~
=~
o
D
D
D
D

|
Programmering 2 w i

909090

Med hjélp av Programmering 2 med C# kan du nu skriva intressanta applikationer
i mycket storre utstrackning &n tidigare. Du lar dig Windowsprogrammering samt
objektorienterad modellering och implementation — avgérande foér professionell
programutveckling, speciellt for webben. Bl.a. visar boken hur du sjalv kan ut-
veckla en egen webbl&sare, se bokens baksida. Kombinationen av interaktiva gra-
fiska anvéndargrénssnitt (GUI) och webben gér dig till en professionell program-
merare.

Programmering 2 med C# &r en fortsattning pa nyborjarbéckerna:

Programmering 1 med C#
Programmering 1+ med C#

De hjélper nybdrjaren att komma 6ver den troskel som ar avgorande for att det ska
bli roligt att programmera. For deras innehall se bokens inre och yttre baksida.

Valet av programmeringsspraket ar av underordnad betydelse. C# &r ett medel, ett
verktyg for att presentera programmering. Malet ar att formedla tankesattet och
tekniken att programmera, oberoende av sprak. Har man en gang forstatt de grund-
laggande principer som ar gemensamma for alla programmeringssprak, blir det
narmast en teknikalitet att pa egen hand léra sig ett nytt sprak.

Printed in Sweden

Published by TechPages Forlag AB
www . techpages. se

ISBN 978-9-197-42043-3

Programmering 2

med C#

Fortsattning pd Programmering 1 med C#

Tacker Skolverkets kursplan fér Programmering 2

Med Gvningar,
fullsténdiga lésningar
&
projektuppagifter

www.techpages.se TechPages Forlag

Titel: Programmering 2 med C#
ISBN: 978-9-197-42043-3

Copyright © 2021 TechPages Férlag AB, Danderyd
All rights reserved

Tel: 08-792 36 28

www . techpages. se

Tryckeri: Eprint, Stockholm
Augusti 2021

®

Kopieringsférbud!

Denna hok ar skyddad av Lagen om upphovsratt. Kopiering ar forbjuden.

Forbudet inkluderar dverséttning, tryckning, stencilering, kopiering, lagring i elektroniska och digitala media,
visning pé bildskarm eller via projektor, bandinspelning osv.

Dessa forbud géller &ven for koden i alla programexempel samt évningarnas lésningar som finns i boken.

Den som bryter mot lagen om upphovsratt kan &talas av allman aklagare och démas till boter eller fangelse i
upp till tva &r samt bli skyldig att erlagga ersattning till upphovsman/rattsinnehavare.

4

Valkommen till Programmering 2

Efter att ha lart sig grunderna i programmering 6ppnas helt nya mojligheter att skriva
intressanta applikationer i mycket storre utstrackning an tidigare. Boken innehaller bl.a.:

Windowsprogrammering

Interaktiva grafiska applikationer (GUI)

En egen webblasare

Objektorienterad programmering & modellering
Language Integrating Query (LINQ)

Sokning och sortering

Kryptering med slumptal

Rekursion

Generics

For att ha det lite roligt i borjan startar vi med Windowsprogrammering — sma grafiska
applikationer med mdjligheter till interaktion och menyval, bl.a. en egen webbl&sare.
Boken fortsatter sedan med de teoretiskt tyngre bitarna: objektorienterad programme-
ring och modellering, filhantering, kryptering osv.

Med dessa verktyg i handen kommer det inte langre finnas nagra granser for din kreati-
vitet, uppfinningsrikedom och fantasi. Hemligheterna bakom IT kommer att avsldjas for
dig en efter den andra. Kombinationen av grafiska grénssnitt och webben gor dig till en
professionell programmerare.

Denna bok ar en fortséttning pa Programmering 1 med C# och Programmering 1+ med
C#. Vissa delar kan ha repetitiv karaktar for att underlatta forstaelsen. Innehallet tacker
Skolverkets kursplan for Programmering 2. Men precis som nyhdrjarbockerna innehal-
ler denna bok — utéver Skolverkets kursplan — en hel del extra material for att formedla
relevant kunskap, befasta samt férdjupa kunskapen och gora pliktlektyren mer intres-
sant.

Programmering 2 med C# utvecklas och uppdateras permanent. Darfor tas all form av
kritik, korrekturanméarkningar saval som forslag till forbattringar av bade form och inne-
héll tacksamt emot pa adressen info@techpages. se .

Anmarkningar

1. Denna upplaga av boken ar fornyad och uppdaterad i manga avseenden gent-
emot tidigare versioner. Den har anpassats till de nya kursplanerna. En del av
innehallet har flyttats till Programmering 3. Andra delar har integrerats fran
Programmering 1.

2. Alla programexempel inkl. évningarnas fullstandiga lésningsforslag ar utveck-
lade och testade i Visual Studio 2019. Nagra av bokens grafiska program-
exempel kan dock innehélla layout (fonster, dialogrutor osv.) som harstammar
fran dldre versioner.

3. Instruktioner for installation, konfiguation och anvéndning av Visual Studio
2019 kan hittas i bokens Appendix, sid 265.

4. Denna bok &r en fortsattning pd Programmering 1 med C# och Programmering
1+ med C#. Alla hanvisningar foljer monstret i féljande exempel:

Progrl+,5 héanvisartill Programmering 1+ med C#, Kkapitel 5
Progrl+, 4.3 kapitel 4, avsnitt 3

Pa liknande satt hanvisas till Programmering 1 med C# som &r en light version
av Programmering 1+ med C#.

Innehallsforteckning

Amne Sida Program
Kapitel 1 Windowsprogrammering 11
1.1 Interaktiva grafiska granssnitt 12 Interaction
- Controls 13
- Windows Forms Application 13
- Handelsemetoder 17
1.2 TextBoxar, Buttons & Labels 18 PassWdTextBox
1.3 Checkboxar och radioknappar 20 Bartender
1.4 Fargtest med kontrollen HscrollBar 24 ColorTest
1.5 Undantagshantering 28 TryCatchTest
- Egengenererade undantag 30 ThrowTest
1.6 Listboxar 32 ListBoxes
1.7 Granssnitt mot kalendern 34 DeliveryDate
1.8 En rantekalkylator med multiline TextBox 36 TaxCalculator
1.9 Geometriska figurer 40 Draw
1.10 Bé&gar och vinklar 43 Arcs
1.11 En egen webbldsare 45
- En forsta webblasare 48 MyFirstBrowser
1.12 En mer utvecklad webbldsare 49 DevBrowser
- Dialogrutan Navigate 50
1.13 Grafiskt granssnitt med menyval 55 Menus
1.14 Multiple Document Interface 59 MDI
Ovningar till kapitel 1 och projektuppgifter 63

Kapitel 2 Objektorienterad programmering (OOP) 69

2.1 Vad ar objektorienterad programmering? 70
- Paradigmskifte 70
- Klassdiagram 72
2.2 Klassbegreppet 76
- Vad ér en klass? 76
- V&r forsta klass 77 Password
- Varfor klasser? 77 PasswordUse
2.3 Modularisering 81 P_All in Main
82 P_Method Module
2.4 Anvandning av klasser 85 P_Class_Module
- Deklaration av en klass 85 Emp
- Definition av ett objekt 87 EmpTest
- Rtkomst till objektets medlemmar 89
2.5 Klassens konstruktor 91
- Atkomstmodifieraren private 91 Circle

Amne Sida Program
- Konstruktorns egenskaper 93 Encapsulation
- Default konstruktorn 95 AccountD
- Flera konstruktorer 97 CreateAccountD
2.6 Referensvariabler 100
- Automatisk initiering av datamedlemmar 101
2.7 Komposition 104 Date / Employ
- Komposition av klasser och objekt 106 Composition
2.8 Arv 108 Person
- Arvrelationen 110 Employee
111 Inheritance
2.9 Polymorfism 113 Account
- Overskuggning av metoder 115 MinimalAccount
- Atkomstmodifieraren protected 116 PolymorphTest
Ovningar till kapitel 2 och projektuppgifter 119
Kapitel 3 Metoder i OOP 129
3.1 Accessmetoder 129 Empl & GetSet
3.2 Property i C# 133 EmplP/Property
3.3 Statiska datamedlemmar och metoder 135 StatDemo
- Klass- och instansvariabler 135 StatDemoTest
- Allokeringsmodifieraren static 137 RandTest
3.4 Referens i metoder 140 EncryptStr
3.5 Abstrakta klasser och metoder 143 Super
- Implementation av abstrakt metod 144 Subl & Sub2
- Test av abstrakt metod 145 Override
3.6 Virtuella metoder 146 SuperV
- Overskuggning av virtuell metod 147 Sub/TestVirtual
Ovningar till kapitel 3 149
Kapitel 4 Mer om metoder 153
4.1 Algoritm for platsbyte 156 MiniSort
4.2 Véarde- och referensanrop 156 CallByVal/ByRef
4.3 In- och utparametrar 161 Outparam
4.4 Variablers livslangd 164 Block
4.5 Overskuggning av variabler 167 OverrideVar
- Referensen this 168
4.6 Overlagring av metoder 172 Overload
4.7 Rekursiva metoder 175 Fibonacci
4.8 Lambdauttryck 178 Lambda
4.9 Delegater 180 Delegate
- Delegat som parameter i metoder 181 DelegateParam
- Varianter av Console.WriteLine () 183 WriteLineOverl

8

Amne

Sida Program

- Lbsningen med LINQ
- Metodgrupper
Ovningar till kapitel 4 och projektuppgifter

Kapitel 5 Tillampning av OOP
5.1 Arrays
- Definition och initiering av en array
- foreach-satsen
5.2 Arrayens initieringslista
5.3 Array av referenser
5.5 Array som parameter i metoder
5.6 Sokning och sortering
- Slumptal i en array
- Bubbelsortering
5.7 Generiska metoder
- Generisk bubbelsortering
5.8 Kryptering av text
5.9 2D Array
5.10 Dynamiska arrays: Listor
Ovningar till kapitel 5

Fullsténdiga lésningar till alla 6vningar (Facit)

Appendix Visual Studio
Installation & konfiguration av Visual Studio
- Projekt i Visual Studio
- Console & Windows Forms Application

Projektuppgifter
e Gissa tal
e Lopande texten
e Pyramiden
o Kaffeautomaten
e Labyrinten
e Master Mind
e Kalkylatorn

Programforteckning
Register

184 CountLINQ
185 MethodGroup
187

189

190

192 Array

194

197 ArrayInit
199/200 Fish/ArrayOfRef
203 Arrayparam

207 RandArray

207 Search

210 Bubble

214 G_Output/G_Bubble
217 GenericTest

219 EncryptChar

222 DoubleArray

226 List

230

231

265
266 / 267
268
268 / 273

64
65
66
121
125
127
187

275
278

10

Kapitel 1

Windowsprogrammering

Amne Sida Program
1.1 Interaktiva grafiska granssnitt 12 Interaction
- Controls 13
- Windows Forms Application 13
- Héndelsemetoder 17
1.2 TextBoxar, Buttons & Labels 18 PassWdTextBox
1.3 Checkboxar och radioknappar 20 Bartender
1.4 Fargtest med kontrollen HscrollBar 24 ColorTest
1.5 Undantagshantering 28 TryCatchTest
- Egengenererade undantag 30 ThrowTest
1.6 Listboxar 32 ListBoxes
1.7 Granssnitt mot kalendern 34 DeliveryDate
1.8 En rantekalkylator med multiline TextBox 36 TaxCalculator
1.9 Geometriska figurer 40 Draw
1.10 B&gar och vinklar 43 Arcs
1.11 En egen webbldsare 45
- En forsta webbldsare 48 MyFirstBrowser
1.12 En mer utvecklad webblasare 49 DevBrowser
- Dialogrutan Navigate 50
1.13 Grafiskt granssnitt med menyval 55 Menus
1.14 Multiple Document Interface 59 MDI
Ovningar till kapitel 1 och projektuppgifter 63

11

1.1 Interaktiva grafiska granssnitt

Windowsprogrammering handlar om att utveckla program som involverar bade text och
grafik samt producerar fonster och dialogrutor av olika slag — samma grafiska kompo-
nenter som dven anvands i operativsystemet Windows. Dessutom ska anvandaren kunna
interagera med sadana program via grafiska granssnitt, s.k. Graphical User Interfaces
(GUI) som byggs bade med forprogrammerade komponenter i Visual Studio och med
egenskriven C#-kod. Det har kapitlet dr en fortséattning samt fordjupning pa Windows
Forms Applications som introducerades kort i Progrl, 1.3 — 1.5.

Ett grafiskt granssnitt ar en yta som vi kan anvéanda for att kommunicera med program-
met nar det kors. Och detta i bada riktningar, dvs fran anvandaren till programmet och
tvartom. Det &r ett slags anvéndarvénligt mellanskikt (grans) mellan anvandaren och
den icke-anvandarvanliga koden. For att kunna kommunicera maste vi vicka de grafis-
ka komponenterna till liv och interagera med dem, nér applikationen kors, vilket kraver
att vi forser dem med egenskriven kod och/eller med komponenter som &r férprogram-
merade i Visual Studio. | regel ingér i sddana program mer grafik an kod. En konse-
kvens av denna nya form av program blir att korningen till skillnad fran konsolapplika-
tioner inte langre till 100% &r forbestdmd av utvecklarens kod utan kan dven styras —
atminstone delvis — av anvandaren under programkérningen genom musklickningar och
tangenttryckningar, s.k. handelser. Aven andra typer av handelser &r tankbara som pa-
verkar bade programférloppet och avslutningen i en mycket storre utstrackning an det &r
fallet med rena textbaserade program. Exekveringen startar i ett fonster med grafiska
komponenter, som visas nar programmet kors. Efter en handelse atergar kontrollen till
operativsystemet, vilket dock inte betyder att kdrningen &r avslutad, utan att program-
met &r redo att ta emot nésta handelse osv. — darfor: handelsestyrd programmering.

| detta avsnitt vill vi bygga en Windows Forms Application som reagerar pd musklick-
ning och genererar nedanstdende tva fonster. Till vénster har vi det s.k. formfonstret,
kort kallat formen, som i sin tur innehéller en knapp (Button). Forst nar man klickar pa
knappen (handelse) far man en meddeladeruta (MessageBox), avbildad till hoger:

@ Interaction - [m] x

Detta dr en Button. Klicka pa den!

Det hér &r en egenvald rubrik till MessageBox X

Texten till en MessageBox som visas varje gang man klickar pa Button i formen.

12

Controls

Férprogrammerade grafiska komponenter i Visual Studio kallas for Controls. EX.: Text-
Box, Label, Button, Man kan dra dem med musen fran verktygsladan Toolbox och
placera dem i formfonstret. For att f& funktionalitet i dem skrivs kod “bakom” dem.

Hur man bygger applikationen ovan ska vi gé igenom nu. Las om projekt pa sid 268.

Windows Forms Application

Starta Visual Studio fran Windows Start-meny: Start > Visual Studio 2019. Ett vitt fon-
ster dppnas med rubriken Visual Studio 2019. | kolumnen till héger under rubriken Get
started finns ett antal rutor. Klicka pé rutan Create a new project .

En ny dialogruta dyker upp med rubriken Create a new project. Markera i den, rutan
med rubriken Windows Forms App (.NET Framework) som ser ut s& har:

€8 Windows Forms App (NET Framework)

A project for creating an application with a Windows Forms (WinForms) user interface

c# Windows Desktop

Markera rutan ovan. Klicka sedan i dialogrutan Create a new project som omfattar den-
na ruta, pa knappen Next langst ned till hoger. En ny dialogruta dyker upp med rubriken
Configure your new project. Fyll i den uppgifterna enligt foljande:

Configure your new project

Windows Forms App ((NET Framework) c# Windows Desktop
Project name

Interaction
Location

CA\C# -
Solution name)
Place solution and project in the same directory

Framework

NET Framework 4.7.2 -

13

Fyll i den uppgifterna enligt ovan. Dvs i den évre delen av dialogrutan doper vi vart
projekt till Interaction. | textrutan Location anger vi den fullstandiga sokvégen till den
mapp vi vill placera vart projekt i. Lat oss saga vi vill samla vara C#-program i en mapp
som vi kallar C# och placerar i enheten C:\. | sa fall anger vi som Location C:\C#. | den-
na mapp kommer nu projektmappen Interaction placeras. Visual Studio skapar automa-
tiskt bade den nya mappen och projektfilen. Bocka for den lilla rutan Place solution and
project in the same directory. Klicka pa knappen Create.

Ett grafiskt granssnitt kommer upp som liknar en webbsida bestdende av en massa me-
nyer, flikar, lankar och fonster som ser ut sa har:

File Edit View Project Build Debug Format Searc... P Interaction Q - O X
m Test Analyze Tools Extensions Window Help
B2 W Debug ~ AnyCPU +| b Start - B _ . 12 lveShare &
~ Solution Explorer v X
2 @H- o-s¢a
&2 Form1 EI Search Solution Explorer (Ctrl+7) P~

%1 Solution 'Interaction” (1 of 1 project)
4 Interaction
b J Properties
P =W References
¥ App.config
b B Formi.cs
b ¢* Program.cs

s80IN0S Ble(] X000 Jalo|dx] 1BAIag

Solution Explorer | Team Explorer

Properties v X

Form1 System.Windows.Forms.Form -

- [En (a5
4 4 Text Form1 &
UseWaitCursor False
Ot v Xl Behavior
Show output from: | IntelliCode - " AllowDrop False -

[VsIX I] Trace log: C:\Users\taifun\AppData\lLocal\Temp\VSFeedbackIntelliCode o Text

[vsix I] versien: 2.2.182.4985 ¥ | The text associated with the control.

