anropar andra objekts metoder. I större program kan detta jämföras med

trafikflödet i en storstad. Ingen storstadstrafik fungerar utan trafikregler. På liknande

sätt finns det i C# strikta regler vad gäller samverkan mellan objekt och deras metoder,

närmare bestämt mellan objektens och metodernas variabler samt mellan variablerna

sinsemellan. Dessa regler tillämpas automatiskt och blir speciellt påtagliga, när en me-

tod anropas nästlad i en annan metod, t.ex. i satsen

Convert.ToInt32(Console.ReadLine());

Detta gjorde vi för att kunna läsa in ett heltal till ett program. Metoden ReadLine() tar

emot en sträng som inmatning varför den måste omvandlas till heltal. Men då handlade

det om ett nästlat anrop av biblioteksmetoder. Nu ska vi kunna göra samma sak med

egendefinierade metoder.

I detta avsnitt ska vi studera C#:s regler för livslängden eller räckvidden av variabler i

olika block. För att kunna göra det ska vi aktualisera vår förståelse om block(struktur). I

detta sammanhang ska vi även belysa skillnaden mellan datamedlemmar och lokala va-

riabler. I nästa avsnitt kommer vi att ta upp ett fall av namnkonflikt mellan variabler

som är en konsekvens av blockstruktur och som kallas för överskuggning av variabler,

inte att förväxla med överskrivning av variabler (Progr1+, 4.5).

Blockstruktur

Vad är ett block i C# ?

Vad händer med en variabel när man överskrider blockgränserna? Hur långt går en

variabels räckvidd (eng. scope)? Man pratar om variablers livslängd. Generellt gäller:

 165

Låt oss testa dessa regler i ett program som i Main() skapar ett inre (undre) block. Själ-

va Main() skulle man kunna beteckna som det yttre (övre) blocket:

// Block.cs

// Variablers räckvidd (scoping) och blockstruktur i C#

using System;

class Block

{
 static void Main()

 {
 int x = 10; // x gäller i hela Main() och

 // i alla dess underblock

 String output = "\tUtskrift utanför det inre blocket:" +

 "\n\n\tx före det inre blocket är " + x;

/***/

 { // Här börjar det inre blocket
 int y = 100; // y gäller endast i inre blocket

 x++; // Men x gäller även här

 Console.WriteLine(

 "Utskrift från det inre blocket:\n\n" +

 "x är " + x + " och y är " + y + "\n\n");

 } // Här slutar det inre blocket
/***/

 // y gäller inte längre f.o.m.här:

 Console.WriteLine(output +

 "\n\tx efter det inre blocket är " + x + "\n\n");

 }
}

I det yttre blocket definieras variabeln x och initieras till 10, i det inre blocket definieras

variabeln y och initieras till 100. I koden markerar den inledande klammern { strax före

y:s definition början och den avslutande klammern } slutet på det inre blocket. För bättre

läslighetens skull skiljs dessutom blocken åt med kommentarrader fyllda med stjärnor.

Utskriften från det inre blocket leds direkt till konsolen medan all utskrift utanför det

inre blocket samlas i String-variabeln output och skrivs ut sist. Resultatet blir:

Utskrift från det inre blocket:

x är 11 och y är 100

 Utskrift utanför det inre blocket:

 x före det inre blocket är 10

 x efter det inre blocket är 11

Som man ser har i programmet Block metoden Main():s lokala variabel x med initial-

värdet 10 ”trängt genom” det inre blocket där dess värde ökats till 11 och har efter det

inre blocket det ökade värdet 11, vilket är ett exempel på regeln: Variabler är giltiga i

 166

I C# finns det inga "globala" variabler.

det block de är deklarerade och i alla underblock. x är i hela Main() en och samma va-

riabel, både i och utanför det inre blocket. Vi kallar x för lokal variabel i Main() för att

skilja den från begreppet datamedlem. Hade x varit deklarerad tre rader innan hade den

varit klassens datamedlem och inte metoden Main():s lokala variabel. Vi hade då ham-

nat i ett överordnat block: Klassen kan uppfattas som överordnat block till alla dess me-

toder. Så det är deklarationens plats i koden som avgör skillnaden mellan datamedlem-

mar och lokala variabler. I andra programmeringsspråk som C++ måste man skilja mel-

lan lokala och globala variabler, men:

De har blivit ersatta av datamedlemmar. Man kan också säga att i strikt objektoriente-

rade språk ersätter klassens datamedlemmar globala variabler. Klassens variabler är da-

tamedlemmar (”globala”), medan metodernas variabler är lokala. Utanför klassen kan

ingen kod skrivas (utom using-direktivet) och därmed kan inte heller någon variabel

deklareras, vilket däremot är möjligt i C++.

Programmet Block har dessutom en variabel y som deklareras och initieras till 100 i ett

block som är nästlat i Main()-blocket och därför kallas för inre eller underblock. Dess

livslängd går endast till slutet av detta underblock. Efter den avslutande klammern }

som terminerar det inre blocket, är y inte längre giltigt. Varje förekomst av y efter klam-

mern kommer att leda till kompileringsfel. Det är ett exempel på regeln: Variabler är in-

te giltiga i överordnade block: Main()-blocket är överordnat det inre blocket där y är

deklarerad. y söker efter sin deklaration uppåt i blockstrukturen och hittar den i det inre

blocket och är därmed det inre blockets lokala variabel. Därför kan vi skicka den till ut-

skrift endast från det inre blocket. När vi gör det får vi dess värde 100 i konsolfönstret.

Variabeln x gör samma sak, söker t.ex. med satsen x++; som utgångspunkt efter sin

deklaration uppåt i blockstrukturen, hittar den däremot inte i det inre blocket, söker där-

för vidare i det överordnade Main()-blocket och hittar den där. Därmed måste x be-

traktas som Main()-blockets lokala variabel. Den är giltig överallt i Main(), även i

dess underblock. Därför kan vi skicka den till utskrift från det inre blocket efter upp-

dateringen av dess ursprungliga värdet 10 med x++; och får värdet 11 i konsolfönstret.

Men till skillnad från y kan vi skriva ut x även efter det inre blocket i Main() och får

samma värde 11. En utskrift av x före det inre blocket – via String-variabeln output

– hade gett värdet 10 pga att den skedde innan uppdateringen x++;

Blockstrukturen i programmet Block är konstruerad för att testa C#:s allmänna regler

för variablers livslängd med ett så enkelt exempel som möjligt. Man inser inte nödvän-

digheten av blockbildningen. Men liknande och mycket mer komplicerade situationer

kan uppstå om man istället för ett inre block har ett anrop av en metod vars kropp i så

fall tar över rollen av det inre blocket när metoden anropas. Program med metoder som

anropar andra metoder ger upphov till blockstruktur. Nästa avsnitt tar upp ett sådant fall.

 167

4.5 Överskuggning av variabler

Här ska vi ta upp ett koncept som löser namnkonflikter vilka kan uppstå när lokala va-

riabler och datamedlemmar har samma namn: överskuggning (eng. overriding) kallas

det och förekommer inte bara hos variabler utan även hos metoder som defnieras i klas-

ser som ärver varandra. Det sista tas upp senare när vi gått igenom arvbegreppet som är

en hörnsten inom objektorienterad programmering. Som en slags förberedelse på det

ska vi här bekanta oss med själva begreppet överskuggning genom att tillämpa det på

variabler. På köpet kommer vi att lära känna C#:s reserverade ord this.

Titta på följande klass med tre datamedlemmar och två metoder där den ena, Main()

anropar den andra, Inner(). Försök sedan med de kunskaper du fått i förra avsnitt om

variablers livslängd, att besvara några frågor:

class OverrideVar

{
 double salary, bonus; // Datamedlemmar gäller i

 String mess; // både Main() och Inner()

 static void Main()

 {
 OverrideVar y = new OverrideVar(); // Objekt skapas

 y.salary = 60000;

 y.bonus = y.salary * 0.20;

 y.mess = " lämplig för bonus";

 y.Inner(); // Anrop av en annan metod

 // bildar inre block

 y.mess = "Den anställde " + y.mess;

 }

 void Inner()

 {
 double salary = 50000; // 2 nya lokala variabler

 double bonus = 0; // överskuggar datamedlem

 mess = "Andersson inte" + mess; // Använder datamedlem

 this.bonus = salary * 0.30; // this pekar på objektet

 // kommer så åt datamedlem

 }
}

Följande frågor kan vara intressanta:

1. Vilka värden har variablerna salary, bonus och mess i position ?

2. Vilka värden har samma variabler i position ?

3. Vilka värden har salary, bonus, this.bonus och mess i position ?

1

2

3

1

2

3

 168

Referensen this

En nyhet i programmet ovan är C#:s reserverade ord this som alltid är en referens till

det objekt i vilket den står. Men var står this här? this står i metoden Inner() som

anropas i Main() med y.Inner(). Därför blir this en referens till det objekt som y

pekar på. Dvs this.bonus är en annan beteckning för y.bonus. Men y finns inte i

Inner() pga reglerna för variablers livslängd. Därför: this.bonus. Detta för att skilja

datamedlemmen bonus från Inner():s lokala variabel bonus. Följande program be-

svarar frågorna ovan genom att skriva ut de efterfrågade värdena i resp. position:

// OverrideVar.cs

// Datamedlemmar överskuggas av lokala variabler med samma namn

using System;

class OverrideVar

{
 double salary, bonus; // Datamedlemmar gäller i

 String mess; // både Main() och Inner()

 static void Main()

 {
 OverrideVar y = new OverrideVar(); // Objekt skapas

 y.salary = 60000;

 y.bonus = y.salary * 0.20;

 y.mess = " lämplig för bonus";

 String output = "\tUtskrift från yttre Main()-blocket:" +

 "\n\n\tPosition 1 FÖRE anrop av Inner()\n"+

 "\tlön = " + y.salary + '\n' +

 "\tbonus = " + y.bonus + '\n' +

 "\tmedd = " + y.mess + "\n\n" ;

 y.Inner(); // Anrop av en annan metod

 // bildar inre block

 y.mess = "Den anställde " + y.mess;

 Console.WriteLine(output + "\tPosition 2 " +

 "EFTER anrop av Inner()\n" + "\tlön = " + y.salary + '\n'+

 "\tbonus = " + y.bonus + "\n\tmedd = " + y.mess + '\n') ;

 }

 void Inner()

 {
 double salary = 50000; // 2 nya lokala variabler

 double bonus = 0; // överskuggar datamedlem

 mess = "Andersson inte" + mess; // Använder datamedlem

 this.bonus = salary * 0.30; // this pekar på objektet

 Console.WriteLine("Utskrift från metoden Inner():" +

 "\n\nPosition 3\nLokal salary = " + salary +

 "\nLokal bonus = " + bonus + "\nbonus = " + this.bonus +

 "\nmedd = " + mess + '\n') ;

 }
}

 169

Precis som programmet Block leder även programmet OverrideVar utskriften från

det inre blocket – här metoden Inner() – direkt till konsolen medan all utskrift utanför

det inre blocket samlas i String-variabeln output och skrivs ut sist. Därför får vi föl-

jande utskrift när vi kör programmet OverrideVar:

Utskrift från metoden Inner():

Position 3

Local salary = 50000

Local bonus = 0

bonus = 15000

mess = Andersson inte lämplig för bonus

 Utskrift från yttre Main()-blocket:

 Position 1 FÖRE anrop av Inner()

 salary = 60000

 bonus = 12000

 mess = lämplig för bonus

 Position 2 EFTER anrop av Inner()

 salary = 60000

 bonus = 15000

 mess = Den anställde Andersson inte lämplig för bonus

För att få klarhet över de här resultaten måste vi kartlägga de olika variablerna och följa

upp deras värden. Vilka variabler är inblandade i klassen OverrideVar? Samma namn

behöver nämligen inte betyda samma variabel när olika block är inblandade och dessu-

tom är nästlade. Man ser variablerna salary, bonus, och mess dyka upp på olika stäl-

len i programmet. Men är de hela vägen de samma eller är det olika variabler med sam-

ma namn? Tillämpar vi våra kunskaper om variablers livslängd från förra avsnitt, kan vi

konstatera följande: Det finns två olika variabler som har namnet salary och två olika

variabler som har namnet bonus, en gång som datamedlemmar, en gång som lokala va-

riabler i metoden Inner(). De refererar till olika minnesceller dvs olika fysiska adres-

ser med samma logiska namn i olika block, vilket är tillåtet. Däremot finns det endast en

variabel mess i hela programmet som är datamedlem och inte förekommer som lokal

variabel. Här följer en detaljerad genomgång av programmet OverrideVar i den ord-

ning som saker och ting händer när programmet körs:

1. I klassen OverrideVar gäller datamedlemmarna salary, bonus, och

mess i princip i klassens alla metoder dvs i Main() och Inner(). Vi

säger ”i princip”, därför att det finns undantag, t.ex. när metoden In-

ner() använder samma namn för sina lokala variabler. Då slår ut de

lokala variablerna datamedlemmarna i metodens kropp och sätter dem

temporärt ur spel. Därför pratar vi om överskuggning, se punkt 2. När

vi i Main() skapar ett objekt av typen OverrideVar, tilldelas objek-

tets datamedlemmar följande värden:

 170

Att överskugga betyder att slå ut temporärt. En lokal variabel i

en metod överskuggar en datamedlem med samma namn.

salary 60000

bonus 12000

mess lämplig för bonus

Detta visas också i utskriften på förra sidan under Position 1 FÖRE

anropet av Inner().

2. Sedan är anropet av metoden Inner() på tur som sker i Main() med

satsen y.Inner(); dvs Inner() anropas i det objekt som y pekar på.

Metoden Inner() har två nya lokala variabler salary och bonus

med samma namn som klassens datamedlemmar. I namnkonflikten

mellan lokala variabler och datamedlemmar gäller följande regel i C#:

Överskuggning (eng. overriding) bör inte förväxlas med överskrivning

(eng. overwriting). Skillnaden är att överskuggning är temporär medan

överskrivning är definitiv och oåterkallelig. Överskriva kan man bara

variabelns värde t.ex. med en ny tilldelning. Då blir det gamla värdet

överskrivet för gott, kan aldrig återskapas och det nya värdet gäller i

fortsättning (Progr1, 2.4). Överskuggning har inget att göra med varia-

belns värde utan med variabelns giltighet. I en metod kastar den lokala

variabeln med samma namn en ”skugga” över datamedlemmen, fast

temporärt dvs i metodens kropp. Bilden av skuggan ska betona feno-

menets temporära karaktär. Före och även efter metodens anrop har da-

tamedlemmen sin fulla giltighet. I metoden Inner() initieras de ”eg-

na” lokala variablerna salary och bonus till:

Men vad gäller variabeln mess som används i Inner() har ingen ny

definition av den skett i metoden. Därför är mess här samma variabel

som gäller i hela klassen, nämligen datamedlemmen mess. Den hade

redan i objektet som skapades i Main(), fått värdet lämplig för bo-

nus, se punkt 1. Men hur vet vi att det är samma objekts datamedlem

som vi har att göra med i metoden Inner()? Där i Main() hade vi

refererat till objektet med y och därmed till datamedlemmen med

y.mess. Men referensen y gäller bara i Main() och är inte tillgänglig i

Inner(). Här i Inner() refereras till datamedlemmen med mess utan

y. Svaret är att vi ”här i Inner()” hela tiden befinner oss i det objekt

som y pekar på eftersom anropet i Main() har ursprungligen skett med

y.Inner(). Därför är mess här en och samma variabel y.mess i

Main() som enligt punkt 1 hade värdet lämplig för bonus. Detta

Local salary 50000

Local bonus 0

 171

värde överskrivs nu i satsen mess = "Andersson inte" + mess; och

uppdateras genom konkatenering till:

mess Andersson inte lämplig för bonus

Efter den här ändringen av mess följer i metoden Inner() satsen

this.bonus = salary * 0.30; som ändrar variabeln bonus’ värde.

Men vilken variabel bonus är det? Frågan besvaras av this som är en

referens till det objekt som y pekar på, därför att satsen i vilken this

står, utförs i anropet y.Inner() (sid 168). this.bonus refererar i

kroppen av metoden Inner() till OverrideVar-objektets datamed-

lem bonus för att skilja den från Inner():s lokala variabel bonus.

Utan this hade det blivit det lokala bonus. this hämtar det över-

ordnade objektets datamedlem in i den lokala metoden och upphäver på

så sätt dess överskuggning, vilket är en teknik som används ofta och

som vi kommer att återkomma till senare. Vid beräkning av det nya

värdet av this.bonus måste nu beaktas att salary (till höger om

tilldelningstecknet) är den lokala variabel vars värde är 50000. Därmed

blir det följande uppdatering av datamedlemmen bonus:

bonus 15000

Alla värden som visades under punkt 2 skrivs ut till konsolen på förför-

ra sidan under Position 3 Utskrift från metoden Inner().

3. Slutligen skrivs ut objektets datamedlemmar efter anropet av metoden

Inner() och efter uppdatereringen mess i Main(). Datamedlemmen

salary har inte ändrats sedan före anropet av Inner(), inte heller i

Inner() och har därmed samma värde som i position 1. Datamed-

lemmen bonus däremot har i Inner() fått ett nytt värde som fortsät-

ter att gälla nu i Main() efter anropet. Även datamedlemmen mess än-

drades i Inner() med hjälp av referensvariabeln this och uppdateras

nu i Main() i satsen y.mess = "Den anställde " + y.mess; innan

alla datamedlemmar skrivs ut, så att följande minnesbild visas på för-

förra sidan som utskrift från Position 2 EFTER anropet av In-

ner():

salary 60000

bonus 15000

mess

Den anställde

Andersson inte

lämplig för bonus

Programmet OverrideVar använder referensvariablerna this och y som lagrar iden-

tiska adresser: this och y är två olika referenser till samma objekt (sid 168).

 172

Överlagring av metoder innebär olika metoder med samma namn.

De bildar en metodgrupp. Signaturen skiljer åt deras varianter.

4.6 Överlagring av metoder

Överlagring av operatorer har vi nämnt tidigare. Då såg vi att t.ex. symbolen + betydde

både additions- och konkateneringsoperatorn. Det var sammanhanget där symbolen an-

vändes, som avgjorde vilken av dessa betydelser som gällde. Även operatorn / är över-

lagrad: En gång som symbol för heltalsdivision, en gång för vanlig division. På samma

sätt kan metoder vara överlagrade, t.ex. metoderna Console.WriteLine() och Mes-

sageBox.Show(). Även Next() och dess varianter som genererar slumptal på olika

sätt är exempel på överlagring av metoder (eng. overloading).

Signaturen

Det som avgör om två metoder är identiska eller olika är metodens signatur, dvs:

 Metodens namn

 Antal parametrar

 Parametrarnas datatyper

Signaturen är alltså en metods igenkänningstecken. T.ex. har metoden public static

String Encrypt(String t, int n) som vi använt tidigare, följande signatur:

Encrypt(String t, int n)

Signaturen ovan består av namnet Encrypt, antalet två (parametrar) och datatyperna

String och int. OBS! Returtypen och modifierarna ingår inte i signaturen. Metoder

med samma signatur anses vara identiska. Metoder som skiljer sig på något av signatur-

elementen anses vara olika. Två eller flera metoder i en och samma klass kan ha samma

namn om deras parameterlistor är olika dvs om metoderna antingen har olika antal

parametrar eller lika antal, men olika datatyper. Då överlagrar de varandra. En klass

däremot med två metoder som har samma signatur kan inte kompileras.

Överlagring är ett koncept inom programmering som används för att koda funktiona-

liteter som är besläktade med varandra men ändå inte exakt identiska. Verkligheten är

full av överlagring. Ta följande exempel: Att bromsa en lastbil görs på ett annat sätt än

att bromsa en båt. Det finns ingen anledning att hitta på ett annat namn för funktio-

naliteten ”att bromsa” hos olika typer av fordon. Tvärtom, det vore t.o.m. förvirrande att

använda olika namn. Vem skulle kunna komma ihåg alla dessa namn? Man vill ju helst

slippa att tänka på de tekniska skillnaderna mellan olika typer av fordon när man pratar

om bromsning. En och samma funktionalitet är realiserad på olika sätt. Med andra ord,

man gör ”samma sak”, fast ändå lite annorlunda. Programmering tar över detta koncept

genom att välja ett och samma namn för olika metoder. C#:s klassbibliotek är fullspäc-

kat med överlagrade metoder. C#-kompilatorn skiljer åt överlagrade metoder genom

den annorlunda parameterlistan och skickar automatiskt rätt anrop till rätt metod.

 173

Följande program innehåller ett exempel på överlagring av C#:s biblioteksmetoder och

två egendefinierade metoder som överlagrar varandra:

// Overload.cs

// Två exempel på överlagring av metoder:

// 1) 2 String-metoder med samma namn för delsträngbildning

// 2) 2 egendef. metoder med samma namn men olika parameterlistor

// En beräknar potensen "bas upphöjd till int-exponent"

// Den andra potensen "bas upphöjd till double-exponent"

using System;

class Overload

{
 static void Main()

 {
 Console.WriteLine(

 "Överlagring av egendefinierad metod:\n\n" +

 "2 upphöjd till 3 = " + Power(2, 3) + '\n' +

 "2 upphöjd till 3.0 = " + Power(2, 3.0) + '\n' +

 "2 upphöjd till 3.5 = " + Power(2, 3.5) + '\n') ;

 String s = "abcdefghijklmnopqrstuvwxyzåäö";

 Console.WriteLine(

 "\tÖverlagring av biblioteksmetod:\n\n" +

 "\tHela stängen: " + s + "\n\tSubstring(10) = " +

 "delsträng från index 10 till strängens slut\n\t\t\t= " +

 s.Substring(10) + "\n\tSubstring(0, 6) = " +

 "delsträng från index 0 av längden 6\n\t\t\t= " +

 s.Substring(0, 6) + '\n') ;

 }

 static int Power(int bas, int exponent) // Potens med en

 { // int-exponent
 int resultat = 1;

 for (int i=1; i <= exponent; i++) // Loopen bygger

 resultat *= bas; // potensen med

 return resultat; // upprepad mul-

 } // tiplikation

 static double Power(double bas, double exponent) // Potens

 { // med en
 return Math.Exp(exponent*Math.Log(bas)); // double-

 } // exponent

}

För att testa överlagring anropar vi båda metoderna Power() från Main(): C#-kompi-

latorn skiljer åt dem via parameterlistan och skickar automatiskt anrop med int-para-

metrar till den första och sådana med double-parametrar till den andra potensmetoden.

Det första anropet Power(2, 3) går automatiskt till den första potensmetoden med en

int som exponent eftersom den andra parametern, heltalskonstanten 3, är en int. De

två sista anropen går automatiskt till den andra potensmetoden med en double som ex-

 174

ponent eftersom decimaltalskonstanterna 3.0 och 3.5 tolkas som double. En körning

av programmet Overload ger:

Överlagring av egendefinierad metod:

2 upphöjd till 3 = 8

2 upphöjd till 3.0 = 8

2 upphöjd till 3.5 = 11,3137084989848

 Överlagring av biblioteksmetod:

 Hela stängen: abcdefghijklmnopqrstuvwxyzåäö

 Substring(10) = delsträng från index 10 till strängens slut

 = klmnopqrstuvwxyzåäö

 Substring(0, 6) = delsträng från index 0 av längden 6

 = abcdef

I programmet Overload har de två metoderna Power() samma namn, men olika da-

tatyper till parametrarna. Den ena metoden har int som datatyp till parametrarna bas

och exponent. Denna metod beräknar ”bas upphöjd till exponent” när exponent är hel-

tal, t.ex. 2 upphöjd till 3, dvs 2.2.2, genom enkel upprepad multiplikation i en for-sats

som gör samma sak som: resultat = bas * bas * bas om vi tillämpar exemplet 2

upphöjd till 3. Den andra beräknar potensen när exponent är decimaltal, t.ex. 2 upphöjd

till 3.5 genom att använda en avancerad matematisk formel då det är meningslöst att

multiplicera 2 med sig själv 3.5 gånger. Man tillämpar två olika metoder för beräkning

av potensen beroende på om exponenten är heltal eller decimaltal. Vilken datatyp basen

har, är däremot irrelevant för val av metod. Självklart täcker den matematiska formeln

även beräkningen av ”bas upphöjd till heltal”. Men varför göra det komplicerat när det

går enklare? Den matematiska formeln använder biblioteksklassen Math som definierar

metoderna Exp() och Log(). Dessutom kan man minska risken för avrundningsfel när

man använder en enklare beräkningsmetod för den enklare uppgiften. Därför är det mo-

tiverat att ställa båda metoder till förfogande. Överlagring ger oss dessutom möjligheten

att döpa dem till samma namn. Det är två metoder som båda gör ”samma sak” nämligen

potensiering, men ändå inte är exakt identiska.

Metoden Substring()

Klassen String har bl.a. två metoder Substring() som överlagrar varandra. Båda tar

ut delstängar ur en sträng. Den ena har en parameter n och tar ut delsträngen från och

med index n till strängens slut. Därför ger anropet Substring(10) delsträngen klmn-

opqrstuvwxyzåäö ur det svenska alfabetet eftersom k har index 10, Den andra har två

parametrar a, b och tar ut delsträngen från och med index a av längden b. Därför ger

anropet Substring(0, 6) delsträngen abcdef från a dvs index 0 och av längden 6 –

ett exempel på överlagring av biblioteksmetoder. Begreppet index förekommer i array-

sammanhang som behandlas i nästa kapitel. Det som vi behöver veta om det just nu är

att det är en numrering som börjar att räkna från 0 och inte från 1.

 175

4.7 Rekursiva metoder

Rekursiva metoder är sådana som anropar sig själva, ungefär som hundar som bitar sig i

svansen. Ordet rekursiv kommer från recurrere på latin som på engelska betyder to run

back eller to run again dvs att gå tillbaka och köra igen.

Rekursion är ett koncept som används för att lösa problem genom successiv upprepning

av vissa beräkningar (algoritmer). Upprepade beräkningar är datorn bra på. Rekursiva

algoritmer genererar kort och elegant kod som är mycket nära matematisk notation. I

regel finns det även icke-rekursiva, s.k. iterativa lösningar till samma problem.

Ett exempel på problem som kan lösas rekursivt är följande uppgift som den italienske

matematikern Leonardo Pisano Fibonacci år 1202 formulerade i sin bok Liber abaci

(Boken om räknekonsten). Den handlar om kaniners fortplantning:

Ett kaninpar föder från den andra månaden av sin tillvaro
ett nytt par varje månad. Samma gäller för de nya paren.

 Hur många par kommer det att finnas om ett år?

Fibonacci hade väl knappast kunnat drömma om att hans problem skulle bli föremål för

datoriserade lösningar med rekursiva metoder 810 år senare.

Om vi följer uppgiftens lydelse och räknar fram de första månaderna får vi följande:

Antal månader 1 2 3 4 5 6 7 8 …

Antal kaninpar 1 1 2 3 5 8 13 21 …

Det uppstår en talföljd i den andra raden av tabellen som kallas Fibonaccis talföljd eller

kort fibonaccitalen. Så här uppstår de:

De två första månaderna finns det 1 kaninpar. De föder sitt första barnpar först efter 2

månader dvs i månad nr 3, varför det finns 2 kaninpar i månad 3. I månad 4 föder det

första paret sitt andra barnpar, varför det finns 3 par i månad 4. I månad 5 föder det

första paret sitt tredje barnpar, men även deras första barnpar föder ett nytt par, eftersom

det har gått 2 månader sedan deras födelse. Därför finns det 5 par i månad 5. Osv. …

Praktiskt taget blir det allt svårare att hålla reda på antalet kaninpar när antalet månader

växer. Man måste kanske rita någon sorts diagram och anteckna allt från månad till må-

nad. En utväg ur dilemmat vore att upptäcka ett mönster, en struktur, t.ex. ett samband

mellan antal månader och kaninpar, en slags laglighet i bildandet av fibonaccitalen som

kan beskrivas i form av en algoritm för att sedan kunna skrivas som program. Undersö-

ker man tabellen noga kan man se följande enkelt mönster: Summan av två på varandra

 176

följande fibonaccital ger nästa fibonaccital. Kolla själv! Men hur kav vi beskriva detta

mönster? Vi inför beteckningarna:

 n = Antalet månader

 Fn = Antalet kaninpar i månaden n

Mönstret som vi upptäckte ovan kan vi nu beskriva så här:

 F1 = 1, F2 = 1

 Fn = Fn-1 + Fn-2 för n = 3, 4, 5, …

Den första raden säger att de första två fibonaccitalen är 1 och 1. Den andra raden säger

att det n-te fibonaccitalet är summan av de två föregående, vilket är bara en annan for-

mulering av samma mönster vi upptäckte i tabellen. Formeln ovan kallas Fibonaccis re-

kursionsformel. Men vad är det rekursiva i denna formel? I en vanlig, icke-rekursiv for-

mel står den sökta storheten vänster om likhetstecknet och alla givna storheter höger om

likhetstecknet. Men här står den sökta storheten, fibonaccitalen, på båda sidor likhets-

tecknet, fast för olika månader, för olika parametrar så att säga. För att beräkna ett fibo-

naccital måste man känna till de två föregående. Men eftersom vi har de två första F1

och F2, s.k. startvärden, kan vi beräkna alla andra successivt utgående från dessa start-

värden. Att det sökta står på båda sidor likhetstecknet är alltså det rekursiva, vilket, när

vi kodar formeln, resulterar i en metod som anropar sig själv, fast med olika parametrar.