4 »

A Add to Source Control ~ &4

Huvudingrediensen i denna samling av komponenter &r fliken Form1.cs [Design] som i
sin tur visar ett fonster med rubriken Form1. Detta fonster &r en s.k. Windows Form,
kort kallad for form — ett grafiskt anvéndargranssnitt som kommer att utgéra den visuel-
la delen av var grafiska applikation. Denna form — ibland dven kallad formfonstret — ar
huvudfénstret (en slags Container) till alla grafiska applikationer som vi kommer att
placera i den och som visas ndr programmet Kors.

Markera formfonstret, ga med musen till Properties-fonstret i formfonstrets nedre hogra
horn, markera egenskapen Text och dndra dess varde fran Form1 till Interaction. Obser-
vera att formfdnstrets rubrik nu andrats till Interaction. Scrolla ner Properties-fonstret
till egenskapen Size och satt dess vérde till 930; 660. Darmed har vi gett vart form-
fonster en ny rubrik och en ny storlek.

Ga till menyraden langst upp och valj menyn: View - Toolbox

14

Expandera Common Controls och dubbelklicka pa kontrollen Button, sa att den hamnar i
formfonstret. Nar du flyttar markdoren till formen stdngs Toolbox-fonstret. Markera den
nya kontrollen button1 pa din form for att fa fram dess egenskaper i Properties-fonstret.

Egenskaperna i Properties-fonstret ar by default grupperade i kategorier (Categorized).
Andra detta genom att i Properties-fonstrets lilla menyrad strax under button1 klicka pé
ikonen (Alphabetical) for att lattare kunna hitta de egenskaper angivna i tabellen nedan.
Andra button1-egenskapernas varden enligt féljande:

buttonl:
Egenskap Vérde
AutoSize True
Font Tahoma,; 12pt; style=Bold
Location 110; 100
Text Detta &r en Button. Klicka pa den!

Markera knappen med texten Detta &r en Button. Klicka pd den! och dubbelklicka pa
den. En ny flik Formi.cs uppstar till vanster om den gamla fliken Formi.cs [Design].
Den nya fliken visar kod som lagras i filen Form1.cs. Impandera den forsta raden som
inleds med using. Skriv pa det stallet dar markdren star och blinkar, de tre rader kod
som ar markerade pa denna bild (raderna 20-22):

DG File Edit View Project Build Debug Test Analyze . P Interaction ° - O x
Jools Extensions Window Help
Q- Bra@Bd 9~ Debug ~ AnyCPU v P start v BF _ BE| = : |&® LiveShare &
[Formtcsr 5 x IRy > | Selimm Bl = B 52
[<#] Interaction ~ *z Interaction.Form1 | @4 Button1_Click(object sender, Events = @& Bl - "
H
1 #using El & :
10 -Inamespace Interaction - | | Search Solution Explc £ ~

11 { &1 Solution ‘Interaction’ (-
- Interaction

$30IN0G BlR(] XOg|00] JaIo|dx] J9AIAG

12 = bli tial cl F 1 : F
: Eu ic partial class Form orm b Properties
b =B References

14 = public Formi() ¢ App.config
15 { b1 P [Formi.cs
16 InitializeComponent(); P c* Program.cs
17 }
18 = private void Buttonl_Click(object sender, EventArgs e)
13 {
20 MessageBox.Show("Texten till en MessageBox som visas " +
21 "varje gang man klickar pad Button i formen.", < »
22 Det har &r en egenvald rubrik till MessageBox)_;‘ Solution E... | Team Bxplo,
23 }
24 } Properties > B X
25 ¥ v

100% ~ @ No issues found L 4) _

Output v X

Show output from: IntelliCode - Z | #a

[VSIX I] Trace log: C:\Users\taifun\AppData\Local\Temp\VSFeedbackIntelliCodeLogs\20190639 1140

[VSIX I1 Version: 2.2.182.4985
4 4

A
-

[J n22 Col 75 A Add to Source Control « &,

Kompilera med Build - Build Solution och kér med Debug - Start Without Debugging
applikationen Interaction. Klicka pa knappen for att fa fram detta:

15

Det hér &r en egenvald rubrik till MessageBox X

Texten till en MessageBox som visas varje gang man klickar pa Button i formen.

Nedan foljer den fullstdndiga koden i filen Form1.cs samt kodens forklaring:

// Forml.cs
using System;
using System.Windows.Forms;

namespace Interaction // Namnutrymme
public partial class Forml : Form // Forml &drver Form
{
public Forml () // Klassens konstruktor
{
InitializeComponent() ;
}
private void buttonl_Click (object sender, EventArgs e)
{
MessageBox.Show ("Texten till en MessageBox som visas " +
"varje gang man klickar pa Button i formen.",
"Det hdr 4r en egenvald rubrik till MessageBox") ;
}

}

| C# 4r namespace ett reserverat ord som skapar ett namnutrymme, en slags behallare
for klasser. C#:s programbibliotek &r organiserat i sddana namnutrymmen som innehal-
ler fordefinierade klasser. Dessa placeras i namnutrymmen som far samma namn som
projektet. T.ex. kan man komma &t klassen Forml med Interaction.Forml OSV.
Namnutrymmen &r ett bra och — i vissa fall — n6dvandigt skydd mot namnkonflikter.

De using-direktiven i borjan inkluderar tvd namnutrymmen ur C#:s programbibliotek
som behdvs for att kompilera denna enkla grafiska applikation. Ursprungligen genererar
Visual Studio nagra using-direktiv till som vi tagit bort, for de visar sig vara onddiga.

Klasshuvudet public partial class Forml : Form Sdger for det forsta att koden &r
en del av klassdeklarationen (partial). FOr det andra séger det att klassen Form1l som

16

vi skapar, arver biblioteksklassen Form. | C# &r : koden fér arv". Klassen Form i sin tur
&r deklarerad i namnutrymmet System.Windows . Forms. Dér finns en hel del fordefi-
nierad kod som behdvs for att skapa formfonstret. Alla klasser som skapar formfonstret
maste arva denna fordefinierade kod. Den del av klassen Form1 som deklareras har, in-
nehdller endast tvd metoder. Den forsta dr klassens konstruktor Formi (). Den andra
metod i vilken vi lade tre rader egen kod, heter buttonl_Click (). Denna kod gor att
MessageBoxen visas vid musklickning nar man koér programmet. Medan konstruktorn
Forml () dr en automatisk metod for att initiera klassen Form1:s egenskaper, ar but-
tonl_Click() en helt ny typ av metod som kallas for héandelsemetod. Den férekom-
mer inte i konsolapplikationer utan &r ett verktyg for handelsestyrd programmering och
darfor typisk for interaktiva grafiska applikationer.

Handelsemetoder

Vanliga metoder deklareras forst och anropas sedan. Bade deklarationen och anropet
sker med kod. En handelsemetod (eng.: event handler) deklareras ocksa precis som en
vanlig metod, men anropas inte explicit med en vanlig anropskod utan genom en s.k.
héndelse. En héndelse &r en aktion som utférs antingen av anvéndaren eller av ett
program, vare sig en applikation eller datorns operativsytem. Exempel pa handelser ar
musklickning, musdragning eller tangenttryckning. Men &ven en kod kan utlésa en hén-
delse. N&r héndelsen intréffar, anropas metoden som &r associerad med handelsen. Me-
toden buttonl_Click () &r associerad med musklickning pa buttonl, en kontroll av
typ Button. Sa snart vi skapar en sadan kontroll i formen, t.ex. button1 (sid 15), genereras
kod: Huvudet till metoden buttonl_click () i klassen Formi (filen Forml.cs). Med
dubbelklick pa den nya kontrollen (i designlage) far vi fram denna kod i editfonstret och
kan skriva kroppen till metoden. Vi &r fria att skriva dar vilken kod som helst, for att fa
den exekverad nar man i korlage klickar pa knappen button1. Eftersom vi vill fa ut ett
meddelande i ett fonster, skriver vi ett anrop av metoden MessageBox. Show () Som Vi
stiftade bekantskap med tidigare. Handelsemetoden buttonl_Click () har tva para-
metrar som vi dock inte anvinder i kroppen i just denna applikation. And& méaste vi ha
dem med i metodens huvud, for huvudet &r fordefinierat i superklassen Form.

Metoden MessageBox.Show ()

Till skillnad frén buttonl_cClick () & metoden show () ingen handelsemetod, utan en
vanlig metod. Darfor anropas den med kod, inte med en handelse (musklickning). Den
anropande koden star i handelsemetoden buttonl click (). Musklick pa knappen
med texten Detta ar en Button. Klicka pa den! (i korlage) anropar handelsemetoden och
den i sin tur metoden show (). | den version som anvands har har metoden Message-
Box . Show () tva parametrar: Den forsta star for sjalva meddelandet som ska visas i den
lilla rutan, den andra for rubriken som ska sta pa rutans ram. Att vi i koden med + kon-
katenerar tva strangar pa den 1:a parameterplatsen, beror pa att meddelandet vi vill skri-
va ut, inte ryms pé en rad i editfonstret resp. pa sidan i boken. | koden ar det som vanligt
kommat som skiljer at metodens tva parametrar.

“ Lés om arv och konstruktorn pa sid 69 och om metoder pé sid 67.
17

1.2 TextBoxar, Buttons & Labels

Kontrollen TextBox ger oss mojligheten att fran ett grafiskt granssnitt mata in text i en
ruta som vidarefors till programmet och kan bearbetas dér. Denna kontroll demonstreras
i ett program som foljer och som kommer att ha féljande output nér det kors:

PasswdTextBox E@@ PasswdTextBox Q@@

tdyPassword

\ showte

Forst kommer det upp formen till vanster som innehaller tre olika kontroller, en Text-
Box, en Label och en Button. Den sista hade vi redan anvant i projektet Interaction (sid
12). Skriver man en text i TextBoxen kommer den att maskeras av stjarnor, men klickar
man pa knappen Show Me kommer texten att visas i labeln under textrutan. Har vidare-
fors alltsa den inmatade texten till programmet som ser till att den for det forsta syns
som stjarnor i TextBoxen. FOr det andra visas den i klartext i Label-kontrollen och detta
endast nar man klickar p& Show Me som ar en kontoll av typ Button. Texten kan ju tan-
kas vara t.ex. ett 1osenord eller ndgot annat hemligt meddelande. Alla dessa kontroller
med sina respektive funktionaliteter byggs i ett litet program som vi kallar for Passwd-
TextBox.

Gor sa har for att skapa applikationen:

e Skapa en Windows Forms Application och dop den till PasswdTextBox. Hur
man gor har vi lart oss i projektet Interaction (sid 12).

Satt foljande vérde pé egenskapen Text till formen Form1 s& att formens rubrik
bar programmets (projektets) namn. Lat alla andra vérden vara oférandrade.

Form1:
Egenskap Varde
Text PasswdTextBox
Size 310;420

e Hamta fran Visual Studios Toolbox en TextBox-kontroll till formen och andra
varden till négra av dess egenskaper enligt féljande:

18

textBox1.:

Egenskap Varde
(Name) tbPasswd
PasswordChar *

Location.X 20
Location.Y 25
Size.Width 245
Size.Height 26

e Hamta fran Toolbox en Label-kontroll till formen och sétt foljande vérden:

labell:

Egenskap Varde
(Name) IbIShowPasswd
Text
Location.X 20
Location.Y 75
BorderStyle Fixed3D
Autosize False
Size.Width 245
Size.Height 20

e Hamta fran Toolbox en Button-kontroll till formen och gér samma sak har:

buttonl:
Egenskap Varde
(Name) btnShowMe
Text Show Me
Location.X 90
Location.Y 150
Size.Width 100
Size.Height 40

Kod bakom Show Me-knappen

e Dubbelklicka p& Show Me-knappen for att fa upp formens kod, klassen Form1
med den nya hdndelsemetoden btnShowMe Click ().

e Ldgg in i den nya héndelsemetoden btnShowMe Click () foljande kod:
lblShowPasswd.Text = tbPasswd.Text;

e Kompilera och kor. Skriv nagot i textboxen. Det visas bara stjarnor. Klickar du

p& Show Me-knappen visas texten i labeln.

19

1.3 CheckBoxar och radioknappar

| detta avsnitt vill vi bygga ett grafiskt granssnitt som har ett antal alternativ som man
kan valja mellan. Tva sorters val kan forekomma i detta sammanhang: Ett- och flervals-
alternativ. Ettvalsalternativ visas i grafiska granssnitt ofta med sma ringar, s.k. radio-
knappar som man markerar eller avmarkerar. Flervalsalternativ daremot visas med sma
rutor, s.k. CheckBoxar som man sétter en bock pa eller bockar av. Bade radioknappar
och checkboxar ar kontroller i Visual Studio och heter RadioButton resp. CheckBox.
Programmet Bartender som vi ska bygga och vars grafiska grénssnitt visas nedan, an-
vander bada kontroller grupperade under rubrikerna Dryck och Valj glas:

Var sa god och vilj

O Vinglas

Avzluta

Diryck Walj glas
o o
[Gin () Cocktailglas

Rubriken Dryck grupperar tva checkboxar, medan Valj glas grupperar tre radioknappar.
Aven sjalva grupperingen gors med en kontroll som heter GroupBox. Rutan ovan visas
inledningsvis nar programmet Bartender kors, innan nagon interaktion gjorts. Sedan kan
man vélja dryck och glas samt klicka p& knappen Servera for att fa de valda alternativen
”serverade” i en MessageBox. Sa har kan en sadan dialog se ut:

Var sa god och vilj

O Vinglas

Avsluta

Diryck Wl glas
- oo
Gin (& Cocktailglas

Bartender svarar: @

Har har bada alternativen Vodka och Gin valts, vilket wodka och Gin serveras i cocktailglas.
ar mojligt darfor att kontrollen CheckBox tillater det.
Samma sak galler inte for kontrollen RadioButton. Den
tillater endast ett alternativ. Den lilla rutan till héger ar
en MessageBox som kommer upp forst nar man klickar pa knappen Servera. Knappen
Avsluta ar ett alternativ till det roda krysset i rutans hogra évra hérn. Bada avslutar kor-
ningen. Innan man avslutar kan man efter att klickat pd OK-knappen i MessageBoxen,
gbra andra val och fa fram det nya resultatet i MessageBoxen 0sv.

Gor sa har for att skapa programmet Bartender:

20

1. Skapa en Windows Forms Application och dép den till Bartender.
Form1:
Egenskap Vérde
Text Var sa god och valj
Size.Width 600
Size.Height 250
2. Hamta fran Toolbox (All Windows Forms) en GroupBox-kontroll till formen:
groupBox1:
Egenskap Varde
(Name) grbDrink
Text Dryck
Location.X 20
Location.Y 25
Size.Width 150
Size.Height 100
3.

och &ndra foljande varden:

Hiamta tva CheckBox-kontroller till formen, placera dem i Dryck-gruppboxen

checkBox1:
Egenskap Varde
(Name) chkVodka
Text Vodka
Location.X 15
Location.Y 30
checkBox2:
Egenskap Varde
(Name) chkGin
Text Gin
Location.X 15
Location.Y 60
4. Hamta en till GroupBox-kontroll till formen:
groupBox2:
Egenskap Varde
(Name) grbGlass
Text Valj glas
Location.X 200
Location.Y 25
Size.Width 200
Size.Height 140

21

5.

Hamta tre RadioButton-kontroller till formen, placera dem i Glas-gruppboxen

och andra féljande varden:

radioButton1:

Egenskap Vérde
(Name) optShotGlass
Text Snapsglas
Location.X 15
Location.Y 30

radioButton?2:

Egenskap Vérde
(Name) optCocktailGlass
Text Cocktailglas
Location.X 15
Location.Y 60

radioButton3:

Egenskap Varde
(Name) optVineGlass
Text Vinglas
Location.X 15
Location.Y 90

Hamta en Button-kontroll till formen:
buttonl:

Egenskap Varde
(Name) btnServ
Text Servera
Location.X 440
Location.Y 30
Size.Width 120
Size.Height 70

Hamta en till Button-kontroll till formen:
button2:

Egenskap Varde
(Name) btnFinish
Text Avsluta
Location.X 460
Location.Y 135
Size.Width 75
Size.Height 45

22

Kod bakom Servera- och Avsluta-knappen

8. Dubbelklicka pa Servera-knappen for att fa upp Formens kod, klassen Form1
med den nya handelsemetoden btnServ_Click ().

9. Lé&gginiden nya héndelsemetoden btnserv_click () foljande kod:

string output = "";
if (chkVodka.Checked && !'chkGin.Checked)
output = "Vodka serveras ";
if (chkGin.Checked && !'chkVodka.Checked)
output = "Gin serveras ";
if (chkVodka.Checked && chkGin.Checked)
output = "Vodka och Gin serveras ";
if (optShotGlass.Checked)
output += "i snapsglas.";
if (optCocktailGlass.Checked)
output += "i cocktailglas.";
if (optVineGlass.Checked)
output += "i vinglas.";
MessageBox.Show (output, "Bartender svarar:");

10. Dubbelklicka pa Avsluta-knappen for att fa upp Formens kod, klassen Formi
med den nya hdndelsemetoden btnFinish_Click().

11. L&gg iniden nya handelsemetoden btnFinish_Click () féljande kod:

Application.Exit() ;

12. Kompilera och kor. Vélj dryck, glas och klicka pa Servera-knappen.

23

1.4 Fargtest med kontrollen HScrollBar

Har kommer vi att bekanta oss med Visual Studios kontroll HscrollBar dér H star for ho-
rizontal. Programmet ColorTest demonstrerar denna kontroll. Lat oss forst titta pa dess
grafiska granssnitt:

EB FargTest

<l > o Red
£l 3 [Gridn
= 3 o Bla

Till vanster ser man tre HscrollBar-kontroller. Ordagant betyder scrollbar pd svenska
rullningslist, men vi foredrar det engelska originalet. Till hdger om dem finns sex la-
bels, tva till varje scrollbar, dessutom en button. De forsta tre labels som pa bilden star 0
p4, visar resp. scrollbars varde som kan andras nar man kor programmet. Det gér man
genom att med nedtryckt mus dra pé scrollbarens reglage och stilla in ett 6nskat varde
genom att slappa musen. Detta varde kommer da att visas pa labeln (istallet for 0) sd
snart man klickat pa knappan Visa farg. D& kan det hela se ut sa har:

£B] Fargest

[viaiao |

De andra tre labels som det stdr Réd, Gron och Bl& pa, visar de fargkomponenter som
bidrar till bakgrundsfargen enligt RGB-fargsystemet. | exemplet ovan &r bakgrundsfar-
gen en lilanuans — som dessvarre inte kan ses i svart-vit trycket — och sammansatt av
214 r6da, 112 grona och 233 bla andelar. Varje grundfarg i RGB-systemet kan bidra med
0-255 andelar till den sammansatta fargen. Genom en kombination av olika instéllningar
kan man f& sammanlagt 256 * = 16 777 216 olika fargnuanser som allihopa &r blandnin-
gar (i olika doser) av de grundfargerna réd, gron och bla, darav namnet RGB.

24

Programmet ColorTest demonstrerar hur man med enkla medel — nagra kontroller bl.a.
HScrollBar och lite kod — kan mixa, fa fram och se alla méjliga RGB-fargerna.

Gor sa har for att skapa programmet ColorTest:

1. Skapa en Windows Forms Application och dop det till ColorTest.

Form1:

Egenskap Varde
Text ColorTest
Size.Width 600
Size.Height 320

2. Hamta tre HScrollBar-kontroller fran Toolbox (All Windows Forms) till formen:

hScrollBarl, ...2, ...3:

Egenskap Varde
Location.X 25
Location.Y 40
Size.Width 350
Size.Height 17
Maximum 255

LargeChange 1

Egenskap Varde
Location.X 25
Location.Y 100
Size.Width 350
Size.Height 17
Maximum 255

LargeChange 1

Egenskap Varde
Location.X 25
Location.Y 160
Size.Width 350
Size.Height 17
Maximum 255

LargeChange 1

Kontrollen HScrollBar har tvd egenskaper Minimum och Maximum som repre-
senterar scrollbarens minsta och stérsta varde. Minimum:s defaultvarde &r 0. Vi
andrar inte det, eftersom vi vill ha intervallet [0, 255]. Daremot sétter vi vardet
p& Maximum i alla tre scrollbarer till 255, se tabellen nedan. En annan egenskap
av kontrollen HScrollBar ar LargeChange som &r steget som scrollbarens varde
andras med nar man klickar pa de sma pilarna pa bada sidorna av scrollbaren.
Vi satter detta steg till 1.

25

3.

4.

Hamta tre Label-kontroller till formen och placera dem héger om HScrollBar-

kontrollerna:

labell, ...2, ...3:
Egenskap Vérde
Text 0
Location.X 420
Location.Y 40
BorderStyle Fixed3D
TextAlign MiddleCenter
BackColor White
Egenskap Varde
Text 0
Location.X 420
Location.Y 100
BorderStyle Fixed3D
TextAlign MiddleCenter
BackColor White
Egenskap Varde
Text 0
Location.X 420
Location.Y 160
BorderStyle Fixed3D
TextAlign MiddleCenter
BackColor White

Hamta ytterligare tre Label-kontroller till formen och placera langst till hoger:

label4, ...5:
Egenskap Varde
Text Rod
Location.X 490
Location.Y 40
BackColor White
Egenskap Varde
Text Gron
Location.X 490
Location.Y 100
BackColor White

26

label6:

Egenskap Varde
Text Bla
Location.X 490
Location.Y 160
BackColor White

5. Héamta en Button-kontroll till formen som vi i beskrivningen refererar till som

Visa-knappen:

buttonl:
Egenskap Varde

(Name) btnShow

Text Visa farg

Size. X 90

Size.Y 40

Location.X 465

Location.Y 210

Kod bakom Visa farg-knappen

6. Dubbelklicka pa Visa-knappen for att f& upp Formens kod, klassen Form1 med
den nya handelsemetoden btnShow_Click ().

7. Ldgg in i den nya héndelsemetoden btnshow_cClick () foljande kod:

BackColor = Color.FromArgb (
hScrollBarl.Value, hScrollBar2.Value,
hScrollBar3.Value) ;
Convert.ToString (hScrollBarl.Value) ;
Convert.ToString (hScrollBar2.Value) ;
Convert.ToString (hScrollBar3.Value) ;

labell.Text
label2.Text
label3.Text

8. Kompilera och kér. Dra scrollarna och klicka pa Visa-knappen.

27

1.5 Undantagshantering

Ovningarna 1.5 och 1.6 (sid 63) kraver undantagshantering. Undantag (eng. exception)
betyder i programmering fel, narmare bestamt exekveringsfel som uppstar nar datorns
processor inte kan utfora programmets instruktioner &ven om syntaxen &r korrekt. Exe-
kveringsfel syns inte vid kompilering. De leder ”bara” till att i bésta fall programmet
och i sémsta fall datorn kraschar. I regel &r orsaken okand och inte latt att spara just vid
exekveringstillfallet. Daremot borde man kunna foérutse dem nédr man skriver kod. Till
god programmeringsstil hor att man tar hand om ”farlig kod” redan ndr man program-
merar. Det galler forstas att forutse i vilka situationer fel kan intraffa vid exekveringen.
I s fall borde man bygga in en felhantering i koden. Alla moderna programmerings-
sprak staller verktyg till forfogande for felhantering som kallas undantagshantering
(eng. exception handling). Detta avsnitt introducerar bara de mest elementéra begreppen
och metoderna for undantagshantering i C#.

Automatiskt genererade undantag

| ett av vara program SimpleIf (Progri, 5.2) hade vi redan skrivit en egen felhantering.
Programmet laste in tva tal och dividerade dem med varandra. Men koden tillat division
endast om det andra talet inte var 0. Detta for att férhindra den matematiskt odefiniera-
de divisionen med 0. Inmatning av 0 till det andra talet genererade ”felmeddelandet”:

OBS! Du har matat in 0 fo6r det andra talet.
Det gar inte att dividera med O.

Programmeringstekniskt I6ste vi problemet da med tva enkla i£-satser. Nu ska vi forso-
ka att gora det med de verktyg for undantagshantering som &r inbyggda i C#.

// TryCatchTest.cs
// Férhindrar programavbrott med ett try catch-block
using System;

class TryCatchTest

{
static void Main()
{
int nol = 8, no2 = 0, div;
try // try catch-blocket
{
div = nol / no2;
catch
{
Console.WriteLine ("\n\t OBS! Du férsdkte dividera med 0.” +
"\n\t Det gar inte att dividera med 0.");
}
Console.WriteLine ("\n\t Har fortsitter programmet! \n");
}
}

28

Det reserverade ordet try sdger: “Forsok att ...” dvs forsok att utfora det block av sat-
ser som foljer, i det hér fallet forsok att utfora satsen div = nol / no2; som innebdr att
dela 8 med 0. Om det uppstar nagot fel (undantag) ’fanga upp” — i koden catch — felet
genom att utfora det block av satser som foljer efter catch. Man har friheten att skriva i
catch-blocket allt man dnskar att det ska ske om try-blocket kastar ett undantag” dvs
ger upphov till ett fel. Darfor kallas hela konstruktionen try catch-blocket och ar un-
dantagshanteringens grundkoncept.

For att forenkla testet har vi i programmet ovan tilldelat o direkt till no2 for att provo-
cera fram undantaget DivideByZeroException som &r ett fordefinierat undantag och
samtidigt en subklass med samma namn i klassen Exception. Detta undantag genere-
ras automatiskt av koden nol/no2 nér no2 har vérdet 0. Hade vi inte hanterat detta un-
dantag genom att placera koden i try-blocket och fanga upp det i catch-blocket, hade
vi fatt foljande felmeddelande vid exekvering av programmet TryCatchTest:

Unhandled Exception: System.DivideByZeroException: Attempted to divide by zero.
at TryCatchTest.Main() in c:\C#\MyProject\TryCatchTest.cs:line 14

Testa gdrna detta genom att kommentera bort hela try catch-blocket men behalla sat-
serna div = nol/no2; OCh Console.WriteLine ("\n\tHir fortsitter programmet!
\n") ;. Samtidigt med felmeddelandet ovan avbryts programkdrningen abrupt. Resten
av programmet exekveras inte. Hade den kod som kastar undantaget statt i borjan av ett
l&ngre program hade stora mangder kod inte exekverats.

Om vi daremot hanterar undantaget som i TryCatchTest sker inget ovantat program-
avbrott. Istéllet exekveras koden i catch-blocket. Sedan fortsatter programflddet efter
catch-blocket, resten av koden exekveras och programmet slutfors pa ett regulart satt.
Kdrresultatet av programmet TryCatchTest visar detta:

OBS! Du forsokte dividera med O.
Det gar inte att dividera med 0.

Har fortsatter programmet!

Observera att programflodet inte &tergar till den punkt tillbaka dar undantaget kastades i
try-blocket utan fortsatter linjart, dvs efter catch-blocket. S& kod som star efter den
“farliga koden” i try-blocket exekveras endast om inget undantag intraffar. Testa gérna
sjalv genom att i programmet TryCatchTest ldgga in ndgon utskriftssats i slutet av
try-blocket. Den sats kommer inte att utforas eftersom no1/no2 genererar undantag.

Det finns en uppsjo av automatiskt genererade undantag i C# som &r fordefinierade i
subklasser till klassen Exception som finns i namnutrymmet system. Varje gang ett
undantag intraffar skapas ett objekt av en sddan klass dar all information om undantaget
lagras. Andra exempel pa automatiskt genererade undantag 4 IndexOutOfRange-
Exception som intréffar ndr man dverskrider en arrays granser och Nul1Reference-
Exception SOom uppstar nar man anvander en referens som har vardet null dvs inte
pekar pa nagot objekt.
29

Egengenererade undantag

Undantaget DivideByZeroException Var i programmet TryCatchTest (sid 28) au-
tomatiskt genererad, fororsakat av koden nol/no2 och av att variabeln no2 hade vérdet
0. Men det finns i C# ocksa mdjligheten att programmeraren sjélv genererar ett undan-
tag vilket ger oss friheten att kontrollera vara program med avseende pa tillforlitlighet
och stabilitet av kod. Detta kan man géra bl.a. med det reserverade ordet throw (eng.
att kasta). Att kasta ett undantag betyder att generera ett sadant, vilket man kan gora ge-
nom att satta throw framfor ett objekt av ndgon undantagsklass. Féljande program
demonstrerar detta:

// ThrowTest.cs
// Kastar ett undantag med throw och hanterar det med try catch
using System;

class ThrowTest

{
static double SafeDiv(double nol, double no2) // Metod
{
if (no2 == 0)
throw new DivideByZeroException(); // Undantag kastas
else // Objekt skapas
return nol / no2;
}
static void Main()
{
try // Undantag hanteras
{
Console.WriteLine (SafeDiv (8, 0)); // Anrop
catch (DivideByZeroException e) // catch + parameter
{
Console.WriteLine (e.ToString()) ; // Undantag skrivs ut
}
}
}

throw-satsen

new DivideByZeroException () dr ett objekt av typ DivideByZeroException
Genom att satta throw framfor det genereras (kastas) ett sddant undantag:

throw new DivideByZeroException() ;

Denna sats ersétter koden nol/no2 som i forra avsnitt fororsakade det automatiskt
genererade undantaget. Darfor ar denna kod flyttad efter else och utférs darmed endast
om no2 inte &r lika med 0. Satsen &r inbyggd i metoden safeDiv () som anropas i

30

try-blocket. Ddrmed genereras undantaget dér, vilket lankar programflédet till catch-
blocket. Huvudet till catch-blocket ser har annorlunda ut:

catch (DivideByZeroException e)

Det ser ut som en metod med en parameterlista i vilken en referens e definieras till det
ovan skapade undantagsobjektet av typ DivideByZeroException. Vi har alltsa att
gbra med en annan variant av catch jamfért med programmet TryCatchTest (sid 28)
dar catch saknade parameterlista. Med hjélp av referensen e som pekar pa det kastade
undantagsobjektet kan vi nu i catch-blocket anropa objektets ToString () -metod:

Console.WriteLine (e.ToString()) ;

Detta anrop resulterar i foljande utskrift av programmet ThrowTest :

System.DivideByZeroException: Attempted to divide by zero.

at ThrowTest.SafeDiv (Double nol, Double no2) in
c:\C#\MyProject\ThrowTest.cs:1line 10

at ThrowTest.Main() in c:\C#\MyProject\ThrowTest.cs:line 19

Observera att detta inte ar ett felmeddelande, déarfor att vi har ju hanterat undantaget
DivideByZeroException i try catch-blocket och skrivit ut dess ToString () -me-
tod. Tostring () &r en strangrepresentationsmetod definierad i en superklass som &rvs
av alla fordefinierade klasser, sd dven av klassen DivideByZeroException. Darfor
kan vi anvanda den med referensen e som pekar pa det kastade undantagsobjektet av
denna klass. Metoden Tostring() innehaller objektets fullstandiga information i
strangform. Genom att anropa den i utskriftssatsen ser vi denna information. Den anger
forst sin kélla: system.DivideByZeroException. Sedan talar den om vilken typ av
undantag det roér sig om: Attempted to divide by zero. Resten av informationen
handlar om var exakt i programmet undantaget intraffade.

Samma information som vi far med e.ToString () ges vidare till det felmeddelande
som automatiskt skrivs ut om vi inte hanterar undantaget. Den enda skillnaden ar att det
hela inleds da med att det &r ett ohanterat undantag:

Unhandled Exception:
Dé hade detta varit ett verkligt felmeddelande.

Man kan ju undra vilken praktisk relevans programmet ThrowTest har och varfor och i
vilka situationer man anvander throw-satsen. Nar ska man lata C# upptéicka moéjliga fel
och generera undantag automatiskt och nar ska vi skriva kod for att sjalva kasta och
hantera undantag? Programmet ThrowTest har endast pedagogisk relevans, dvs att ge
en forsta introduktion till de elementdra grundbegreppen och metoderna inom undan-
tagshantering. | dvningarna 1.5 och 1.6 p& nésta sida hittar du ytterligare en anvandning
av undantagshantering.

31

1.6 ListBoxar

Skapa en Windows Forms Application och dop det till ListBoxes.

Form1:

Egenskap Varde
Text ListboxTest
Size.Width 600
Size.Height 375

Hamta en ListBox-kontroll till formen.
listBox1:

Egenskap Varde
Location.X 40
Location.Y 40
Size.Width 175
Size.Height 224

Hogerklicka pa listBox1, kopiera och klistra in i formen, for att fa en till List-

Box-kontroll i samma storlek. Andra Location:

listBox2:
Egenskap Varde
Location.X 370
Location.Y 40

Markera listBox1, klicka pa Smart Tag (lilla pilen), valj Edit Items, skriv in fol-
jande texter i dialogrutan String Collection Editor som dyker upp —en rad i taget

och klicka pé OK:

Stockholm
London
Paris
Amsterdam
New York
Wien
Moskva

Hamta en Button-kontroll till formen.

button1:
Egenskap Varde
Location.X 255
Location.Y 110
Size 75; 35
Text - >

32

6. Hogerklicka pa | button1, kopiera och Klistra in i formen, for att fa en till button
i samma storlek. Andra Text och Location:

button2:
Egenskap Varde
Location.X 255
Location.Y 160
Text Lammm

Projektets kod
7. Dubbelklicka pa button1-kontrollen och skriv in féljande:

private void Buttonl_Click (object sender, EventArgs e)

listBox2.Items.Add (listBoxl.Text) ;
listBox1l.Items.Remove (listBoxl.Text) ;

}
8. Dubbelklicka pa button2-kontrollen och skriv in foljande:

private void Button2_Click(object sender, EventArgs e)

listBoxl.Items.Add (listBox2.Text) ;
listBox2.Items.Remove (listBox2.Text) ;

}

9. Kompilera och kér. S& har kan det se ut nar man kor programmet ListBoxes:

ListboxTest g@@

Stockhalm Amsterdam
London Mew York
Wwien Paris
toskya

33

1.7 Granssnitt mot kalendern

Ett grafiskt granssnitt ska lata anvandaren vélja ett bestallningsdatum och skriva ut ett
leveransdatum enligt féljande regler:

Leveransdatum far inte vara fore bestallningsdatum.
Leveransdatum ska i regel ligga 2 dagar efter bestallningsdatum.
Det ska tas hansyn till att sondagar inte kan levereras, dvs:

Ligger en sdndag mellan bestéllnigs- och leveransdatum, blir leve-
ranstiden 3 dagar.