Så här ser den rekursiva metoden ut när vi implementerar Fibonaccis rekursionsformel:

// Fibonacci.cs

// Rekursiv metod Fib() som för varje n returnerar fibonaccitalet

// Rekursiv därför att metoden anropar sig själv

class Fibonacci

{
 public static long Fib(int n)

 {
 if (n <= 1)

 return n;

 else

 return Fib(n-1) + Fib(n-2); // 2 rekursiva anrop

 } // i metodens kropp

}

Som man ser är koden en ren översättning av Fibonaccis rekursionsformel till C#-kod.

Därför är den också väldigt kort. För n=0 eller 1 returneras n själv, dvs 0 eller 1 där 1 är

enligt formeln det första fibonaccitalet. För alla andra n returneras summan av de två fö-

regående dvs Fib(n-1)+Fib(n-2). Men de i sin tur är var och en, anrop av Fib().

Men dessa anrop står i själva metoden Fib():s kropp, vilket är just det rekursiva. Ett

anrop av Fib(4) t.ex. resulterar i att Fib(3) och Fib(2) anropas, Fib(3) i sin tur re-

sulterar i att Fib(2)och Fib(1) anropas, osv. Varje anrop av metdoden resulterar i ett

stort antal följdanrop. Växer n leder det till en väldigt stor mängd av beräkningar. För

stora fibonaccital är tidsåtgången stor. Låt oss testa metoden Fib() i följande program:

 177

// FibonacciTest.cs

// Testar metoden Fib() genom att anropa den för de första

// 30 fibonaccitalen och skriva ut dem

using System;

class FibonacciTest

{
 static void Main()

 {
 Console.Write("\n\n\tDe första 30 fibonaccitalen:\n\n\t");

 for (int i = 1; i <= 30; i++)

 {
 Console.Write(Fibonacci.Fib(i) + "\t"); // Anropen

 if (i % 6 == 0)
 Console.Write("\n\n\t");

 }
 Console.WriteLine();

 }
}

Det är i for-satsen metoden Fib() anropas. Räknaren i blir metodens parameter, vil-

ket genererar de första 30 fibonaccitalen. I var 6:e utskrift läggs in ett radbyte:

 De första 30 fibonaccitalen:

 1 1 2 3 5 8

 13 21 34 55 89 144

 233 377 610 987 1597 2584

 4181 6765 10946 17711 28657 46368

 75025 121393 196418 317811 514229 832040

Så kan vi besvara den inledande frågan: Det kommer att finnas 144 kaninpar om ett år.

Nackdelen av rekursiva metoder

Rekursiva metoder har en stor beräkningskomplexitet. Man pratar om exponentiellt

växande tidskomplexitet av typ 2
n
 för att beräkna Fib(n). Dvs tidsåtgången växer med

en faktor 2
n
. T.ex. om det tar 2

4
 = 16 nanosekunder för att beräkna Fib(4), tar det 2

40

dvs över 10
12

 nanosekunder (ca. 2½ timmar) för att beräkna Fib(40), vilket uppenbart

är ineffektivt. I så fall är det effektivare att använda en alternativ icke-rekursiv, t.ex. en

iterativ implementering av Fibonaccis rekursionsformel. Därmed är det inte sagt att

rekursiva metoder alltid är ineffektiva. Det finns problem som enklast löses med re-

krursiv teknik, t.ex. att manipulera datastrukturer som träd och grafer. Det finns t.o.m.

problem där rekursiva metoder leder till effektivare lösningar än alternativa icke-re-

kursiva algoritmer, t.ex. sortering. Ett annat problem är hur svårt det är att beskriva och

implementera dessa algoritmer. Man borde alltså avväga från fall till fall om rekursiv

eller iterativ metod ska användas.

 178

Lambdauttryck (eng. lambda expressions) är korta funktioner utan namn.

De anropas i samma kod som de definieras. Ex.: (a, b) => a+b

 => kallas för Lambdaoperatorn och skiljer parameterlistan (a, b) från

kroppen a+b. Detta lambdauttryck är en funktion som adderar a med b. Vid

exekveringen ersätts lambdauttrycket av summans värde: a+b.

istället för vilken datatyp som helst: int, double, char, string, … .

4.8 Lambdauttryck

Följande exempel demonstrerar lambdauttryck:

// Lambda.cs

// Lambdauttryck skrivs med Lambdaoperatorn => som separerar

// funktionens parametrar (vänster) från dess kropp (höger)

// => betyder "ska skickas till" (OBS! ingen jämförelseoperator)

using System;

using System.Linq; // Krävs för Where(...)

class Lambda

{
 static void Main()

 {
 int[] numbers = { 11, 37, 52, 26, 57, 90, 101 };

 int[] oddNum = numbers.Where(n => n % 2 == 1).ToArray();

 int[] divBy3 = numbers.Where(n => (n % 3) == 0).ToArray();

 int[] square = numbers.Select(n => n * n).ToArray();

 int[] sorted = numbers.OrderBy(n => n).ToArray();

 Console.Write("\n\tAlla heltal:");

 foreach (int element in numbers)

 Console.Write("\t" + element);

 Console.Write("\n\tSorterade:");

 foreach (int element in sorted)

 Console.Write("\t" + element);

 Console.Write("\n\tKvadraterna:");

 foreach (int element in square)

 Console.Write("\t" + element);

 Console.Write("\n\tDe udda talen:");

 foreach (int element in oddNum)

 Console.Write("\t" + element);

 Console.Write("\n\tDelbara med 3:");

 foreach (int element in divBy3)

 Console.Write("\t" + element);

 Console.WriteLine("\n");

 }
}

 179

n => n % 2 == 1 är själva lambdauttrycket dvs anonyma funktionen vars definition och

anrop sammanfaller i denna kod. n är funktionens parameter. Den behöver inte deklare-

ras. n skickas med => till kroppen, dvs till n % 2 == 1. Detta logiska uttryck evalueras

lokalt och returnerar sant eller falskt, beroende på n % 2 == 1 eller ej. n % 2 ger resten

vid heltalsdivision av n med 2 (se modulooperatorn, sid 124). Därmed blir n % 2 == 1

sant om och endast om n är udda. Dvs endast de udda talen selekteras från arrayen num-

bers. Det görs genom att skicka den anonyma funktionens returvärde till Linq-meto-

den Where() och skapa den nya arrayen oddNumbers. Linq är ett bibliotek i C# som

bl.a. tillhandahåller metoden Where(). Den selekterar enligt returvärdets sanningsvärde

element från arrayen numbers. Eftersom Where() är definierad som en generisk metod

måste dess returvärde med metoden ToArray() omvandlas till array av int för att

kunna tilldelas int-arrayen oddNumbers. De filtrerade talen från arrayen numbers

skrivs ut när man kör programmet Lambda:

 Alla heltal: 11 37 52 26 57 90 101

 Sorterade: 11 26 37 52 57 90 101

 Kvadraterna: 121 1369 2704 676 3249 8100 10201

 De udda talen: 11 37 57 101

 Delbara med 3: 57 90

Innan vi går vidare följer en parentes om LINQ som vi använde i programmet Lambda.

Vad är LINQ ?

I programmet Lambda finns koden: numbers.Where(n => n % 2 == 1)

Här ”frågas” arrayen numbers om den har element som är udda tal. Metoden Where()

är definierad för arrays i biblioteket System.Linq som är ett tillägg till C#.

I koden ovan har man kombinerat lambdauttryck med språkelement från LINQ för att

åstadkomma effektiv kod. LINQ står för Language Integrating Query och är en språkmodul

vars syntax liknar frågespråket SQL (Structured Query Language). SQL har funnits sedan

länge som standardspråk för kommunikation med databaser. Microsoft har utvecklat

och implementerat LINQ i versionen 3.5 av sin .NET-plattform som släpptes år 2007.

Man har integrerat LINQ bl.a. i C# och udvidgat därmed språket. Implementationen

finns i biblioteket System.Linq. Men ambitionen har varit att gå vidare och presentera

LINQ som ett nytt sätt att tänka och skriva kod inte bara inom .NET utan inom program-

mering i största allmänhet – som ett slags nytt paradigm där man försöker dra nytta av

databastänkandet i objektorienterad programmering. Men språket används inte bara i

samband med databaser. LINQ har många olika användningsområden, bl.a:

LINQ to SQL som används för att fråga databaser, LINQ to XML för att fråga XML-doku-

ment, LINQ to Array för att fråga arrays och LINQ to Object för att fråga objekt. LINQ to

Array har vi använt i programmet Lambda.

 180

Ex.: d = (a, b) => a+b

Delegaten d är en referens till den anonyma funktionen (lambdauttrycket).

d kan användas för att anropa funktionen eller för att skicka den som parame-

ter till andra metoder – som representant för den anonyma funktionen.

4.9 Delegater

OBS! Det här är något helt nytt i programmeringen:

Hittills kunde vi skicka variabler, arrays, ja t.o.m. objekt (med hjälp av referenser) som

parametrar till andra metoder. Men vi kunde aldrig skicka metoder som parametrar till an-

dra metoder. Med hjälp av delegater kan vi skriva om våra metoder som anonyma funk-

tioner (lambdauttryck), namnge dem med delegater och skicka dem som parametrar till

andra metoder, där de sedan kan anropas. Det kan vi göra genom att tilldela lambda-

uttrycken till referenser som då kallas för delegater – en slags representant för lambda-

uttrycken.

I programmet Delegate nedan visas ett vanligt anrop. I DelegateParam längre fram

demonstreras anrop av en delegat som skickats som parameter till en annan metod.

// Delegate.cs

// Delagat som referens till en anonym funktion

using System;

class Delegate

{
 delegate void Dtype(string t); // Deklarerar den nya

 // delegattypen Dtype

 static void Main()

 {
 Dtype d; // Deklarerar delegat

 d = text => Console.WriteLine(text); // Delegat pekar på

 // anonym funktion

 d("Denna sträng kommer från delegate"); // Anropar funktionen

 }
}

En delegat skapas i två steg: Först deklareras en ny datatyp av typen delegate med ett

namn som vi väljer. I exemplet ovan har vi valt namnet Dtype:

delegate void Dtype(string t);

Som man ser inleds metodens huvud med det reserverade ordet delegate. Denna sats

skrivs på samma plats som klassens datamedlemmar och på samma sätt som man dekla-

 181

rerar en metod utan kropp. Sedan används den nya datatypen för att i Main() deklarera

en delegat av denna nya datatyp som är en delegattyp:

Dtype d;

Den nyss deklarerade delegaten tilldelas en anonym funktion som formuleras med ett

lambdauttryck:

d = text => Console.WriteLine(text);

I den här anonyma funktionen (gråmarkerad) ska parametern text skickas till att skri-

vas ut. Men d är en referens av typ Dtype. En sådan referens kan endast tilldelas ett ob-

jekt av typ Dtype. Därför måste den ovan gråmarkerade anonyma funktionen samtidigt

vara ett objekt av typ Dtype. Vi kan i fortsättningen referera till detta objekt med d, vil-

ket vi gör i nästa sats:

d("Denna sträng kommer från delegate");

Här anropas den anonyma funktionen med referensen d. Därvid skickas strängen i pa-

rentesen som aktuell parameter till den formella parametern text. Där skickas den vi-

dare till utskrift. Därför ser resultatet av en körning av programmet Delegate ut så här:

Denna sträng kommer från delegate

Vi ser i programmet Delegate på vilket sätt en funktion samtidigt kan vara ett objekt.

Detta tack vare delegatkonceptet dvs en referens som kan peka på en funktion.

Varför vi förresten säger funktion och inte metod beror på funktionens anonymitet just

här i det behandlade programexemplet. Eftersom funktionen inte har något namn kan

den inte heller vara medlem i klassen Delegate och därmed inte en metod. Men gene-

rellt kan delegater peka även på metoder. Vi kommer i slutet av det här avsnittet att ta

upp ett exempel på delegater som pekar på metoder, ja t.o.m. på s.k. metodgrupper. Då

kommer det också att avslöjas varför dessa referenser till metoder heter delegater. Men

innan dess ska vi gå vidare lite med delegater:

Delegat som parameter i metoder

Vi har lärt oss att skicka vanliga variabler, referenser, arrays, listor och även objekt som

parametrar till metoder. Men hittills har det inte varit möjligt att skicka metoder, ja inte

ens funktioner, som parametrar till andra metoder. Medan det t.ex. i matematik är gans-

ka vanligt att bilda funktioner av funktioner, s.k. sammansatta funktioner, har vi i pro-

grammering inte haft denna möjlighet. Men det ska nu bli annorlunda, för delegater

öppnar dörren till denna nya värld. Kan man skicka referenser som parametrar till meto-

der, då borde man även kunna göra det med sådana referenser som pekar på metoder,

dvs med delegater. Följande programexempel ska ge oss en insikt i delegate:s möjlig-

heter att även i programmering använda sammansatta metoder:

 182

// DelegateParam.cs

// Räknar ut hur många element i en given array som är nollor,

// hur många som är negativa och hur många som är positiva

// Delegat skickas till metoden MyCount():s parameter

// Där anropas den metod som delegaten pekar på

using System;

class DelegateParam

{
 delegate bool Dtype(int number);// Deklaration av delegattyp

 // OCH av metod med returvärde

 static void Main()

 {
 Dtype d0 = a => a == 0; // Delegater som pekar på anony-
 Dtype d1 = a => a < 0; // ma funktioner (lambdauttryck)

 Dtype d2 = a => a > 0;

 int[] vector = { -1, 2, -3, 0, 5, 0, -4, 1, 6, 8, -9, 0 };

 Console.WriteLine("\n\tDet finns {0} nollor i vektorn.",
 MyCount(vector, d0));

 Console.WriteLine("\n\tDet finns {0} negativa tal i vektorn.",
 MyCount(vector, d1));

 Console.WriteLine("\n\tDet finns {0} positiva tal i vektorn.\n",
 MyCount(vector, d2));

 }

// --

 static int MyCount(int[] v, Dtype d)// Metod med en delegat

 // som parameter

 { // Räknar antal element i v
 // som uppfyller det villkor
 int counter = 0; // som skickas med delegat-

 foreach (int element in v) // parametern d

 if (d(element)) // Anrop av delegaten d i

 counter++; // if-satsens villkor

 return counter;

 }
}

Så här ser resultatet av en körning av DelegateParam ut:

 Det finns 3 nollor i vektorn.

 Det finns 4 negativa tal i vektorn.

 Det finns 5 positiva tal i vektorn.

 183

Det som gör att dessa tre rader skrivs ut är tre anrop av den egendefinierade metoden

MyCount() inbyggda i System-metoden Console.WriteLine(). Metoden My-

Count() räknar antalet av de vector-element som uppfyller det villkor som definieras

av den delegat som skickas till den andra parametern d till MyCount(). I första anropet

skickas delegaten d0 som returnerar sant om vector-elementet är lika med 0: Antalet

nollor returneras. I andra anropet skickas delegaten d1 som returnerar sant om vector-

elementet är < 0: Antalet negativa element returneras. I tredje anropet skickas delegaten

d2 som returnerar sant om vector-elementet är > 0: Antalet positiva element returne-

ras. Vi menar förstås …delegaten dx vars metod som den pekar på, returnerar sant….

För att undvika alltför komplexa formuleringar nämner vi ofta bara referensen.

Anropet av delegaten d som kommer in i metoden MyCount() via den andra parame-

tern, sker i foreach-satsens if-sats. Där bestäms delegatens sanningsvärde, vilket av-

gör om räknaren ska counter uppdateras. MyCount() returnerar detta värde till ut-

skriftssatsen i Main().

Överlagrade varianter av Console.WriteLine()

Av förekommen anledning ska vi lägga in här en parentes: I förra programexemplet

DelegateParam används i utskriftssatsen en syntax som skiljer sig från våra utskrifts-

satser hittills. Så här lyder t.ex. den första Console.WriteLine()-satsen:

Console.WriteLine("\n\tDet finns {0} nollor i vektorn.",
 MyCount(vector, d0));

För det första har metoden Console.WriteLine() här två parametrar och inte en. Dvs

vi har att göra med en överlagrad variant av denna metod. Anledningen är att vi vill

undvika manuella konkateneringar av strängar med konverterade variabelvärden i Con-

sole.WriteLine()-satsen, vilket kan komplicera koden. En förenkling är då att använ-

da den tvåparametriga, överlagrade varianten av Console.WriteLine()-metoden där

den andra parametern MyCount() som returnerar ett värde, automatiskt konverteras till

sträng och infogas i den första strängparametern på en plats som anges med syntaxen {0}.

Med detta menar man det första elementet (med index 0) i den serie av parametrar som

följer efter den första strängparametern. Man skulle alltså – med en flerparametrig variant

av metoden – kunna skriva ytterligare parametrar med värden som infogas i den första

strängparametern med t.ex. {1}, {2}, {3} osv. Men hos oss är {0} ingenting annat än

MyCount(vector, d0), konverterad till sträng.

Följande program visar med en fyrparametrig variant av Console.WriteLine() hur

smidigt det kan vara att låta de överlagrade varianterna automatisk konvertera variablerna

i den 2:a, 3:e och 4:e parametern till strängar och konkatenera dem med dvs infoga dem i

den 1:a parametern (utskriftssträngen):

 184

// WriteLineOverl.cs

// Console.WriteLine()-metoden med 4 parametrar

// Att infoga variabelvärden i utskriftssträngen

using System;

class WriteLineOverl

{
 static void Main()

 {
 int no1 = 9, no2 = 3, sum;

 sum = no1 + no2;

 Console.WriteLine("\n\t Addition:\t {0} + {1} ger {2} \n",
 no1, no2, sum);

 }
}

Programmet WriteLineOverl ger följande utskrift:

 Addition: 9 + 3 ger 12

Lösningen med LINQ

Efter parentesen om de olika varianterna av Console.WriteLine() ska vi återvända

till delegater, närmare bestämt till delegater som parametrar i metoder. Vi ska titta om

vi kan skriva programmet DelegateParam (sid 182) lite effektivare. Där använde vi en

delegat som parameter i den egendefinierade metoden MyCount() som räknade antalet

element i en given array som uppfyllde en viss egenskap. Själva egenskapen formulera-

des i Main() med ett lambdauttryck och skickades till MyCount() med en delegat.

Men vi hade redan i programmet Lambda (sid 178) sett att man kunde fråga en array om

dess element uppfyllde en viss egenskap, nämligen att vara udda tal. Det gjorde vi med

hjälp av Linq-metoden Where(). Frågan är om det även finns en Linq-metod som

frågar en array efter antal element som uppfyller en viss egenskap som kan formuleras

med ett lambdauttryck. Den här gången för att bestämma hur många element i arrayen

som är nollor, hur många som är negativa och hur många som är positiva. I så fall skulle

vi kunna byta ut vår egendefinierade metod MyCount() mot denna Linq-metod och

slippa koda själva. Faktiskt finns det en sådan metod som heter Count(). Det är an-

märkningsvärt att Linq-metoden Count() kommer att göra användningen av delegat

onödigt eftersom den kommer att kunna anropas direkt i Main(). Vi slipper att skicka

en parameter till en egendefinierad metod. Även här kommer vi att dra nytta av kombi-

nationen av LINQ och lambdauttryck som ger en effektiv och elegant kod.

Följande Linq-version av programmet DelegateParam ger exakt samma resultat som

DelegateParam, men utan delegat:

 185

// CountLINQ.cs

// Anropar Linq-metoden Count() med ett lambdauttryck

using System;

using System.Linq; // Krävs för Linq-metoden Count()

class CountLINQ

{
 static void Main()

 {
 int[] vector = { -1, 2, -3, 0, 5, 0, -4, 1, 6, 8, -9, 0 };

 Console.WriteLine("\n\tDet finns {0} nollor i vektorn.",

 vector.Count(a => a == 0));

 Console.WriteLine("\n\tDet finns {0} negativa tal i vektorn.",
 vector.Count(a => a < 0));

 Console.WriteLine("\n\tDet finns {0} positiva tal i vektorn.\n",
 vector.Count(a => a > 0));

 }
}

Utskriften blir den samma som utskriften av programmet DelegateParam (sid 182): An-

tal element i arrayen vector som är 0, negativa och positiva skrivs ut.

Metodgrupper

En metodgrupp är mängden av samtliga överlagringar av en metod. T.ex. har metoden

Console.WriteLine() 18 olika överlagringar (varianter) som bildar metodgruppen

Console.WriteLine

För första gången skriver vi Console.WriteLine utan parenteserna () vilket innebär

att det inte handlar om en metod utan om metodgrupp. Metodgruppen kan direkt tilldelas

en delegat. Först vid anropet av delegaten avgörs vilken av gruppens metoder (varianter)

ska exekveras, för då skrivs en parameterlista till delegaten som specificerar den metod

som ska anropas. I och med detta får också begreppet delegat sin betydelse, nämligen

som en företrädare eller representant för gruppen. Följande program demonstrerar detta:

// MethodGroup.cs

// Delegat pekar på metodgruppen Console.WriteLine utan parentes

// dvs på Console.WriteLine()-metodens alla överlagrade varianter

// Delegat representerar metodgruppen

// Anrop via delegat avgör vilken av gruppens metoder anropas

using System;

class MethodGroup

{ // Delegattypen deklareras:
 delegate void Dtype(string t, string a, string b, string c);

 186

 static void Main()

 {
 int no1 = 9, no2 = 3, sum;

 sum = no1 + no2;

 Dtype d; // En delegat deklareras

 d = Console.WriteLine; // Delegat tilldelas metodgruppen

 // utan parentes: Alla varianter

 d("\n\t Addition:\t {0} + {1} ger {2} \n",

 no1.ToString(), no2.ToString(), sum.ToString());

 } // 4 parametrar skickas via

} // delegat till metodgruppen

Programmet MethodGroup ger samma utskrift som programmet WriteLineOverl:

 Addition: 9 + 3 ger 12

Denna utskrift kommer från metoden Console.WriteLine(), närmare bestämt från

den variant av den som har fyra parametrar. Detta trots att vi endast har tilldelat me-

todgruppen Console.WriteLine till delegaten d och inte specificerat vilken av grup-

pens metoder som ska anropas. Att ändå just den metod av gruppen automatiskt väljs

som har fyra parameter, beror på att anropet av delegaten i programmets sista sats sker

med just fyra strängar i parameterlistan. På så sätt används delegaten som en länk mel-

lan metodgruppen Console.WriteLine och programmet. Samtidigt ser man att dele-

gaten d blir en representant för hela metodgruppen.

 187

Övningar till kapitel 4

4.1 Varför ger följande program kompileringsfel? Åtgärda felet genom att flytta på

kod, utan att ta bort någon klammer och utan att ha tomma klamrar:

using System;

class Ovn_4_1

{
 static void Main()

 {
 {
 int t = 30;

 }
 Console.WriteLine("t = " + t);

 }
}

4.2 Modularisera programmet MiniSort från (sid 154) efter eget godtycke.

4.3 Skriv en rekursiv metod Faculty() som implementerar n! = 1· 2 · 3· … · n.

 Testa metoden i en klass FacTest genom att anropa den för n = 1, 2, 3, … , 20.

4.4 Tillägg till Pyramiden (projekt) Modularisera programmet Pyramiden

från övn. 1.10 (sid 66) genom att flytta koden som bestämmer det tillåtna antalet

rader 1-13 till en metod som deklareras i en separat klass och anropas från

Main() innan pyramiden ”ritas”.

4.5 Kalkylatorn (projekt) I detta projekt ska skapa en klass Calculator som

stödjer följande funktionaliteter: addition, subtraktion, multiplikation, division

och potensiering av två tal samt att kunna ange det största och minsta av två

inmatade tal. Dessutom ska din kalkylator vara igång kontinuerligt tills använ-

daren väljer att stänga av den, vilket innebär att du måste lägga in en loop. De

olika räkneoperationerna ska definieras i separata metoder och anropas i Main().

Klassen Calculator:

Följande metoder ska definieras i klassen Calculator:

public double Add(double operand1, double operand2)

{

// Additon av operand1 och operand2

}

public double Sub(double operand1, double operand2)

{

// operand1 - operand2

// Även subtraktion av negativa tal ska vara möjligt

}

 188

public double Mult(double operand1, double operand2)

{

 // Multiplikation av parametrarna

}

public double Div(double operand1, double operand2)

{

 // operand1 / operand2

 // Division med 0 får ej förekomma (operand2 != 0)

}

public double Potens(double operand1, double operand2)

{

 // Beräkning av potens: operand1 upphöjt till operand2

}

public double max(double operand1, double operand2)

{

 // Returnera det större värdet av operand1 och operand2

 // Här kan du använda dig av den födefinierade metoden

 // Math.Max(double a, double b) för att snabbt

 // avgöra vilken av operanderna som är större

}

public double Min(double operand1, double operand2)

{

 // Returnera det mindre värdet av operand1 och operand2

 // Math.Min(double a, double b) kan användas

}

Programmet skall exekvera kontinuerligt tills användaren väljer att avsluta kör-

ningen. För att åstadkomma detta kan du exempelvis använda dig av en do-

sats, se programmet GuessDo i kap 6. Kalkylatorn kan avslutas genom att an-

vändaren matar in t.ex. tecknet ’q’ (Quit) istället för en operator.

Du får själv bestämma om du vill placera all kod i en fil eller om du hellre

skapar en separat fil för klassen Calculator med alla ovannämnda metoder

och en klass med Main() i en annan fil som testar klassen Calculator. Det

senare är att föredra.

Det är upp till dig om du lägger in kod för att kunna hantera fel inmatning av

operator eller andra felaktiga inmatningar.

 189

Kapitel 5

Tillämpning av OOP

 Ämne Sida Program

5.1 Arrays 190

­ Definition och initiering av en array 192 Array

­ foreach-satsen 194

5.2 Arrayens initieringslista 197 ArrayInit

5.3 Array av referenser 199/200 Fish/ArrayOfRef

5.5 Array som parameter i metoder 203 Arrayparam

5.6 Sökning och sortering 207 RandArray

- Slumptal i en array 207 Search

- Bubbelsortering 210 Bubble

5.7 Generiska metoder 214 G_Output/G_Bubble

- Generisk bubbelsortering 217 GenericTest

5.8 Kryptering av text 219 EncryptChar

5.9 2D Array 222 DoubleArray

5.10 Dynamiska arrays: Listor 226 List

Övningar till kapitel 5 230

 190

En array är en ordnad mängd av variabler av samma datatyp grupperade

under samma namn och lagrade i ett sammanhängande minnesområde.

En array består av ett antal element. Elementens position i arrayen

kallas för index. Indexnumreringen börjar med 0, inte med 1.

5.1 Arrays

Ordet array betyder i engelskan ordnad samling eller ordnad uppställning (battle array

= stridsordning). Andra beteckningar som används i litteraturen är fält, vektor, lista, … .

Vi kommer att använda array.

Anta att vi vill definiera 20 variabler av typ int. Hittills behövde vi skriva 20 satser för

att göra det. Men nu ger array oss möjligheten att göra samma sak med endast en sats:

 Hittills: enkel datatyp int: Nu: int-array med referens:

 int no1;

 int no2;

 . int[] no = new int[20];

 .

 .
 int no20;

Vi definierar en variabel no av datatypen int[], dvs array av int, använder new och

lägger till informationen om antalet element inom hakparentes: [20]. Det reserverade

ordet new avslöjar att det är ett objekt. new allokerar minnesutrymme för ett objekt be-

stående av 20 int-värden och returnerar den sammanhängande ”minneskedjans” adress

– närmare bestämt adressen till dess första cell – till variabeln no som är en referens.