1. Skapa en Windows Forms Application och dop det till DeliveryDate.

Form1:
Egenskap Varde
Text Leveransdatum
Size 410; 430

2. Hamta en Label-kontroll till formen och dop den till orderLabel.

labell:
Egenskap Varde
(Name) orderLabel
Text Bestallningsdatum:
Location 45; 45

3. Hamta en DateTimePricker-kontroll till formen

dateTimePickerl:
Egenskap Varde
Location 45; 90
Size 300; 26

4. Héamta en andra Label-kontroll till formen och dép den till outputLabel.

label?2:

Egenskap Varde
(Name) outputLabel
AutoSize False
Size 300; 45
Location 45; 230
BorderStyle FixedSingle
Text
TextAlign MiddleCenter

34

5. Héamta en tredje Label-kontroll till formen och ddp den till delivLabel.

label3:
Egenskap Varde
(Name) delivLabel
Text Leveransdatum:
Location 45; 185

Projektets kod
6. Dubbelklicka pa dateTimePicker1-kontrollen och skriv in foljande:

private void dateTimePickerl ValueChanged
(object sender, EventArgs e)

{
DateTime orderDate = dateTimePickerl.Value;
if (orderDate.DayOfWeek == DayOfWeek.Friday |l
orderDate.DayOfWeek == DayOfWeek.Saturday ||
orderDate.DayOfWeek == DayOfWeek.Sunday)
outputLabel.Text =
orderDate.AddDays (3) . ToLongDateString() ;
else
outputLabel.Text =
orderDate.AddDays (2) . ToLongDateString() ;
}

7. Dubbelklicka pa formen Form1 och skriv in foljande:

private void Forml_ Load(object sender, EventArgs e)

{

DateTime.Today;

dateTimePickerl.MinDate
DateTime.Today.AddYears (1) ;

dateTimePickerl.MaxDate

8. Kompilera. S har ser det ut nar man kor programmet DeliveryDate:

Leveransdatum g@g| Leveransdatum g@g|

Bestallningzdatum:

Bestallningzdatum:

den 25 september 2003 S den 25 geptember 2003 b
zeptember 2009
mé b on to b I3 =
1 2 3 4 5 § Leveransdatum:
7 8 9 10 11 12[13]
14 1% 16 17 18 19 2D:| den 28 september 2009

2 El x

35

1.8 En rantekalkylator med multiline TextBox

1.

2.

3.

4.

5.

Skapa en Windows Forms Application och dop det till TaxCalculator.

Form1l:

Egenskap Varde
Text RéanteKalkylator
Size.Width 430
Size.Height 430

Hamta en Label-kontroll till formen och &ndra varden:

labell:
Egenskap Varde
Text Kapital:
Location.X 17
Location.Y 30
Hamta en TextBox-kontroll till formen ... :
textBox1:
Egenskap Varde
(Name) tbCapital
Location.X 120
Location.Y 27
Size.Width 160
Size.Height 26
TextAlign Right
Hamta en Label-kontroll till formen:
label2:
Egenskap Varde
Text Rantesats:
Location.X 17
Location.Y 80
Hamta en TextBox-kontroll till formen:
textBox2:
Egenskap Varde
(Name) tbTaxRate
Location.X 120
Location.Y 77
Size.Width 160
Size.Height 26
TextAlign Right

36

6.

7.

8.

9.

Hamta en Button-kontroll till formen:

buttonl:
Egenskap Vérde
(Name) btnCompute
Text Berakna
Location.X 300
Location.Y 25
Size.Width 90
Size.Height 30
Hamta en Label-kontroll till formen:
label3:
Egenskap Varde
Text Antal ar:
Location.X 17
Location.Y 130

Hé&mta en NumericUpDown-kontroll till formen:

numericUpDown1:

Egenskap Varde
(Name) numUpDownYear
Location.X 120
Location.Y 127
Size.Width 160
Size.Height 26
Minimum 1
Maximum 20
ReadOnly True
TextAlign Right

Hamta en Label-kontroll till formen:
label4:

Egenskap Varde
Text Arliga saldon:
Location.X 17
Location.Y 175

10. Hamta en TextBox-kontroll till formen:
textBox3:

Egenskap Varde
(Name) tbDisplay
MultiLine True
Location.X 20

37

Location.Y 200
Size.Width 350
Size.Height 150
ReadOnly True
Scrollbars Vertical

11. Dubbelklicka pa Beréakna-knappen for att fa upp Formens kod, klassen Forml
med den nya héndelsemetoden btnCompute_Click (). L&gg in kod enligt f6l-
jande:

// Forml.cs

// Berdknar rdntan av kapital efter n dr enligt formeln:

// saldo = kapital * FF”n ddr FF = (1 + rdntesats/100)

// Demonstrerar kontrollerna NumericUpDown och TextBox (MultiLine)
// samt formaterad utskrift av decimalttal: Valutaformat

using System;

using System.Windows.Forms;

namespace TaxCalculator

{
public partial class Forml : Form
{
public Forml ()
{
InitializeComponent () ;
}
private void btnCompute Click (object sender, EventArgs e)
{
double balance; // Inldsning:
double capital = Convert.ToDouble (tbCapital.Text) ;
double taxRate = Convert.ToDouble (tbTaxRate.Text) ;
int years = Convert.ToInt32 (numUpDownYear.Value) ;
double FF = 1 + taxRate / 100; // Férdndringsfaktorn
string output = "Ar\t\tSaldo\r\n\r\n";
// Utskriftsvariabel
for (int n = 1; n <= years; n++)
{
balance = capital * (Math.Pow(FF, n));
output += n + "\t\t" +
string.Format("{0:C}", balance) + "\r\n";
} // Valutaformat:
// C = Currency
tbDisplay.Text = output; // Akkumulerad utskrift
} // dumpas till multi-
} // line textbox
}

38

12. Kompilera och kor.

Sa har kan det se ut nar man kor programmet TaxCalculator:

RdnteKalkylator E E

k.apital: | 10000 | Berakna
A anteszats: | 4.5 |
Antal &r; | il |
Eiliga saldor:

Ar Saldo

1 10,450,000 kr

2 10.920,25 kr

3 11.417 .66 kr

4 1192519 kr

5 1246182 kr

E 1302260 kr

7 1360862 kr

a 1422100 kr

39

1.9 Geometriska figurer

For att kunna rita geometriska figurer och placera dem behdver vi ange bl.a. deras stor-
lek och position, vilket forutsétter ett koordinatsystem pa den grafiska ritytan. Ett sadant
koordinatsystem ar automatiskt definierat i alla fonster vi far fram i Visual Studio, dar
origo dvs positionen (0, 0) ar placerad i fonstrets vanstra évre hérn. OBS! formens rubrik
ligger utanfor. x-koordinaten véxer i horisontell led at hoger och y-koordinaten i verti-
kal led nedat. Tillampar vi detta default koordinatsystem t.ex. pa formfonstret, kan vi
forestélla oss foljande situation:

Form1

(0,0)

y

Denna bild borde man ha i minnet nar man arbetar med koordinater i en C# Windows
Application. Som man ser befinner sig alla positioner pa formens rena rityta som ar gra.

Man kan undra vad koordinatsystemets enhet &r. Vi har ju inte satt ndgon skala pa axlar-
na — och detta av goda skal: Enheten pa en grafisk yta &r alltid automatiskt en s.k. pixel
som star for picture element. En pixel ar en digital bilds minsta komponent — datorgrafi-
kens atom sa att saga. Som en bildpunkt med en viss farg och en placering ar storleken
beroende av den aktuella tekniska utrustningen som visar bilden — hos oss bildsk&drmen
och dess uppldsning. Vill vi placera en punkt i det default koordinatsystemet ovan anges
punktens x-koordinat som antalet pixlar som den ar borta frAn formens vénstra kant.
Punktens y-koordinat anges som antalet pixlar som den ar borta frn formens 6vre kant.

Sjéalvklart kan man, om man vill, &ven skapa sitt eget koordinatsystem som man &r van
vid frdn matematiken, med origo i mitten osv. Men vi kommer i vara program att anpas-
sa oss till detta grafiska koordinatsystem som &r standard i all datorgrafik. D&rmed slip-
per vi besviret att skriva kod som raknar om uppgifterna i vart koordinatsystem till de-
fault koordinatsystemet. Priset vi maste betala for denna férenkling ar: Det vi dd maste
tdnka pa nar vi skriver kod &r att enheten &r pixlar, att det darfor inte kan finnas nagra
negativa koordinater och att y-koordinaten vaxer nedét och inte uppat. Man vanjer sig
ganska fort till detta nya tankesétt. Ytterligare ett starkt skal till att anpassa sig till det
befintliga och inte infora ett nytt eget koordinatsystem, &r att alla ritmetoder i C# biblio-

40

teket ar formulerade i termer av default koordinatsystemet. Skriver man ett program dar
man blandar egen kod med anrop av biblioteksmetoder — och det goér ju nastan alla pro-
gram — &r det en stor fordel att tillampa samma system.

Programmet Draw anvander sig av ett antal biblioteksmetoder for att rita linjer, rektan-
glar och ovaler. Vi vill t.ex. 4stadkomma féljande bild:

Linjer, rektanglar och ovaler,

o

Gor sa har for att skapa programmet Draw:

1. Skapa en Windows Forms Application och dop det till Draw.

Form1:
Egenskap Varde
Text Linjer, rektanglar och ovaler
Size.Width 920
Size.Height 465

2. Ga till Solution Explorer, hogerklicka pd Forml.cs och vélj View Code. Ersatt
hela koden i filen Form1.cs med féljande:

// Projekt Draw, filen Forml.cs
// Demonstrerar ritning av linjer, rektanglar och ovaler
// Metoden OnPaint () &drvs fran basklassen Form och Sverskuggas

using System.Drawing;
using System.Windows.Forms;

namespace Draw

public partial class Forml : Form

{
public Forml ()

{

InitializeComponent () ;

}

41

protected override void OnPaint (PaintEventArgs e)

{

Graphics g = e.Graphics;

Pen pen = new Pen (Color.Black) ;
g.DrawlLine (pen, 0, 160, 600, 160);
pen = new Pen (Color.Green) ;
g.DrawlLine (pen, 0, 265, 600, 160);
pen = new Pen(Color.Violet);
g.DrawlLine (pen, 0, 160, 600, 265);

SolidBrush brush = new SolidBrush (Color.Turquoise) ;
g.FillRectangle (brush, 90, 30, 150, 90);

pen = new Pen(Color.Red) ;

g.DrawLine (pen, 90, 30, 110, 40);
g.DrawlLine (pen, 90, 120, 110, 130);
g.DrawlLine (pen, 240, 30, 260, 40);
g.DrawlLine (pen, 240, 120, 260, 130);

g.DrawRectangle (pen, 110, 40, 150, 90);

brush.Color = Color.Blue;
g.FillEllipse (brush, 380, 75, 100, 50);

g.DrawlLine (pen, 380, 45, 380, 100);
g.DrawlLine (pen, 480, 45, 480, 100);

g.DrawEllipse (pen, 380, 20, 100, 50);

3. Kompilera och kor.

Metoden OnPaint ()

Nastan hela koden till detta program star i metoden onPaint (). Ordet override i me-
todens huvud betyder att vi definierar om metoden onPaint () och att denna omdefini-
tion dverskuggar (eng. override) den ursprungliga definitionen av metoden i klassen
Form — en klass som vi drver genom att i klasshuvudet skriva public partial class
Forml : Form Dvs all kod som finns fordefinierad i klassen Form finns till vart
forfogande i klassen Form1 som vi skriver, bl.a. metoden onPaint (). Vi tar dver me-
todens huvud och skriver var egen kropp till den. Observera att all ritning av geo-
metriska figurer i metoden onPaint () endast & mdjlig om det i bdrjan av metoden
skapas ett Graphics-objekt med referensen g som i fortsattninngen refererar till ob-
jektet: Graphics g = e.Graphics;. Detta géller &ven fOr nésta programs onPaint () -
metod i nésta avsnitt dar vi fortsatter att rita. Alla dessa begrepp 6verskuggning, arv,
objekt, referens, override och andra, &r objektorienterade programmeringens termer
som kommer att i detalj behandlas i bokens kapitel 2 (sid 69).

42

1.10 Bagar och vinklar

1. Skapa en Windows Forms Application och dop det till Arcs.

Form1:
Egenskap Varde
Text Bagar och vinklar
Size 460; 465

2. Ga till Solution Explorer, hogerklicka pd Form1l.cs och valj View Code. Ersétt
hela koden i filen Form1.cs med féljande:

// Forml.cs
using System.Drawing;
using System.Windows.Forms;

namespace Arcs

public partial class Forml : Form

public Forml ()

{
InitializeComponent () ;
}
protected override void OnPaint (PaintEventArgs e)
{

Graphics g = e.Graphics;
Rectangle rl = new Rectangle (15, 35, 80, 80);

SolidBrush brushl
Pen penl

new SolidBrush (Color.Red) ;
new Pen (brushl, 1);

SolidBrush brush2
Pen pen2

new SolidBrush (Color.Blue) ;
new Pen (brush2, 1);

g.DrawRectangle (penl, rl);
g.DrawArc (pen2, rl, 0, -140);

rl.Location = new Point (100, 35);
g.DrawRectangle (penl, rl);
g.DrawArc(pen2, rl, 0, 120);

rl.Location = new Point (185, 35);
g.DrawRectangle (penl, rl);
g.DrawArc(pen2, rl, 0, -310);
rl.Location = new Point (15, 120);
rl.Size = new Size (80, 40);

43

g.DrawRectangle (penl, rl);
g.FillPie(brush2, rl, 0, -140);

rl.Location = new Point (100, 120);
g.DrawRectangle (penl, rl);
g.FillPie(brush2, rl, 0, 120);

rl.Location = new Point (185, 120);
g.DrawRectangle (penl, rl);
g.FillPie(brush2, rl, 0, -310);

3. Kompilera och kor.

Sa hér ser det ut nar man kor programmet Arcs:

Bagar och vinklar

44

1.11 En egen webblasare

I detta avsnitt vill vi utveckla en enkel webblasare med mojligheten att koppla upp sig
till Internet och visa en webbsida samt navigera pa den — en typisk grafisk applikation,
som vi i nasta avsnitt ska utvidga med ytterligare funktionaliteter som t.ex. menyer, un-
dermenyer osv. Men just nu ska den racka till att kunna skriva en webbadress (URL) i
ett textfalt och klicka pa en knapp for att komma ut pa natet till den angivna adressen.
Sjalva webbsidan behover ett lite stérre fonster for att kunna visas. Om vi till en bérjan
nojer oss med dessa fa ingredienser borde vi klara oss med féljande kontroller som vi
ska placera pa vart formfonster:

1. EnWebBrowser som visar webbsidan
2. En TextBox for att skriva webbadressen i
3. En Button som vi klickar pé for att kéra igang

Faktiskt finns det i Visual Studios Toolbox en kontroll som heter WebBrowser och som
bildar grunden till denna applikation — ett granssnitt mot Internet.

Vi skapar forst ett nytt projekt av typ Windows Forms Application — s& som vi gick ige-
nom i de foregéende avsnitten — och dopar det till, ség MyFirstBrowser. Sedan hamtar vi
kontrollen WebBrowser till formfonstret genom att dubbelklicka pa den. Denna finns i
Toolbox under Common Controls som allra sist. OBS! Till skillnad fran andra kontroller
kommer denna kontroll inte att l1agga sig i formfonstrets dvre vénstra hoérn, utan den
kommer att stracka sig dver formens hela lediga utrymme, sa att man i borjan inte ens
marker att den kommit till formen. Tittar man daremot noga, kan man se att det ligger
ett vitt skikt 6ver formens ljusgra yta och tacker hela formen (utom rubriken). Skillna-
den mellan ljusgré (forr) och vit (nu) &r en indikation p& forandringen. Det vita skiktet
&r den nya WebBrowser-kontroll som vi just hdmtade och la i formen. En annan indika-

tion

N — = -] den
Enj . 1 H D % lill

B 5 WebBrowser Tasks iia

|ndock in parent container
A

45

triangelformiga pil som (pé bilden ovan) pil nr 1 pekar pa — kallad Smart Tag. Klicka pa
denna Smart Tag for att fa fram textrutorna till hoger. Klicka sedan pa lanken Undock in
parent container (pil nr 2). Detta kommer att 16sa WebBrowser-kontrollen fran formen.
Da kan du for det forsta identifiera kontrollen battre och for det andra placera den i
formen var du vill. Sjalvklart kan man &ven andra storleken pd den osv. Vi maste
faktiskt forstora den, om vi vill visa webbsidor i den. Men for att forstora kontrollen
maste vi forst forstora dess behallare (container), formen. Vid det tillfallet passar vi pa
att dven fa en lampligare text pa formens rubrik. Darfor: Andra egenskapernas varden
hos formen Form1 enligt féljande:

Form1:

Egenskap Varde
Text Min férsta webblasare
Size.Width 1190
Size.Height 760

Observera att formen fortfarande har default namnet Form1. Den kommer att endast
visa texten Min forsta webblésare pa sin rubrik nar vi kor applikationen.

Andra egenskapernas varden hos WebBrowser-kontrollen som by default har namnet
webBrowser1 enligt foljande:

webBrowser1.:

Egenskap Varde
(Name) browserWindow
Size.Width 1150
Size.Height 620
Location.X 12
Location.Y 12

Har andrar vi verkligen Name-egenskapen och dessutom storleken samt positionen av
WebBrowser-kontrollen relativ till formen. Sjalvklart &r alla dessa vérden — inklusive
formens storlek i forra tabellen — relaterade till varandra med syftet att fa en nagorlunda
bra layout pa var webblasares grafiska utseende. Véljer du andra vérden, far du anpassa
dem till varandra layoutmassigt.

Markera formen, skapa en ny TextBox-kontroll och &ndra dess varden enligt foljande:

textBox1:
Egenskap Varde
(Name) tbURL
Location.X 12
Location.Y 650
Size.Width 1020
Size.Height 26

Slutligen behdver vi dven en Button. Markera formen, hamta den fran Toolbox och &n-

dra de nedanstaende egenskaperna till féljande varden:

46

buttonl:

Egenskap Varde
(Name) btnGo
Location.X 1060
Location.Y 650
Size.width 80
Size.height 30
Text Kor

Har du genomfort alla ovan beskrivna atgarder, kommer din form i stort sett att ha fol-
jande utseende, har i kdrlage:

Det stora fonstret &r WebBrowser-
kontrollen som vi kallat browserwin-
dow och som ska visa webbsidors in-
nehall. Det avlanga lilla fonstret ne-
dan till vanster ar TextBox-kontrol-
len tbURL, dar man ska skriva en
webbadress. Den ar beredd att ta
emot inmatning av text. Kér-knappen =
nedan till héger &r Button-kontrollen
btnGo som ska skicka forfragan till den i tbURL angivna webbplatsen pa Internet.

En forsta webblasare

Att det inte hander ndgot om du kompilerar och kor programmet och klickar pd Kér-
knappen — och inte heller om du forst skriver en giltig webbadress i textboxen och sedan
klickar pa Kor-knappen — beror pa att vi inte &nnu lagt ndgon kod bakom knappen. Dvs
vi har inte &n skrivit nigon hindelsemetod som skulle anropas nér hiindelsen “Klicka pa
Kor-knappen” intraffar. Man kan ocksa siga att det inte finns ndgon funktionalitet ba-
kom Button-kontrollen btnGo. Och sa &r det med alla kontroller som skapas: De har ett
antal egenskaper (datamedlemmar) med vissa defaultvdrden som vi kan &ndra. De har
ocksa ett antal handelsemetoder. Men av dessa metoder &r endast huvudet fordefinierat
(signaturen, sid 172, polymorfism, sid 113). Kroppen &r tom, varfor det inget hdnder, nér
de anropas vid en handelse, t.ex. en musklickning. Det ar vi som maste skriva kod i
dessa metoders kropp for att forse vara kontroller med den funktionalitet som ar lamplig
just for den aktuella applikationen. For att ge liv &t Kor-knappen i var webblasare, maste
den (endast med huvudet) fordefinierade hdndelsemetoden

private void btnGo_Click (object sender, EventArgs e)
forses med kod i kroppen. For att 4stadkomma detta, gor precis som i forra avsnitt:

Markera i designlage Kor-knappen btnGo och dubbelklicka pa den. Du far denna kon-
trolls kod presenterad i editfonstret. Den bestar av en del av klassen Form1:s deklaration
och lagras i filen Form1.cs. Markoren star och blinkar i den tomma kroppen till handel-
semetoden btnGo_Click (), redo att ta emot kod. Skriv dér endast foljande:

a7

browserWindow.Navigate (tbURL. Text) ;

Satsen ar ett anrop av metoden Navigate () tillhérande objektet browserWindow —
var WebBrowser-kontroll. | s& fall méste Navigate () vara en fordefinierad metod i
den klass som browserWindow 4r ett objekt av. Och den har gangen ar det en metod
vars bade huvud och kropp ar férprogrammerade i klassen WebBrowser. Har ser man att
kontrollerna i Visual Studios Toolbox &r helt enkelt klasser som &r skrivna och integre-
rade i miljon for att underlatta utvecklingsarbetet, for att vi inte skulle behdva att ater-
uppfinna hjulet. Metoden Navigate () gor det egentliga jobbet i denna applikation,
namligen att ga ut pa Internet och navigera oss fram till den server pa natet vars adress
vi angivit, hamta HTML-filen som genererar webbsidan fran servern och exekvera den
pa var klientdator. For att kunna forse Navigate () med adressinformationen skickar vi
i anropet ovan den aktuella parametern tbURL. Text, dvs datamedlemmen (Text-egen-
skapen) av TextBox-0Objektet tbURL. Dvs den strdng som vi skriver i textféaltet, nér pro-
grammet kors, blir vérdet av tbURL:S Text-egenskap. Den har ndmligen i designléage
inget varde, vilket man kan Overtyga sig av genom att titta i tbuRL:s egenskapsfonster.
Platsen dar vardet ska sta ar tom. Variabeln tbURL.Text blir tilldelad ett véarde forst
nar man exekverar. Vardet tas fran textfaltet vid inmatning och skickas, nar Kér-knap-
pen Klickas, till metoden Navigate ().

Nar var metods forfragan har besvarats av servern pa Internet, visas resultatet i applika-
tionens browserwindow som fortfarande ar en del av och integrerad i formfonstret. Stor-
leken vi valt bibehdlls under kérningen. Ar webbsiddan stérre an den forvalda storleken
far WebBrowser-fonstret horisontella resp. vertikala scrollbars. Aven om man maxime-
rar formfonstret, blir det samma sak: Den valda storleken vid designldge kan inte &ndras
i korlage. Foljande resultat visas nar vi kompilerar och kor var forsta webblasare My-
FirstBrowser, skriver en webbadress i textfaltet nedan och klickar pa Kér-knappen:

85! Min forsta webblasare _ o X
Taifun Pedagogiska programmeringsbodcker -~
Education pa nyborjar- och avancerad niva

M[D C # Programmering 2 programmering 1 Pregramimenng
med C# med Java for nyborjare
- SR ed C++

Hem Vialkommen till Taifun Education!
Bestall

_ Vi utvecklar laromedel inom programmering och systemutveckling. Fem bocker lar ut amnet
Provsystem med hjalp av varldens mest populara programmermgssprék C# , Java och C++ som pga sin

logiska klarhet och enkelhet ar Iatt att |ara sig. C2 omfattar tre bocker: del 1, 1+ & del 2.
Om férfattaren e v
Kontakt Alla bocker ar pedagogiska steg for steg-introduktioner som formedlar ——

|www taifun se | I Kor]

48

1.12 En mer utvecklad webblasare

Skapa en Windows Forms Application och dép den till DevBrowser.

Form1:

Egenskap Varde
Text Utvecklad webblasare
Size.Width 1500
Size.Height 1000

Hamta frdn Toolbox (Common Controls) en WebBrowser-kontroll till formen.
Klicka pa den lilla triangelformiga pilen (Smart Tag) i det hogra 6vre hornet av
WebBrowser-kontrollen. Valj Undock in Parent container for att forminska den
och I6sa den fran formen. Lét browserWindow vara Dock in Parent container.

webBrowserl:

Egenskap Varde
(Name) browserWindow
Size.Width 1500
Size.Height 1000
Location.X 0
Location.Y 40

Dialogrutan About Box

Vi vill nu for forsta gangen vid sidan av Form1 skapa en ny, andra form i vart projekt:

3.

Hogerklicka pa projektnamnet DevBrowser i Solution Explorer. Vélj Add >
New Item... . Dialogrutan Add New Item dyker upp. Markera i den mellersta
kolumnen About Box (Windows Forms) — den nya formens typ. DOp den nya
formens fil i textfaltet Name till AboutBox.cs och klicka pa knappen Add langst
ner till hoger. Den nya formen About Box skapas.

Aterga till fliken bredvid: var ursprungliga form Form1. Hamta frén Toolbox
(Al Windows Forms) den nya kontrollen MenuStrip till formen. En tom meny-
radplats 1&ggs till formen och tacker delvis dver browserwindow. Samtidigt dy-
ker upp en komponent av den langst ner till vénster i Visual Studio (inte i for-
men) som bar den nya kontrollens namn menuStrip1.

Markera MenuStrip-kontrollen, klicka p& dess Smart Tag, en liten triangelfor-
mig pil som syns invid det lilla roda krysset i det hdgra 6vre hérnet av form-
fonstret — men tillhérande MenuStrip-kontrollen. En pop up-ruta med rubriken
MenuStrip Tasks kommer upp. Klicka pa Insert Standard Items: En typisk
Windows menyrad med menyer, undermenyer osv. l&ggs till MenuStrip.

49

6. Ta bort alla menyer utom Help-menyn genom att hogerklicka pa dem och vilja
Delete.

7. Markera Help-menyn. Vlj undermenyn About... och dubbelklicka pa den: For-
mens kod dyker upp med den nya handelsemetoden AboutToolStripMenu-
Item Click().

8. Tabort alla onddiga using-satser fran formens kod, dvs alla utom using sy-
stem; 0Ch using System.Windows.Forms;. Testkor for att se att allt &r ok.
Stang kdrningen.

9. Skriv i klassen Form1, ovanfor raden public Forml (), koden:
AboutBox myAboutBox = new AboutBox() ;
Dérmed skapar du ett objekt av typ AboutBox och doper det till myAboutBox.

10. Lé&gg in i den nya héndelsemetoden aboutToolStripMenuItem Click ()
fran punkt 8 foljande anrop av det nya objektets metod Showbialog():

myAboutBox.ShowDialog() ;

11. Kompilera och kér. Klicka pa Help-menyn samt pa undermenyn About... for att
se den nya AboutBox-formen om visar rubriken About DevBrowser. Klicka pa
OK och sténg kdrningen.

Dialogrutan Navigate

Hér ska vi ersétta textfaltet for webbadressen och knappen Kor som fanns i forra projek-
tet MyFirstBrowser, med en dialogruta dvs en ny, tredje form av typ Windows Form.

12. Hogerklicka pa projektnamnet DevBrowser i Solution Explorer. Vélj Add >
New Item... . Vilj i dialogrutan Add New Item... typen Form (Windows Forms).
Dop den nya formens fil i textfaltet Name till Navigate.cs och klicka p& knap-
pen Add langst ner till hgger. Den nya formen Navigate skapas.

13. Sétt foljande varden till den nya formen Navigate:s egenskaper:

Navigate:

Egenskap Vérde
FormBorderStyle FixedDialog
MaximizeBox False
MinimizeBox False
Showlcon False
ShowlInTaskbar False
Size.Width 800
Size.Height 250
StartPosition CenterParent

50

14. Hamta frdn Toolbox (All Windows Forms) en kontroll av typ TableLayoutPanel
till den nya formen Navigate. Anvand kontrollens Smart Tag (lilla pilen) och
valj Remove Last Row for att f& en rad och tva kolumner i den nya kontrollen:

tableLayoutPanell:

Egenskap Varde
Size.Width 200
Size.Height 40
Location.X 570
Location.Y 130
Anchor Bottom, Right

15. Lé&gg in en Button-kontroll i tableLayoutPanell:s férsta kolumn:

buttonl.:
Egenskap Varde
(Name) btnOK
Text OK
Size.Width 75
Size.Height 35
Dialogresult OK

16. Lé&gg in en Button-kontroll i tableLayoutPanell:s andra kolumn:

button1:
Egenskap Varde
(Name) btnCancel
Text Cancel
Size.Width 75
Size.Height 35
Dialogresult Cancel

17. Atergd till Navigate-formen och lagg till féljande tvé vérden till egenskaperna:

Navigate:
Egenskap Varde
AcceptButton btnOK
CancelButton btnCancel

Det kan vi gora forst nu efter att knapparna skapats.

18. Hamta en Label-kontroll till Navigate-formen:

51

labell:

Egenskap Vérde
(Name) IbIURL
Location.X 30
Location.Y 20
Text Mata in en Internet adress:

19. Hamta en TextBox-kontroll till Navigate-formen:

textBox1:

Egenskap Varde
(Name) txtURL
Location.X 30
Location.Y 50
Size.width 720
Size.height 26
AutoCompleteSource AllUrl
AutoCompleteMode SuggestAppend
Modifiers Public

De Auto-egenskaperna gor att textfaltet beter sig liknande adressfaltet i Internet
Explorer, t.ex. att den kommer ihdg och kompletterar adresser som man anvént
tidigare. Public gor att txtURL som finns i Navigate-formen (en klass for sig), ar
atkomlig fran formen Form1 (en annan klass) dar Navigate-menyn kommer att
laggas.

Menyn Navigate
Hér ska vi koppla Navigate-formen till projektet DevBrowser.

20. Aterga till formen Form1 med rubriken Utvecklad webblasare. Déar finns redan
en Help-meny. Klicka till hoger om Help-menyn sa att hela menyraden syns.
Klicka i det lilla textfalt som dyker upp och skriv &Navigate. En ny meny ska-
pas med texten Navigate.

21. Flytta med musen den nya Navigate-menyn till vdnster om Help-menyn.

22. Dubbelklicka pa Navigate-menyn for att fa upp Formens kod, klassen Forml
med den nya handelsemetoden NavigateToolStripMenuItem Click().

23. Skriv i klassen Form1, ovanfor raden AboutBox myAboutBox = ... , koden:

Navigate myNavigateBox = new Navigate() ;

Dérmed skapar du ett objekt av typ Navigate och doper det till myNavi-
gateBox.

52

24. Lagg in i den nya hédndelsemetoden navigateToolStripMenultem -
Click () foljande kod:

if (myNavigateBox.ShowDialog() == DialogResult.OK)

{
}

25. Kompilera och kor. Klickar du p& Navigate-menyn visas Navigate-formen:

browserWindow.Navigate (myNavigateBox. txtURL. Text) ;

Mata in en Intemet-adress:

www mattekollen se

Skriv in en webbadress i textfaltet till Navigate-formen ovan och klicka pa OK for att fa
upp sidan i browserWindow. Sa har kan det se ut:

Navigate Help

Mattekollen

Fa koll pa gymnasiematten

3
Mattekollen gor gymnasiematten roligare, snabbare och 2 J
|attare att lara sig. &
n T B Paters med aositiv expooent:
Lar dig i din egen takt med: el i
+ Genomgangar med pedagogiska bilder och lésta Pksion & werid A
exempel. v 2 mec sig siate. § ghnger,
« Quiz som hjalper dig att snabbt komma igéng.
+ Ovningsuppgifter som forbereder dig infor proven il e
I e
Da Mattekollen foljer Skolverkets kursplaner sa ar appen o e P s
perfekt for egenstudier, repetition, om du har missat vad experen.
som gicks igenom pa lektionen, for att fa ett forspang eller g
for att plugga infor nationella proven och hogskoleprovet. P

Mattekollen (Beta) finns nu i som webbapp samt till Android
och iOS.

& < son cE TN P
webbapp * Google Play [¢ App Store

Hér foljer sammanfattat all kod till detta projekt i filen Form1.cs:
53

54

1.

1.13 Grafiskt granssnitt med menyval

Skapa en Windows Forms Application och dép det till Menus.

Form1:
Egenskap Varde
Text Menyer
Size.Width 610
Size.Height 360

Hamta fran Toolbox, All Windows Forms, en MenuStrip-kontroll till formen: En
tom menyradplats lagger sig till formen direkt under rubriken. Langst ner till
vanster i component tray dyker upp en annan del av den nya kontrollen med
namnet menuStrip1. Den kan anvéndas for att synliggéra MenuStrip-kontrollen
om den forsvinner, t.ex. ndr man (av misstag) markerat formen

En annan metod att skapa menyer &n den vi larde oss i projektet DevBrowser,
ar foljande: Ga in med musen till textfaltet Type Here som dyker upp pa den
nya kontrollen menuStrip1. Om du inte ser den, klicka pa den tomma meny-
radplatsen l&ngst till hoger. Klicka i textféltet Type Here och skriv dar File och
tryck pa Enter for att skapa en File-meny.

Markera menyradplatsen och skriv i textfaltet Type Here som dyker upp till
hoger om File-menyn, Format. Tryck pa Enter for att skapa en Format -meny.

Att skapa under- och under-undermenyer

5.

Markera File-menyn och skriv i textfaltet Type Here som dyker upp under den
(oBs! inte bredvid den) About och tryck pé& Enter. Skriv i det textfilt som dy-
ker upp direkt under About-textfaltet, Exit och tryck pa Enter (upprepas kanske
inte alltid explicit i fortsattningen). S har du skapat tvd undermenyer under
File-menyn.

Gor samma sak under Format-menyn. Markera den och skriv i textfaltet Type
Here som dyker upp under den (OBS! inte bredvid den) Color. Skriv i det text-
falt som dyker upp direkt under Color-textféltet, Font.

Ga till Format-menyn och markera undermenyn Color i den. Skriv i textfaltet
Type Here som dyker upp till hdger om den, Black. Skriv i det textfalt som
dyker upp direkt under Black-textfaltet, Blue. Skapa pa samma satt ytterligare
tvé under-undermenyer under Format-Color-menyn, niamligen Red och Green.

Ga till Format-menyn och markera undermenyn Font i den. Skriv i textfaltet
Type Here som dyker upp till hdger om den, Times New Roman. Skriv i det
textfalt som dyker upp direkt under det, Courier och under det, Comic Sans.

55

9. Efter du skrivit Comic Sans och tryckt pa Enter, klicka pa den lilla pilen till
hoger om textfaltet Type Here under Comic Sans och vilj Separator. S& har du
skapat under-undermenyn Separator i undermenyn Font.

10. Fortsatt med att skapa tva under-undermenyer till under Separatorn, namligen
Bold och Italic.

11. Kompilera och kér. Testa dina menyer samt undermenyer.

12. Hamta en Label-kontroll till formen och dép den till displayLabel.

labell:
Egenskap Varde
(Name) displayLabel
Anvand Format-menyn for att
Text ..
andra denna texts utseende.
Autosize False
Size 435:; 135
Font Times New Roman; 14pt
Location 80; 120

Projektets kod
L&gg in koderna i filen Form1.cs, klassen Form1l i den hér ordningen:

13. Ga till formen, menyn File och undermenyn About. Dubbelklicka pa About-
undermenyn och skriv in kroppen till féljande handelsemetod:

private void AboutToolStripMenuItem Click(
object sender, EventArgs e)

{
MessageBox.Show ("Detta program demonstrerar\n" +
"anvdandningen av menyer.",
"About", MessageBoxButtons.OK,
MessageBoxIcon.Information) ;
}

14. Ga till formen (fliken bredvid), menyn File och undermenyn Exit. Dubbelklicka
pa Exit och skriv in kroppen till féljande handelsemetod (OBS! endast en rad):

private void ExitToolStripMenuItem Click (
object sender, EventArgs e)
{

}

15. Skriv in foljande i filen Forml . cs:

Application.Exit() ;

private void ClearColor()

blackToolStripMenulItem.Checked = false;
56

blueToolStripMenultem.Checked = false;
redToolStripMenuItem.Checked false;
greenToolStripMenuItem.Checked false;

}

16. Ga till undermenyn Format-Color, dubbelklicka pa Black och skriv in foljande:

private void BlackToolStripMenuItem Click(
object sender, EventArgs e)

{
ClearColor () ;
displayLabel.ForeColor = Color.Black;
blackToolStripMenultem.Checked = true;
}

17. Gatill undermenyn Format-Color, dubbelklicka pa Blue och skriv in foljande:

private void BlueToolStripMenuItem Click (
object sender, EventArgs e)

{
ClearColor () ;
displayLabel.ForeColor = Color.Blue;
blueToolStripMenultem.Checked = true;
}

18. Skriv motsvarande hédndelsemetoder till de andra fargerna Red och Green.

OBS! Héndelsemetoder kommer inte att fungera om du bara klipper, klistrar
och andrar i koden. Du maste dubbelklicka pa undermenyerna fran formen och
koda sedan, for att fa en automatisk koppling mellan grafiken och koden.