Dess datatyp int[] är en referens till en int-array. För att göra det tydligare kan man

skriva det även i två separata satser:

int[] no;
no = new int[20];

Det är inte den första utan den andra satsen, närmare bestämt koden new int[20] som

skapar själva arrayen. Därför står också storleken 20 där det behövs, nämligen i satsen

där new allokerar minne. Typiskt för array är hakparenteserna [], på engelska brac-

kets. I satserna ovan har [] två olika betydelser: I den första satsen specificerar int[]

variabeln no:s datatyp som en referens till en int-array, i den andra satsen innehåller

[20] arrayens storlek. Referensvariabeln no ersätter de 20 vanliga int-variablerna no1,

no2, …, no20, vilket medför en stor effektivitet i koden. Tänk dig att det är inte 20 utan

fler data vi vill jobba med. no pekar fysiskt på det första elementet av arrayen som allo-

keras i ett sammanhängande minnesutrymme. Därför kan man komma åt de andra ele-

menten via indexering som är bara ett annat namn för numrering.

 191

Indexering i en array

Låt oss anknyta till exemplet ovan där både arrayen och dess referens no definieras:

int[] no = new int[20];

Låt oss ytterligare anta att vissa värden – de som visas i bilden nedan – har tilldelats ar-

rayens element efter satsen ovan. Eftersom elementen lagras i ett sammanhängande

minnesområde uppstår följande minnesbild av arrayen i datorns RAM:

 Minnesbild av arrayen no:

 Index: 0 1 2 17 18 19

190d11 25 1257 -10 ... 358 65 219

 Kod: no[0] no[1] no[2] ... no[17] no[18] no[19]

Index är synonym till nummer och specificerar varje elements position i arrayen för att

”adressera” elementet. Elementen kan i sin tur vara av enkel, sammansatt eller av refe-

renstyp. En array är den enklast tänkbara sammansatta datatypen. Som exempel tar vi en

array som är sammansatt av den enkla datatypen int. Varje element i en sådan array

kan betraktas som en indexerad dvs numrerad variabel av typ int.

Medan själva arrayens allokering (den övre delen) görs av new int[20], allokeras min-

nescellen no (den undre delen) av int[] no. Kopplingen mellan dem görs av tilldel-

ningsoperatorn, vilket gör att arrayens adress (t.ex. 190d11 – ett hexadecimalt tal) som new

har genererat, hamnar i minnescellen no. Den så uppkomna situationen innebär att no

pekar på eller refererar till arrayen. Under arrayens minnesceller har vi skrivit C#-kod

som kommer åt varje elements värde: no[0] ger den första minnescellens värde 25 som

har index 0, no[1] ger den andra minnescellens värde 1257 som har index 1 osv. no[0]

lagras vid adressen till arrayens första minnescell. no[1] lagras vid adressen till den

andra minnescellen som ligger 1 x 4 bytes – storleken för en int – längre bort från no.

no[2] lagras vid adressen som ligger 2 x 4 bytes längre bort från no osv. Adressering i

RAM sker nämligen byte-vis, så att bytes som är grannar till varandra, har adresser som

skiljer sig på en enhet. Avgörande för denna indexeringsteknik är att en array alltid allo-

keras i ett sammanhängande minnesområde. Ser man på det hela ur hårdvarans syn-

punkt kan man förstå varför indexnumreringen börjar med 0 och inte med 1: no[0] kan

tolkas som den adress som ligger 0 x 4 bytes längre bort från no, dvs no[0]:s adress är

identisk med adressen no.

 no 190d11

 192

Indexregeln: I arrays börjar numreringen av index alltid med 0.

 Därför gäller: elementets position = index + 1

Därför gäller:

Med position menas numret som människan använder för att numrera elementen. Män-

niskor är vana vid att påbörja numreringen av saker och ting med 1. Med index menas

numret som datorn använder för samma sak. C# och de flesta andra programmerings-

språken börjar numreringen av index i en array med 0. Tillämpad på exemplet: Det 1:a

elementet i den array som no refererar till har värdet 25 och index 0: Positionen är 1

medan indexet är 0. Det 2:a elementet (värdet 1257) har index 1 och koden no[1], det

3:e elementet (värdet –10) har index 2 och koden no[2] osv. Det n:e elementet har

alltid index n-1. Därför har också det 20:e elementet (värdet 219) index 19.

Det är avgörande när man arbetar med array och är samtidigt felkälla nr 1 – om man

glömmer det – att hålla isär det mänskliga sättet att numrera som börjar med 1 från C#-

kodens sätt som börjar med 0. I exemplet ovan har vi definierat en array av 20 heltals-

element med referenserna no[0], ..., no[19]. Antalet element är 20. Indexen däre-

mot går från 0 till 19. Felkälla nr 2 är att förväxla en arrayelements index med dess vär-

de: Det sista elementet i exemplet ovan har index 19, men värdet 219. Man har alltid

med två tal att göra, index (position) och värde (innehåll). Det gäller att hålla isär posi-

tionen från innehållet.

Tre egenskaper skiljer objekt från array:

 Indexering

 Allokering i ett sammanhängande minnesområde

 Alla arrayelement har samma datatyp.

Annars behandlas array i C# som objekt: Båda måste skapas med new och man kan

komma åt båda endast med referensvariabler. Båda initieras till defaultvärden även om

de kan förekomma som lokala variabler i metoder. Detta visas i följade program:

Definition och initiering av en array

Här testas allt vi sagt hittills om array speciellt indexregeln. Utöver det visas ytterligare

en egenskap hos array som relaterar den till objekt, nämligen en egenskap Length som

lagrar arrayens storlek när den skapas. Programmet demonstrerar också vad som händer

om man överskrider arrayens maximala index: Man kan kompilera, men inte exekvera –

ett tecken på att arrayens allokering sker vid run time.

// Array.cs

// Definierar en array av 4 int-värden, skriver ut arrayens

// storlek, initieringsvärdena 0 och de nya tilldelade värdena

// Överskridning av arrayens index leder till exekveringsfel

using System;

 193

class Array

{
 static void Main()

 {
 int[] no; // Deklarerar referensen no

 // utan att skapa arrayen

 no = new int[4]; // Skapar arrayen vars adress

 // tilldelas referensen no

// int[] no = new int[4]; // Alternativt i EN sats

 Console.Write("\n\tArrayens storlek:\t\t");

 Console.WriteLine(no.Length);

 Console.Write("\n\tArrayens default-initiering:\t");

 foreach (int element in no)

 Console.Write(element + "\t");

 no[0] = 64; // Tilldelar 1:a elementet

 no[1] = 86; // värdet 64 osv. Överskriver

 no[2] = 34; // default-initieringen

 no[3] = -6;

 Console.Write("\n\n\tArrayen efter tilldelning:\t");

 foreach (int element in no)

 Console.Write(element + "\t");

 Console.WriteLine(

 "\n\n\tÖverskridning av arrayens index leder till " +

 "programavbrott:\n\n\t\tno[4] inte definierad\n\t" +

 "\tIndex 4 överskrider gränsen: Exekveringsfel!") ;

 no[4] = 1; // no[4] kan kompileras, men

 } // leder till exekveringsfel

}

Inte alla satser i programmet Array exekveras. Det blir avbrott när den kompilerade ko-

den no[4] i allra sista satsen ska exekveras där index 4 överstiger arrayens tillåtna

maximala indexgräns som är 3 därför att new i början av programmet allokerar endast 4

minnesceller åt arrayen, nämligen de med index 0, 1, 2 och 3. Någon minnescell med

index 4 är inte allokerad. Därför kan vi inte heller referera till den med no[4]. Men ef-

tersom arrayens allokering sker med new och därmed under exekveringstid (eng. run

time) leder detta till exekveringsfel, medan kompilatorn godtar den syntaxmässigt kor-

rekta koden no[4]. Programmet Array ger följande utskrift när man kör det:

 Arrayens storlek: 4

 Arrayens default-initiering: 0 0 0 0

 Arrayen efter tilldelning: 64 86 34 -6

 Överskridning av arrayens index leder till programavbrott:

 194

Att referera till icke-definierade element i en array leder till exekveringsfel.

 no[4] inte definierad

 Index 4 överskrider gränsen: Exekveringsfel!

Unhandled Exception: System.IndexOutOfRangeException: Index was

outside the bounds of the array.

at Array.Main() in C:\Programmering\Programmering 2\2OOP\Array.cs

:line 32

Vi drar slutsatsen:

Man kan även säga att C#-interpretatorn (VM) kontrollerar indexgränserna och inte til-

låter åtkomsten till icke-allokerade minnesplatser, vilket ur allmän datasäkerhetssyn-

punkt är en fördel. Programmen blir stabilare. Andra programmeringsspråk som C++

har i detta avseende en mer liberal attityd. Där ligger ansvaret för kontroll av indexgrän-

serna helt och hållet hos programmeraren.

Man kan ju undra varför no[4] inte är definierat – som vi hävdar ovan – fast talet 4

”förekommer” i definitionssatsen new int[4]. Detta beror på att hakparenteserna [] i

no[4] inte har samma betydelse som i new int[4]. Den korrekta tolkningen av [] be-

ror på sammanhanget. Man kan också säga att [] är symbolen för tre olika operatorer

som överlagrar varandra dvs betyder olika i olika sammanhang (sid 195):

foreach-satsen

Denna sats som används i programmet Array (sid 192) är en ny kontrollstruktur som inte

kunde tas upp i kapitlet om kontrollstrukturer (Progr1) därför att den förutsätter array-

begreppet eller liknande sammansatta datatyper, som vi inte hade hunnit gå igenom då.

foreach-satsen är idealisk för att skriva ut sammansatta datatypers värden. Den gör

samma sak som for-satsen, men har en lite annorlunda – ja t.o.m. lite enklare syntax,

om man är förtrogen med arrays. I programmet Array (sid 192) ser satsen ut så här:

foreach (int element in no)

 Console.Write(element + "\t");

Översatt till svenska:

För varje element av arrayen no

 Skriv ut elementet följt av en tabulator.

element – ett namn som är valt av oss – kallas för foreach-satsens iterationsvariabel.

Den definieras till int och motsvarar for-satsens räknare. element pekar på värdet

(innehållet) som står i arrayen. Iteration betyder upprepning och innebär här att satsens

kropp upprepas: Programflödet fortskrider från element till element tills alla element är

 195

genomgångna. Det reserverade ordet in betyder av eller element av. no pekar på arra-

yen som ska loopas igenom. Därför: ” För varje element av arrayen no”.

foreach-satsens enkelhet består i att den till skillnad från for-satsen varken behöver

ett start-, steg- eller slutvärde resp. avslutningsvillkor. Den går helt enkelt igenom arra-

yens alla element, från det första till det sista. Det är själva arrayen som bestämmer

start-, steg- och slutvärdena. Variabeln element pekar i varje varv av loopen på resp.

arrayelementets värde och kan sedan användas i loopens kropp för att göra det man

önskar. I vårt exempel för att skriva ut arrayens element följt av en tabulator.

foreach-satsens iterationsvariabel måste ha samma datatyp som arrayelementen eller

en sådan datatyp som arrayelementens datatyp automatiskt kan konverteras till. I vårt

exempel har vi int. Det är t.o.m. möjligt att ha egendefinierade datatyper dvs klasser.

Ett exempel på det är programmet ArrayOfRef (sid 200). Där deklareras iterationsvaria-

beln i en foreach-sats till den egendefinierade klassen Fish (sid 199), för att skriva ut

ett Fish-objekts sort, vikt, längd, pris och frakt.

En viktig egenskap av iterationsvariabeln är att den inte kan ändra arrayelementens vär-

den i foreach-satsens kropp. Den är så att säga read only. I praktiken innebär detta att

iterationsvariabeln inte får förekomma till vänster om tilldelningsoperatorn (=) i någon

sats i foreach-satsens kropp. Vill man i foreach-satsens kropp ändra på arrayelemen-

tens värden måste man använda for-satsen istället med arrayens index som räknare.

Hakparentesernas tre olika betydelser

1. [] som storleksoperator omsluter i definitioner med new antalet element i arra-

yen specificerar därmed arrayens storlek. T.ex. innebär koden

new int[4]

i programmet Array att new skapar en array av int med 4 element dvs att 4 min-

nesceller reserveras för lagring av int-värden. Det gemensamma för alla dessa ele-

ment är att de lagras en efter den andra vid adressen eller referensen no:

 no 0 0 0 0

 Här är frågan om ”Hur många element?”. I matematiken kallas detta kardinaltal.

2. [] som indexeringsoperator omslutar indexet till varje element av en array. Här

handlar det om ett elements position i arrayen. Man anger index inom hakparente-

ser för att referera till elementet när man vill hämta eller tilldela det ett värde. In-

dexregeln (sid 192) tillämpas enligt vilken indexeringen börjar med 0. Därför är

no[4] i arrayen ovan inte definierat:

 no no[0] no[1] no[2] no[3]

 Här är frågan om ”Vilket element?”. I matematiken kallas detta ordinaltal.

 196

Alla element i en array initieras automatiskt till defaultvärden (precis som

datamedlemmar i ett objekt) även om arrayen skapas lokalt i en metod.

3. [] som en del av datatypen ”referens till array” omsluter ingenting utan är tom

och skrivs direkt efter en datatyp för att definiera en ny referenstyp. T.ex. innebär

satsen
int[] no;

i programmet Array att en minnescell allokeras (en referensvariabel med namnet

no definieras) för lagring av en adress till en int-array. Vi kan i fortsättningen an-

vända namnet no för att komma åt arrayen vid denna adress. I satsen ovan har refe-

rensen no inte initierats. Det sker inte heller automatiskt, för no är en lokal variabel

i Main(). Det sker först med tilldelningen no = new int[4]; som initierar refe-

rensen explicit.

Default-initiering av en array

Det anmärkningsvärda är nu att det som gäller för referensen no – att den är oinitierad

när den skapas – inte gäller för själva arrayen. Referensen no är oinitierad och måste

initieras explicit eftersom den är en lokal variabel i Main(). Men trots att även arrayen

är lokal i Main() initieras den till de defaultvärden vi nämnde för datamedlemmar i

objekt (sid 101), vilket är ett tecken på att array även i detta avseende behandlas som ob-

jekt. Programmet Array skriver ut arrayelementens värden en gång innan och en andra

gång efter att de har fått värdena 64, 86, 34 och -6. Utskriften på förra sidan visar för ar-

rayens alla element initialvärdet 0 som är den föreskrivna default-initieringen för va-

riabler av typ int vilket även gäller för element i en int-array. Generellt gäller:

 197

5.2 Arrayens initieringslista

Man kan effektivisera hanteringen av arrays inte bara med foreach-satser utan även

genom att använda sig av en s.k. initieringslista som slår ihop definitionen med initie-

ringen – en kortform som ersätter koden new, men bibehåller dess egenskaper:

// ArrayInit.cs

// Initieringslista: Kortform för definition och initiering av en

// array i en och samma sats utan new

// Utskrift av arrayens element med foreach-satsen

using System;

class ArrayInit

{
 static void Main()

 {
 int[] no = { 64, 86, 34, -6 }; // Initieringslista:

 // Definition OCH ini-

 // tiering av en array

// int[] no = new int[4] { 64, 86, 34, -6 }; // Gör samma sak

 Console.Write("\nVärdena från arrayen skrivs ut med" +

 " referensen:\n\n\t");

 foreach (int element in no)

 Console.Write(element + "\t");

 int[] copy = no; // Ny referens till no

 // samma array

 Console.Write("\n\n\tArrayens värden skrivs ut" +

 " med den nya referensen copy:\n\n\t");

 foreach (int element in no)

 Console.Write(element + "\t");

 Console.WriteLine("\n\n\tEndast referensen kopieras,

 inte arrayen.\n");

 }
}

En körning visar att värdena i initieringslistan som först tillelas arrayen no verkligen

kopierats över till arrayen copy, för det är de som skrivs ut:

 Arrayens värden skrivs ut med referensen no:

 64 86 34 -6

 Arrayens värden skrivs ut med den nya referensen copy:

 64 86 34 -6

 Endast referensen kopieras, inte arrayen.

Både definitionssatsen och initieringssatserna i programet Array (sid 192) – det är de 5

första satserna i Main() – kan slås ihop till en enda sats:

 198

En array i C# är alltid ett objekt som behöver en referens.

int[] no = { 64, 86, 34, -6 };

Satsen ovan är bara en förkortning på:

int[] no = new int[4] { 64, 86, 34, -6 };

Dvs initieringslistan kan skrivas efter new int[4] som egentligen skapar eller definie-

rar arrayen. Men new int[4] får utelämnas. Detta visar att den förkortade versionen

gör två saker: Först, fram till tilldelningstecknet definieras referensen no (utan någon

uppgift om arrayens storlek). Sedan, från och med tilldelningstecknet tilldelas arrayen

no:s element fyra värden som står i en kommaseparerad lista grupperad inom klamrarna

{ } som kallas arrayens initieringslista. Kortformen gör precis samma sak som satsen

med new. Kompilatorn får informationen om arrayens storlek genom att i initieringslis-

tan räkna antalet element inom klamrarna { }. Det är inte ens tillåtet att explicit ange

det korrekta antalet element inom hakparenteserna []. Det blir kompileringsfel om

man gör det, därför att no endast är en referens till en array, inte arrayen själv. Ob-

servera även att man inte får använda initieringslistan separat utan endast i samma sats

som definitionen.

Valet av variabelnamnet copy kan vara missledande i följande sats av programmet Ar-

rayInit om man inte beaktar skillnaden mellan referens och array:

int[] copy = no;

copy blir nämligen en kopia av referensen no i satsen ovan, inte av arrayen – en ny

referens som kommer att peka på samma array som den gamla referensen no pekar på.

Det skapas ingen ny array eftersom det varken finns någon new eller någon initierings-

lista som skulle ersätta new. Anledningen till detta är – som vi konstaterat tidigare – föl-

jande viktigt faktum:

För att skapa ett objekt måste en new-sats skrivas. En referens definieras utan new.

Minnesmässigt lagras arrayen på en och samma adress som från programmet kan nås

med referenserna no eller copy:

 no 64 86 34 -6

copy

 199

5.3 Array av referenser

Hittills har vi bildat arrays endast av den fördefinierade datatypen int. På samma sätt

kan man också definiera arrays av alla andra enkla datatyper. Men kan man bilda även

arrays av klasser dvs egendefinierade datatyper? Frågan måste preciseras: Menar man

arrays av referenser, är svaret ja, därför att klasser – referensernas datatyper – har exakt

samma ”rättigheter” som vilka andra datatyper som helst och kan därför skrivas överallt

i koden där en fördefinierad datatyp kan stå. Precis som referensvariabler kan skrivas

överallt, där även en variabel av enkel typ kan stå. Menar man arrays av objekt, är svaret

nej, vilket vi kommer att förklara i detta avsnitt. Vi kommer att inse att en array av

objekt inte är nödvändig, när man har en array av referenser vars element pekar på ett

objekt. Array av referenser gör oss samma tjänst som array av objekt.

Vi börjar med att deklarera en klass so§m vi sedan i programmet ArrayOfRef (nästa si-

da) kommer att använda för att konstruera en array av referenser som i sin tur ska använ-

das för att peka på objekt av denna klass:

// Fish.cs

// Deklarerar klassen Fish med tre datamedlemmar och två metoder

using System;

class Fish

{
 public string sort;

 public float weight, size;

 public int Price()

 {
 return (int) Math.Round(weight * 7.25 / 100);

 }

 public int Shipping()

 {
 return (int) Math.Round(weight * 0.02 + size * 0.1);

 }
}

Klassen Fish modellerar en fisk med datamedlemmarna sort, weight och size. En

laxforell t.ex. med en viss vikt i gram och en viss längd i cm kan vara ett objekt av

denna klass, där laxforell är fiskens sort. Metoden Price() beräknar priset på fisken

oberoende av sort, med 7,25 kr per hekto. Metoden Shipping() beräknar transport-

kostnaden utifrån fiskens vikt och längd genom att t.ex. multiplicera kostnadsfaktorn

0,02 med vikten och 0,1 med längden och addera dem. Båda Metoder returnerar priset

och frakten i hela kronor utan ören. Biblioteksmetoden Math.Round() avrundar till

närmaste heltal. Självklart kan man anmärka att den här modelleringen har vissa brister

ur praktisk synpunkt: För det första är fiskpriser i praktiken inte oberoende av sorten.

För det andra är både pris och frakt i regel belopp i kronor och ören dvs decimaltal och

inte heltal. Men vi gör medvetet båda förenklingar i modellen för att förenkla imple-

 200

menteringen och koncentrera oss på det programmeringstekniska konceptet av array av

referenser. Vi vill nämligen använda detta koncept, för att på ett effektivt sätt skapa

och hantera många objekt av klassen Fish. För det här ändamålet är de nämnda bris-

terna i modelleringen irrelevanta. Följande program skapar en array av referenser till

Fish-objekt och anropar metoderna Price() och Shipping() för att sedan registrera

(skriva ut) alla uppgifter till varje objekt:

// ArrayOfRef.cs

// Skapar först en array av 5 referenser till Fish-objekt, skapar sedan 5

// Fish-objekt på vanligt sätt och tilldelar dem till referenserna.

using System;

class ArrayOfRef

{
 static void Main()

 {
 Fish[] f = new Fish[5]; // Array av referenser

 // OBS! Inga objekt

 for (int i = 0; i < f.Length; i++)

 {
 f[i] = new Fish(); // Skapar objekt och

 // tilldelar adressen

 // till en referens

 Console.Write("\n\tMata in sorten till fisk" + (i+1) + ":\t");

 f[i].sort = Console.ReadLine(); // Input

 if (f[i].sort.Length <= 7) f[i].sort += '\t';

 Console.Write("\tMata in vikten till fisk" + (i+1) + ":\t");

 f[i].weight = (float) Convert.ToDecimal(Console.ReadLine());

 Console.Write("\tMata in längden till fisk" + (i+1) + ":\t");

 f[i].size = (float) Convert.ToDecimal(Console.ReadLine());

 }

 Console.Write("\nFisksort\tVikt i g\tLängd i cm\tPris\tFrakt\n" +

 "---\n");

 foreach (Fish element in f)

 {
 Console.WriteLine(element.sort + "\t " +

 element.weight + "\t\t " + element.size + "\t\t " +

 element.Price() + "\t " + element.Shipping() + "\n") ;

 }
 }
}

I programmet ArrayOfRef skapas en array av 5 referenser till Fish-objekt med satsen:

Fish[] f = new Fish[5];

Observera att denna sats inte skapar något objekt alls, för då skulle det behövas koden

new Fish() – OBS! parentesen – som inte finns med i satsen ovan. Förväntar man sig

att en ”array av 5 Fish-objekt” skulle skapas med new Fish()[5] så är det fel, för den

här koden kan inte kompileras – ett tecken på att begreppet ”array av objekt” måste

förkastas. Istället måste man gå två steg: Först måste en array av rena referenser

 201

definieras som i satsen ovan. Initieringsproblematiken löses automatiskt pga att en array

alltid initieras till sin datatyps defaultvärden och att datatypen referens default-initieras

till null (sid 101). Då spelar det ingen roll om det handlar om referenser till objekt av

klassen Fish eller av någon annan klass. Sedan kan man fundera hur man explicit

initierar referenserna så att de pekar på verkliga objekt av typ Fish. Detta görs i pro-

grammet ArrayOfRef med:

 f[i] = new Fish();

som står i for-satsen. Först efter den här satsen har vi allokerat minnesutrymme för

ETT objekt av typ Fish, inte för en array av objekt, för i koden ovan finns inget spår av

en sådan array. Detta objekts minnesadress tilldelas referensarray-elementet f[i] där i

tack vare for-loopen går från 0 till 4. Vi har endast att göra med en array av referenser

till Fish-objekt, för hakparentesen – arrayens symbol – står efter referensvariabeln f

som pekar på denna referensarray. Varje element i denna referensarray pekar i sin tur på

ett separat Fish-objekt. De två stegen som tas är: Först från f till referensarrayen och

sedan från den till objekten. Det första steget står utanför och det andra steget i for-

loopen. Efter objektens definition initieras varje objekts datamedlemmar sort, weight

och size i for-loopen till värden som läses in från konsolen. Sedan skrivs de fullstän-

diga uppgifterna till varje objekt, dvs även priset samt fraktkostnaden, ut. Anropet av

metoderna Price() och Shipping() är inbakade i utskriftssatsen. En körning av pro-

grammet ArrayOfRef kan ge följande slutlig dialog:

 Mata in sorten till fisk1: Laxforell

 Mata in vikten till fisk1: 719

 Mata in längden till fisk1: 38,5

 Mata in sorten till fisk2: Torsk

 Mata in vikten till fisk2: 423

 Mata in längden till fisk2: 28,7

 Mata in sorten till fisk3: Aborre

 Mata in vikten till fisk3: 550

 Mata in längden till fisk3: 25,5

 Mata in sorten till fisk4: Gädda

 Mata in vikten till fisk4: 985

 Mata in längden till fisk4: 58

 Mata in sorten till fisk5: Gös

 Mata in vikten till fisk5: 395

 Mata in längden till fisk5: 14

 202

Fisksort Vikt i g Längd i cm Pris Frakt

Laxforell 719 38,5 52 18

Torsk 423 28,7 31 11

Aborre 550 25,5 40 14

Gädda 985 58 71 26

Gös 395 14 29 9

”Array av objekt” ?

För att kunna datorisera en verksamhet med fiskar behöver vi objekt av typ Fish. Själv-

klart skulle man kunna skapa sådana objekt t.ex. med Fish f1 = new Fish(); osv.

Men vad gör man om man vill modellera en handel med stora fiskmängder under en

längre period? Array skulle då vara den givna lösningen för att effektivisera kodningen.

Men funderar man närmare på begreppet ”array av objekt” av typ Fish dyker upp föl-

jande fråga: Vilket defaultvärde ska t.ex. en array av Fish-objekt få vid initieringen?

Till de enkla datatyperna i C# kommer de fördefinierade defaultvärdena 0, tom sträng,

null, nolltecknet och false (sid 101). Men Fish är ju ingen fördefinierad datatyp. Det

finns ingen begränsning på egendefinierade datatyper (klasser) och det går inte att förut-

säga vilka man kan skapa i C#. Och därför går det inte heller att fastslå vilken default-

initiering en sådan array skulle få. Vi ser att begreppet ”array av objekt” leder till en

återvändsgränd. Lösningen är array av referenser – referenser till objekt dvs en två-

stegslösning som användes i programmet ArrayOfRef (sid 200).

 203

5.5 Array som parameter i metoder

Array som bearbetar större datamängder ger upphov till mer komplexa och sofistikerade

program. Exempel på det är applikationer som söker, sorterar eller krypterar data. Vi

kommer i fortsättningen att behandla enkla varianter av sådana program. Modularise-

ring är metoden för att bryta ned stora komplexa program i mindre och enklare moduler.

Helst vill man ha program som består av ett antal enkla, överskådliga metoder där varje

metod löser ett specifikt problem. Sedan vill man sätta ihop dem dvs anropa dem med

ett antal parametrar från Main() och kontrollera hela händelseförloppet från denna

metod som helst ska ha så lite kod som möjligt. Ju mer avancerade datatyper man

använder i sitt program desto större blir behovet av modularisering. Självklart vill man

även modularisera program som använder array. I C# är det möjligt att skicka en array

som parameter till en metod dvs att definiera en array i parameterlistan. I nästa program

definieras en void-metod Method() med en array av int som parameter:

// ArrayParam.cs

// Skickar en stor array till en metod, men:

// Array som parameter i en metod behandlas som en referens

// Parameteröverföring sker med referensen: adressen skickas

using System;

class ArrayParam

{
 static void Method(int[] b) // Array som parameter

 {
 Console.WriteLine("\n\tI metoden\n\tär arrayens sista " +

 "element före ändringen " + b[999]);

 b[999] = 1; // Ändringen

 Console.WriteLine("\n\t\t\t och efter ändringen " +

 b[999] + '\n');

 }

/***/

 static void Main()

 {
 int[] a = new int[1000]; // Array med 1000 nollor

 Console.WriteLine("\n\tI Main()\n\tär arrayens sista " +

 "element FÖRE anropet " + a[999]);

 Method(a); // Referensanrop: arrayens

 // adress skickas till metod

 Console.WriteLine("\tI Main()\n\tär arrayens sista " +

 "element EFTER anropet " + a[999] + '\n');

 }
}

Låt oss börja titta på Main() innan vi går in på hur arrayen b i metoden Method() be-

handlas. I Main() har vi en int-array a med 1000 element, alla initierade till default-

 204

värdet 0. En körning av ArrayParam avslöjar även en del intressanta nyheter för oss.

Den viktigaste är att en ändring som görs i en annan metod återspeglas i Main():

 I Main()

 är arrayens sista element FÖRE anropet 0

 I metoden

 är arrayens sista element före ändringen 0

 och efter ändringen 1

 I Main()

 är arrayens sista element EFTER anropet 1

Som man ser har arrayen a:s sista element a[999] – kom ihåg att indexeringen hos ar-

rays börjar med 0 – som hade initialvärdet 0, EFTER anropet av metoden fått värdet 1,

fast denna ändring inte gjorts i Main() utan i metoden Method(), dessutom med arra-

yen b och inte med a. Detta verkar bryta mot de regler vi lärt oss om lokala variablers

livslängd, därför att a trots allt är en lokal variabel i Main() och därmed inte giltig i

Method(). Samma sak gäller för b som är lokal variabel i Method() och därmed inte

giltig i Main(). Gåtans lösning är att det handlar endast om en och samma array till

vilken a och b är bara två olika referenser. Därför pratar vi i utskriften ovan inte om

arrayen a och inte om arrayen b utan om arrayen, för det finns bara en. För att första

detta bättre låt oss titta på följande minnesbild som ska förtydliga vad som händer i

programmet ArrayParam:

 Index: 0 1 2 3 998 999

a = 12EFE0 0 0 0 0 0 0 1

 4 000 bytes

 4 bytes

Vi vet att varje int tar 4 bytes i minnesutrymme. Därmed tar hela arrayen a med 1 000

int-element 4 000 bytes. Detta ”stora” minnesutrymme allokeras av satsen:

int[] a = new int[1000];

a är en referensvariabel som lagrar ett hexadecimalt tal, säg 12EFE0 (decimalt: 1241056)

som är arrayens adress. Adresser visas i datavärlden – det är en de facto-standard – som

tal i hexadecimalt format. Med adress menas alltid en plats i datorns RAM-minne (Ran-

dom Access Memory). När en array definieras lagras den vid en adress och arraynamnet

blir en länk mellan programmet och denna fysiska adress. När arrayen a sedan i metod-

anropet Method(a); skickas som en aktuell parameter, då överförs inte arrayens vär-

 b 12EFE0

 205

den utan arrayens adress till metoden Method(). Denna adress tas emot av den formel-

la parametern b som är definierad i metodens parameterlista som en array av int. På så

sätt hamnar a:s adress, det hexadecimala talet 12EFE0 i minnescellen b. Dvs b lagrar a:s

adress som tar 4 bytes. Därmed pekar både a och b på en och samma array. Någon ko-

piering av arrayinnehållet på 4 000 bytes till en ny plats förekommer inte. Endast adres-

sen på 4 bytes kopieras till b vid metodanropet. I Main() kommer man åt arrayen med

a och i Method() gör man det med b. När vi sedan i Method() ändrar värdet i arra-

yens sista element med b från 0 till 1, kan ändringen ses i Main() med a.

Den ovan beskrivna metoden för överföring av parametrar kallas referensanrop. Dvs

inte parametrarnas värden utan deras adresser överförs vid metodanropet. När paramet-

rarnas adresser överförs och inte deras värden, förekommer ingen fördubbling av min-

nesåtgång. Alla eventuella ändringar i metoden återspeglas i Main(). Valet av parame-

teröverföringsmetod styrs av datatypen:

Låt oss nu även gå in på med vilken syntax programmet ArrayParam använder en

array som en parameter i en metod.

1. Att definiera en metod med array som parameter

har gjorts i metoden Method()genom att definiera den formella parametern som en ar-

ray av int dvs samma datatyp som den aktuella parametern har i anropet:

int[] b

Antalet element inom hakparentesen får inte anges. Att antalet element inte behövs här

beror på att en formell parameter får sitt initialvärde från den anropande metoden. Även

arraystorleken följer med vid anropet. Detta har i sin tur att göra med att hela definitio-

nen av en metod endast är en mall, en föreskrift om vad som ska hända om metoden

anropas, en potentiell kod som blir aktuell först när vi anropar metoden. I metoden

Method() står definitionen av parametern b till datatypen array av int som vanligt i

parameterlistan och därmed i metodhuvudet:

static void Method(int[] b)

2. Att anropa en metod med array som parameter

sker genom att skriva den aktuella parametern som array utan hakparenteser i anropet:

Method(a);

Anmärkningsvärt är att det för första gången dyker upp en array utan hakparenteser. Så,

tittar man inte på definitionssatsen några rader ovan kan man inte känna igen a som

array. Anledningen till att hakparentesen inte får stå efter arrayen a i anropssatsen är

just det vi sade ovan om referensanrop: Anropet skickar inte hela arrayen med dess vär-

den till Method() utan endast referensen a. En hakparentesens skulle tolkas som kod

som anger index som specificerar ett visst element i arrayen. En anropssats av typen

I C# väljs automatiskt referensanrop (Call by reference) för parameter-

överföring vid metodanrop, om parametern är av datatypen array.

 206

Method(a[999]); skulle skicka endast ett element av arrayen nämligen det med index

999. Det blir i så fall ett tal av typ int som skickas till metoden. Man kommer att få

kompileringsfel i alla fall eftersom metodens formella parameter b är definierad som en

array av int och inte som en vanlig int. Den enkla datatypen int kan inte konverteras

till den sammansatta datatypen array av int. De automatiska typkonverteringsreglerna

gäller endast för enkla datatyper. Det tänkbara alternativet Method(a[]); fungerar inte

heller av samma anledning: Det handlar om en icke-definitionssats där hakparentesens

innehåll tolkas som index. Men index får aldrig utelämnas (se punkt 1). För att skicka

en array som parameter till en metod måste alltså arrayen i metodanropet skrivas endast

med arraynamnet utan hakparentes. Självklart måste arrayen innan anropet vara definie-

rad i Main() som vanligt med hakparentes och en uppgift om storleken. Arraynamnet

används vid anropet som adressen till arrayen.

 207

5.6 Sökning och sortering

Ett viktigt – numera självklart – användningsområde för datorer är sökning i och sorte-

ring av stora datamängder. Programmeringstekniskt sett kan sådana applikationer inte

skrivas utan arrays (eller högre datatyper). Därför är sökning och sortering klassiska

tillämpningar för sammansatta datatyper. Samtidigt ökar behovet av modularisering ju

mer avancerade datatyper man använder i sitt program. Nu när vi lärt oss att skicka

arrays som parametrar till metoder, kan vi modularisera program som arbetar med

arrays. Detta är nödvändigt för att koncentrera sig på den egentliga uppgiften nämligen

sökning, sortering eller andra applikationer som t.ex. kryptering (kommer att tas upp i

nästa avsnitt). När man söker i eller sorterar data finns redan ett material i form av data-

baser, tabeller eller listor osv. som man använder. För att skaffa ett liknande underlag

för våra testprogram har vi valt att låta den i C# inbyggda slumptalsgeneratorn produ-

cera materialet och lagra det i en array.

Slumptal i en array

Eftersom vi i fortsättningen kommer att jobba med flera program som använder slump-

tal lagrade i en array vill vi skriva en metod som kan användas av alla dessa program.

Vi har valt formen av en void-metod för att generera ett antal slumpvärden och tilldela

dem till elementen i en array:

// RandArray.cs

// Ny metod Rand() slumpar fram en array av heltal mellan

// a och b, lagrar dem i arrayen no och skriver ut dem

// Anropar biblioteksmetoden Next() i en loop för att få

// ETT slumptal i varje varv

using System;

class RandArray

{
 public static void Rand(Random r, int[] no, int a, int b)

 {
 Console.Write("\n\t" + no.Length + " heltal mellan " +

 a + " och " + b + " slumpas fram:\n\n\t");

 for (int i=0; i < no.Length; i++)

 {
 no[i] = r.Next(a, b);

 Console.Write(no[i] + " ");

 if ((i % 16 == 0) && (i != 0))
 Console.Write("\n\t");

 }
 Console.WriteLine("\n\n");

 }
}

För förståelse av biblioteksmetoden Next() hänvisas till hantering av slumptal på sid

65. Det nya i koden ovan är att slumptalen lagras i en array som kommer att användas

av fler program vilket demonstrerar inte bara modularisering utan även återanvändning

 208

av kod. Filen ovan innehåller inte ett fullständigt program utan endast en klass med

void-metoden Rand() som har fyra parametrar varav den ena är en array av int,

kallad no som lagrar slumptalen. Arrayen deklareras i parameterlistan och tilldelas i

kroppen mellan a och b via satsen:

no[i] = r.Next(a, b);

som i en for-sats anropar den biblioteksmetoden Next() som i sin tur i varje varv av

loopen slumpar fram ett slumptal mellan a och b. Vi har använt denna metod tidigare i

andra program. for-satsen som anropar metoden skriver ut slumptalen. Antalet

arrayelement bestäms i början av Main() i följande program:

// SearchTest.cs

// Skapar en array och skickar den till metoden Rand() där den

// tilldelas slumptal. Ändringen fås tillbaka pga referensanrop.

// Den tilldelade arrayen skickas vidare till metoden MySearch()

// som söker efter ett inläst tal bland slumptalen

using System;

class SearchTest

{
 static void Main()

 {
 Random r = new Random();

 int a = 1, b = 1000, searchedNo;

 int[] intArray = new int[200]; // Default-initiering

 RandArray.Rand(r, intArray, a, b); // Slump-tilldelning

 Console.Write("\tAnge tal som programmet ska söka efter:\t");

 searchedNo = int.Parse(Console.ReadLine()); // Sökt tal

 Search.MySearch(intArray, searchedNo); // Anrop av

 } // sökmetoden

}

Även om vi inte gått igenom programmets alla delar – klassen Search med metoden

MySearch() fattas – ska vi titta på en körning för att bättre förstå vad som händer:

200 heltal mellan 1 och 1000 slumpas fram:

237 255 104 898 422 575 712 34 775 299 192 530 442 17 656 344 276

18 929 282 720 967 336 17 934 378 427 667 600 787 581 838 346

525 224 576 710 484 865 211 360 686 858 798 455 501 142 521 138

405 101 747 951 13 889 271 567 88 612 45 796 46 82 989 366

355 832 918 441 728 635 440 801 719 570 35 757 539 563 434 237 Anrop av

907 177 843 334 835 535 981 637 954 657 623 520 468 63 315 252

870 80 101 317 872 728 58 771 662 594 880 444 502 162 676 173 RandArray.Rand()

179 809 890 517 887 303 532 468 852 282 488 719 660 568 981 657

256 784 888 460 463 118 13 180 120 73 673 242 303 538 783 793

982 98 342 660 174 446 13 215 549 281 113 591 241 987 759 95

261 224 836 719 922 217 711 709 444 358 398 815 631 938 166 962

147 696 738 563 874 322 484 811 419 674 912 830 653 423 587 781

962 226 982 80 703 712 519

Ange tal som programmet ska söka efter: 519 Anrop av

Det sökta talet 519 är det 200:e elementet bland talen ovan. Search.MySearch()

 209

I programmet SearchTest:s Main()-metod finns bara anrop av två metoder samt defi-

nition av deras aktuella parametrar och inläsning av det sökta talet. En array av int har

definierats med 200 element och tilldelats referensen intArray. I anropssatsen Rand-

Array.Rand(r, intArray, a, b); skickas arrayen till metoden. Det anmärknings-

värda är följande: När arrayen intArray som aktuell parameter i anropet överförs till

den formella parametern no i metoden RandArray.Rand(), är den definierad och de-

fault-initierad till 0-värden. Faktum är att, när parametern är en array, så används refe-

rensanrop (sid 199) där den aktuella parametern intArray, och den formella parametern

no, endast är två olika referenser till ett och samma minnesområde, till en och samma

array. Med intArray definierar vi arrayen i Main() och anropar RandArray.-

Rand(). Med no tilldelar vi samma array i metoden RandArray.Rand() slumpvärden

som överskriver arrayens default-värden. En sådan ”arbetsdelning” mellan olika

metoder kan endast göras med referensanrop.

Efter anropet av slumpmetoden läses in ett värde till variabeln searchedNo som

tillsammans med arrayen intArray skickas till metoden Search.MySearch(). När

MySearch() anropas är arrayen intArray både definierad och tilldelad slumpvärden.

Sökmetoden får alltså slumptalsvärden som överförs till den formella parametern t. Vid

sidan om no är t nu en till minnescell som lagrar arrayen intArray:s adress i detta

program. Även den här parameteröverföringen sker med referensanrop. Vid anropet

skickas inte värdena i arrayelementen till metoden utan endast adressen som lagras i

intArray. I själva verket är det arrayens adress som överförs till MySearch(), tas

emot av t och används sedan i sökmetoden för att hitta det sökta talet i arrayen:

// Search.cs

// Metoden MySearch() tar emot två parametrar:

// arrayen t och heltalet s, det sökta elementet

// Söker efter den första förekomsten av s bland arrayelementen

using System;

class Search

{
 public static void MySearch(int[] t, int s)

 {
 int i;

 for (i = 0; i < t.Length; i++) // Söker igenom array t

 if (t[i] == s) // Sökkriteriet

 {
 Console.WriteLine("\n\tDet sökta talet " + t[i] +

 " är det " + (i+1) + ":e elementet" +

 " bland talen ovan.\n\n");

 break; // Bryter for-satsen

 } // när det sökta hittats

 if (i == t.Length)
 Console.WriteLine("\n\tDet sökta talet finns ej " +

 "bland talen ovan.\n\n");

 }
}

 210

Det sökta talet skickas med den aktuella parametern searchedNo och tas emot av den

formella parametern s. Nu ska vi titta på vad void-metoden MySearch() egentligen

gör och hur den hittar eller inte hittar det sökta talet. Arrayen och det sökta talet är

givna. Frågan är: finns det sökta talet i arrayen? Om ja, på vilken position? Algoritmen

är väldigt rak och enkel och kallas för linjär sökalgoritm:

1. Gå igenom alla element i arrayen dvs sök igenom arrayen t från början till slutet

(linjär sökning).

2. Jämför varje element med det sökta talet. Finns likhet med något element, skriv ut

ett hittat-meddelande samt elementets position som är lika med index + 1. Har du

hittat en likhet avbryt sökningen.

3. Har du gått igenom alla arrayelement utan att hitta någon likhet skriv ut ett ej-

hittat-meddelande.

Denna algoritm hittar endast den första förekomsten av det sökta talet i arrayen och tar

inte hänsyn till att det ev. kan finnas flera exemplar av det sökta talet i arrayen. Pro-

gammeringstekniskt har vi översatt algoritmens punkt 1 till C#-kod genom att i metoden

MySearch() skriva en for-sats som söker igenom arrayen t från index 0 till

t.Length-1. I denna for-sats finns en if-sats som implementerar algoritmens punkt 2

och i sin tur innehåller två satser: Hittat-meddelandet och break-satsen. En break-sats

avbryter alltid den loop eller den switch-sats i vilken den står, här alltså for-satsen.

Det är den som enligt anvisningen i punkt 2 gör att programmet endast hittar den första

förekomsten av det sökta talet i arrayen. I punkt 3:s implementering – den sista if-

satsen i MySearch() – utnyttjar vi att for-satsens räknare i är väl definierad även ef-

ter for-satsen och att den har kvar det värde den fick där. Om sökningen gått igenom

alla arrayelement utan att hitta något element som är lika med det sökta talet, har for-

satsens räknare i nått värdet t.Length eftersom detta är första värdet som inte uppfyl-

ler for-satsens villkor i < t.Length. I detta fall avslutas for-satsen utan break med

värdet t.Length för i så att villkoret till den efterföljande if-satsen blir uppfyllt och

skriver ut ett Ej-hittat-meddelande.

Bubbelsortering

Sökning i och sortering av stora datamängder är klassiska tillämpningar för sammansat-

ta datatyper, speciellt för arrays. Medan sökning i förra exemplet baserades på en linjär

algoritm, bygger sortering på en ny algoritm, även om den har vissa likheter med sök-

ning. Vi ska fortsätta kapitlet om arrays med en sorteringsalgoritm som är en vidare-

utveckling av algoritmen för platsbyte av två värden. Vi har i programmet MiniSort

(sid 154) använt denna algoritm på två tecken:

if (char1 > char2)

{
 temp = char1;

 char1 = char2;

 char2 = temp;

}

 211

Om tecknen står i fel ordning ska de byta plats. För att göra det läggs char1:s värde un-

dan i en tredje, temporär variabel temp. Sedan tar vi char2:s värde och lägger det i

char1. Till sist läggs värdet i temp (som ju har mellanlagrat char1:s värde) in i

char2. Illustrationen på sid 154 bör underlätta förståelsen av denna process. I själva

verket beskriver den en algoritm för sortering av två värden. För att utvidga algoritmen

till flera värden kopplar vi den till den linjära sökalgoritmen som vi använde för sök-

ning. Principen där var en if-sats inbakad i en for-sats. for-satsen söker igenom vär-

dena i en array och if-satsen innehåller sökkriteriet. När det gäller sortering måste if-

satsen istället byta plats på två värden om de står i fel ordning. Denna if-sats har vi ju

redan skrivit för två tecken (se ovan). Det gäller bara att formulera den för två array-

element och stoppa in den i en for-sats:

 for (i = 0; i < n-1; i++)
 if (t[i] > t[i+1])

 {
 temp = t[i];

 t[i] = t[i+1];

 t[i+1] = temp;

 }

där t är en array som innehåller värdena som ska sorteras och n antalet element i arra-

yen. När två på varandra följande arrayelement t[i] och t[i+1] står i oönskad ord-

ning ska de byta plats där i genomlöper alla index. Man skulle kunna tro att problemet

vore löst med detta. Men eftersom if-satsen endast testar om två grannvärden står i fel

ordning och byter sedan plats på dem, räcker koden ovan inte till att sortera arrayen

fullständigt, även om for-satsen söker igenom hela arrayen. Jämförelsen mellan två

grannvärden tar inte hänsyn till värden som står längre bort. Ett experiment bekräftar

detta: Om man tillämpar koden ovan på en array av 20 heltal som med metoden

RandArray.Rand() är utvalda ur intervallet [1, 100] får man följande resultat:

20 heltal mellan 1 och 100 slumpas fram:

75 2 24 94 30 88 10 42 50 54 27 47 45 83 34 86 67 66 14 14

De 20 slumptalen efter koden ovan:

2 24 75 30 88 10 42 50 54 27 47 45 83 34 86 67 66 14 14 94

Resultatet visar att sorteringen inte är klar, men att vi är på rätt väg. Arrayen är delvis

sorterad. Bara om två grannvärden stod i fel ordning har de bytt plats och detta har

gjorts löpande genom hela arrayen. Denna delsortering kallas för ett pass i en sorte-

ringsalgoritm som är känd under beteckningen bubbelsortering. För att uppnå en full-

ständig sortering måste detta pass upprepas flera gånger vilket innebär att lägga in ovan-

stående for-sats i en ny for-sats som går igenom flera pass. I varje pass kommer en del

värden att placera sig i rätt ordning. Metoden kan jämföras med luftbubblor i vattnet

som så småningom stiger upp till vattenytan. Därav namnet bubbelsortering. Vi har im-

plementerat bubbelsorteringsalgoritmen i följande externlagrade void-metod:

 212

// Bubble.cs

// Sorterar heltal lagrade i arrayen t med en algoritm

// (bubbelsortering) som baseras på algoritmen för platsbyte av

// två objekt i programmet MiniSort (sid 154)

using System;

class Bubble

{
 public static void sort(int[] t)

 {
 int temp;

 for (int pass=0; pass<t.Length-1; pass++)

 for (int i=0; i<t.Length-1; i++)

 if (t[i] > t[i+1]) // Sortering i stigande

 { // ordning
 temp = t[i]; // Algoritm för platsbyte

 t[i] = t[i+1]; // av de två elementen

 t[i+1] = temp; // t[i] och t[i+1]

 }
 Console.WriteLine("\tDe " + t.Length +

 " slumptalen efter sortering:");

 Console.Write("\n\t");

 for (int i=0; i < t.Length; i++) // Sorterad utskrift

 Console.Write(t[i] + " ");

 Console.WriteLine("\n\n");

 }
}

Bubbelsorteringsalgoritmen består alltså av en if-sats inbakad i en nästlad for-sats där

if-satsen implementerar algoritmen för platsbyte av två värden. Den inre for-satsen

söker igenom arrayelementen, utför ett sorteringspass och den yttre for-satsen upprepar

sorteringspassen. Metoden sort() har arrayen t som ska sorteras som parameter och

används i den inre for-satsen. Den anropas från Main() i följande program efter defi-

nitionen av arrayen intArray och dess tilldelning i metoden RandArray.Rand():

// BubbleTest.cs

using System;

class BubbleTest

{
 static void Main()

 {
 Random r = new Random();

 int a = 1, b = 100;

 int[] intArray = new int[17];

 RandArray.Rand(r, intArray, a, b);

 Bubble.sort(intArray);

 }
}

 213

En körning av programmet BubbleTest visar att sorteringen nu genomförts fullstän-

digt:

 17 heltal mellan 1 och 100 slumpas fram:

 23 76 23 31 67 94 79 38 46 10 85 100 87 61 17 71 14

 De 17 slumptalen efter sortering:

 10 14 17 23 23 31 38 46 61 67 71 76 79 85 87 94 100

Andra algoritmer

Som en sista anmärkning till kapitlet sökning och sortering bör påpekas att de algorit-

mer som avhandlats här, är enkla och elementära. De är däremot inte de mest effektiva

när det gäller att minimera antalet operationer och maximera snabbheten. Det finns ef-

fektivare (och mer komplicerade) algoritmer både när det gäller sökning och sortering

som vi inte tar upp här. Vi nämner bara en algoritm som kallas binärsökning som heter

så för att den i varje steg halverar arrayen man ska söka i. Den behöver ett mindre antal

operationer och är därmed snabbare. När det gäller sortering finns den effektiva algorit-

men Quicksort som bygger på rekursion. Rekursiva metoder är metoder som anropar sig

själva – ett alternativ till repetition (loopar) som behandlas på sid 175.

 214

Generiska metoder är metoder vars parametrar har variabla datatyper.

Ex.: I metoden public static void G_out <T> (T[] t) är

parametern t är en array av typ T där T är en platshållare för datatyper.

Den variabla datatypen T (Type) definieras med <T> och kan användas

istället för vilken datatyp som helst: int, double, char, string, … .

5.7 Generiska metoder

 I programmering är variabler platshållare för värden.

I generiska metoder kan variabler även användas som platshållare för datatyper.

I generiska metoder är de involverade datatyperna inte specifierade förrän man utveck-

lar koden. De bestäms först när metoderna anropas av de aktuella parameternas data-

typer. Detta innebär en generalisering som kallas för Generics som kan tillämpas även

på klasser. Man kan skriva ETT program för många tillämpningar.

Generics

I de flesta programmeringsspråken har man infört Generics som ett tillägg till standar-

den först i de nyare versioner av språket. I C++ t.ex. kom motsvarigheten Templates

först på 90-talet. I Java introducerades generics 2004. I C# har det funnits stöd för

Generics sedan 2005.

Genom att använda Generics behöver man inte längre skriva olika varianter av ett pro-

gram som i praktiken löser (nästan) samma problem. Dessa skiljer sig programmerings-

tekniskt endast i datatypen till de involverade parametrarna. Alla dessa varianter kan

förenas i ett och samma – numera generiskt – program i vilka datatyperna är variabler.

Låt oss säga, vi vill skriva ett program för sortering av olika slags objekt. Det kan hand-

la om sortering av heltal, decimaltal, bokstäver, strängar, eller … . Sorteringsalgoritmen

till alls dessa program är den samma oavsett man sorterar heltal, decimaltal, bokstäver

eller strängar. Metoden som implementerar algoritmen skrivs då generiskt, dvs med

variabla datatyper, så att den kan användas för att sortera olika typer av objekt beroende

på i vilket syfte den anropas. Låt oss titta på följande exempel:

// G_Output.cs

// Generisk metod G_out <> () skriver ut en array av godtycklig

// variabel datatyp T som kan vara int, double, char eller string

// foreach loopar igenom och skriver ut listans alla element

using System;

using System.Collections.Generic;

class G_Output

{
 public static void G_out <T> (T[] t)

 {
 Console.Write("\t");

 215

 foreach (T element in t)

 Console.Write(element + " ");

 Console.WriteLine("\n");

 }
}

Metoden G_out <> () i klassen G_Output är en generisk variant av den vanliga meto-

den Ut() i klassen Skriv som presenterades tidigare när vi behandlade listor (Progr1,

7.9). Det som gör att denna metod är generisk är den annorlunda syntaxen i metod-

huvudet:
public static void G_out <T> (T[] t)

Till skillnad från vanliga metoder har denna metod två parameterlistor. Den ena är den

vanliga med runda parenteser (T[] t) som innehåller parametern t, bara att dess data-

typ är en array av T. Den andra är den ”generiska parameterlistan” <T> där T definieras

som en formell parameter för en datatyp som bestäms när metoden anropas, t.ex. så här:

G_Output.G_out(hel); T får den datatyp som i det anropande programmet har till-

delats variabeln hel. Har vi t.ex. definierat hel som en int, så antar den formella para-

metern T den aktuella parametern int. I generiska metoder finns det alltid en sådan typ-

parameter. I det program där vi testar generiska metoder, anropas G_out <> () fyra

gånger, varje gång med en annan datatyp, närmare bestämt med int, double, char

och string. Med hjälp av dessa bildas sedan med koden T[] arrays av int, double,

char och string. Den vanliga parametern t definieras då med koden T[] t till sådana

arrays. Här följer nu det program som testar och anropar två generiska metoder:

// GenericTest.cs

// Testar de generiska metoderna G_out <> () och G_sort <> ()

// Skapar 4 arrays av olika typer: int, double, char och string

// och skickar dem till G_out <> () för utskrift och till

// G_sort <> () för sortering

// Generiska metoderna anropas som vanliga metoder

// Utskrift sker före och efter sortering

using System;

class GenericTest

{
 public static void Main()

 {
 int[] hel = { 9, 7, 2, 1, 8, 5, 4, 3, 6 };

 double[] deci =

 { 9.9, 7.7, 2.2, 1.1, 8.8, 5.5, 4.4, 3.3, 6.6 };

 char[] boks = {'h', 'c', 'f', 'a', 'e', 'i', 'b', 'd', 'g'};

 string[] text = { "zeta", "beta", "gamma", "psi", "alpha" };

 Console.WriteLine(

 "\n\tOlika datatyper skrivs ut med samma generiska metod" +

 "\n\tFÖRE SORTERING:\n"); // Osorterad utskrift

 G_Output.G_out(hel); // Anrop av generisk

 G_Output.G_out(deci); // metod G_out <> ()

 G_Output.G_out(boks);

 216

 G_Output.G_out(text);

 Console.WriteLine(

 "\tDe olika typerna sorteras med samma generisk metod");

 G_Bubble.G_sort(hel); // Sortering: Anrop

 G_Bubble.G_sort(deci); // av generisk metod

 G_Bubble.G_sort(boks); // G_sort <> ()

 G_Bubble.G_sort(text);

 Console.WriteLine("\toch skrivs ut EFTER SORTERING:\n");

 G_Output.G_out(hel); // Sorterad utskrift

 G_Output.G_out(deci);

 G_Output.G_out(boks);

 G_Output.G_out(text);

 }
}

Den vitmarkerade koden visar fyra anrop av den generiska metoden G_out <> (). Det

anmärkningsvärda är att dessa anrop inte skiljer sig alls från anrop av vanliga metoder.

De aktuella parametrarna hel, deci, boks och text är definierade som arrays av int,

double, char resp. string och skickar, när de anropas, inte bara sina vanliga värden

– heltalen, decimaltalen, bokstäverna och strängarna – till de anropade metoderna, utan

även sina datatyper. Medan de vanliga värdena i resp. array går till den formella para-

metern t i resp. metods runda parameterlista, går datatyperna arrays av int, double,

char och string till parametern T i resp. metods ”generiska” parameterlista <T>. Där-

med blir varje datatyp specificerad och insatt på alla ställen där T står i den generiska

metoden, vare sig i huvudet eller i kroppen. Så här blir resultatet av en körning av pro-

grammet GenericTest:

 Olika datatyper skrivs ut med samma generiska metod

 FÖRE SORTERING:

 9 7 2 1 8 5 4 3 6

 9,9 7,7 2,2 1,1 8,8 5,5 4,4 3,3 6,6

 h c f a e i b d g

 zeta beta gamma psi alpha

 De olika typerna sorteras med samma generiska metod

 och skrivs ut EFTER SORTERING:

 1 2 3 4 5 6 7 8 9

 1,1 2,2 3,3 4,4 5,5 6,6 7,7 8,8 9,9

 a b c d e f g h i

 alpha beta gamma psi zeta

 217

Som man ser har heltalen, decimaltalen, bokstäverna och strängarna dvs värdena i de fy-

ra olika arrays skrivits ut som ett resultat av de vitmarkerade anropen i programmet Ge-

nericTest på förra sidan. Alla fyra anrop har gått till en och samma generisk metod

G_out <> () (sid 214) som skriver ut dem. Visserligen behöver man skriva fyra olika

anrop i programmet GenericTest. Men man behöver definiera och koda själva meto-

den bara en gång, vilket innebär en stor effektivitet i utvecklingsarbetet.