19. Skriv in foljande i filen Forml.cs:

private void ClearFont ()

{
timesNewRomanToolStripMenultem.Checked = false;
courierToolStripMenuItem.Checked = false;
comicSansToolStripMenultem.Checked = false;
}

20. Ga tillundermenyn Format-Font, dubbelklicka pa Times New Roman och skriv
in féljande:

private void TimesNewRomanToolStripMenuItem Click(
object sender, EventArgs e)

{
ClearFont() ;
timesNewRomanToolStripMenuItem.Checked = true;
displaylLabel.Font = new Font("Times New Roman", 14,
displaylLabel.Font.Style) ;
}

57

21. Skriv motsvarande handelsemetoder till de andra fonterna Courier och Comic
Sans.

OBS! Andra i koden det fysiska namnet pa fonten Comic Sans till "Comic
sans Ms". S heter fontens namn i den nya versionen av Visual Studio.

Samma sak har: Handelsemetoder kommer inte att fungera om du bara klipper,
Klistrar och andrar i koden. Du méste dubbelklicka pd undermenyerna fran
formen och koda sedan.

22. Ga tillundermenyn Format-Font, dubbelklicka pa Bold-undermenyn i och skriv
in foljande:

private void BoldToolStripMenultem Click (
object sender, EventArgs e)

boldToolStripMenultem.Checked =
'boldToolStripMenultem.Checked;
displayLabel.Font = new Font(displayLabel.Font,
displayLabel.Font.Style * FontStyle.Bold);

}

23. Dubbelklicka pa Italic-undermenyn i Format-Format-menyn och skriv in foljan-
de:

private void ItalicToolStripMenultem Click(
object sender, EventArgs e)

{ italicToolStripMenultem.Checked =
'italicToolStripMenuItem.Checked;
displayLabel.Font = new Font(displayLabel.Font,
displaylLabel.Font.Style ~ FontStyle.Italic);
}

24. Kompilera och kor. Testa menyerna.

S& har kan det se ut nar man Kor programmet Menus:

Menyer Q@@ Menyer E@@
File Format File Format
Anvind Format-menyn for att dndra Anvénd Format-menyn for
denna texts utzeende. ..
att dndra denna texts
utseende.

58

1.14 Multiple Document Interface (MDI)

1. Skapa en Windows Forms Application och dép den till MDI.

Form1:
Egenskap Varde
Text Multiple Document Interface
Size 1100; 770
IsMdiContainer : True

Nar egenskapen IsMdiContainer sétts till True blir denna form en Container el-
ler en s.k. forélderform. Lagg marke till att formens bakgrundsféarg andras till
grd. Sa lange IsMdiContainer &r False har vi en “vanlig” form, dven kallad
barnform. By default &r IsMdiContainer alltid False.

Skapa en barnform

2. Skapa en ny, andra form i projektet, sa har: Hogerklicka pa projektnamnet MDI
i Solution Explorer: - Add - New Item... . Vélj i dialogrutan Add New Item...
den nya formens typ: Form (Windows Forms). D6p den till ChildForm genom
att skriva i textfaltet Name: ChildForm.cs. Klicka pa knappen Add.

Barnformens design
3. Markera barnformen ChildForm och andra dess storlek:

ChildForm:

Egenskap Varde
Size 650; 340

4. Hamta fr&n Toolbox, All Windows Forms, en PictureBox-kontroll till ChildForm:

ictureBox1:

Egenskap Varde
BackColor (Web) White
Dock Fill (mellersta rutan)
SizeMode Strechimage

Lagg mérke till att PictureBox-kontrollen l&gger sig 6ver hela barnformen.

Barnformens kod
5. Markera ChildForm.cs i Solution Explorer, hogerklicka och vélj View Code for
att se barnformens kod. Byt ut hela koden i childForm.cs till féljande:

using System.Drawing;
using System.Windows.Forms;
using System.IO;

59

namespace MDI

{
public partial class ChildForm : Form
public ChildForm(string title, string fileName)
{
InitializeComponent() ;
Text = title;
pictureBoxl.Image =
Image.FromFile (Directory.GetCurrentDirectory ()
+ fileName) ;
}
}
}

Skapa menyer i Form1

6. Lamna ChildForm och aterga till Form1 (fliken bredvid). Hamta fran Toolbox,
All Windows Forms, en MenuStrip-kontroll till Form1: En tom menyradplats
lagger sig till formen direkt under rubriken. L&ngst ner till vanster i component
tray dyker upp en annan del av den nya kontrollen med namnet menuStripl.
Den kan anvéndas for att markera MenuStrip-kontrollen.

7. Markera MenuStrip-kontrollen. G& in med musen till textfaltet Type Here pa
den nya kontrollen menuStrip1 och skriv dar File. Tryck pé Enter.

8. Markera menyradplatsen och skriv i textfaltet Type Here till héger om File-
menyn, Window. Tryck pa Enter (upprepas inte langre i beskrivningen).

9. Markera File-menyn och skriv i textfaltet Type Here som dyker upp under den
(oBS! inte bredvid den) New. Klicka i textfaltet som dyker upp direkt under
New-textfaltet och skriv Exit.

10. Markera New-menyn och skriv i textféltet Type Here som dyker upp till hdger
om den, Child1. Skriv i det textfalt som dyker upp direkt under Child1-text-
faltet, Child2. Skriv i det textfalt som dyker upp direkt under Child2-textféltet,
Child3.

11. Skapa pa samma satt dven undermenyer under Window-menyn: Markera den
och skriv i textféltet Type Here som dyker upp under den (OBS! inte bredvid
den) Cascade. Skriv i det textfalt som dyker upp direkt under Cascade, Tile
Horizontal. Skriv i det textfalt som dyker upp direkt under Tile Horizontal, Tile
Vertical.

Form1:s kod

12. G4 till File-menyn och markera Exit-undermenyn. Dubbelklicka pa den och
skriv in kroppen (endast en rad) till hdndelsemetoden:

60

private void exitToolStripMenultem Click (
object sender, EventArgs e)
{

}

13. Gatillbaka till formen Form1, dér till File-menyn och undermenyn New. Klicka
pa den och markera Child1-undermenyn. Dubbelklicka pa den och skriv in:

Application.Exit() ;

private void childlToolStripMenultem Click (
object sender, EventArgs e)

ChildForm child = new ChildForm (R} S3L- NN FREIV N ,
"\\Valkomst.gif") ;

child.MdiParent = this;

child.Show() ;

}

OBS! Koden kan kompileras, men inte exekveras just nu, darfor att filen valkomst. -
gif som anges i koden ovan, inte finns i projektet. Vi kommer att fixa det senare.

14. GOr samma som i punkten ovan med Child2-undermenyn. Markera den, dub-
belklika pa den och skriv in foljande.

private void child2ToolStripMenultem Click (
object sender, EventArgs e)

ChildForm child = new ChildForm ([EUFITYINE
"\\Valkomst.gif") ;

child.MdiParent = this;

child.Show() ;

}
15. Gér motsvarande med Child3-undermenyn. Glom inte (Rt eI BT .

OBS! Det gar inte att klippa, klistra och &ndra i koden. Du maste dubbelklicka pa under-
menyn fran formen och koda sedan, for att fa en koppling mellan grafiken och koden.

16. Ga tillbaka till formen Form1, dar till Window-menyn och undermenyn Cas-
cade. Dubbelklicka pé den och skriv in féljande:

private void cascadeToolStripMenuIltem Click (
object sender, EventArgs e)

{
}

17. Dubbelklicka pé Tile Horizontal-undermenyn i Window-menyn och skriv in fol-

jande:

private void tileHorizontalToolStripMenulItem Click(
object sender, EventArgs e)

{

}

this.LayoutMdi (MdiLayout.Cascade) ;

this.LayoutMdi (MdiLayout.TileHorizontal) ;

61

18.

Dubbelklicka pd Tile Vertictal-undermenyn i Window-menyn och skriv in fol-
jande:

private void tileVerticalToolStripMenultem Click (
object sender, EventArgs e)
{

}

this.LayoutMdi (MdiLayout.TileVertical) ;

Infoga bildfilen i projektet

19.

20.

21

22.

Ga till webbsidan www.taifun.se. Klicka dar pa bokens bild Programmering 2
med C#, scrolla ned och klicka pa lanken Valkomst.gif. En zip-fil laddas ned
som innehaller filen Valkomst.gif. Klicka pa zip-filen och extrahera den pa din
dator.

Aterga till Visual Studio, projektet MDI. Markera projektnamnet MDI i Solution
Explorer, hogerklicka pa det och valj Open Folder in File Explorer. MDI:s pro-
jektmapp pa din dator 6ppnas. Navigera till den plats pa din dator dar du sparat
bildfilen valkomst.gif. Kopiera filen valkomst.gif.

Aterga till MDI:s projektmapp du dppnade ovan, undermappen bin = Debug.
Klistra in bildfilen valkomst.gif i den. Nu finns bildfilen i projektet.

Kompilera och kér. Sa har kan det se ut nar man fran File-menyn véljer alla tre
barnformer samt Cascade fran Window-menyn:

MDI {Multiple Document Interface)

File Window

B Fg

Vilkommen till
Windowsprogrammering!

62

1.1

1.2

1.3

1.4

15

1.6

Ovningar till kapitel 1

Skapa en Console Application och kalla den fér AdditionC. Den ska definiera och
initiera tva heltalsvariabler och producera t.ex. foljande utskrift till konsolen:

Summan av 9 och 2 ar 11

9 och 2 ska vara de varden som variablerna blivit inirierade till i programmet.

Skapa en Windows Forms Application och kalla den for Additionw. Den ska gora
samma sak som Igsningen i évning 1.1, bara att utskriften inte hamnar i konsolen
utan i en MessageBox och visas nar man klickar pa en knapp (med texten Visa
MessageBox) i formfonstret. Forse MessageBoxen med rubriken Windows Addi-
tion.

| bade 6vn 1.1 och 1.2 &r heltalsvardena 9 och 2 hardkodade. Vidareutveckla des-
sa Ovningar genom att skapa ett anvandarvanligt, interaktivt grafiskt granssnitt
dar man kan mata in vilka tal som helst och fa summan utskriven i en Message-
Box nar man klickar pa en knapp med texten Addera. Valj lampliga rubriker for
formen och MessageBoxen. Kalla projektet for Addition.

Skapa en Windows Forms Application och kalla den Division. Modifiera l6sningen
i 6vn 1.3 sa att berakningens resultat inte skrivs ut till en MessageBox utan pla-
ceras i ett textfalt som laggs till i formen. Valj den har gangen division som rak-
neoperation.

Skapa en Windows Forms Application och kalla den fér SafeDivision. Skapa sam-
ma grafiska grénssnitt som i projektet Division (6vn 1.4). Applikationen ska ge-
nomfdra saker division, dvs ta hand om en eventuell division med 0. Modifiera
koden i Forml.cs genom att infora ett egengenererat undantag for fallet att an-
vandaren matar in 0 i det andra textfaltet. Styr meddelandena fran undantags-
hanteringen till en MessageBox.

Vidareutveckla 6vningsseri- | caculator e
en 1.1-15 till en komplett

kalkylator som inkluderar de mea 1000 e

fyra raknesétten. Det grafis- [r—

ka grénssnittet kan se ut som Number?: 25 D

bilden till hoger. Forse divi-

sionen med en undantags-

hantering (sid 28) som vid Resul: 4

division med 0 skriver ut ett

felmeddelande till en Mes-

sageBox.

63

1.7

Grafiska applikationer (projekt) Ga igenom dina konsolapplikationer
som du skrivit hittills. Undersok vilka av dem som ar lampliga for att skriva om
dem till grafiska applikationer. Integrera all inlasning fran och utskrift till konso-
len helt och héllet i en grafisk milj6. OBS! En befintlig konsolapplikation kan inte
laddas i Visual Studio och géras om till en Windows Forms Application. Man
maste skapa en ny Windows Forms Application och forse den bade med grafik
och kod som gér samma sak som den ursprungliga konsolapplikationen. Skillna-
den &r bara att anvandaren kommunicerar med programmet via ett grafiskt gréns-
snitt istéllet for via konsolen. Har du inga konsolapplikationer fortsatt hér.

De projektuppgifter som nu foljer & konsolapplikationer. Repetera hur man skapar en
C# Console Application i Appendix, sid 265.

1.8

Gissatal — ett spel (projekt)

Skriv en Console Application som slumpmaéssigt genererar ett heltal mellan 1 och

100. L&t anvandaren i flera forsok gissa detta hemliga tal. For att stodja gissnin-

gen, 1at programmet efter varje gissningsforsok skriva ut, om det gissade talet var

mindre eller storre &n programmets hemliga slumptal. Lat anvandaren forsoka

igen. Gissningen ska paga tills man gissat ratt. Vid rétt gissning skriv ut ett

”Grattis!”-meddelande foljt av ett datorljud, t.ex. med \a . Forse programmet

med ytterligare tva funktionaliteter:

a) Vid ratt gissning skriv &ven ut ett meddelande om antalet gissningsforsok.

b) Ge majligheten att avsluta spelet och fa reda pa programmets hemliga tal, vil-
ket kan ske genom att mata in t.ex. 0 .

Ett exempel pd en omgang av Gissa tal-spelet kan se ut sa har:

Gissa ett heltal mellan 1 och 100 (Avsluta med ©0): 50
For LITET, forsok igen! 75
For LITET, forsok igen! 87
For STORT, forsok igen! 81
For LITET, foérsok igen! 84

Grattis, du har gissat ratt efter 4 forsok.

Eller om spelaren blivit trott och vill avluta genom att mata in t.ex. 0 :

Gissa ett heltal mellan 1 och 100 (Avsluta med 9): (%]

Avbrott: Programmets hemliga tal var 66

64

1.9

Ledning:
a) Hantering av slumptal i C#:
For att slumpmassigt generera ett heltal mellan 1 och 100 kan man skriva:

Random r = new Random() ;
int secret = r.Next(l, 101);

Forsta raden skapar ett objekt av klassen Random. Variabeln r av typ Random
refererar till detta objekt. | den andra raden anropas metoden Next () som &r
definierad i klassen Random. Dérfor maste anropet ske med referensvariabeln
r via punktnotation. Parametrarna 1 och 101 bestdimmer att metoden returne-
rar ett heltal mellan 1 och 100. Returvérdet tildelas heltalsvariabeln secret,
programmets hemliga slumptal.

b) Resten bestar huvudsakligen av en loop som tillater spelaren gissa upprepade
ganger. | loopen kan en kontrollstruktur anvandas som &r lamplig for fler-
végsval, for att skilja mellan de olika alternativen. Du kan styra loopens for-
lopp samt avslutning t.ex. med en logisk variabel av typ bool.

Extrauppgift:

Fundera och testa pa en spelstrategi som kan minimera antalet gissningsforsok. |
korexemplet ovan med bara 4 férsok har en sadan strategi anvants. Hur skulle du
beskriva den?

LOopande texten (projekt) Skriv ett program som simulerar en Iépande
text, t.ex.. C# &r kul> som horisontellt ror sig i konsolfonstret tills den "traffar”
pa ett hinder, t.ex. ett kryss i form av ett X. Sa har kan ett korresultat se ut:

= G WINDOWS system32 omd.exe =]
cHt E» kul> ¥

=

= GO WINDOWS system32'cmd.exe I (=]
CHt Er kul> H

El

= GO WINDOWS system32 omd.exe ol x|
CHt Hr kul>X

Tryck pi en valfri tangent for att Ffoptsdtta... . LI

Ledning:

a) Skriv ut med hjalp av ett antal mellanslag krysset i slutet av en rad i konsolen
utan radbyte. Anteckna antalet mellanslag krysset har avstdnd fran konsolens
vanstra rand. Stanna pa samma rad, g med hjalp av escapesekvensen \r (car-

65

1.10

riage return) till borjan av raden och skriv ut texten c# ar kul>. Gor experiment
med \r for att bekanta dig med dess funktion. Sa har borde ett kdrresultat se ut:

+H! CA\WINDOWS\system32\cmd.exe — O X

C# ar kul> X

Press any key to continue . . . o v

b) Skriv en foxr-loop. Ta bort (dvs skriv ut) i varje varv av loopen med 10 styck
\b texten c# ar kul> som ritats i férra varvet (initialt texten ovan), foljt av ett
eller flera mellanslag (vilket paverkar rorelsens “hastighet”). Skriv sedan om tex-
ten c# ar kul>. Valj som antal varv i loopen kryssets avstand fran konsolens
vanstra rand (antecknat i a) minus textens langd — i det foreslagna exemplet 10.
Da kommer rorelsen att stoppas strax innan texten “triiffar” pa X.