Generisk bubbelsortering

Men körresultatet ovan har också andra delar, precis som själva programmet Generic-

Test. Efter att värdena skrivits ut skickas de till en annan generisk metod som sorterar

dem. Detta görs i GenericTest med anropen:

G_Bubble.G_sort(hel);

G_Bubble.G_sort(deci);

G_Bubble.G_sort(boks);

G_Bubble.G_sort(text);

Även dessa anrop kan man inte skilja från anrop till vanliga metoder, fast metoden

G_sort <> () är generisk. Efter sorteringen skickas arrayvärdena igen till utskrift, så

att vi ser dem sorterade i utskriften ovan – och detta sker inte bara för hel- och decimal-

talen samt bokstäverna utan även för strängarna. Även här använder vi oss av en enda

generisk metod som vi nu ska titta närmare på:

// G_Bubble.cs

// Genersik metod G_sort <> () sorterar en array av godtycklig

// variabel datatyp T som kan vara int, double, char eller string

using System;

using System.Collections.Generic;

class G_Bubble

{
 public static void G_sort <T> (T[] t) where T : IComparable<T>

 { // Krävs för CompareTo()
 T temp;

 for (int pass=0; pass<t.Length-1; pass++)

 for (int i=0; i<t.Length-1; i++)

 if (t[i].CompareTo(t[i + 1]) > 0) // Om t[i] > t[i+1]

 { // Sortering i sti-
 temp = t[i]; // gande ordning

 t[i] = t[i + 1]; // Algoritm för

 t[i+1] = temp; // platsbyte

 }
 }
}

Metoden G_sort <> () i klassen G_Bubble är en generisk variant av den vanliga me-

toden sort() i klassen G_Bubble som presenterades när vi behandlade sökning och

sortering (Progr1, 7.7). Här gäller samma som vi sa om den första generiska metoden

G_out <> (): Den generiska formella parametern T står för datatyper som är kopplade

 218

till den aktuella anropsparametern som skickas till den vanliga formella parametern t,

dvs för datatyperna till de objekt som ska sorteras.

Constraints

Till skillnad från G_out <> () har vi i den generiska metoden G_sort <> () ett til-

lägg i metodhuvudet:

public static void G_sort <T> (T[] t) where T : IComparable<T>

Tillägget where T : IComparable<T> är en s.k. constraint, dvs en restriktion som

läggs på T. Den är nödvändig eftersom vi i metodens kropp använder oss av ett villkor i

if-satsens huvud som ska jämföra två på varandra följande element i arrayen:

if (t[i].CompareTo(t[i + 1]) > 0)

Motsvarigheten till detta i den vanliga icke-generiska metoden sort() är:

if (t[i] > t[i + 1])

Anledningen till att denna kod inte fungerar i den generiska metoden är att vi inte längre

har att göra med en array av int vars element ska jämföras med varandra, utan med en

generaliserad datatyp T som kan vara vilken datatyp som helst. Hur ska koden avgöra

sanningsvärdet till ett sådant villkor om T är t.ex. en sträng? Självfallet måste den ta

strängarnas begynnelsebokstäver och jämföra deras ASCII-koder med varandra för att

avgöra vilken som är större. Men en sådan ”intelligens” finns inte automatikst inlagd i

den generaliserade datatypen T, utan den är förprogrammerad i metoden CompareTo().

För att kunna åt denna kod måste T ärva denna metod som i sin tur finns i Interfacet

IComparable<>. Det är därför vi måste skriva tillägget where T : IComparable<T> i

huvudet till metoden G_sort <> (). Annars kan vi inte kompilera if-villkoret

t[i].CompareTo(t[i + 1]) > 0

Det enklare alternativet t[i] > t[i + 1] som betyder samma sak, fungerar inte hel-

ler när vi arbetar med den generaliserade datatypen T istället för med int eller en annan

specifik datatyp.

I generisk programmering kallas konstruktionen where T : IComparable<T> en con-

straint dvs en restriktion som man lägger på T. Just denna constraint innebär att data av

typ T ska vara jämförbara. Man ska kunna använda jämförelseoperatorerna >, <, == osv.

på dem. Interfacet IComparable<> innehåller ett antal fördefinierade metoder som im-

plementerar denna möjlighet.

 219

5.8 Kryptering av text

Vi ska nu dra lite praktisk nytta av våra samlade kunskaper om bl.a. slumptal, ASCII-ko-

der, array, stränghantering, metoder och referensanrop, för att med ganska enkla medel

skriva en liten applikation om kryptering av text. Egentligen har vi redan skrivit en så-

dan, nämligen klassen EncryptStr med return-metoden Encrypt() (sid 140). Men

då löstes problemet med bibliotekslkassen String. Nu ska vi göra det med en egen ar-

ray av char och en void-metod istället. Följande program läser in text som en char-

array, skickar den till void-metoden Encrypt() där den krypteras resp. återställs tec-

kenvis med ett slumptal som krypteringsnyckel. Tekniken som används för kryptering

är samma som i EncryptStr-metoden, fast ännu enklare i och med man arbetar på

char-nivå. Ett String-objekt kan inte manipuleras på char-nivå. Nu behöver strängen

själv inte kopieras till en annan plats utan kan pga referensanrop krypteras på samma

ställe, varför char-programmet behöver hälften av det minnesutrymme som det gamla

String-programmet behövde.

// EncryptCharTest.cs

// Läser in text som en char-array och skickar den med en slump-

// krypteringsnyckel till metoden Encrypt() där den krypteras

// Referensanrop gör den krypterade texten tillgänglig i Main()

// Encrypt() anropas en andra gång med den krypterade texten och

// inverterad (negativ) krypteringsnyckel för att återställa den

using System;

class EncryptCharTest

{
 static void Main()

 {
 Random r = new Random();

 int key = r.Next(1, 501); // Slump-krypte-

 // ringsnyckeln

 Console.Write("\nSkriv text som ska krypteras:\t");

 char[] text = Console.ReadLine().ToCharArray();

 Console.Write("\n\tOkrypterad text:\t");

 Output(text);

 EncryptChar.Encrypt(text, key); // 1:a anropet

 // krypterar

 Console.Write("\n\n\tKrypterad text:\t\t");

 Output(text); // text är ändrad

 EncryptChar.Encrypt(text, -key); // 2:a anropet

 // återställer

 Console.Write("\n\n\tÅterställd text:\t");

 Output(text); // text är ändrad

 Console.WriteLine("\n\nKrypteringsnyckeln:\t\t" +

 key + '\n');

 }

 220

 static void Output(char[] a) // Metod som

 { // skriver ut
 for (int i = 0; i < a.Length; i++) // en array

 Console.Write(a[i]);

 }
}

Med en array av char allokeras minne för texten med en maximal längd som är före-

skriven av metoden Console.ReadLine(), något antal tecken som ryms på en rad,

kanske 80 eller lite fler. Sedan överförs parametern text med ett första anrop av meto-

den Encrypt():

 EncryptChar.Encrypt(text, key);

som är definierad i klassen EncryptChar (se nedan), till metoden Encrypt(). I detta

anrop används automatiskt referensanrop eftersom text är definierad som array. Därför

är ändringarna som görs med text i metoden Encrypt(), tillgängliga efter anropet.

Texten är okrypterad före och krypterad efter anropet både i Encrypt() och i Main().

Den andra parametern key däremot överförs med vanligt värdeanrop – dvs med

kopiering av värdena – eftersom denna parameter är definierad till den enkla datatypen

int. Efter Encrypt():s första anrop skrivs den krypterade texten ut. Sedan anropas

Encrypt() andra gången med -key, det negativa värdet av key, för att återställa

texten som sedan skrivs ut för kontroll. Hur krypteringsmetoden fungerar, förstår man

bäst om man samtidigt tittar på metoden Encrypt():

// EncryptChar.cs

// Tar emot en text via arrayen t och krypterar den genom att

// förskjuta alla tecken med n steg i teckentabellen

// Kontrollerar textens slut med arrayegenskapen Length

class EncryptChar

{
 public static void Encrypt(char[] t, int n)

 {
 for (int i = 0; i < t.Length; i++)

 t[i] = (char) (t[i] + n);

 }
}

Krypteringsmetoden är väldigt enkel: tecknens ASCII-värden ökas med n i satsen t[i]

= (char) (t[i] + n); genom vanlig addition. Att det verkligen adderas n till ASCII-

koden till t[i] beror på att t[i] är av typ char och att en teckenvariabel i aritmetiska

uttryck tolkas som sin ASCII-kod – ett tal man kan räkna med. for-satsen som går ige-

nom hela strängen genom att koppla loopens räknare till arrayens index, gör att hela

texten förskjuts med n steg i ASCII-tabellen. n får sitt värde genom kopiering (värde-

anrop) från key vid första och från –key vid andra anropet. key:s värde i sin tur slum-

pas fram i Main() med hjälp av Random-metoden Next(). Dess anrop med para-

 221

metrarna 1 och 501 gör att vi får ett slumpvärde som är ett heltal mellan 1 och 500 som

sedan skickas som krypteringsnyckel till Encrypt() via dess andra parameter. Vid an-

dra anropet av Encrypt() skickas –key för att återställa texten. Genom att ersätta

t[i] + n med mer sofistikerade formler kan man utveckla mer avancerade krypterings-

algoritmer.

Programmet EncryptCharTest kan köras på olika sätt. Varje körning ger en annan

slumpmässig krypteringsnyckel. Här ett exempel på en körning:

Skriv text som ska krypteras: abcdef

 Okrypterad text: abcdef

 Krypterad text: åæçèéê

 Återställd text: abcdef

Krypteringsnyckeln: 132

Man kan kontrollera krypteringen för hand: Man ser att bokstaven a förskjutits till å.

Krypteringsnyckeln har vid denna körning varit 132. ASCII-koden till a som är 97, har

förskjutits 132 steg vidare till 97 + 132 = 229 som är koden till tecknet å. Testa gärna

med programmet Int2Char (sid 126). Därför har a förskjutits till å med krypterings-

nyckeln 132. På samma sätt görs det med de andra tecknen i texten abcdef.

Självklart borde i en skarp applikation krypteringsnyckeln inte skrivas ut utan endast

sparas i variabeln key för att använda den vid återställningen. Vi gör det här endast för

experimentens skul.

Lägger man till filhantering i programmet EncryptCharTest kan samma metod En-

crypt() användas för kryptering av filer.

Vi ska avsluta detta kapitel med ett sista avnsnitt som behandlar en utvidgning av array-

begreppet: en array vars element i sin tur är arrays.

 222

5.9 2D Array

Med array kunde vi bearbeta större mängder av data. Men ibland är inte kvantiteten av-

görande utan strukturen av data. Följande problem illustrerar detta:

”Sex elever i en klass har skrivit fyra olika prov och fått poäng i dem. Skriv ett program

som lagrar elevernas poäng i alla prov och skriver ut dem. Sedan ska man kunna ändra

ett provresultat till en elev samt skriva ut den uppdaterade elevens poäng.”

Elevernas poäng i olika prov kan lämpligast lagras i en tabell. Tvådimensionell array

som används i följande program, är den naturliga datastrukturen för att lagra tabeller:

// DoubleArray.cs

// Elevernas poäng i olika prov lagras i en 2D-array (table)

// En elevs poäng i ett prov uppdateras och visas

// Både den ursprungliga och uppdaterade poängtabellen skrivs ut

// Tvådimensionell array modellerar tabellen och kommer åt

// arrayens element dvs tabellvärdena

using System;

class DoubleArray

{
 static void Main()

 {
 int[,] table = { {67, 78, 84, 56}, // (6 x 4)-array

 {49, 37, 59, 74},

 {89, 54, 68, 34},

 {72, 51, 85, 63},

 {39, 41, 52, 27},

 {98, 69, 79, 80} };

 Console.Write("\n\t6 elevers provresultat i 4 prov:\n\n");

 PrintTable(table);

 Console.Write("Elev 4 har förbättrat poäng i prov 2. " +

 "Mata in ny poäng:\t");

 table[3, 1] = int.Parse(Console.ReadLine());

 Console.Write("\nElev 4:s nya poäng:\t");

 for (int k=0; k<4; k++) // 4:e uppdaterade raden

 Console.Write(table[3, k] + " ");

 Console.WriteLine("\n\n\tUppdaterad poängtabell:\n");

 PrintTable(table);

 }

Prov 2

Elev 4

 223

 static void PrintTable(int[,] t)

 {
 for (int r=0; r<6; r++)

 {
 Console.Write("Elev " + (r+1) + ":\t\t");

 for (int k=0; k<4; k++)

 Console.Write(t[r, k] + " ");

 Console.WriteLine();

 }
 Console.WriteLine();

 }
}

En tabell är en tvådimensionell struktur som vi redan stött på i olika sammanhang, t.ex.

i nästlade for-satser med vars hjälp vi skrivit ut tabeller. Men vi har aldrig kunnat lagra

tabeller i våra program för att sedan kunna referera till, komma åt och hantera

tabellenvärdena. Tvådimensionell array är i C# och andra programspråk den data-

struktur som kan löse detta problem. I programmet DoubleArray definieras och initie-

ras den tvådimensionella arrayen table med koden:

 int[,] table = { {…} ... {…} }

som är en array vars element i sin tur är arrays, dvs en dubbel eller nästlad array av int

av storleken 6 x 4, dvs en stor array bestående av 6 små arrays, var bestående av 4 int-

element, även kallad en (6 x 4)-array. Strukturen i arrayen kan jämföras med en tabell av

6 rader och 4 kolumner, se den nästlade initieringslistan på förra sidan. Storleken får

inte anges explicit i hakparentesen, om man fortsätter initiera arrayen med ini-

tieringslistan. Storleken avläses automatiskt från initieringslistan på höger sidan. I själva

verket är det inget annat än en 6-array av 4-arrays av int, om vi tillåter att elementen i

en array i sin tur kan vara arrays. Eller varför inte prata om nästlade arrays? På så sätt

kan man föreställa sig arrays av ännu högre dimension än två. I C# finns det ingen

begränsning för att bilda flerdimensionella arrays: Man bara ökar antalet nivåer och i

koden antalet komma i hakparentesen i definitionen ovan. Vi nöjer oss dock med två

dimensioner där vi har den enkla tabellanalogin.

Deklarationen av den tvådimensionella arrayen table använder sig av initieringslistan

som introducerades för endimensionella arrays på sid 197. Observera att det vid initie-

ringen – närmare bestämt strax efter tilldelningsoperatorn – står två inledande klamrar

efter varandra { {67, ... och även i slutet av initieringssatsen två avslutande klamrar

... , 80} }; Klamrarna är nästlade i varandra, vilket är ett kännetecken för en tvådi-

mensionell array. Ett annat är kommat i annars tomma hakparentesen vid definitionen.

Vi har alltså att göra med en array på första nivå – representerad av de yttre klamrarna. I

denna första nivå-array finns det 6 element som i sin tur är arrays. Därför är 6 storleken

på denna första nivå-array. Dess element som i sin tur är arrays, befinner sig på en

djupare andra nivå – representerade av de inre klamrarna – och har 4 element som är

vanliga int-värden. Därför är 4 storleken på dessa andra nivå-arrays. Man kan också

säga, vi har en yttre stor array som innehåller 6 inre små arrays med 4 int-element var,

 224

som är nästlade i den stora arrayen. Därför är det hela en tvådimensionell (6 x 4)-array.

Med hjälp av kodens layout har vi försökt att anknyta till tabellform. Tabellen har 6

rader och 4 kolumner. Varje rad representerar en elev med sina poäng i olika prov. Var-

je kolumn visar ett prov med poäng tillhörande olika elever. Därmed har vi bilden av en

(6 x 4)-tabell till en (6 x 4)-array. Generellt kan tvådimensionella (m x n)-strukturer kodas

med (m x n)-arrays där m och n är positiva heltal.

Åtkomst till element i en tvådimensionell array

Här hänvisas till diskussionen på sid 195: En arrays hakparenteser [] har inte samma

betydelse i programmets alla satser. I definitionssatser omsluter hakparenteserna antalet

element i arrayen dvs arrayens storlek. I alla andra satser omslutar hakparenteserna in-

dex till varje element av en array. Detta gäller förstås även för tvådimensionella arrays.

Hakparenteserna i koden table[3, 1] i programmet DoubleArray, innehåller in-

dexen till ett element i arrayen table. Självklart är det ett dubbelindex som refererar till

ett int-värde. Man vill komma åt en tabellplats och ändra dess värde genom att läsa in

ett nytt värde till den som kommer att skriva över det gamla. Låt oss säga, en elev har

gjort omprov i ett ämne, förbättrat sina poäng, och man vill läsa in det nya värdet och

föra in det i tabellen. Men vilken elev och vilket prov är det, vilket element i arrayen

table är det? Även här måste vi hänvisa till indexregeln som även gäller för tvådimen-

sionella arrays: Numreringen av index börjar alltid med 0 (sid 192). Det gäller: ele-

mentets position = index + 1, där med position menas numret som människan använder

för att numrera elementen, medan index är det som skrivs i koden. Därför betyder dub-

belindexet [3, 1] i satsen ovan inte elev 3, prov 1, utan enligt indexregeln: elev 4, prov

2. De hårdkodade värdena till arrayen table i programmet DoubleArray visar att det

är värdet 51 som står i korset mellan rad 4 och kolumn 2 (sid 222). Alltså refererar koden

table [3, 1] till värdet 51. Man tar det första indexet 3 och räknar – genom att börja

med 0 – raderna i den stora arrayen table. Så kommer man till tabellens rad 4 eller

elev 4. Det innebär att söka igenom arrayen table på första nivå. Sedan tar man det

andra indexet 1 och räknar – genom att börja med 0 – kolumnerna i den redan hittade

raden 4. Så kommer man till tabellens kolumn 2 eller prov 2 och hittar där värdet 51.

Det är samma som att söka igenom arrayen table på andra, djupare nivå. Dubbel-

indexets första index refererar till arrayens första och det andra index till arrayens andra

nivå. Denna generella regel tillämpas även i den nästlade for-satsen som lägger hela

poängtabellen i String-variabeln box för att senare skriva ut box på skärmen:

 for (int r=0; r<6; r++) // Lägger table i box

 {
 for (int k=0; k<4; k++)

 box += table[r, k] + " ";

 box += '\n';

 }

Den inre for-slingan skriver ut en rad, närmare bestämt den r:te raden genom att hålla

fast det första indexet r och låta det andra indexet k gå igenom kolumnindexen 0, 1, 2,

3. Dessutom skickas mellan kolumnerna en tabulator till utskrift. Den yttre for-slingan

låter den inre slingan att skriva ut raderna 6 gånger genom att låta det första indexet r

 225

gå igenom radindexen 0, 1, 2, 3, 4, 5. Dessutom skickas ett radbyte mellan raderna till

utskrift. På liknande sätt hade vi med nästlad for-sats skrivit ut en tabell över tal och

multiplikationstabellen.

Efter uppdateringen av elev 4:s poäng i prov 2 vill vi verifiera ändringen genom att skri-

va ut just denna elevs poäng i alla prov dvs ta ut hela raden 4 ur tabellen med:

 for (int k=0; k<4; k++) // Lägger den 4:e uppdate-

 box += table[3, k] + " "; // rade raden i box

Som man ser är detta en kopia av den inre slingan från den nästlade for-satsen ovan

med r = 3. Raden 4 har enligt indexregeln index 3. Observera att poäng:s första index

hålls fast och det andra indexet räknas upp. Varje enskild rad kan skrivas ut på det här

sättet. Att ta ut en enskild kolumn ur tabellen och skriva ut alla elevers poäng från ett

prov, t.ex. prov 2, borde gå med följande sats:

for (int r=0; r<6; r++)

 box += table[r, 1] + '\n';

Här har vi tagit den yttre slingan från den nästlade for-satsen ovan, eliminerat den inre

slingan och ersatt den med utskrift av ett enda värde per rad. Till skillnad från radut-

skrift hålls table:s andra index fast och det första indexet räknas upp. Dessutom har

radbytet lyfts in i satsen då blanksteg inte behövs när man skriver ut endast en kolumn.

Prova gärna! Slutligen ger ett körresultat av programmet DoubleArray:

 6 elevers provresultat i 4 prov:

Elev 1: 67 78 84 56

Elev 2: 49 37 59 74

Elev 3: 89 54 68 34

Elev 4: 72 51 85 63

Elev 5: 39 41 52 27

Elev 6: 98 69 79 80

Elev 4 har förbättrat poäng i prov 2. Mata in ny poäng: 99

Elev 4:s nya poäng: 72 99 85 63

 Uppdaterad poängtabell:

Elev 1: 67 78 84 56

Elev 2: 49 37 59 74

Elev 3: 89 54 68 34

Elev 4: 72 99 85 63

Elev 5: 39 41 52 27

Elev 6: 98 69 79 80

 226

5.10 Dynamiska arrays: Listor

Array har många fördelar när det gäller hantering av stora datamängder, men också en

stor nackdel, nämligen att man i förväg måste ange storleken på arrayen utan att ha möj-

ligheten att ändra den vid behov senare. Anta att vi vill ha ett program som läser data,

t.ex. laddar ned text, bild eller ljud – från någon källa, säg en fil, och vi vet inte hur

mycket data filen innehåller, när vi skriver kod. Det här problemet kan inte lösas med en

vanlig array eftersom den tillämpar s.k. statisk minnesallokering, dvs minnesutrymmets

storlek bestäms när man definierar arrayen. När koden kompileras reserveras minne av

den angivna storleken som inte längre kan ändras under exekveringen. Därför kan en

array inte klara av den här uppgiften. När man läser data från en fil ska minnesallokerin-

gen helst göras samtidigt som filen läses under programmets körning. I det enklaste

fallet ska man kunna läsa in data till ett C#-program utan att på förhand behöva ange

dess storlek. Lösningen vore dynamisk minnesallokering, dvs minnesutrymmet kan ut-

ökas efter behov under programmets exekvering. En slags dynamisk array behövs. Och

just en sådan dynamisk array är den nya datastrukturen List som vi ska stifta bekant-

skap med i detta avsnitt. List är inte bara dynamisk utan har även en mängd fördefinie-

rade kraftfulla metoder som sorterar, söker i eller på annat sätt manipulerar listor, så att

man själv inte behöver koda så mycket. I denna bemärkelse är listor bättre arrays.

Följande program visar ett exempel på denna nya datastruktur:

// List.cs

// Skapar en lista och skickar den till metoden Rand() där den

// fylls med slumptal. Listan skickas vidare till List-metoden

// Sort() där den sorteras. Utskrift sker före + efter sortering.

using System;

using System.Collections.Generic; // Krävs för List

class List

{
 static void Main()

 {
 List<int> intList = new List<int>(); // List-objekt av int

 Random r = new Random();

 int a = 1, b = 1000;

 Console.WriteLine(

 "\n\t100 heltal mellan " + a + " och " + b +

 " slumpas till ett List-objekt:\n");

 RandList.RandL(r, intList, a, b); // Slump-tilldelning

 Print.Out(intList); // Osorterad utskrift

 intList.Sort(); // List-sortering

 Console.WriteLine(

 "\tHeltalen sorteras med List-metoden Sort():\n");

 Print.Out(intList); // Sorterad utskrift

 }
}

 227

Klassen List

Klassen List är fördefinierad i C#-biblioteket System.Collectins.Genetric. För

att använda listor måste vi skapa ett objekt av denna klass. Det gör man med satsen:

List<int> intList = new List<int>();

Variabeln som refererar till det nya objektet kallar vi intList. Det speciella med klas-

sen List är att den måste kopplas till en datatyp. Här är den kopplad till int, dvs

klassen heter egentligen List<int>. Vi har skapat en lista av int, ganska liknande en

array av int, bara att vi nu inte behöver ange antal element. Det är just det dynamiska i

listor till skillnad från arrays. Som en konsekvens får vi tilldela till en lista av int också

bara heltal av typ int. Varje försök att tilldela till den andra än int-värden kommer att

leda till kompileringsfel. Man kan förstås skapa även objekt av listor av alla andra

datatyper inkl. andra klasser. Har man t.ex. definierat en klass Person kan man med

List<Person> p = new List<Person>(); skapa en lista över personer. p refere-

rar då till ett objekt av typ List<Person>. Varje element i denna lista är i sin tur ett

objekt av typ Person.

Listan intList vi skapat ovan är just nu tom. Den blir inte heller tilldelad i koden på

förra sidan. För att fylla den med värden skickar vi den som parameter till metoden

RandL() som vi definierar i klassen RandList:

// RandList.cs

// Metod Rand() slumpar fram heltal mellan a och b och

// lagrar dem i ett List-objekt med List-metoden Add()

using System;

using System.Collections.Generic;

class RandList

{
 public static void RandL(Random r, List<int> no, int a,

 int b)

 {
 for (int i=0; i < 100; i++) // Här fylls listan

 no.Add(r.Next(a, b)); // med slumptal

 }
}

Deklarationen av parametern i metoden RandL():s parameterlista sker med koden

List<int> no. Namnet no på den formella parametern är oväsentligt. Eftersom re-

ferensanrop tillämpas, pekar no i alla fall på samma objekt som intList dvs den lista

som skapades i Main(). Så fyller vi den i for-satsen med 100 slumptal genererade av

den gamla Rand()-metod som vi använt tidigare och som i varje varv skapar ett slump-

tal mellan a och b (1 och 1000). För att placera dem i listan använder vi oss av metoden

Add() som är definierad i klassen List, därför anropet no.Add(). Varje anrop infogar

ett slumptal i listan. Vi behöver inte ange i förväg hur lång listan ska vara. Den är öppen

och växer vid behov. Det är fördelen med dynamiska arrays som tillhandahålls i klassen

 228

List. Slumptalsgenereringsmetoden Next() anropas i Add()-metodens parameterlista

med r.Next(a, b) som är definierad i biblioteksklassen Random (sid 65) .

Vi har även modulariserat utskriftsproceduren med all layout som tillhör den, i metoden

Out() i den externa klassen Print som ser ut så här:

// Print.cs

// Metoden Out() skriver ut en lista med en foreach-sats som

// loopar igenom listans ALLA element

using System;

using System.Collections.Generic;

class Print

{
 public static void Out(List<int> t)

 {
 Console.Write("\t");

 int i = 1;

 foreach (int element in t)

 {
 Console.Write(element + " ");

 if (i % 14 == 0) // Radbyte var
 Console.Write("\n\t"); // 14:e utskrift

 i++;

 }
 Console.WriteLine("\n");

 }
}

I metodens huvud väljs namnet t för den formella parametern. Eftersom metodens an-

rop i Main() sker med den aktuella parametern intList, pekar t på samma lista som

intList. Därför skrivs ut listans innehåll – de 100 slumptalen – när Out() anropas

första gången direkt efter att listan blivit tilldelad i Rand()-metoden. Andra gången

sker anropet efter sorteringen. All utskrift i Out() sker med hjälp av en kontrollstruktur

som är typisk för listor och arrays och som inleds med det reserverade ordet foreach.

foreach-satsen i listor

Det är en kontrollstruktur som behandlades tidigare i detta kapitel (sid 194), fast då var

det i samband med array. Nu används foreach med listor. Skillnaden är dock obetyd-

lig. I klassen Print (ovan) ser huvudet till foreach-satsen ut så här:

foreach (int element in t)

Översatt till svenska:

För varje element av listan t gör:

Iterationsvariabeln element definieras till int. Men till skillnad från for-satsens räk-

nare är element inget index (nr) i listan utan en variabel som pekar på själva värdet

(innehållet) som står i listan. t är en referens till listan som ska loopas igenom. for-

 229

each-satsen går igenom listans alla element, från det första till det sista. Variabeln

element som i varje varv pekar på resp. listelementets värde, används sedan i loopens

kropp för att göra det man önskar. I vårt exempel sätts den i följande anrop för att skriva

ut listans element följt av ett mellanslag:

Console.Write(element + " ");

Mellanslaget samt resten av koden i metoden Out() är till för att få en snygg layout i

utskriften. Räknaren i som vi själva definierar, håller reda på loopens varv och ger oss

möjligheten att i följande if-sats infoga ett radbyte samt tabulator var 14:e utskrift utom

i den allra första:
 if (i % 14 == 0)
 Console.Write("\n\t");

Äntligen kan vi testa programmet List som kan resultera i följande utskrift:

 100 heltal mellan 1 och 1000 slumpas till ett List-objekt:

 378 297 220 134 803 115 218 227 346 300 508 559 845 872 417

 829 559 105 477 869 602 493 117 713 541 92 572 988 796

 982 184 431 259 39 566 724 465 722 14 817 235 751 446

 256 650 231 413 914 907 297 464 943 557 957 999 533 181

 155 594 359 191 231 79 365 764 725 948 454 307 341 12

 485 739 661 635 852 695 862 711 958 680 659 729 147 166

 242 522 303 688 681 544 958 129 656 274 652 320 82 493

 573

 Heltalen sorteras med List-metoden Sort():

 12 14 39 79 82 92 105 115 117 129 134 147 155 166 181

 184 191 218 220 227 231 231 235 242 256 259 274 297 297

 300 303 307 320 341 346 359 365 378 413 417 431 446 454

 464 465 477 485 493 493 508 522 533 541 544 557 559 559

 566 572 573 594 602 635 650 652 656 659 661 680 681 688

 695 711 713 722 724 725 729 739 751 764 796 803 817 829

 845 852 862 869 872 907 914 943 948 957 958 958 982 988

 999

”Kan resultera”, därför att det blir andra siffror i varje körning pga at det är slumptal

som genereras och som är olika varje gång man kör programmet. Sorteringen görs i pro-

grammet List:s anrop (sid 226) av metoden Sort() som är fördefinierad i klassen

List.