Aven om du gjort allt ratt kommer du inte se texten att réra sig om du inte lagger
in en fordrojning i loopen, eftersom allt gar sa fort och 6gat inte hinner se nagot
forlopp. Fordrojningen kan du astadkomma genom att lagga in i loopen satsen:

System.Threading.Thread.Sleep(100) ;

Detta ger en fordrojning pa 100 milisekunder i varje varv av loopen.

Pyramiden (projekt) Slutmalet med detta projekt &ar att utveckla ett
program som skriver ut en pyramidliknande figur med tal, t.ex. s har:

st CHWINDOWS \system32'cmd.exe -0l x|
fAnge antal rader for pyramiden mellan 1 och 13 = 13 :l
1
2 1 2
3 2 1 2 3
4 3 2 1 2 3 4
5 4 3 212 3 45
6 5 4 3 2 12 3 45 86
? 65 43 212 3 456 7
8 ? 6 5 43 2 1 2 3 405 6 78
9 8 ? 6 5 43 2 1 2 3 456 7 8 ¢
i@ 9 8 ? 6 5 4 3 2 1 2 3 45 6 7 8 918
9 8 ? 6 54 3 2 12 3 45 6 7 8 91011
121118 ¢ 8 ? 6 5 4 3 2 1 2 3 4 5 6 7 8§ ¢1@ 11 12
1312111i@ % 8 ? 6 5 4 3 32 1 2 3 4 5 6 7 8 §1@ 11 12 13 [

Programmet ska vara sa generellt att det skriver ut talpyramider dven om man
matar in mindre antal rader. Men om anvandaren inte foljer ledtextens instruk-
tion att mata in tal mellan 1 och 13 ska programmet inte skriva ut talpyramiden
utan uppmana anvandaren att halla sig till det foreskrivna talintervallet [1, 13].
Anledning till denna restriktion &r att talpyramiden inte ryms i konsolen om man
overskrider detta intervall . S& har kan da en dialog t.ex. se ut:

66

= CAWINDOWS\system32'cmd.exe -10] x|

Ange antal rader fidr pyramiden mellan 1 och 13 : 28 j

Du mdste mata in ett tal mellan 1 och 13.
Ange antal rader fior pyramiden mellan 1 och 13 : -1
Du mdste mata in ett tal mellan 1 och 13.

Ange antal rader fir pyramiden mellan 1 och 13 : 9

Y
i
LTINS
[RYRPRTRYRYRYN]
B NI RO B NI DD
[et N Y
B NN RO B NI DD
[RYRPRTRYRYNIN]
EYLN Y

LI LI
LTS

~3-2

@

)
=

Tips till Pyramiden:

For att komma igang med talpyramiden, borja med att skriva ett program som ritar en
stjarnpyramid:

= CWINDOWS\ system32\cmd.exe -10] x|
fAnge antal rader fir pyramiden mellan 1 och 13 : 13 ﬂ
=
x % =
x % % ® x
* o ox % o o= w
ok ow o omom xR om
B om ok ow R oR® omo® o o R
% % o®o® o® %X R o™ oW % R %
x % % ox o % % xR % % x ®x % x
® ok % R o® o* X R X O* % K X * % R X
® o ok o R o ok % R o® % % O % % % o ® o
B om OB OB R OB R R R R ® N R R oK o® R oA K R B
B om o® R om oA oK R R R oK o K R R N K R R N N B =

* % o o oW X % K oW % % oK X O® X oK X O® oK oK X O™ O® % K =

Strunta till att bérja med dven pé& hanteringen av felinmatning av antal rader och jobba
med ett fast antal rader. Du kan l&gga till det senare.

Anvand en nastlad £or-sats med en yttre loop och tre inre loopar:

e En for de tomma platserna i pyramiden (mellanslagen)

e En for stjarnorna i pyramidens hogra halvan (rdknat fran den vertikala
mittlinjen (symmetriaxeln))

e Enfor stjdrnorna i pyramidens vanstra halvan.

Rakna med att du maste anvinda i de inre looparna den yttre loopens raknare och
slutvarde. T.ex. kan villkoret i den forsta inre loop som ritar de tomma platserna, se ut
sd har:

column <= numberOfRows - row;
Dér column dr den inre loopens, row den yttre loopens rdknare och numberOfRows
hela pyramidens antal rader, t.ex. 13 som ovan. D3 kan den har forsta inre loopen skriva

ut tre mellanslag i varje varv. | de tva andra inre looparna kan tvd mellanslag och en *
skrivas ut.

Observera att alla dessa tips inte ska forhindra att du anvander dina egna idéer for att
I6sa projektuppgiften. Det finns inte endast ett tillvdgagangssatt. Uppgiften kan losas pa
valdigt manga olika sétt.

67

68

Kapitel 2

Objektorienterad Programmering

Sida Program
2.1 Vad ar objektorienterad programmering? 70
2.2 Klassbegreppet 76
- Vad éar en klass? 76
- V&r forsta klass 77 Password
- Varfor klasser? 80 PasswordUse
2.3 Modularisering 81 P_All in Main
82 P_Method_Module
2.4 Anvandning av klasser 85 P_Class_Module
- Deklaration av en klass 85 Emp
- Definition av ett objekt 87 EmpTest
- Atkomst till objektets medlemmar 89
2.5 Klassens konstruktor 91
- Atkomstmodifieraren private 91 circle
- Konstruktorns egenskaper 93 Encapsulation
- Default konstruktorn 95 AccountD
- Flera konstruktorer 97 CreateAccountD
2.6 Referensvariabler 100
- Automatisk initiering av datamedlemmar 101
2.7 Komposition 104 Date / Employ
- Komposition av klasser och objekt 106 Composition
2.8 Arv 108 Person
- Arvrelationen 110 Employee
111 Inheritance
2.9 Polymorfism 113 Account
- Overskuggning av metoder 115 MinimalAccount
- Atkomstmodifieraren protected 116 PolymorphTest
Ovningar till kapitel 2 och projektuppgifter 119

69

2.1 Vad ar objektorienterad programmering?

En given definition pd programmering ar problemlosning med hjalp av datorn. Om man
da beskriver problemets losning i form av en algoritm kan man séga Program = algo-
ritm + data. Denna definition stalldes upp av Niklaus Wirth pa 60-talet och aterspeglar
den procedurala synen pa programmering. Fokuset ligger pa algoritmen dvs att inte bara
hitta utan aven beskriva tillvagagangssattet (proceduren) for att l6sa ett problem. Sedan
aterstar bara att koda denna beskrivning. En annan definition som kom upp pa 80-talet
och aterspeglar den objektorienterade synen pa programmering ar:

[Program = Modell av verkligheten]

Om man i formeln Program = algoritm + data lagger betoningen pa data istallet for pa
algoritmen och inte langre betraktar data som ett slags bihang till algoritmen utan som
objekt kommer man till objektorienterad programmering. Denna nya programmerings-
filosofi genomsyr alla vara program, eftersom C# med alla sina fordefinierade biblio-
teksprogram 4r i hdgsta grad objektorienterade.

Paradigmskifte

Det som i programmeringshistorien gjorde att man behdvde objektorienterad program-
mering var den véxande komplexiteten hos program under 70-talet. Programmens stor-
lek var avgorande for den vaxande komplexiteten. Man insag att det inte langre rackte
till att skriva och testa program som fungerade just da. Det var nodvandigt att med rim-
liga kostnader kunna &ven underhélla stora program, férnya och vidareutveckla dem sé
att de fungerade aven i flera ar och att de framfor allt kunde anpassas till nyuppkomna
situationer utan odverkomliga svarigheter. Det i sin tur kravde att man redan i design-
stadiet behovde ett annorlunda upplagg. Fokuset forskjots fran problemldsning till mo-
dellering av verkligheten. Objektorienterad design kom in i bilden. Allt detta var endast
med procedural programmering inte langre mojligt. Ett s.k. paradigmskifte hade blivit
nodvandigt, dvs en andring av helhetssynen pa programmering.

Objektorienterad programmering syftar at att efterlikna verkligheten. Man vill avbilda den
reala varlden — atminstone den del som tillater datorisering — och konstruera en modell av
den i sina datorprogram for att kunna simulera verkligheten genom att testa modellen. For
att undvika filosofiska diskussioner kan vi anta att den reala vérlden bestar kort sagt av
objekt. Varlden kring oss ar full med sadana objekt: Manniskor, byggnader, bilar, tag,
flygplan, trad, mébler, bdcker, butiker, skolor, bibliotek, kontor, anstallda, kunder, varor,
fakturor, order, bokningar, kurser osv. Objekten kan vara verkliga eller virtuella. Ett da-
torprogram forsoker att beskriva dessa objekt. Lat oss precisera detta:

Objekt, klass och metod

Ett objekt har vissa egenskaper. Generellt kan man sdga att ett objekt & summan av alla
sina egenskaper. Ett annat ord for egenskap ar attribut. Ett objekt bestér av alla sina attri-
but. Attributen tillhdr objektet. T.ex. har objektet bil som attribut fabrikat, modell, férg,
arsmodell, antal kérda mil, antal hastkrafter, maximala hastigheten, antal och storlek pa

70

cylindrar i motorn osv. Alla dessa data ger svar pa fragan ”Vad &r det for bil?”. Men bil-
den vore ofullstandig om vi ndjde oss med dessa intressanta, men statiska data. Vi vill
ocksa veta vad man kan gora med bilen. Ett objekt kan i regel dven utfora vissa aktioner
eller operationer. | den objektorienterade programmeringens terminologi kallas de for me-
toder. Typiska metoder fér en bil &ar t.ex. att kdra fram, att backa, att accelerera, att brom-
sa, att parkera, att byta olja osv. Den fullstandiga definitionen pa en bil som objekt vore
alltsa att ange bade dess attribut och metoder. Bilfabrikanten maste forse bilen med alla
dessa fardigheter for att kunna sélja den. Darfor gar man i bilfabriken efter en plan nar
man tillverkar bilen. | den objektorienterade programmeringens terminologi kallas denna
plan for bilens klass. Nar vi skriver ett program maste vi forst formulera klassen Bil for att
sedan kunna skapa objekt av den. Klassen skrivs bara en gang, medan objekt kan skapas
enligt klassens beskrivning i obegransat antal. | klassen maste vi ta upp alla attribut och
metoder som ar relevanta eller av nagon anledning 6nskvarda for en bil. Den praktiska an-
vandningen avgor fran fall till fall vad som &r relevant eller onskvart.

Vad ér skillnaden mellan objekt och klass? Om vi byter ut bilar mot pepparkakor kan
man sdga att pepparkaksformen ar klassen och sjélva pepparkakorna ar objekten. Klas-
sen ar alltsa en slags mall, en forskrift for produktion av objekt: En enda pepparkaks-
form kan producera tusentals pepparkaksgubbar. Gubbarna kan skiljas fran varandra i
vissa detaljer, t.ex. materialet, smaken osv. Man kan t.o.m. mala dem i olika farger eller
modifiera pd annat sitt efterat. De forblir pepparkaksgubbar av den ursprungliga for-
men. | formen ingar det som ar gemensamt hos alla pepparkaksgubbar. Man har, nar
man byggde formen, bortsett fran ovasentliga skillnader och tagit hansyn endast till det
vésentliga, det gemensamma hos alla pepparkakor.

Att bortse fran skillnader och att bibehélla det gemensamma hos olika verkliga objekt, ar
en abstraktion (abstrahera betyder pa latin: att ta bort, att dra av). Man tar bort allt som
skiljer saker och ting av samma kategori eller typ och kommer pa det viset till sjalva kate-
gorin. Abstraktion leder till begreppsbildning, till klassificering eller kategorisering av
den reala varlden. Ett vaxande barn gar igenom samma abstraktionsprocess, ser forst sina
foraldrar (objekt), abstraherar sedan via erfarenhet sd smaningom till begreppet méanniska
(klassen) och inser att sina foraldrar ar tva konkreta exemplar av den abstrakta klassen
méanniska. S& gor barnet med alla saker och ting omkring sig och lar sig vuxenvarldens
begreppsapparat. Det abstrakta begreppet penna (klassen) t.ex. bildas efter att man sett
hundratals verkliga pennor (objekt). Objektorienterad programmering aterspeglar denna
naturliga tankeprocess fran det konkreta till det abstrakta, fran objekt till klass.

Metoder

En metod &r en funktionalitet som definieras i en klass. Den talar om vad ett objekt av
denna klass kan gora. Det finns tva steg i hantering av metoder: Forst definierar man
dem dvs skapar man deras kod i en klass. Sedan anropar dvs aktiverar man dem i ett
objekt av denna klass. Ofta &r det forsta steget redan genomfort av andra, sa vi behdver
bara anropa en redan fordefinierad metod. | klassen Bil t.ex. & metoderna att kdra fram,
att backa, att accelerera, att bromsa osv. definierade i huvuden pa bilkonstruktérerna
och i deras konstruktionsritningar och dokumentationer. Sedan har man tillverkat mas-
sor med objekt av klassen Bil i fabriken och byggt in dessa metoder i alla bilar. Vi be-

71

héver bara anropa dem i den bil vi kér. Den bil vi kor ar ett specifikt objekt av klassen
Bil. Lat oss kalla det for minvolvo. Objektet minvVolvo har ett antal attribut som t.ex.
fabrikat, modell, farg, arsmodell osv., men ockséd ett antal metoder, bl.a. metoden
Kor (). Parenteserna i metodens namn brukar man skriva for att karakterisera Kor ()
som en metod och skilja den fran klassens attribut. | C# skriver man ett anrop av meto-

den Kéx () sa har:
minVolvo.Kor() ;

Observera att fore punkten star ett objekt, inte klassen. Det &r ju den specifika bil som
jag anvénder just nu som ska koras. Forst efter punkten star sjalva anropet av metoden
kér (). Det har sattet att skriva kallas punktnotation. Metoder maste alltid anropas med
punktnotation, vilket har sin grund i att de endast ar deklarerade i klasser, sé att de en-
dast existerar i objekt av en klass. Till skillnad fran fristdende funktioner kan metoder
varken definieras utanfor klasser eller anropas utanfor objekt. I C# finns endast meto-
der, inga funktioner. Om vi bortser fran bilexemplet kan det i andra sammanhang aven
forekomma en klass (istéllet for objekt) fore punkten i anropet av en metod. | sa fall ar
metoden definierad i klassen pa ett speciellt satt namligen som en statisk metod, vilket
tas upp senare nar vi behandlar metoder i detalj.

En annan variant av metoden Kéx () kan anropas pa faljande satt:
minVolvo.Kor (40) ;

Det kan t.ex. betyda: Kor bilen med hastigheten 40 km/h. Vardet 40 kallas da en para-
meter som skickas till metoden nér den anropas. | sa fall maste dven metoden Kéx () va-
ra definierad sa att den har beredskapen att ta emot denna parameter. Sa det kan inte va-
ra samma metod som anropades utan parameter. Det méste vara en annan variant av
den, exakt talat en annan metod med samma namn. Konceptet kallas 6verlagring av me-
toder och innebar tva eller flera metoder med samma namn, men olika parametrar.

Klassdiagram

Lat oss ta som exempel en algoritm som beskriver hur man gar upp, duschar, tar pa sig
kladerna och aker till jobbet (algoritmen Morgonsyssla i Progri+, 1.4). Detta &r ett typiskt
fall av problemlosning: Det I6ser problemet hur man tar sig till jobbet. Tillvagagangssat-
tet och framfor allt hur vi beskriver det, ar foremal for algoritmer. Men vem eller vilka gor
det, dvs vilka objekt som &r involverade i algoritmen och hur man beskriver dessa objekt,
ar en annan aspekt pa saken. Objektorienterad programmering prioriterar objektaspekten
framfor algoritmaspekten. Den primara fragan &r inte langre vad man gor utan vem man
ar dvs hur kan personen beskrivas? Hur man gor for att ta sig till jobbet kommer att inga
som en del i denna beskrivning. Algoritmen Morgonsyssla blir en metod i objektet Per-
son. Det &r objektet som utfor metodens instruktioner for att ta sig till jobbet.

Personen kan t.ex. vara en anstéalld vilket forresten skulle forklara varfor han tar sig till
jobbet. | s& fall &r personen ett objekt av kategorin eller klassen Employee. Darfor definie-
ras en klass som beskriver alla anstéllda. Personen i fraga gors till ett objekt, ett exemplar
av denna klass. P& sa sitt kan koden ateranvandas aven for andra anstéllda. Ateranvand-
ning av kod gor utvecklingsarbetet av programvara effektivare och &r en av den
objektorienterade synens fordelar. | klassen Employee ingér all typ av information som &r

72

relevant for en anstélld, det vi kallar for attribut, t.ex. for- och efternamn, fodelse- och

anstéllningsdatum, arbetstid osv. Dessutom tar vi
upp allt som en anstalld kan gora, det vi kallar for
metoder, t.ex. att fa 16n, att presentera sig eller ocksa
att ta sig till jobbet. P& si satt blir algoritmen
Morgonsyssla i den objektorienterade programme-
ringens terminologi en metod i klassen Employee.
Ett verktyg speciellt for objektorienterade modelle-
ringar & UML (Unified Modeling Language). Enligt
det har modelleringsspraket skulle klassen Employee
beskrivas med diagrammet till hdger som kallas for
klassdiagram. Dér star tecknet — for attribut och +
for metoder. Andra beteckningar for attribut &r data-

-

Employee \

firstName
lastname
birthDate
hireDate
workingHour

+ +

\

Salary()
Present ()

MorningActivity()A///

medlem eller egenskap. Dessa termer &r synonymer. En Klass

bestar av datamedlemmar

och metoder. Klassen Employee t.ex. har fem datamedlemmar och tre metoder.