 230

Övningar till kapitel 5

5.1 Skriv ett program som läser in 10 heltal från konsolen, lagrar dem i en array och

skriver ut dem i omvänd ordning.

5.2 Skriv ett program som slumpar fram 1000 heltal mellan 60 och 140 (tänkbara has-

tigheter på en motorväg), lagrar dem i en array kallad hastighet, beräknar och

skriver ut deras medelvärde med förklarande text. Använd klasserna RandArray

(sid 207) och RandomNo som externa moduler.

5.3 Skriv ett program som läser in en sträng, lagrar den i en array av char och skri-

ver ut den baklänges. Använd tekniken i programmet EncryptCharTest (sid

219) för att omvandla den inlästa strängen i en array av char.

5.4 Skriv ett program som läser in text i gemener, lagrar den i en array av char och

skriver ut den framhävd i versaler och med mellanslag mellan varje tecken.

5.5 Skriv ett program som frågar efter användarens för- och efternamn, hälsar sedan

användaren i en utskrift med fullständiga namnet, förnamnets längd samt efter-

namnets första och sista bokstav. Lös uppgiften generellt utan att använda infor-

mation om något speciellt för- och efternamn.

5.6 Skriv ett program där Main() läser in en persons fullständiga namn och hälsar

tillbaka med namnets initialer. Dessa ska bestämmas och skrivas ut i en annan

metod – med huvudet static void Initials(char[] name) – som anro-

pas i Main().

5.7 Modifiera programmet List (sid 226) så att sorteringen av slumptalen görs med

vår egen bubbelsorteringsmetod sort() (sid 212) istället för med den fördefinie-

rade List-metoden Sort(). Testa först med array-notationen som sort() är

skriven i. Försök sedan att skriva om sort() till en List-version.

5.8 Modifiera programmet ArrayOfRef (sid 200). Deklarera klassen Fish:s data-

medlemmar som private och metoderna som public. Förse klassen med en

konstruktor och en strängrepresentationsmetod AsString(). I övrigt ska det

modifierade programmet göra samma sak som det ursprungliga.

 231

Fullständiga lösningar till övningar (Facit)

I programmering finns alltid flera möjliga lösningar till en uppgift. Därför är det, som

slarvigt kallas för lösningar, i själva verket endast lösningsförslag. Dessutom ges inga

lösningsförslag till projektuppgifterna eller uppgifter som är relaterade till ett projekt,

för att uppmuntra till egna lösningar. Istället finns det i projektens lydelse en mer eller

mindre utförlig ledning resp. algoritm till lösningen.

Kapitel 1 Windowsprogrammering, sid 63:

Övning 1.1

Skapa en Console Application och kalla den för AdditionC. Den ska definiera och initiera två hel-

talsvariabler och producera t.ex. följande utskrift till konsolen:

 Summan av 9 och 2 är 11

9 och 2 ska vara de värden som heltalsvariablerna blivit inirierade till i programmet.

Lösningen: ( betyder musklickning, vänster- eller högermusklick)

 New Project  Console Application, Name: AdditionC, Location: …  OK.

SOLUTION EXPLORER:  Program.cs  Exclude From Project  AdditionC  Add

 New Item…  Code File  Name: AdditionC.cs  Add

Skriv följande kod i filen AdditionC.cs:

// AdditionC.cs

// Adderar talen 9 och 2 samt skriver ut resultatet

// från en konsolapplikation till konsolen

using System;

class AdditionC

{
 static void Main()

 {
 int number1 = 9; // Definition och initiering

 int number2 = 2;

 Console.WriteLine("\n\t" +

 "Summan av " + number1 + " och " +

 number2 + " är " + (number1 + number2) + '\n');

 }
}

Övning 1.2

Skapa en Windows Forms Application och kalla den AdditionW. Den ska göra samma sak som

lösningen i övning 1.1, bara att MessageBoxen ska visas när man klickar på en knapp (med texten

Visa MessageBox) i formfönstret. Förse MessageBoxen med rubriken Windows Addition.

Lösningen:

 New Project  Windows Forms Application, Name: AdditionW, Location: …  OK.

HUVUDMENYN:  View  Toolbox

 232

TOOLBOX:  Common Controls: Dubbelklicka på kontrollen Button.

PROPERTIES: Sätt button1-egenskaperna till följande värden:

Egenskap Värde

AutoSize True

Font Tahoma; 12pt; style=Bold

Location 56; 45

Text Visa MessageBox

Dubbelklicka på knappen i formfönstret och skriv kod i händelsemetoden button1_Click() så att

filen Form1.cs får följande utseende:

// Form1.cs

// Adderar talen 9 och 2 samt skriver ut resultatet

// från en Windows applikation till en MessageBox

using System;

using System.Windows.Forms;

namespace AdditionW

{
 public partial class Form1 : Form

 {
 public Form1()

 {
 InitializeComponent();

 }

 private void button1_Click(object sender, EventArgs e)

 {
 int number1 = 9;

 int number2 = 2;

 MessageBox.Show("Summan av " + number1 + " och " + number2 +

 " är " + (number1 + number2), "Windows Addition");

 }
 }
}

Övning 1.3

I både övn 1.1 och 1.2 är heltalsvärdena 9 och 2 hårdkodade. Vidareutveckla dessa övningar ge-

nom att skapa ett användarvänligt, interaktivt grafiskt gränssnitt där man kan mata in vilka heltal

som helst och få summan utskriven i en MessageBox när man klickar på en knapp med texten

Addera. Välj lämpliga rubriker för formen och MessageBoxen. Kalla projektet för Addition.

Lösningen:

 New Project  Windows Forms Application, Name: Addition, Location: …  OK.

PROPERTIES: Sätt Form1-egenskaperna till följande värden:

Egenskap Värde

Text Addition

Size 400; 200

HUVUDMENYN:  View  Toolbox

TOOLBOX:  Common Controls: Dubbelklicka på kontrollen Label.

 233

PROPERTIES: Sätt label1-egenskaperna till följande värden:

Egenskap Värde

Location 30; 30

Text Tal 1:

TOOLBOX: Dubbelklicka på kontrollen TextBox.

PROPERTIES: Sätt textBox1-egenskaperna till följande värden:

Egenskap Värde

Location 90; 27

Size 100; 20

TextAlign Center

TOOLBOX: Dubbelklicka på kontrollen Label.

PROPERTIES: Sätt label2-egenskaperna till följande värden:

Egenskap Värde

Location 30; 80

Text Tal 2:

TOOLBOX: Dubbelklicka på kontrollen TextBox.

PROPERTIES: Sätt textBox2-egenskaperna till följande värden:

Egenskap Värde

Location 90; 77

Size 100; 20

TextAlign Center

TOOLBOX: Dubbelklicka på kontrollen Button.

PROPERTIES: Sätt button1-egenskaperna till följande värden:

Egenskap Värde

Location 275; 25

Size 90; 25

Text Addera

Dubbelklicka på knappen Addera i formfönstret och skriv kod i händelsemetoden button1_Click()

så att filen Form1.cs får följande utseende:

// Form1.cs

// Läser av två tal från två textfält i formfönstret och adderar dem

// Skriver ut resultatet till en MessageBox

using System;

using System.Windows.Forms;

namespace Addition

{
 public partial class Form1 : Form

 {
 public Form1()

 {
 InitializeComponent();

 }

 234

 private void button1_Click(object sender, EventArgs e)

 {
 double no1 = Convert.ToDouble(textBox1.Text);

 double no2 = Convert.ToDouble(textBox2.Text);

 MessageBox.Show("Summan av " + no1 + " och " + no2 + " är " +

 (no1 + no2), "Resultat");

 }
 }
}

Övning 1.4

Skapa en Windows Forms Application och kalla den Division. Modifiera lösningen i övn 1.3 så

att beräkningens resultat hamnar i ett textfält i formen istället för i en MessageBox. Välj den här

gången division som räkneoperation.

Lösningen:

 New Project  Windows Forms Application, Name: Division, Location: …  OK.

PROPERTIES: Sätt Form1-egenskaperna till följande värden:

Egenskap Värde

Text Division

Size 450; 250

Den grafiska designen av de två första labels och textfälten är identisk med övn 1.3. Så ta över

därifrån. En tredje label och ett tredje textfält kommer till:

TOOLBOX: Dubbelklicka på kontrollen Label.

PROPERTIES: Sätt label3-egenskaperna till följande värden:

Egenskap Värde

Location 215; 150

Text Resultat:

TOOLBOX: Dubbelklicka på kontrollen TextBox.

PROPERTIES: Sätt textBox3-egenskaperna till följande värden:

Egenskap Värde

Location 275; 147

Size 100; 20

TextAlign Center

TOOLBOX: Dubbelklicka på kontrollen Button.

PROPERTIES: Sätt button1-egenskaperna till följande värden:

Egenskap Värde

Location 275; 25

Size 90; 25

Text Dividera

 235

Dubbelklicka på knappen Dividera i formfönstret och skriv kod i händelsemetoden button1-

_Click() så att filen Form1.cs får följande utseende:

// Form1.cs

// Läser av två tal från två textfält i formfönstret och dividerar dem

// Skriver ut resultatet till ett tredje textfält

using System;

using System.Windows.Forms;

namespace Division

{
 public partial class Form1 : Form

 {
 public Form1()

 {
 InitializeComponent();

 }

 private void button1_Click(object sender, EventArgs e)

 {
 double no1 = Convert.ToDouble(textBox1.Text);

 double no2 = Convert.ToDouble(textBox2.Text);

 textBox3.Text = (no1 / no2).ToString();

 }
 }
}

Övning 1.5

Skapa en Windows Forms Application och kalla den SafeDivision. Ta bort filerna Form1.cs och

Form1.Designer.cs från projektet. Infoga istället filerna med samma namn från projektet Division

(övn 1.4) i projektet SafeDivision. Döp om i båda filerna raderna namespace Division till name-

space SafeDivision. Modifiera koden i Form1.cs genom att införa ett egengenererat undantag

(Progr1, 8.2) i programmet för fallet att användaren matar in 0 i det andra textfältet, dvs när di-

vision med 0 uppstår. Styyr meddelandena från undantagshanteringen till en MessageBox.

Lösningen:

 New Project  Windows Forms Application, Name: SafeDivision, Location: …  OK.

 SOLUTION EXPLORER:  Form1.cs  Delete  Form1.Design.cs  Delete  SafeDivision

 Add  Existing Item…  Form1.cs (från projektmappen Division)  Add  SafeDivision

 Add  Existing Item…  Form1.Design.cs (från projektmappen Division)  Add

 Form1.cs: Ersätt namespace Division med namespace SafeDivision.

 Form1.Design.cs: Ersätt namespace Division med namespace SafeDivision.

Modifiera filen Form1.cs så att den får följande utseende:

// Form1.cs

// Läser av två tal från två textfält i formfönstret och dividerar dem

// Skriver ut resultatet till ett tredje textfält

// Kastar och hanterar undantag om det matas in 0 i det andra textfältet

using System;

using System.Windows.Forms;

namespace SafeDivision

{

 236

 public partial class Form1 : Form

 {
 public Form1()

 {
 InitializeComponent();

 }

 private void button1_Click(object sender, EventArgs e)

 {
 double no1 = Convert.ToDouble(textBox1.Text);

 double no2 = Convert.ToDouble(textBox2.Text);

 try

 {
 if (no2 == 0)

 throw new DivideByZeroException(); // Undantag kastas

 else

 textBox3.Text = (no1 / no2).ToString();

 }
 catch (DivideByZeroException exception) // Undantag fångas upp

 {
 MessageBox.Show("\tOBS! Du försökte dividera med 0.\n\t" +

 "Det går inte att dividera med 0.\n\n\t" +

 "C# undantagsmeddelande:\n\n" +

 exception.ToString(), "Felmeddelande");

 } // Undantag skrivs ut

 }
 }
}

Övning 1.6

Vidareutveckla övningsserien 1.1-1.5 till en komplett kalkylator med interaktivt grafiskt gränssnitt

och undantagshantering som inkluderar de fyra räknesätten.

Lösningen:

 New Project  Windows Forms Application, Name: Calculator, Location: …  OK.

PROPERTIES: Sätt Form1-egenskaperna till följande värden:

Egenskap Värde

Text Calculator

Size 450; 250

Den grafiska designen av de tre labels och textfälten är identisk med övn 1.3 resp. 1.4. Så ta över

därifrån. Döp om de tre labels Text-egenskaper till Number1:, Number2: och Result. Däremot

bygger vi här fyra nya knappar för de fyra räknesätten:

TOOLBOX: Dubbelklicka på kontrollen Button.

PROPERTIES: Sätt button1-egenskaperna till följande värden:

Egenskap Värde

Location 275; 25

Size 90; 25

Text +

 237

Dubbelklicka på knappen + i formfönstret. Återgå till formfönstret.

TOOLBOX: Dubbelklicka på kontrollen Button.

PROPERTIES: Sätt button2-egenskaperna till följande värden:

Egenskap Värde

Location 275; 50

Size 90; 25

Text -

Dubbelklicka på knappen - i formfönstret. Återgå till formfönstret.

TOOLBOX: Dubbelklicka på kontrollen Button.

PROPERTIES: Sätt button3-egenskaperna till följande värden:

Egenskap Värde

Location 275; 75

Size 90; 25

Text x

Dubbelklicka på knappen x i formfönstret. Återgå till formfönstret.

TOOLBOX: Dubbelklicka på kontrollen Button.

PROPERTIES: Sätt button4-egenskaperna till följande värden:

Egenskap Värde

Location 275; 100

Size 90; 25

Text /

Dubbelklicka på knappen / i formfönstret. Återgå till formfönstret.

Skriv kod i knapparnas händelsemetoder så att filen Form1.cs får följande utseende:

// Form1.cs

// Kalkylator för de fyra räknesätten

// Läser av två tal från två textfält och beräknar deras

// summa, differens, produkt eller kvot

// Skriver ut resultatet till ett tredje textfält

// Kastar och hanterar undantag vid division med 0

using System;

using System.Windows.Forms;

namespace Calculator

{
 public partial class Form1 : Form

 {
 public Form1()

 {
 InitializeComponent();

 }

 private void button1_Click(object sender, EventArgs e)

 {
 double no1 = Convert.ToDouble(textBox1.Text);

 238

 double no2 = Convert.ToDouble(textBox2.Text);

 textBox3.Text = (no1 + no2).ToString();

 }

 private void button2_Click(object sender, EventArgs e)

 {
 double no1 = Convert.ToDouble(textBox1.Text);

 double no2 = Convert.ToDouble(textBox2.Text);

 textBox3.Text = (no1 - no2).ToString();

 }

 private void button3_Click(object sender, EventArgs e)

 {
 double no1 = Convert.ToDouble(textBox1.Text);

 double no2 = Convert.ToDouble(textBox2.Text);

 textBox3.Text = (no1 * no2).ToString();

 }

 private void button4_Click(object sender, EventArgs e)

 {
 double no1 = Convert.ToDouble(textBox1.Text);

 double no2 = Convert.ToDouble(textBox2.Text);

 try

 {
 if (no2 == 0)

 throw new DivideByZeroException(); // Undantag kastas

 else

 textBox3.Text = (no1 / no2).ToString();

 }
 catch (DivideByZeroException exception) // Undantag fångas upp

 {
 MessageBox.Show("\tOBS! Du försökte dividera med 0.\n\t" +

 "Det går inte att dividera med 0.\n\n\t" +

 "C# undantagsmeddelande:\n\n" +

 exception.ToString(), "Felmeddelande");

 } // Undantag skrivs ut

 }
 }
}

Kapitel 2 Objektorienterad programmering (OOP), sid 119:

Ovn_2_1

Skriv ett program som består endast av klassen All_in_Main som i sin tur

innehåller endast Main()-metoden. Läs in radien r till en cirkel och be-

räkna samt skriv ut cirkelns area pi*r*r och dess omkrets 2*pi*r, där pi=

3.14159. Du kan använda konstanten Math.PI från C#:s klassbibliotek för

pi. Programmet ska inte vara objektorienterat eftersom du inte skapar

några objekt, utan endast lokala variabler (radie, area, omkrets). Pro-

grammet ska inte heller vara modulariserat eller proceduralt eftersom all

kod (Input-Bearbetning-Output) finns i en enda metod Main() som definie-

ras i en klass. Dessa steg ska tas i de efterföljande två övningarna.

Deklarera alla variabler till double.

 239

using System;

class All_in_Main

{
 static void Main()

 {
 double radius, area, circumference; // Lokala variabler

 Console.Write("\n\tAnge radien till en cirkel:\t");

 radius = Convert.ToDouble(Console.ReadLine()); // Input

 area = Math.PI * radius * radius; // Bearbetning

 circumference = 2 * Math.PI * radius;

 Console.WriteLine(// Output

 "\n\tEn cirkel med radien " + radius +

 "\n\thar arean " + area +

 "\n\toch omkretsen " + circumference + '\n');

 }
}

Ovn_2_2

Modularisera programmet All_in_Main från övn 2.1 på metodnivå, dvs: Flyt-

ta bearbetningsdelen dvs beräkningen av area och omkrets ur Main() till

separata metoder Area() och Circumference(), men stanna i samma klass.

Döp om klassnamnet till Procedural. I Main() ska finnas kvar variabeln

för radien, inmatning, utmatning och anropet av Area() och Circumferen-

ce(). Förse de nya metoderna med en parameter som överför radiens värde

från Main() till dem. Välj olika namn för den aktuella än för den formel-

la parametern.Dessutom ska Area() och Circumference() returnera ett

double-värde och vara statiska. För att testa mata in 1 för radien. Då

ska arean bli pi pga pi*r*r = pi och omkretsen bli 2*pi.

using System;

class Procedural

{
 static void Main() // Metoden Main()

 { // med
 double radius; // lokal variabel

 Console.Write("\n\tAnge radien till en cirkel:\t");

 radius = Convert.ToDouble(Console.ReadLine()); // Input

 Console.WriteLine(// Output

 "\n\tEn cirkel med radien " + radius +

 "\n\thar arean " + Area(radius) +

 "\n\toch omkretsen " + Circumference(radius) + '\n');

 } // aktuell parameter
// --

 static double Area(double r) // Metoden Area() med formell

 { // parameter r som tar emot
 return Math.PI * r * r; // aktuell parameter radius

 }
// --

 static double Circumference(double r) // Metoden Circumference()

 {
 return 2 * Math.PI * r;

 240

 }
// --

}

Ovn_2_3_Class

Modularisera programmet All_in_Main från övn 2.1 på klassnivå, dvs: Dela

upp programmet i två klasser, lagrade i två separata filer. Kalla den ena

klassen för Circle, den andra för CircleTest. Samla all information om

begreppet cirkel i klassen Circle, dvs: Deklarera radien r som datamedlem

samt Area() och Circumference() som metoder. Ta bort från metoderna både

static och parametern för radien.

using System; // Krävs för Math

class Circle

{
 public double radius; // Publik datamedlem

 public double Area() // Publik metod

 {
 return Math.PI * radius * radius;

 }

 public double Circumference() // Publik metod

 {
 return 2 * Math.PI * radius;

 }
}

Datamedlemmen radius och metoderna Area() och Circumference() måste vara

publika för att den externa klassen CircleTest ska kunna komma åt dem.

Ovn_2_3_Test

Den andra klassen CircleTest ska endast innehålla metoden Main(). Skapa i

den ett objekt av klassen Circle. Läs in ett värde till objektets

datamedlem r och anropa samt skriv ut returvärdena till objektets metoder

Area() och Circumference(). Båda klassfiler borde ligga i samma projekt.

using System;

class CircleTest

{
 static void Main()

 {
 Circle myCircle; // Definirerar endast en referensvariabel

 // av typ Circle utan att skapa objekt

 myCircle = new Circle(); // Skapar ett objekt av typ Circle

 // och tilldelar objektets adress till

 // referensvariabeln.

 Console.Write("\n\tAnge radien till en cirkel:\t");

 myCircle.radius = Convert.ToDouble(Console.ReadLine()); // Input

 Console.WriteLine(// Output

 "\n\tEn cirkel med radien " + myCircle.radius +

 "\n\thar arean " + myCircle.Area() +

 "\n\toch omkretsen " + myCircle.Circumference() + '\n');

 }
}

 241

Ovn_2_4_Class

Skriv en klass Fish som beskriver en fisk med datamedlemmarna sort,

weight och size. Borde ligga i samma projekt som filen Ovn_2_4_Test.

class Fish

{
 public string sort;

 public double weight, size;

}

Ovn_2_4_Test

Testa din klass i en annan klass FishTest i en separat fil som endast in-

nehåller metoden Main() där två objekt av klassen Fish skapas. Tilldela

det första objektets datamedlemmar värdena Laxforell, 719 (gram) och 38.5

(cm). Enheterna gram och cm behöver inte anges. Välj själv andra värden

till det andra objektets datamedlemmar. Skriv ut dessa värden till konso-

len i en tabell av typ:

 Fisksort Vikt i g Längd i cm

 --

 Laxforell 719.0 38.5

 Torsk 423.0 28.7

using System;

class FishTest

{
 static void Main()

 {
 Fish f1 = new Fish(); // Objekt skapas (definieras)

 // och initieras by default

 f1.sort = "Laxforell"; // Objekt tilldelas värden

 f1.weight = 719;

 f1.size = 38.5;

 Fish f2 = new Fish(); // 2:a objekt skapas

 f2.sort = "Torsk\t"; // \t för layoutens skull

 f2.weight = 423;

 f2.size = 28.7;

 Console.WriteLine("\n\tFisksort\tVikt i g\tLängd i cm" +

 "\n\t--\n\t" +

 f1.sort + "\t " + f1.weight + "\t\t " + f1.size + "\n\t" +

 f2.sort + "\t " + f2.weight + "\t\t " + f2.size + "\n\n");

 }
}

Ovn_2_5_Class

Ta klassen Fish från övn 2.4. Förse den med en metod som beräknar priset

på fisken oberoende av sort, t.ex. 7.25 kr per hekto. Lägg till även en

metod som beräknar och returnerar frakten utifrån fiskens vikt och genom

att t.ex. multiplicera en viss kostnadsfaktor, säg 0.02, med vikten, en

annan, säg 0.1, med längden och addera dem. Metoderna ska returnera pri-

set och frakten i hela kronor utan ören.

 242

using System;

class Fish

{
 public string sort;

 public float weight, size;

 public int Price()

 {
 return (int) Math.Round(weight * 7.25 / 100);

 }

 public int shipping()

 {
 return (int) Math.Round(weight * 0.02 + size * 0.1);

 }
}

Ovn_2_5_Test

Anropa metoderna från klassen FishTest:s Main()-metod för de två Fish-

objekten. Lägg till nya rubriker Pris och Frakt i tabellen ovan och skriv

ut deras värden till tabellens två rader

using System;

class FishTest

{
 static void Main()

 {
 Fish f1 = new Fish(); // 1:a objekt skapas (definieras)

 // och initieras by default

 f1.sort = "Laxforell"; // 1:a objekt tilldelas värden

 f1.weight = 719;

 f1.size = 38.5f;

 Fish f2 = new Fish(); // 2:a objekt skapas

 f2.sort = "Torsk\t"; // \t för layoutens skull

 f2.weight = 423; // 2:a objekt tilldelas värden

 f2.size = 28.7f;

 // Metoderna anropas i utskriften:

 Console.WriteLine("\nFisksort\tVikt i g\tLängd i cm" +

 "\tPris\tFrakt\n" +

 "---\n" +

 f1.sort + "\t " + f1.weight + "\t\t "+ f1.size + "\t\t " +

 f1.Price() + "\t " + f1.shipping() + "\n" +

 f2.sort +"\t " + f2.weight + "\t\t " + f2.size + "\t\t "+

 f2.Price() + "\t " + f2.shipping() + "\n\n");

 }
}

Ovn_2_6_Test

Modifiera programmet från övn 2.5 så att datamedlemmarnas värden inte

hårdkodas utan läses in. Utskriften ska skickas till konsolen och läggas

till tabellen ovan. Skriv din kod så att den lätt kan generaliseras så

att man kan mata in flera fisksorter med hjälp av en loop och en array av

 243

referenser till Fish-objekt som vi kommer att lära oss senare. Dessutom

ska programmet kunna modifieras till att skriva ut till en tabell i en

fil eller en databas istället för att skriva till konsolen.

using System;

class FishTest

{
 static void Main()

 {
 Fish f1 = new Fish(); // 1:a objekt skapas

 Fish f2 = new Fish(); // 2:a objekt skapas

 Console.Write("\n\tMata in sorten till fisk1:\t");

 f1.sort = Console.ReadLine(); // Input

 if (f1.sort.Length < 6) f2.sort += '\t';

 Console.Write("\tMata in vikten till fisk1:\t");

 f1.weight = (float) Convert.ToDecimal(Console.ReadLine()); // Input

 Console.Write("\tMata in längden till fisk1:\t");

 f1.size = (float) Convert.ToDecimal(Console.ReadLine()); // Input

 Console.Write("\n\tMata in sorten till fisk2:\t");

 f2.sort = Console.ReadLine(); // Input

 if (f2.sort.Length < 6) f2.sort += '\t';

 Console.Write("\tMata in vikten till fisk2:\t");

 f2.weight = (float) Convert.ToDecimal(Console.ReadLine()); // Input

 Console.Write("\tMata in en till fisk2:\t");

 f2.size = (float) Convert.ToDecimal(Console.ReadLine()); // Input

 Console.WriteLine("\n\nFisksort\tVikt i g\tLängd i cm" +

 "\tPris\tFrakt\n" +

 "---\n" +

 f1.sort + "\t " + f1.weight + "\t\t " + f1.size + "\t\t " +

 f1.Price() + "\t " + f1.shipping() + "\n" +

 f2.sort + "\t " + f2.weight + "\t\t " + f2. + "\t\t " +

 f2.Price() + "\t " + f2.shipping() + "\n\n");

 }
}

Ovn_2_7_Class

Deklarera en klass Triangle med datamedlemmarna side_a, side_b, side_c,

height_b av typ int och metoderna Area(), Circumference().

class Triangle

{
 public int side_a, side_b, side_c, height_b;

 public int Area()

 {
 return side_b * height_b/2;

 }

 public int Circumference()

 {
 return side_a + side_b + side_c;

 }
}

 244

Ovn_2_7_Test

Skapa i en annan klass som innehåller Main(), ett objekt av klassen Tri-

angle och tilldela datamedlemmarna värden. Anropa metoderna och skriv ut

denna triangels area och omkrets. Skapa en andra referens som pekar på

samma objekt och anropa metoderna samt skriv ut deras returvärden med

denna referens. Du borde få samma resultat som med den första referensen.

Anropa sedan metoderna Area() och Circumference() med två anonyma objekt

(utan referenser). Kolla om du får de förväntade resultaten som är base-

rade på objektens default-initiering.Sist, peka om Triangle-objektets

första referens till null och försök att anropa metoderna med denna refe-

rens. Vad händer?

using System;

class TriangleTest

{
 static void Main()

 {
 Triangle tri = new Triangle(); // Skapar ett objekt med en

 // första referens tri

 tri.side_a = 4;

 tri.side_b = 6;

 tri.side_c = 5;

 tri.height_b = 3;

 Console.WriteLine("\n\tMed den första referensen:\n" +

 "\tArea = " + tri.Area() + '\n' +

 "\tOmkrets = " + tri.Circumference() + '\n');

 Triangle t = tri; // Ny referens till samma objekt

 Console.WriteLine("\n\tMed den andra referensen:\n" +

 "\tArea = " + t.Area() + '\n' +

 "\tOmkrets = " + t.Circumference() + '\n');

 Console.WriteLine

 ("\n\tAndra, anonyma objekt som default-initieras:\n" +

 "\tArea = " + new Triangle().Area() + '\n' +

 "\tOmkrets = " + new Triangle().Circumference() + '\n');

 tri = null; // Ompekning till null: tri

 // pekar på inget objekt längre

 Console.WriteLine("Användning av null-referens ger " +

 "exekveringsfel:\n");

 Console.WriteLine(tri.side_a);

 }
}

Det som händer, är att ett objekt skapas med referensen tri som överförs

till en ny referens t, så att både tri och t pekar på samma objekt. Men

sedan görs en ompekning av tri till null, dvs tri kopplas bort från ob-

jektet. Programmets sista sats försöker att med tri referera till objek-

tet vilket leder till ett s.k. NullReferenceException.

Ovn_2_8_Class

Skriv en klass Rectangle med datamedlemmarna width, height samt metoderna

Area() och Circumference(). Deklarera datamedlemmarna en gång som private

och en annan gång med ingen åtkomstmodifierare alls. Deklarera metoderna

 245

som public. Förse klassen med en konstruktor och välj andra namn för kon-

struktorns parametrar än för datamedlemmarna.

class Rectangle

{
 private int length, width;

 public Rectangle(int l, int w) // Konstruktorn

 {
 length = l;

 width = w;

 }

 public int Area()

 {
 return length * width;

 }

 public int Circumference()

 {
 return 2 * (length + width);

 }
}

Ovn_2_8_Test

Testa din klass i en annan klass genom att i Main() skapa ett Rectangle-

objekt vars datamedlemmar initieras till konstanta värden. Skriv ut dess

area och omkrets.

using System;

class RectangleTest

{
 static void Main()

 {
 Rectangle rekt = new Rectangle(8, 4); // Objekt rekt av typ Rek-

 // tangel skapas och klas-

 // sens konstruktor anropas

 Console.WriteLine("\n\tArea = " + rekt.Area() + '\n' +

 "\n\tOmkrets = " + rekt.Circumference() + '\n');

 }
}

Ovn_2_9_Class

Modifiera klassen Rectangle från övn 2.8 genom att lägga till Get- och

Set-metoder i klassen.

class Rectangle_new

{
 private int length, width;

 public Rectangle_new(int l, int w)

 {
 length = l;

 width = w;

 }

 246

 public int GetLength() // Get-metod för length

 {
 return length;

 }

 public void SetLength(int newLength) // Set-metod för length

 {
 length = newLength;

 }

 public int GetWidth() // Get-metod för width

 {
 return width;

 }

 public void SetWidth(int newWidth) // Set-metod för width

 {
 width = newWidth;

 }

 public int Area()

 {
 return length * width;

 }

 public int Circumference()

 {
 return 2 * (length + width);

 }
}

Ovn_2_9_Test

Testa den nya klassen i Main() genom att läsa in värden till datamedlem-

marna. Efter utskriften av area och omkrets, fördubbla rektangelns längd

och bredd med anrop av Get- och Set-metoderna. Skriv ut en gång till rek-

tangelns area och omkrets. Med vilken faktor växer arean resp. omkretsen?

using System;

class Rectangle_newTest

{
 static void Main()

 {
 Console.Write("\n\tMata in längd:\t");

 int no1 = Convert.ToInt32(Console.ReadLine());

 Console.Write("\n\tMata in bredd:\t");

 int no2 = Convert.ToInt32(Console.ReadLine());

 Rectangle_new rekt = new Rectangle_new(no1, no2);

 Console.WriteLine("\nFöre fördubblingen:\n" +

 "\n\tArea = " + rekt.Area() + '\n' +

 "\n\tOmkrets = " + rekt.Circumference() + '\n');

 rekt.SetLength(2 * rekt.GetLength());

 rekt.SetWidth(2 * rekt.GetWidth());

 247

 Console.WriteLine("\nEfter fördubblingen:\n" +

 "\n\tArea = " + rekt.Area() + '\n' +

 "\n\tOmkrets = " + rekt.Circumference() + '\n');

 }
}

Arean växer med faktor 4 när rektangelns sidor fördubblas, medan omkret-

sen växer med faktor 2, eftersom arean är en kvadratisk funktion av si-

dorna, medan omkretsen är en linjär funktion av dem.

Ovn_2_10_Class

Modellera en klass Cylinder som subklass till klassen Circle. Denna mo-

dellering ser Cylindern som en Circle som dessutom har en höjd. Betrakta

därför Cylindern som en "utvidgad" Cirkel som ärver Circle och lägger

till den en privat datamedlem height. Förse även subklassen med en kon-

struktor och en Get-metod. Cylindern ska dessutom ha metoderna Volume()

och Surface(). Vid beräkning av Cylinderns Volume() och Surface() ska

koden kunna återanvända cirkelns metoder genom att anropa dem.

class Cylinder : Circle // Cylinder ärver klassen Circle

{
 private double height; // Den nya datamedlemmen

 public Cylinder(double radius, double height) : base(radius)

 // Cylinderns konstruktor

 { // Anrop av Circle:s konstruktor
 this.height = height;

 }

 public double GetHeight()

 {
 return height;

 }

 public double CylinderVolume() // Cylinderns metod för volym

 { // återanvänder Circle:s metod
 return CircleArea() * height; // för area genom att anropa den

 }

 public double CylinderSurface() // Cylinderns metod för yta åter-

 { // återanvänder Circle:s metod för
 return CircleCircumference() * (GetRadius() + height); // omkrets

 }
}

Ovn_2_10_SuperClass

Förse superklassen Circle med en privat datamedlem radius, en konstruk-

tor, en getmetod och med beräkningsmetoderna Area() och Circumference().

using System;

class Circle

{
 private double radius;

 public Circle(double radius)

 248

 {
 this.radius = radius;

 }

 public double GetRadius() // Get-metod för att exportera radius

 { // bl.a. till klassen Cylinder som
 return radius; // behöver den för Surface()

 }

 public double CircleArea()

 {
 return (Math.PI * radius * radius);

 }

 public double CircleCircumference()

 {
 return (2 * Math.PI * radius);

 }
}

Ovn_2_10_Test

Testa dina klasser i main() genom att läsa in en cylinders radie och höjd

samt skriva ut Volume() och Surface().

using System;

class CylinderTest

{
 static void Main()

 {
 Console.Write("\n\tMata in radie:\t");

 int no1 = Convert.ToInt32(Console.ReadLine());

 Console.Write("\n\tMata in höjd:\t");

 int no2 = Convert.ToInt32(Console.ReadLine());

 Cylinder c = new Cylinder(no1, no2); // Ett objekt skapas och

 // konstruktorn anropas som

 // initierar radius och height

 Console.WriteLine("\nEn cylinder med radien " + c.GetRadius() +

 " och höjden " + c.GetHeight() + " har volymen " +

 c.CylinderVolume() + "\n\t\t\t\t\t och ytan " +

 c.CylinderSurface() + "\n");

 }
}

Kapitel 3 Metoder i OOP, sid 149:

Ovn_3_1a

Modularisera programmet Non_modularized_1 (sid 149) för att vidareutveck-

la det till en liten kalkylator (fast i konsolen):Separera beräkningarna,

t.ex. multiplikationen från kodens andra delar dvs från input och output.

a) Flytta multiplikationen till en metod med returvärde med huvudet

 static int Mult(int a, int b) i samma klass som Main(). Anropa metoden

 Mult() från Main(). Bibehåll alla andra beräkningar. Se upp med att

 249

 inte placera den nya metoden i Main(), utan före eller efter.

using System;

class Ovn_3_1a

{
 static void Main()

 {
 Console.Write("\n\tMata in ett heltal:\t\t"); // Ledtext

 int no1 = Convert.ToInt32(Console.ReadLine()); // Input

 Console.Write("\n\tMata in ett heltal till:\t");

 int no2 = Convert.ToInt32(Console.ReadLine());

 Console.WriteLine("\n\n\t" +

 no1 + " plus " + no2 + " är " + (no1 + no2) + "\n\t" +

 no1 + " minus " + no2 + " är " + (no1 - no2) + "\n\t" +

 // Anropet:

 no1 + " gånger " + no2 + " är " + Mult(no1, no2) + "\n\t" +

 no1 + " heltalsdividerad med " +

 no2 + " är " + (no1 / no2) + "\n\t" +

 no1 + " modulo " + no2 + " är " + (no1 % no2) + "\n\t");

 }
// ---

// Metoden Mult() som tar in två heltal via sina parametrar a

// och b och returnerar ett heltal som är a * b

 static int Mult(int a, int b) // Metoden Mult()

 {
 return a * b;

 }
// ---

}

Ovn_3_1b

Modularisera programmet Non_modularized_1 (sid 149) för att vidareutveck-

la det till en liten kalkylator (fast i konsolen):Separera beräkningarna,

t.ex. multiplikationen från kodens andra delar dvs från input och output.

b) Fortsätt med att flytta metoden Mult() till en annan klass i samma

 fil. Anropet ska fortfarande göras från Main(). Även här: Se upp med

 att inte placera den nya klassen i den gamla, utan före eller efter.

using System;

class Ovn_3_1b

{
 static void Main()

 {
 Console.Write("\n\tMata in ett heltal:\t\t"); // Ledtext

 int no1 = Convert.ToInt32(Console.ReadLine()); // Inläsning

 Console.Write("\n\tMata in ett heltal till:\t");

 int no2 = Convert.ToInt32(Console.ReadLine());

 Console.WriteLine("\n\n\t" +

 no1 + " plus " + no2 + " är " + (no1 + no2) + "\n\t" +

 no1 + " minus " + no2 + " är " + (no1 - no2) + "\n\t" +

 no1 + " gånger " + no2 + " är " + // Anropet:

 Multip.Mult(no1, no2) + "\n\t" +

 no1 + " heltalsdividerad med " +

 no2 + " är " + (no1 / no2) + "\n\t" +

 no1 + " modulo " + no2 + " är " + (no1 % no2) + "\n\t");

 }
}

 250

// Ny klass Multip i samma fil som Ovn_3_1b

class Multip // Klassen Multip()

{
 public static int Mult(int a, int b) // Metoden Mult()

 {
 return a * b;

 }
}

Ovn_3_1c

Modularisera programmet Non_modularized_1 (sid 149) för att vidareutveck-

la det till en liten kalkylator (fast i konsolen):Separera beräkningarna,

t.ex. multiplikationen från kodens andra delar dvs från input och output.

c) Flytta den nya klassen samt metoden Mult() till en separat fil.

using System;

class Ovn_3_1c

{
 static void Main()

 {
 Console.Write("\n\tMata in ett heltal:\t\t");

 int no1 = Convert.ToInt32(Console.ReadLine());

 Console.Write("\n\tMata in ett heltal till:\t");

 int no2 = Convert.ToInt32(Console.ReadLine());

 Console.WriteLine("\n\n\t" +

 no1 + " plus " + no2 + " är " + (no1 + no2) + "\n\t" +

 no1 + " minus " + no2 + " är " + (no1 - no2) + "\n\t" +

 no1 + " gånger " + no2 + " är " + // Anropet:

 Multip.Mult(no1, no2) + "\n\t" +

 no1 + " heltalsdividerad med " +

 no2 + " är " + (no1 / no2) + "\n\t" +

 no1 + " modulo " + no2 + " är " + (no1 % no2) + "\n\t");

 }
}

Ovn_3_1cd

Separat fil som borde ligga i samma projekt som filen Ovn_3_1c och när

programmet Ovn_3_1d körs, i samma projekt som filen Ovn_3_1d

class Multip // Klassen Multip

{
 public static int Mult(int a, int b) // Metoden Mult()

 {
 return a * b;

 }
}

Ovn_3_1d

Modularisera programmet Non_modularized_1 (sid 149) för att vidareutveck-

la det till en liten kalkylator (fast i konsolen):Separera beräkningarna,

t.ex. multiplikationen från kodens andra delar dvs från input och output.

d) Gör samma sak med alla andra beräkningssätt. Lagra var och en klass

 med resp. metod i en separat fil. Anropa alla metoder från Main().

 251

using System;

class Ovn_3_1d

{
 static void Main()

 {
 Console.Write("\n\tMata in ett heltal:\t\t");

 int no1 = Convert.ToInt32(Console.ReadLine());

 Console.Write("\n\tMata in ett heltal till:\t");

 int no2 = Convert.ToInt32(Console.ReadLine());

 Console.WriteLine("\n\n\t" + // Anropen

 no1 + " plus " + no2 + " är " + Addit.Add(no1, no2) + "\n\t" +

 no1 + " minus " + no2 + " är " + Subtr.Sub(no1, no2) + "\n\t" +

 no1 + " gånger " + no2 + " är " + // Anropet:

 Multip.Mult(no1, no2) + "\n\t" +

 no1 + " heltalsdividerad med " +

 no2 + " är " + Div.IntDiv(no1, no2) + "\n\t" +

 no1 + " modulo " + no2 + " är " + Modu.Mod(no1, no2) + "\n\t") ;

 }
}

Ovn_3_1dA

Separat fil i samma projekt som filen Ovn_3_1d

class Addit // Klassen Addit

{
 public static int Add(int a, int b) // Metoden Add()

 {
 return a + b;

 }
}

Ovn_3_1dS

Separat fil i samma projekt som filen Ovn_3_1d

class Subtr // Klassen Subtr

{
 public static int Sub(int a, int b) // Metoden Sub()

 {
 return a - b;

 }
}

Ovn_3_1dD

Separat fil i samma projekt som filen Ovn_3_1d

class Div // Klassen Div

{
 public static int IntDiv(int a, int b) // Metoden IntDiv()

 {
 return a / b;

 }
}

 252

Ovn_3_1dM

Separat fil i samma projekt som filen Ovn_3_1d

class Modu // Klassen Modu

{
 public static int Mod(int a, int b) // Metoden Mod()

 {
 return a % b;

 }
}

Ovn_3_2

Modularisera programmet Non_modularized_2 (sid 150) genom att skriva dess

bearbetningsdel som en ny metod i samma klass. Bibehåll in- och utmat-

nigsdelen i Main() och anropa den nya metoden från Main(). Avgör själv om

den nya metoden ska returnera ett värde och om den ska vara statisk. Ge

metoden ett beskrivande namn.

using System;

class Ovn_3_2

{
 static void Main()

 {
 /* I n m a t n i n g */

 Console.Write("\n\tAnge antal år:\t\t");

 int years = Convert.ToInt32(Console.ReadLine());

 Console.Write("\n\tAnge antal månader:\t");

 int months = Convert.ToInt32(Console.ReadLine());

 Console.Write("\n\tAnge antal veckor:\t");

 int weeks = Convert.ToInt32(Console.ReadLine());

 Console.Write("\n\tAnge antal dagar:\t");

 int dag = Convert.ToInt32(Console.ReadLine());

 /* U t m a t n i n g */

 Console.WriteLine("\n\t" + years + " år, " +

 months + " månader, " + weeks + " veckor och " +

 dag + " dagar är " + total(years, months, weeks, dag)

 + " dagar totalt." + '\n') ;

 }

 static int total(int y, int m, int w, int d) // Ny metod total()

 { // med returvärde
 /* B e a r b e t n i n g */

 return 365*y + 30*m + 7*w + d;

 }
}

Ovn_3_3a

a) Vänd om problemet från övn 3.2: Dvs Omvandla en tid som är angiven i

dagar till år, månader, veckor samt resterande dagar. Skriv ett icke-

modulariserat program Non_modularized_3, som frågar efter en tid i antal

 253

dagar, läser in den, och sedan beräknar samt skriver ut resul tatet i an-

tal år, månader, veckor samt resterande dagar.

// Non_modularized_3

// Omvandlar antal dagar till år, månader, veckor och restdagar

// Överlagring av operatorn / som heltalsdivision

// Modulooperatorn % (Progr1, 2, Övningar)

using System;

class Non_modularized_3

{
 static void Main()

 {
 int years, months, weeks, restDays, totalDays;

 /* I n m a t n i n g */

 Console.Write("\n\tAnge antal dagar:\t\t");

 totalDays = Convert.ToInt32(Console.ReadLine());

 /* B e a r b e t n i n g */

 years = totalDays / 365;

 months = (totalDays % 365) / 30;

 weeks = ((totalDays % 365) % 30) / 7;

 restDays = ((totalDays % 365) % 30) % 7;

 /* U t m a t n i n g */

 Console.WriteLine("\n\t" + totalDays + " dagar är " +

 years + " år, " + months + " månader, " +

 weeks + " veckor och " + restDays + " dagar.\n");

 }
}

Ovn_3_3b

b) Modularisera programmet Non_modularized_3 (Ovn_3_3a) genom att flytta

bearbetnings- och utmatnigsdelen till en void-metod. Dvs skriv ett program

som läser in tiden i ett antal dagar, anropar void-metoden som omvandlar

tiden till antal år, månader, veckor och restdagar och skriver ut resulta-

ten. Använd för omvandlingen den algoritm som är implementerad i programmet

Non_modularized_3. Varför är det inte lämpligt här att använda en metod med

returvärde?

using System;

class Ovn_3_3b

{
 static void Main()

 {
 /* I n m a t n i n g */

 Console.Write("\n\tAnge antal dagar:\t");

 int totalDays = Convert.ToInt32(Console.ReadLine());

 ConvertTime(totalDays); // Anropet av void-metod

 }

 static void ConvertTime(int total) // void-metod

 {
 int years, months, weeks, restDays;

 /* B e a r b e t n i n g */

 254

 years = total / 365;

 months = (total % 365) / 30;

 weeks = ((total % 365) % 30) / 7;

 restDays = ((total % 365) % 30) % 7;

 /* U t m a t n i n g */

 Console.WriteLine("\n\t" + total +

 " dagar är " + years + " år, " + months + " månader, " +

 weeks + " veckor och " + restDays + " dagar.\n") ;

 }
}

Det är inte lämpligt att använda en metod med returvärde, därför att en

metod med returvärde endast kan returnera ETT värde. Här behövs 4 värden

som ska skrivas ut. Void-metoden beräknar OCH skriver ut dem.

Ovn_3_4_Test

Skriv först ett program med endast Main()-metoden som läser in side till

en kub samt beräknar och skriver ut kubens volym side
 3
 och dess yta 6 x

side
 2

. Flytta sedan dessa beräkningar till två metoder, en för volymen,

en för ytan, båda i en separat klass Cube. Definiera side som en datamed-

lem i klassen Cube. Avgör om metoderna Volume() och surface() ska retur-

nera eller vara av void-typ. Anropa dem från Main(). Skriv först en va-

riant med statiska metoder, byt sedan till icke-statiska metoder. Testa

båda varianter. Avgör slutligen själv vilken variant som ska föredras om

lösningen ska vara objektorienterad. OBS! Följande lösningsförslag visar

endast den optimala varianten.

using System;

class CubeTest

{
 static void Main()

 {
 Cube myCube; // Definierar en referensvariabel

 // av typ Cube utan att skapa objektet

 myCube = new Cube(); // Skapar ett objekt av typ Cube och

 // tilldelar objektets adress till re-

 // ferensen. By default: side = 0.0

 // Sedan tilldelas side ett nytt värde:

 Console.Write("\n\tAnge sidan till en kub:\t");

 myCube.side = Convert.ToDouble(Console.ReadLine());

 Console.WriteLine("\n\tEn kub med sidan\t" + myCube.side +

 "\n\thar volymen\t\t" + myCube.Volume() +

 "\n\toch ytan\t\t" + myCube.Surface() +

 '\n');

 }
}

Ovn_3_4_Class

Separat fil i samma projekt som filen Ovn_3_4_Test

class Cube

{
 public double side;

 public double Volume()

 255

 {
 return side * side * side;

 }

 public double Surface()

 {
 return 6 * side * side;

 }
}

Ovn_3_5_Test

Modularisera programmet Non_modularized_3 (sid 253) efter eget godtycke.

using System;

class TidTest

{
 static void Main()

 {
 /* I n m a t n i n g */

 Console.Write("\n\tAnge antal dagar:\t");

 int totalDays = Convert.ToInt32(Console.ReadLine());

 TimeConversion t = new TimeConversion(); // Objekt skapas

 t.ConvertTime(totalDays); // Objektets metod anropas

 /* U t m a t n i n g */

 Console.WriteLine("\n\t" + totalDays + " dagar är "+

 t.years + " år, " + t.months + " månader, " +

 t.weeks + " veckor och " + t.restDays + " dagar.\n") ;

 }
}

Ovn_3_5_Class

Separat fil i samma projekt som filen Ovn_3_5_Test

class TimeConversion

{
 public int years, months, weeks, restDays;

 public void ConvertTime(int total)

 {
 /* B e a r b e t n i n g */

 years = total / 365;

 months = (total % 365) / 30;

 weeks = ((total % 365) % 30) / 7;

 restDays = ((total % 365) % 30) % 7;

 }
}

Kapitel 4 Mer om metoder, sid 187:

// Ovn_4_1.cs

// Varför ger följande program kompileringsfel? Åtgärda felet

 256

// genom att flytta på kod, utan att ta bort någon klammer

// och utan att ha tomma klamrar:

// class Ovn_4_1

// {

// static void Main()

// {

// {

// int t = 30;

// }

// Console.WriteLine("t = " + t);

// }

// }

using System;

class Ovn_4_1

{
 static void Main()

 {
 int t;

 {
 t = 30;

 }
 Console.WriteLine("\n\tt = " + t + '\n');

 }
}
/* Kompileringsfelet i programmets första variant berodde på att varia-

 beln t var definierad i ett inre block och att programmet refererade

 till den utanför det inre blocket där t inte längre var giltig.

*/

// Ovn_4_2_Test.cs

// Modularisera programmet MiniSort från kap 4 (sid 154)

// efter eget godtycke.

using System;

class MiniSortTest

{
 static void Main()

 {
 Console.Write("\n\tTvå osorterade tecken:\n\n\t" +

 "Mata in två tecken skilda med mellanslag:\t");

 string str = Console.ReadLine();

 MiniSort m = new MiniSort(); // Objekt skapas

 m.char1 = Convert.ToChar(str.Substring(0, 1)); // Objektets data

 m.char2 = Convert.ToChar(str.Substring(2, 1)); // initieras

 m.sortera(); // Objektets metod anropas

 Console.WriteLine("\n\tDe två tecknen sorterade:\t\t\t" +

 m.char1 + ' ' + m.char2 + "\n\n");

 }
}

// --

// Ovn_4_2_Class.cs

// Separat fil i samma projekt som filen Ovn_4_2_Test.cs

 257

class MiniSort

{
 public char char1, char2;

 public void sortera()

 {
 char temp;

 if (char1 > char2) // Här tolkas tecknen som tal

 {
 temp = char1; // Algoritm för platsbyte

 char1 = char2; // av de två teckenvärdena

 char2 = temp; // char1, char2

 }
 }
}

Kapitel 5 Tillämpning av OOP, sid 230:

// Ovn_5_1.cs

// Skriv ett program som läser in 10 heltal från konsolen, lagrar dem i

// en array och skriver ut dem i omvänd ordning.

using System;

class Ovn_5_1

{
 static void Main()

 {
 int[] no = new int[10];

 Console.WriteLine("\n\tSkriv in 10 heltal:\n");

 for (int i = 0; i <= 9; i++)

 {
 Console.Write("\tTal nr " + (i+1) + ":\t");

 no[i] = int.Parse(Console.ReadLine());

 }

 Console.WriteLine("\nDina tal i omvänd ordning:\n");

 for (int i = 9; i >= 0; i--)

 Console.Write(no[i] + "\t");

 Console.WriteLine();

 }
}

// Ovn_5_2.cs

// Skriv ett program som slumpar fram 1000 heltal mellan 60 och 140

// (tänkbara hastigheter på en motorväg), lagrar dem i en array kallad

// hastighet, beräknar och skriver ut deras medelvärde med förklarande

// text. Använd klasserna RandArray (sid 207) och RandomNo som externa

// moduler.

using System;

class Ovn_5_2

{
 static void Main()

 258

 {
 Random r = new Random();

 int[] hastighet = new int[1000];

 RandArray.Rand(r, hastighet, 60, 140);

 int sum = 0;

 for (int i = 0; i <= 999; i++)

 sum += hastighet[i];

 Console.WriteLine("\tMedelvärdet av 1000 möjliga hastigheter " +

 "mellan 60 och 140 är: " + sum/1000 + '\n');

 }
}

// --

// RandArray.cs (sid 207)

// Separat fil i samma projekt som filen Ovn_5_2.cs

// Ny metod Rand() slumpar fram en array av heltal mellan

// a och b, lagrar dem i arrayen no och skriver ut dem

// Anropar biblioteksmetoden Next() i en loop för att få

// ETT slumptal i varje varv

using System;

class RandArray

{
 public static void Rand(Random r, int[] no, int a, int b)

 {
 Console.Write("\n\t" + no.Length + " heltal mellan " +

 a + " och " + b + " slumpas fram:\n\n\t");

 for (int i=0; i < no.Length; i++)

 {
 no[i] = r.Next(a, b);

 Console.Write(no[i] + " ");

 if ((i % 16 == 0) && (i != 0))
 Console.Write("\n\t");

 }
 Console.WriteLine("\n\n");

 }
}

// Ovn_5_3.cs

// Skriv ett program som läser in en sträng, lagrar den i en array

// av char och skriver ut den baklänges.

// Använd tekniken i programmet EncryptCharTest (sid 219) för att

omvandla

// den inlästa strängen i en array av char.

using System;

class Ovn_5_3

{
 static void Main()

 {
 Console.Write("\n\tSkriv in text:\t\t");

 char[] text = Console.ReadLine().ToCharArray();

 Console.Write("\n\tTexten baklänges:\t");

 for (int i = text.Length-1; i >= 0; i--)

 Console.Write(text[i]);

 259

 Console.WriteLine('\n');

 }
}

// Ovn_5_4.cs

// Skriv ett program som läser in text i gemener, lagrar den i en array

// av char och skriver ut den framhävd i versaler och med mellanslag

// mellan varje tecken.

using System;

class Ovn_5_4

{
 static void Main()

 {
 Console.Write("\n\tSkriv in text:\t\t");

 char[] text = Console.ReadLine().ToCharArray();

 Console.Write("\n\tTexten framhävd:\t");

 for (int i = 0; i < text.Length; i++)

 Console.Write("" + (char) (text[i] - 32) + ' ');

 Console.WriteLine('\n');

 }
}

// Ovn_5_5.cs

// Skriv ett program som frågar efter användarens för- och efternamn,

// hälsar sedan användaren i en utskrift med fullständiga namnet, för-

// namnets längd samt efternamnets första och sista bokstav. Lös upp-

// giften generellt utan att använda information om något speciellt för-

// och efternamn.

using System;

class Ovn_5_5

{
 static void Main()

 {
 char surname0 = '0'; // Undviker villkorlig initiering

 Console.Write("\n\tSkriv in ditt för- och efternamn:\t");

 string input = Console.ReadLine();

 char[] name = input.ToCharArray();

 int i = 0;

 while (name[i] != ' ') // Går igenom endast förnamnet

 {
 i++;

 if (name[i] == ' ') // Hittar för- och efternamnets avskiljare
 surname0 = name[i+1]; // Hittar efternamnets första bokstav

 }

 Console.WriteLine("\n\tHej, " + input +

 "\n\tDitt förnamns längd är " + i +

 "\n\tDitt efternamns första bokstav är " + surname0 +

 "\n\tDitt efternamns sista bokstav är " +

 name[name.Length-1] + '\n');

 }
}

 260

// Ovn_5_6.cs

// Skriv ett program där Main() läser in en persons fullständiga namn och

// hälsar tillbaka med namnets initialer. Dessa ska bestämmas och skrivas

// ut i en annan metod - med huvudet static void Initials(char[] name) -

// som anropas i Main().

using System;

class Ovn_5_6

{
 static void Main()

 {
 Console.Write("\n\tSkriv in ditt för- och efternamn:\t");

 string input = Console.ReadLine();

 char[] dittNamn = input.ToCharArray();

 Console.Write("\n\tHej, " + input +

 "\n\n\tDina initialer är\t\t\t");

 Initials(dittNamn); // Anropet

 Console.WriteLine('\n');

 }

 static void Initials(char[] name) // Metoden

 {
 int i = 0;

 Console.Write(name[i]); // Första initialen

 while (name[i] != ' ') // Går igenom endast förnamnet

 {
 i++;

 if (name[i] == ' ') // Hittar för- och efternamnets
 // avskiljare

 Console.Write(name[i+1]); // Andra initialen

 }
 }
}

// Ovn_5_7.cs

// Modifiera programmet List (sid 226) så att sorteringen av slumptalen

// görs med vår egen bubbelsorteringsmetod sort() (sid 212) istället för

// med den fördefinierade List-metoden Sort(). Testa först med array-

// notationen som sort() är skriven i. Försök sedan att skriva om sort()

// till en List-version.
using System;

using System.Collections.Generic; // Krävs för List

class List

{
 static void Main()

 {
 List<int> intList = new List<int>(); // List-objekt av int

 Random r = new Random();

 int a = 1, b = 1000;

 Console.WriteLine(

 "\n\t100 heltal mellan " + a + " och " + b +

 " slumpas till ett List-objekt:\n");

 RandList.Rand(r, intList, a, b); // Slump-tilldelning

 Print.Out(intList); // Osorterad utskrift

 Bubble.sort(intList); // List-sortering

 Console.WriteLine(

 261

 "\tHeltalen sorteras med List-metoden Sort():\n");

 Print.Out(intList); // Sorterad utskrift

 }
}

// --

// BubbleList.cs (List-versionen av Bubble.cs sid 212)

// Separat fil i samma projekt som filen Ovn_5_7.cs

// Sorterar heltal lagrade i arrayen t med en bubbelsorteringsalgoritm

using System;

using System.Collections.Generic;

class Bubble

{
 public static void sort(List<int> t)

 {
 int temp;

 for (int pass=0; pass<t.Count-1; pass++)

 for (int i=0; i<t.Count-1; i++)

 if (t[i] > t[i+1]) // Sortering i stigande

 { // ordning
 temp = t[i]; // Algoritm för platsbyte

 t[i] = t[i+1]; // av de två elementen

 t[i+1] = temp; // t[i] och t[i+1]

 }
 }
}

// --

// Print.cs (sid 228)

// Separat fil i samma projekt som filen Ovn_5_7.cs

// Metoden Out() skriver ut en lista med en foreach-sats som

// loopar igenom listans ALLA element

using System;

using System.Collections.Generic;

class Print

{
 public static void Out(List<int> t)

 {
 Console.Write("\t");

 int i = 0;

 foreach (int element in t) // Loop

 {
 Console.Write(element + " ");

 if ((i % 14 == 0) && (i != 0)) // Radbyte var
 Console.Write("\n\t"); // 14:e utskrift

 i++;

 }
 Console.WriteLine("\n");

 }
}

// --

// RandList.cs (sid 227)

// Separat fil i samma projekt som filen Ovn_5_7.cs

// Metod Next() slumpar fram heltal mellan a och b och

// lagrar dem i ett List-objekt med List-metoden Add()

 262

using System;

using System.Collections.Generic;

class RandList

{
 public static void Rand(Random r, List<int> no, int a, int b)

 {
 for (int i=0; i < 100; i++) // Här fylls listan

 no.Add(r.Next(a, b)); // med slumptal

 }
}

Ovn_5_8_Test

Modifiera programmet ArrayOfRef (sid 200). ...(se klassen Fish_priv)

Det modifierade programmet ska göra samma sak som det ursprungliga.

using System;

class ArrayOfRef_ny

{
 static void Main()

 {
 string fiskSort;

 float fiskVikt, fiskLängd;

 Fish_priv[] f = new Fish_priv[5]; // Array av referenser

 for (int i = 0; i < f.Length; i++)

 {
 Console.Write("\n\tMata in sorten till fisk" + (i+1) + ":\t");

 fiskSort = Console.ReadLine(); // Input

 if (fiskSort.Length <= 7) fiskSort += '\t';

 Console.Write("\tMata in vikten till fisk" + (i+1) + ":\t");

 fiskVikt = (float) Convert.ToDecimal(Console.ReadLine());

 Console.Write("\tMata in längden till fisk" + (i+1) + ":\t");

 fiskLängd = (float) Convert.ToDecimal(Console.ReadLine());

 f[i] = new Fish_priv(fiskSort, fiskVikt, fiskLängd);

 }
 Console.Write("\nFisksort\tVikt i g\tLängd i cm\tPris\tFrakt\n" +

 "---\n");

 for (int i = 0; i < f.Length; i++)

 Console.WriteLine(f[i].toString());

 }
}

Ovn_5_8_Class

Deklarera klassen Fish:s datamedlemmar som private och metoderna som pub-

lic. Förse klassen med en konstruktor och en strängrepresentationsmetod.

using System;

class Fish_priv

{
 private string sort;

 private float weight, size;

 public Fish_priv(string S, float w, float s)

 263

 {
 sort = S;

 weight = w;

 size = s;

 }

 public int Price()

 {
 return (int) Math.Round(weight * 7.25f / 100);

 }

 public int Shipping()

 {
 return (int) Math.Round(weight * 0.02f + size * 0.1f);

 }

 public String AsString()

 {
 return sort + "\t " +

 weight + "\t\t " + size + "\t\t " +

 Price() + "\t " + Shipping() + "\n" ;

 }
}

 264

 265

Appendix

Visual Studio

 Ämne Sida

Installation av Visual Studio 266

Konfiguration och användning av Visual Studio 267

­ Två olika typer av applikationer 267

­ Projekt i Visual Studio 268

­ Console Application 268

­ Windows Forms Application 273

 266

Installation av Visual Studio

1) Gå till webbadressen: https://visualstudio.microsoft.com/vs/

Webbsidan Visual Studio 2019 visas. Gå med

musen över knappen Download Visual Studio 

Välj i dropplistan som dyker upp:

Community 2019

2) Installationsfilen vs_community_….exe laddas ner. Dubbelklicka på den just häm-

tade installationsfilen. Svara Ja på frågan om du ska tillåta att den här appen får gö-

ra ändringar på din dator. Klicka på Continue när det dyker upp rutan Visual Studio

Installer.

3) Visual Studio Installer öppnar ett stort vitt fönster med den lilla rubriken Installing –

Visual Studio Community 2019 … och den blåmarkerade fliken Workloads. I den finns

till vänster ett antal rutor. Leta efter följande ruta (3:e till vänster):

4) Markera rutan med rubriken

..NET desktop developmentt ge-

nom att bocka den lilla blå rutan

i det övre högra hörnet.

5) Klicka sedan i det nedre högra hörnet av det stora fönstret på knappen Install . Det-

ta kan ta ett tag – beroende på din dators prestation.

6) Visual Studio 2019 är en gratis programvara vars licens är tidsbegränsad. Du behö-

ver skapa ett Microsoft-konto med din e-mailadress som användarnamn. När du gör

det glöm inte att anteckna och spara ditt lösenord. Du kommer att behöva det när du

efter ett tag måste uppdatera licensen. Följ instruktionerna som kan involvera veri-

fiering via din e-mailadress. Det är gratis, går fort och medför inga komplikationer.

7) Om du får upp en ruta med dropplistan Development Settings välj C#. Om alterna-

tivet inte finns låt General stå där. Klicka sedan på knappen Start Visual Studiot.

8) När du lyckats med installationen startas Visual Studio antingen automatiskt eller du

kan göra det själv. Stäng rutan Visual Studio Installer.

9) Beroende på vilken typ av applikation du vill skapa fortsätt enligt instruktionerna på

sid 268 för Console Application eller sid 273 för Windows Forms Application.

 267

Konfiguration och användning

av Visual Studio

Efter lyckad installation av Visual Studio enligt anvisningarna i förra avsnitt kan du här

läsa nu hur man använder programvaran. För att kunna göra det krävs nämligen en kor-

rekt konfiguration av Visual Studio, vilket i början kan verka lite invecklad. Anlednin-

gen till det är att Visual Studio är en integrerad programutvecklingsmiljö (IDE) som är

skapad för professionella utvecklare och därför är ganska stor och komplex. Vi vill i

denna beskrivning hålla oss till det absolut minimala vad gäller miljön för att kunna

koncentrera oss på själva språket C#. Beskrivningens viktigaste moment är:

 Att välja rätt typ av applikation

 Att skapa ett projekt

 Att lägga till en C#-källkodsfil till projektet

 Att kompilera och exekvera C#-koden i projektet

Det finns olika typer av C#-program. Ett annat ord för program är applikation.

Två olika typer av applikation

I Visual Studio finns det många olika typer av applikation. Av dessa behandlas här en-

dast följande två:

1. Console Application är ett C#-program vars körresultat är en utskrift i textform som

hamnar i Windows Kommandotolk, den s.k. konsolen, ett svart fönster, ibland även kal-

lat för DOS-fönstret. Ett sådant program har inga grafiska komponenter. Programexem-

plen i boken Programmering 1 med C# domineras av Console Applications.

2. Windows Forms Application involverar både text och grafik och producerar fönster

samt dialogrutor av olika slag. Med sådana program kan användaren kommunicera via

grafiska gränssnitt. Windows Forms Applications introduceras i denna bok på sid 13.

Följande tre steg måste alltid tas för att kunna köra ett program i Visual Studio – vare sig

det är en Console Application eller en Windows Forms Application:

1. Att skapa eller öppna ett befintligt projekt

2. Att lägga till en C#-källkodsfil till projektet

3. Att kompilera och exekvera

För program av typ Console Application går vi igenom dessa tre steg på nästa sida. Men

först: Vad exakt är ett projekt i Visual Studio och varför behöver vi det?

 268

Projekt i Visual Studio

För att kunna köra ett C#-program i Visual Studio måste koden infogas i ett s.k. projekt.

Ett projekt är en samling filer – alltid själva C#-källkoden, men också andra relaterade

filer inkl. ev. bilder – som sammanlagt utgör ett C#-program. Denna samling filer bildar

både en fysisk mapp på hårddisken och en virtuell arbetsplats i Visual Studio. De kom-

municerar med varandra hela tiden när vi utvecklar och testar våra program. Visual

Studio kan endast kompilera och köra C#-program som är inbäddade i projekt, även om

det är det enklast tänkbara program som består av endast en fil. Det är inte möjligt att

kompilera C#-källkod utanför ett Visual Studio-projekt. Så, innan vi kan börja skriva

C#-kod måste vi antingen skapa ett nytt eller öppna ett befintligt projekt.

Den övergripande termen till projekt i Visual Studio är solution. Dvs flera projekt kan

samlas i en solution. Självklart kan en solution även bestå av ett enda projekt. Vi kom-

mer till att börja med inte att använda flera projekt i en solution utan endast ett projekt.

Ändå kommer vårt projekt att automatiskt vara paketerat i en solution.

Console Application

Starta Visual Studio från Windows Start-meny genom att klicka fram dig till:

Start  Visual Studio 2019

Ett vitt fönster öppnas med rubriken Visual Studio 2019. I kolumnen till höger under

rubriken Get started finns ett antal rutor.

1. Att skapa eller öppna ett befintligt projekt: Beroende på om vi vill skapa ett

nytt eller öppna ett befintligt projekt, tar vi ett av följande alternativen a) eller b):

a) Om vi vill skapa ett nytt projekt – och det vill vi nu – klickar vi i det vita Visual

Studio 2019-fönstret på rutan

 Create a new project

En ny dialogruta dyker upp med rubriken Create a new project. Scrolla ned den

(på höger sidan) och leta efter rutan som ser ut så här och har rubriken Console

App (.NET Framework):

Markera rutan ovan. Klicka i dialogrutan Create a new project som omfattar

denna ruta, på knappen Next längst ned till höger.

En ny dialogruta dyker upp med rubriken Configure your new project. Fyll i

den uppgifterna enligt följande:

 269

I den övre delen av dialogrutan döper vi vårt projekt till MyConsoleProject. I

textrutan Location anger vi den fullständiga sökvägen till den mapp vi vill pla-

cera vårt projekt i. Låt oss säga vi vill samla våra C#-program i en mapp som

vi kallar C# i enheten C:\ på vår dator. I så fall anger vi som Location C:\C#. I

denna mapp kommer projektmappen MyConsoleProject placeras. Visual Studio

skapar automatiskt både den nya projektmappen samt dess innehåll. Bocka för

den lilla rutan Place solution and project in the same directory. Klicka på knap-

pen Create längst ned till höger. Gå till punkt 2 nedan. Dvs hoppa över b).

b) Om vi vill öppna ett redan befintligt projekt – det gör vi kanske senare – klic-

kar vi i det vita Visual Studio 2019-fönstret på rutan

 Open a project or solution

Vi får upp dialogrutan Open Project/Solution. För att öppna det projekt vi vill

jobba med, navigerar vi i datorns filsystem till projektmappen och öppnar där

filen med ändelsen .csproj. Gå till punkt 2.

2. Att lägga till en C#-källkodsfil till projektet: Efter att ha lämnat dialogrutan

Configure your new project med Create-knappen enligt 1. a) eller dialogrutan Open

Project/Solution med Open-knappen enligt 1. b) öppnas projektet. Ett grafiskt gräns-

snitt kommer upp som liknar en webbsida bestående av en massa menyer, flikar,

länkar och fönster som ser ut så här:

 270

Man ser ett antal fönster: till höger ovan fönstret Solution Explorer där projektets

innehåll visas med ett antal automatiskt skapade filer, bl.a. filen Program.cs som vi

har markerat i bilden ovan. Till vänster ser man det stora kodfönstret som visar

denna fils innehåll som är en mall för ett C#-program. Den är lämplig för dem som

vill använda mallen för att snabbt kunna utveckla en applikation. Vi däremot ska

lära oss C# från grunden och vill inte använda kod som vi inte skrivit själva. Därför:

Markera Program.cs, högerklicka och välj Exclude From Project.

Därmed har vi avlägsnat denna fil från projektet för att kunna infoga vårt eget C#-

program i projektet. Det finns två alternativ att göra det: Antingen vill vi skapa ett

helt nytt program, skriva in koden, spara den i en fil och infoga den i projektet eller

vi vill lägga till en redan befintlig fil som innehåller ett C#-program, som vi kanske

har skrivit tidigare. Vi ska behandla båda varianter och börjar med den första:

a) Att skapa en ny fil och infoga det i projektet:

Markera i Solution Explorer projektnamnet MyConsoleProject, högerklicka och

välj:
Add  New Item…

Dialogrutan Add New Item – MyConsoleProject dyker upp. Scrolla ner fönstret i

mitten tills du ser filtypen Code File. Markera Code File i mittfönstret:

 271

Ange i den undre delen av dialogrutan i textrutan Name: First.cs. Därmed har du

skapat en fil av typ Code File och döpt den till First.cs.

Klicka på Add-knappen. Så snart du gjort det läggs den tomma filen First.cs till

projektet. Samtidigt skapas denna fil i projektmappen MyConsoleProject. Och när

du i Solution Explorer markerar filen visas till vänster ett stort vitt fönster som du

kan använda som en editor för att skriva C#-kod i. Skriv in där t.ex. följande kod:

using System;

class First

{
 static void Main()

 {
 Console.WriteLine("\n\tMitt första C#-program!\n");

 }
}

Det rekommenderas att bibehålla kodens layout, för att följa God programme-

ringsstil, se t.ex. Progr1+, 4.1. Visual Studio har stöd för detta. Koden kan sparas

och lagras t.ex. i filen First.cs så snart du kompilerar projektet, se punkt 3. Vi

kommer att referera till den med programmet First som samtidigt är klassnam-

net i koden, vilket dock inte är obligatoriskt utan en konvention vi följer.

b) Att lägga till en befintlig fil till projektet:

Har du redan en C#-källkodsfil bland dina filer på hårddisken, markera i Solution

Explorer projektnamnet MyConsoleProject, högerklicka och välj:

 272

Add  Existing Item…

 Dialogrutan Add Existing Item – MyConsoleProject dyker upp som tillåter dig att

navigera genom datorns filsystem för att ladda en existerande C#- källkodsfil. Gå

till den fil du vill ladda, markera den och klicka på knappen Add i dialogrutan

Add Existing Item – MyConsoleProject. I Solution Explorer kan du konstatera att

den fil du valde har kommit till projektet MyConsoleProject. Markera den för att

se innehållet i kodfönstret till vänster som nu kan användas som en editor.

3. Att kompilera och exekvera: Nu när projektet är skapat och innehåller en C#-

källkodsfil kan man kompilera det vilket innebär att även källkoden ovan kompile-

ras. Om det inte redan finns ett Output-fönster längst ned på sidan under kodföns-

tret, klicka i menyraden längst upp på menyn:

View  Output

Du får ett nytt Output-fönster för att kunna se resultatet av kompileringen och även

se eventuella kompileringsfel. Akta på vad som skrivs i det när du kompilerar ko-

den från menyraden längst upp med:

Build  Build Solution

 Om du får följande meddelande i Output-fönstret har kompileringen gått bra:

1>------ Build started: Project: MyConsoleProject, Configuration: Debug Any CPU

1> MyConsoleProject -> C:\C#\MyConsoleProject\bin\Debug\MyConsoleProject.exe
========== Build: 1 succeeded, 0 failed, 0 up-to-date, 0 skipped ==========

 Meddelandet ovan säger att koden inte innehåller några kompileringsfel. Har du

syntaxfel i koden kommer du att få felmeddelanden i Output-fönstret. Åtgärda alltid

endast det allra första kompileringsfelet och kompilera om med kommandot ovan,

eftersom de andra kan innehålla följdfel. Ett möjligt kompileringsfel kan vara att du

glömt att exkludera filen Program.cs från projektet, se sid 270.

 För att exekvera koden, klicka i menyraden längst upp på menyn:

Debug  Start Without Debugging

 Om allt har gått bra bör det se ut så här på din skärm:

 273

Får du detta på skärmen har du lyckats med att kompilera och exekvera den kod du ma-

tade in på sid 271 och skapa en C# Console Application: Programmet First finns nu

lagrad i filen First.cs och i projektet MyConsoleProject.csproj.

Grattis!

Vill du skapa nya konsolapplikationer behöver du inte göra om hela proceduren. Du be-

höver bara ladda projektet MyConsoleProject i Visual Studio, exkludera filen First.cs

från det och infoga nya filer resp. skriva ny kod, spara och köra enligt instruktioner på

sid 270-271. Ett projekt räcker för alla konsolapplikationer. Så det var värt mödan.

Windows Forms Application

En fullständig genomgång av denna typ av applikation finns utförligt på sid 13-17 där

bokens första Windowsapplikation Interaction behandlas i detalj. Vi hänvisar till den.

 274

 275

Programförteckning

Program Ämne Sida

Kapitel 1 Windowsprogrammering

Interaction Introduktion till interaktiva grafiska gränssnitt 16

PassWdTextBox Interaktion med kontrollen TextBox 18

Bartender Checkboxar och radioknappar 20

ColorTest Färgtest med kontrollen HscrollBar 24

TryCatchTest Undantagshantering: Automatiskt genererade undantag 28

ThrowTest Egengenererade undantag 30

ListBoxes Listboxar 33

DeliveryDate Leveransdatum 35

TaxCalculator En räntekalkylator 38

Draw Linjer, rektanglar och ovaler 41

Arcs Vinklar och bågar 43

MyFirstBrowser En egen webbläsare 48

DevBrowser En mer utvecklad webbläsare 54

Menus Menyer 58

MDI Multiple Document Interface 62

Kapitel 2 Objektorienterad programmering (OOP)

Password Vår första egendeklarerade klass utan Main() 77
PasswordUse Användning av klassen Password 77
P_All_in_Main Program utan modularisering 82
P_Method_Module Modularisering på metodnivå 82
P_Class_Module Modularisering på klassnivå 84
Emp Deklaration av klass med class 85

EmpTest Test av klassen Anst: Definition av objekt med new 87

 Åtkomst till objekt med referens, punktnotation

 Automatisk initiering av datamedlemmar, null i C#

Circle Klass med konstruktor och privat datamedlem 91

 Åtkomstmodifieraren private

Encapsulation Test av klassen Circle med anrop av konstruktorn 94

AccountD Klass med flera konstruktorer, default konstruktorn 97

CreateAccountD Testar klassen AccountD 98

Date Klass med två konstruktorer och en utskriftsmetod 105

Employ Komposition av klasser 105

Composition Komposition av objekt 106

Person Superklass till klassen Employee 109

Employee Ärver klassen Person, anrop av superklassens konstruktor 110

 276

Program Ämne Sida

Inheritance Arv: Testar klassen Employee 111

Account Superklass till klassen MinimalAccount 114

 Åtkomstmodifieraren protected

MinimalAccount Ärver klassen Account: Överskuggning av metoder 115

PolymorphTest Polymorfism: Anrop av polymorf metod Withdraw() 117

Kapitel 3 Metoder i OOP

Empl Klass med accessmetoder: Get- och Set-metoder 130

GetSet Test och anrop av accessmetoder 131

EmplP Automatiserar Get- och Set-metoder med Property 133

Property Testar och anropar Property-metoden 134

StatDemo Statiska datamedlemmar med modifieraren static 135

StatDemoTest Test av klassen StatDemo: Klass- och instansvariabler 135

RandTest Simulerar tärningskast med slumpheltal 138

EncryptStr Klass som deklarerar metoden Encrypt() 140

 Text krypteras med referens som parameter och returvärde

EncryptStrTest Test av klassen EncryptStr med anrop av Encrypt() 141

Super Abstrakt superklass med abstrakt metod 143

Sub1 Ärver klassen Super: Implementerar abstrakt metod 144

Sub2 Ärver Super: Överskuggning av metod med override 144

Override Testar överskuggning av abstrakt metod 145

SuperV Icke-abstrakt superklass med virtuell metod 146

Sub Ärver klassen SuperV : Modifierar virtuell metod 147

TestVirtual Testar överskuggning av virtuell metod 147

Kapitel 4 Mer om metoder

MiniSort Algoritm för platsbyte av två objekt 154

CallByVal Värdeanrop vid överföring av parametrar i metoder 156

Swapping Klass med metod som byter plats på två objekt 159

CallByRef Referensanrop vid överföring av parametrar i metoder 160

Outparam In- och utparametrar i metoder 163

Block Variablers livslängd (scoping) och blockstruktur i C# 165

OverrideVar Överskuggning av variabler, referensen this 168

 Överskuggning av datamedlemmar med lokala variabler

Overload Överlagring av både för- och egendefinierade metoder 173

Fibonacci Klass med rekursiv metod 176

FibonacciTest Testar rekursiv metod 177

Lambda Demonstration av lambdauttryck 178

Delegate Introduktion till delegater 180

DelegateParam Delegat som parameter i metoder 182

WriteLineOverl Varianter av Console.WriteLine() 184

 277

Program Ämne Sida

CountLINQ Introducerar Language Integrating Query (LINQ) 185

 LINQ-version av programmet DelegateParam

MethodGroup Introduktion till metodgrupper 185

Kapitel 5 Tillämpning av OOP

Array Definition och initiering av arrays 192
ArrayInit Arrayens initieringslista 197

Fish Deklarerar klassen Fish 199
ArrayOfRef Array av referenser till Fish-objekt 200

Arrayparam Array som parameter i metoder 203

RandArray Metod som slumpar fram en array av heltal 207

Search Metod som söker efter ett element i en array 209

Bubble Läser en tabell från en fil och visar innehållet 212

G_Output Demonstration av en generisk metod 214

GenericTest Test av generiska metoder 215

G_Bubble Generisk variant av bubbelsorteringsmetoden 217

EncryptChar Klass med krypteringsmetod 220

DoubleArray 2D Array 222

List Demonstrerar dynamiska arrays: Listor 226

 278

Register

A

abstract 143

Abstrakta klasser 143
Abstrakta metoder 143, 144, 145
Abstraktion 71
Accessmetoder 130

Anonyma funktioner 178
Argument 157
Array

Default-initiering 196
Definition 192
Hakparenteser 194
Indexering 191
Indexregeln 192
Initiering 192
Parameter i metoder 203
Referensanrop 203

Array av referenser 199
Arv 73, 108
Arvrelation 110
Attribut 70

B

Bartender 20
Blockstruktur 164
Bubbelsortering 210, 217
Button 12

C

C#-program 76
C#-programvara

konfiguration 267
Calculator 64
Component tray 55
Console Application 267

D

Datamedlem 73
Automatisk initiering 101
Åtkomst till 89

E

Egen webbläsare 45

F

Färgtest 24

G

Geometriska figurer 40
Get-metod 131
Grafiskt gränssnitt 12
GroupBox 21
Gränssnitt med menyval 55
Gränssnitt mot Internet 45
Gränssnitt mot kalendern 34

H

HscrollBar 24
Händelsemetoder 17
Händelsestyrd programmering 12

I

Indexregeln 192
Instansvariabel 135
Interaktion 12

K

Klass 85
Datatyp 85
Deklaration 85
Sammansatt datatyp 85
Test av 88
Varför klasser? 80

Klassdiagram 108, 113
Klassvariabel 135
Konstruktor 93

Default-konstruktor 95
Flera i en klass 97

Koordinatsystem 40
Kryptering 140, 219

 279

Text 140, 219

L

Label 18
Labyrint I (projekt) 125

Lambdauttryck 178
Leveransdatum 34
LINQ 179
Lista 226
Livslängd 164

M

Master Mind (projekt) 127
Menyer 55
MessageBox 17
Metod 73, 130

Accessmetod 130
Anrop med punktnotation 90
Statisk 137
Överlagring 172
Överskuggning 115

Metodgrupper 185
Modularisering 75, 81, 108

N

Navigate()-metoden 48
Navigate-dialogrutan 50
Navigate-menyn 52
nolltecknet 103
Null i C# 102

O

Objekt 70
Definition 87
Skillnad till referens 100

Objektorienterad design 70
Objektorienterad programmering 70
Overloading 172
Override 145

Overriding 115

P

Paradigmskifte 70

PasswdTextBox 18
Pixel 40
Polymorfism 74, 113
Program i C# 76
Property 133
protected 116

Punktnotation 72, 89

R

Referens
I metoder 140

Referens som parameter 140
Referens till Objekt 88
Referensanrop 156
Rekursiva metoder 175
Ritning 40

S

Scope 164
Set-metod 131
Signatur 172
slumpArray-klassen 207

Slumptal 138
Array 207

SlumpTal-klassen 138

Sortering 210
Platsbyte 154

static 137

Strukturering av kod 75, 108
Sökning 209

T

TextBox 18
this 168
Toolbox

MultiLine 36

U

UML 70, 73
Undantagshantering 28
Undermenyer 55

 280

V,W

virtual 146

Virtuella metoder 146, 147
Värdeanrop 156
Webbläsare 45

Enkel 47
WebBrowser-kontrollen 47
Where i LINQ 179

Å

Återanvändning av kod 75, 108

Ö

Överlagring av metoder 172
Överskuggning av abstrakta metoder 145
Överskuggning av metoder 115, 143, 146
Överskuggning av variabler 167
Överskuggning av virtuella metoder 147

 281

Programmering 3 med C# är en fortsättning på denna bok och behandlar

programmeringens mer avancerade koncept samt tillämpningar, bl.a.

filhantering och databaser, speciellt relationsdatabaser. Databasers

kommunikationsspråk SQL introduceras som ett inbäddat språk i C#.

 282

Programmering 1 med C#

Ur innehållet:

Grundbegrepp i programmering
Datatyper, variabler & tilldelning
Utskrift till grafisk miljö
Windowsprogrammering
C# Console & Win Applications
Interaktiva grafiska gränssnitt
Kontrollstrukturer
Klasser, objekt och referenser
Metoder
Rekursiva metoder
Sammansatta datatyper: Arrays
Dynamiska arrays: Listor
Sökning & sortering
Kryptering av text
Hantering av slumptal
Undantagshantering
Vad är objektorienterad programmering?
Installation av Visual Studio.NET
Konfiguration av Visual Studio.NET
Projekt i Visual Studio.NET
Övningar & projektuppgifter
Fullständiga lösningar till övningar

Koda matte med
Python

Programmering i matematik

En enkel, pedagogisk lärobok som kom-
pletterar matematikundervisningen med
inslag av programmering. Den vägleder
både lärare och elever genom att kombi-
nera teori med praktiska övningar och
fullständiga lösningar. Boken presente-
rar ett pedagogiskt koncept om hur pro-
grammering kan integreras i kurserna
Matematik åk 7-9 och Matematik 1 (a,b,c).
Ett övningshäfte för elever med lektions-
upplägg planeras till vårterminen 2020. www.kodamatte.se

Programmering 2 med C#

Windowsprogrammering

Grafiskt gränssnitt mot Internet

Egen webbläsare

Grafiskt gränssnitt med menyval

Multiple Document Interface

Objektorienterad programmering

Obj. modellering & implementation

Metoder i OOP

Arv och polymorfism

Lambdauttryck

Delegater

LINQ

Abstrakta klasser & metoder

Sökning och sortering

Kryptering med slumptal

Rekursion

Generiska metoder

2D Array

Virtuella metoder

Metodgrupper

Visual Studios C# miljö

Windows Forms Applications

Övningar & projektuppgifter

Fullständiga lösningar till övningar

Utveckla en egen webbläsare (ex. ur boken, sid 45-54):

TechPages Förlag Tel 08-792 36 28 info@techpages.se www.techpages.se

Ur innehållet