Klassens konstruktor

Eftersom klassens datamedlemmar i regel &r inkapslade (privata) och inte atkomliga uti-
fran klassen — detta gor man bl.a. ur datasékerhetssynpunkt — maste programmeraren an-

-

Person

~

- firstName
- lastname
- birthDate

+ Present()

\\\T MorningActivitv () ‘//

A

Employee

- hireDate
- workingHour

+ Salary()
\\f MorningActivitv ()

/

vanda sig av ett verktyg for att pa ett kodat satt anda
kunna komma &t dem, lasa och andra dem osv. Detta
verktyg kallas klassens konstruktor och &r en speciell
metod vars namn &r identiskt med klassens namn. Den
initierar automatiskt klassens privata datamedlemmar
nér ett objekt skapas. For enkelhetens skull har vi inte
tagit upp den i klassdiagrammet ovan bland klassens
metoder. Konstruktorn har ju endast programmerings-
teknisk karaktar och behandlas i detalj pa sid 93.

Arv

I den reala vérlden som vi vill efterlikna, finns inga
isolerade objekt. Alla objekt & mer eller mindre re-
laterade till andra objekt. En klok modellering méste
dra nytta av de befintliga relationer mellan objekt
for att effektivisera och optimera utvecklingsarbetet.
En sadan relation ar arvrelationen.

Man kan alltid etablera en arvrelation mellan tva be-
grepp om de stér i en “ar’-relation till varandra. |
exemplet ovan kan vi konstatera ett en anstélld ar en
person. Darfor kan klassen Employee drva klassen

Person, harmare bestamt arver klassen Employee klassen person:s alla datamedlem-
mar och metoder. Klassen Person Kallas bas- eller superklass. Klassen Employee kal-
las harledd eller subklass. Subklassen arver superklassens alla datamedlemmar och me-
toder, vilket i praktiken innebér att klassen Employee tar éver all kod som redan finns i

73

klassen person och lagger till ny kod som ndrmare specificerar en anstalld. Pa sa satt
slipper man skriva om kod som redan finns. T.ex. har en person ett for- och efternamn
samt ett fodelsedatum. Vid modellering av en anstélld arvs dessa attribut, och man lag-
ger till de nya attributen hireDate och workingHour som &r speciella for en anstélld.
Klassdiagrammet ovan (till vanster) visar modellen dér arvrelationen ritats med en pil
riktad mot superklassen. Féljer man pilens riktning underifran kan man avlésa att det ar
klassen Employee som arver klassen Person.

Observera att klassen Employee inte har tva utan fem attribut darfor att den via arvrela-
tionen &ven har Person-klassens tre attribut. Samma galler for metoderna: Employee-
klassen arver metoden Present () fran klassen Person. Modellen ovan gar utifran att
personer presenterar sig pd samma satt som anstéllda. Sedan har anstallda en I6nebe-
rakningsmetod som icke-anstallda personer saknar. Men varfor star metoden Morning-
Activity () i bada klasser? Narmare bestamt: Varfor forekommer den i Employee-
klassen fast den arver den fran superklassen? Svaret ges av ett annat koncept inom ob-
jektorienterad programmering:

Polymorfism

Modellen ovan gar utifran att icke-anstillda personer har en annan form av morgon-
syssla &n anstéllda. De kanske inte tar sig till jobbet, i alla fall inte alla, utan har en an-
nan morgonsyssla. S& vi har hér att géra med tva olika morgonsysslor tillngrande tva
olika klasser, men med samma namn. For objekt av typ Person kommer den ena och
for objekt av typ Employee kommer den andra att gélla. Men varfor har de samma
namn? Vore det inte béattre, for att undvika namnkonflikt, att ge dem olika namn, nér de
anda ar olika metoder? Faktiskt inte!

Anledningen till att de har samma namn &r foljande: For det forsta blir det ingen namn-
konflikt darfor att de tillhor olika typer av objekt. De &r inte fristdende utan inkapslade i
var sitt objekt som skiljer t dem. For det andra ska vi inte i onddan gora utvecklings-
arbetet komplicerat genom att hitta pa nya namn pa metoder som skiljer sig fran varan-
dra endast i detaljer. Ingen manniska skulle kunna komma ihag s& manga namn. For det
tredje vill vi efterlikna verkligheten dér det bara kryllar av beteckningar som &r identis-
ka, men har olika innebdrd i olika sammanhang. Inte heller det vanliga spraket har olika
namn pa dem. Ta foljande exempel: Att bromsa en lastbil gors pa ett annat sétt an att
bromsa en bat. Det finns ingen anledning att hitta pa ett annat namn for funktionaliteten
"att bromsa" hos olika typer av fordon. Tvértom, det vore forvirrande att anvanda olika
namn. Man vill ju helst slippa att tdnka pa de tekniska skillnaderna mellan olika typer
av fordon nir man pratar om bromsning. En och samma funktionalitet &r realiserad pa
olika sitt. Med andra ord, man gér "samma sak", fast pa annorlunda satt. Objektoriente-
rad programmering tar 6ver detta koncept genom att vélja ett och samma namn for olika
metoder. N&r metoderna dessutom finns i klasser som drver varandra kallas konceptet
for polymorfism.

Polymorfism modifierar helt eller delvis funktionaliteten hos metoder
med samma namn som forekommer i en arvhierarki.

”Poly” betyder manga och “morf” ir form eller gestalt pa latin och antik grekiska. Poly-
morfism handlar om en sak som har manga olika gestalter, t.ex. ett ord som har manga
olika betydelser. En metod beskriver alltid nagon funktionalitet. Polymorfism forandrar
denna funktionalitet genom att definiera en metod i superklassen och definiera om inne-
hallet, men behélla namnet i subklassen.

Objektorienterad programmering har kommit till for att férverkliga programmeringens
gamla énskedrémmar om modularisering, ateranvéndning av kod och strukturering av
program. Allt for att kunna underhélla stora program, fornya och vidareutveckla dem,
sd att de fungerar Gver langre tid och snabbt kan anpassas till nyuppkomna situationer.

Objektorienterad programmering bygger pa tre hérnstenar:

e Inkapsling
o Arv
e Polymorfism

De sista tva har vi forsokt att introducera har utan att behova skriva kod. For att forsta
inkapsling behdver vi mer detaljerade kunskaper om objektorientering samt skriva lite
kod, vilket vi gor i de kommande avsnitten. Sedan ska vi aterkomma till arv och poly-
morfism, for att forse aven dem med kod.

75

2.2 Klassbegreppet

Ett forsta C#-program:

using System;

class First

{
static void Main()
{
Console.WriteLine ("\n\tMitt férsta C#-program!\n") ;
}
}

Hela programmet &r en klass som inleds med det reserverade ordet class om vi bortser
fran using-direktivet. Den innehéller Main (). En funktion som definieras i en klass
kallas for metod. Det som stér har ar Main () -metodens definition. Den anropas auto-
matiskt av C#-interpretatorn, den s.k. Virtual Machine, nar vi exekverar programmet
efter att vi kompilerat koden. Kompilatorn dversatter kallkoden till maskinkod. Inter-
pretatorn tolkar maskinkoden till ettor och nollor och skickar dem till datorns processor
for exekvering. Klassens centrala roll framgar av foljande definition for C#-program.

Vad ar ett C#-program?

Ett C#-program &r en samling av klasser, av vilka en och endast en
maste innehdlla metoden Main () som &r exekveringens startpunkt.

Alla C#-program maste innehélla metoden Main () for att kunna exekveras, annars har
exekveringen ingen startpunkt. For att exekveringen ska kunna starta i Main () maste
metodens huvud skrivas sd har: static void Main() for att kunna kénnas igen av
C#-interpretatorn. Metodens kropp (innehall) daremot kan vi helt och héllet program-
mera sjélva. Klassen First &r det enklast tdnkbara C#-program darfor att det endast be-
star av en klass med metoden Main (). Denna metod — och inte heller ndgon annan —
kan definieras fristdende, utanfor en klass. En metod maste alltid inbaddas i en klass.
Det beror pa att C#-programmens primara byggstenar ar klasser, medan metoder ar
delar av en Klass. | andra programmeringssprak som C++ finns aven funktioner som kan
definieras fristdende. | C# finns inga funktioner utan endast metoder.

Vad ar en klass?

En klass ar kod som pa ett generellt och moduldrt satt beskriver en
kategori av verkliga eller virtuella saker och ting. Den bestér av data-
medlemmar samt metoder och anvands som en mall for att skapa
objekt av klassen.

76

Generell ar en klass darfor att den beskriver en kategori av saker och ting som ar fore-
mal for datorisering. Enligt klassens mall skapas sedan objekt av denna kategori. Me-
dan klassen éar ett abstrakt begrepp, en abstrakt idé, ar objekten verkliga eller virtuella
saker och ting i den reala varlden.

Modular &r en klass darfor att den kodas som en namngiven modul s att den kan an-
véandas av vilka andra program som helst. Programmen byggs med dessa moduler som
minsta bestandsdelar som sedan kan anvandas for att konstruera andra program — lik-
nande Lego-principen (sid 81).

Var forsta klass utan Main ()

Lat oss realisera klasskonceptet genom att skapa en egen klass utan Main () : | alla vara
program hittills finns all kod rakt nedskriven i Main () vilket inte &r objektorienterat,
aven om C#:s objektorienterade klasshibliotek anvands flitigt. Har ar vart forsta pro-
gram som inte innehaller Main () . Vi kallar den for Password:

// Password.cs
// Deklarerar klassen Password med metoden Ok () som returnerar
// true eller false

using System;

class Password

public bool Ok (string passwd) // Metoden Ok ():s huvud,
{

return passwd == "hemligt" || passwd == "HEMLIGT"; // kropp
}

}

Klassen password skrivs i en fil som vi doper till Password.cs. | en separat fil som
dops till PasswordUse. cs skriver vi klassen PasswordUse som endast innehaller me-
toden Main (). Den i sin tur skapar ett objekt av klassen Password.

// PasswordUse.cs

// Anvdnder klassen Password, skapar ett objekt av den och
// anropar metoden Ok () som &r definierad i klassen Password
// Utgér tillsammans med klassen Password ETT program

using System;

class PasswordUse

{

static void Main ()

{
string input;
Password p = new Password() ; // Objekt skapas

77

do // do-loop

{ Console.Write ("\n\tSkriv ditt ldésenord:\t"):;
input = Console.ReadLine() ;
if (!'p.Ok(input)) // Metoden Ok () anropas
Console.WriteLine ("\n\tFel lésenord. Fdrsdk igen!") ;
} while ('p.Ok(input)) ; // Metoden Ok () anropas

Console.WriteLine ("\n\tOK, nu &r du inloggad!'\n") ;

}

Bada klasser laddas i ett Visual Studio-projekt av typ Console Application. En korning
av programmet ger t.ex.:

Skriv ditt losenord: HEMLIGT

OK, nu ar du inloggad!

Med inmatningen HEMLIGT i versaler lyckas inloggningen. Inmatningen hemligt i ge-
mener skulle ge samma resultat. Alla andra inmatningar kommer att misslyckas.

Klassen password kan endast kompileras men inte exekveras, for exekveringen startar
i Main (). Och ndgon Main () finns ju inte i Password. Sd Main () far skrivas endast i
en av dem — i vart fall finns den i PasswordUse. Paret Password/PasswordUse Utgor
nu ett program bestaende av tva klasser:

1. Klassen Password

Namnet Password &r beskrivande for det som programmet ar tankt for. Har foljer vi
béde de vanliga namngivningsreglerna for identifierare som galler i C# (Progri+ 4.3) och
konventionen att inleda klassnamn med versaler for att skilja dem fran andra identi-
fierare som variabler osv. Valet av filnamnet Password.cs som klassen pPassword
lagras i &r inte obligatoriskt utan en konvention vi foljer.

Klassen password innehaller metoden ok (). Av metodens huvud framgar att den re-
turnerar ett varde av typ bool. | C# finns mojligheten att definiera inte bara logiska
variabler utan dven metoders returvarde med datatypen bool som &r en enkel datatyp
och representerar sanningsvardena sant (true) och falskt (£alse). Metoden ok () &r en
sadan och har den formella parametern passwd av typ string som tar emot strangen
input frdn klassen PasswordUse ndr metoden ok () anropas. Metodens return-sats
returnerar foljande logiska uttryckets sanningsvérde:

passwd == "hemligt" || passwd == "HEMLIGT"

Koden || star i C# for den logiska operatorn ELLER. Logiska uttrycket ovan har vardet
true Om strdngen passwd ar identisk med programmets hardkodade losenord hemligt

78

eller HEMLIGT. Ar daremot passwd varken lika med hemligt eller med HEMLIGT blir
uttryckets varde false. Det &r den logiska innebdrden av ELLER.

Klassen password beskriver begreppet 16senord som en abstrakt idé utan att skapa ett
verkligt I16senord. Den ar en mall for att testa verkliga lésenord, en féreskrift om hur ett
verkligt I6senord med en viss inmatning och ett testvarde skulle verifieras om det skapa-
des. Den typiska operationen for verifiering av lésenord definieras i metoden ok ().
Klassen Password har inga datamedlemmar.

2. Klassen PasswordUse

Aven denna klass bestér endast av en enda metod — namligen Main (). | den deklareras
forst variabeln input av typ string. Sedan skapas ett objekt av klassen Password:

Password p = new Password() ;

Koden som skapar sjélva objektet &r new Password () som sedan tilldelas variabeln p
av typ Password. Dvs klassen Password spelar hér rollen av en datatyp och anvénds
for att deklarera variabeln p. Pga att variabelns datatyp &r en klass och dess vérde ett ob-
jekt skiljer den sig fran vanliga variabler. p kallas for en referensvariabel — kort referen-
sen till objektet new Password (). | C++ Kallas p for pekaren som pekar pa objektet, i
hardvarumassiga termer adressen till objektets minnesutrymme. Man kan uppfatta p
&ven som objektets namn. Vi kommer i fortsattningen att anvénda termen referens.

Ett verkligt, konkret 16senord &r ett objekt. Det &r objektet som behdver minnesutrymme
for att lagras. Klassen definierar inga objekt utan stéller bara till forfogande modellen
for framtida objektdefinitioner. Om man byter ut l16senord mot pepparkakor kan man
séga att pepparkaksformen ar klassen och sjélva pepparkakorna &r objekten. Formen
behdver ingen pepparkaksdeg — motsvarigheten till minne — den framstalls bara en gang
medan kakorna kan bakas i tusentals. Aven klassen skrivs endast en gang, objekt dare-
mot kan skapas hur manga som helst. | exemplet PasswordUse skapas bara ett Pass-
word-0objekt. Hur man gor det med det reserverade ordet new och hur man sedan kan
komma &t objektet samt vad parentesen i new Password() betyder, kommer att be-
handlas i de kommande avsnitten.

Resten av koden i Passworduse-klassens Main () bestar av en do-loop och en utskrift.
Loopen bérjar med att lasa in strdngen input som anvandaren vill logga in med. Detta
inloggningsforsok skickas till metoden ok () for verifiering. Dvs metoden ok () anropas
med strdngen input i parameterlistan: ok (input). Men eftersom ok () &r definierad i
klassen Password maste anropet géras med referensen p till objektet av typ Password,
darfor: p.ok (input). Detta anrop star i villkoret till en if-sats. Och dessutom &r
anropet som pga av meoden Ok () :S returtyp bool ger ett sanningsvarde, negerat. Dvs
det foregds av den logiska negationen ! : if (!p.Ok (input)) Detta for att sjalva
meoden Ok () returnerar true om input ar identisk med programmets hardkodade 16-
senord och false om det inte &r fallet. Samma logiska uttryck anvénds i do-loopens
avslutningsvillkor: while (!p.Ok (input)) och styr logiken i bade do-loopen och if-
satsen som ingar i den. Loopen ser till att dialogen mellan program och anvéndare fort-

79

satter sé lange p.ok (input) returnerar true. Och det & samma sak som att saga: nar
'p.0k (input) blir false, dvs sd ldnge man matar in felaktigt I6senord, ndgon strang
som varken &r hemligt eller HEMLIGT.

Tva filer eller en fil ?

Slutligen kan man undra om det hade varit mojligt resp. rimligt att lagra bada klasser
Password 0Ch PasswordUse i en och samma fil. Svaret &r: Mgjligt ja, men inte rimligt
ur den objektorienterade programmeringens synpunkt. Darfor att det gar bade att
kompilera och kéra programmet nar bada klasser lagras i en fil. Men fullt objektoriente-
rat &r det inte langre, for da gar man miste om hela idén med modularisering och ateran-
vandning av kod. Meningen med att skriva separata klasser var ju att kunna ateranvanda
koden i andra program. Det kan man inte l&ngre om man stoppar allt i en fil.

Varfor klasser?

Frégan &r berattigad: Varfor ska man krangla till programmeringen med klasser? Ar det
inte enklare att skriva kod rakt ned i Main ()? S& lange man skriver sma program kan
fragan bejakas. Det som i programmeringshistorien gjorde att man behovde klasser var
den vaxande komplexiteten hos program under 70-talet. Programmens storlek var avgo-
rande for den vaxande komplexiteten. Man forstod att det inte langre rackte till att skri-
va och testa program som fungerade just d&. Man inség nodvindigheten att med rimliga
kostnader dven kunna underhdlla stora program, fornya och vidareutveckla dem sa att
de fungerade aven i flera ar och att de framfor allt kunde anpassas till nyuppkomna si-
tuationer utan odverkomliga svérigheter. Men varfor maste man anvanda sig av klasser
for att uppna detta mal? Forestall dig en verksamhet som dynamiskt vaxer med tiden,
ett expanderande foretag eller en organisation med stigande antal medlemmar. Hur or-
ganiserar man jobbet? Man genomfor arbetsdelning och delegerar uppgifterna. Var och
en far en val definierad specifik arbetsuppgift. Annars skulle man inte kunna klara av
jobbets komplexitet. Samma sak gér man med program vars kod vaxer, vilket hander
nar man utvecklar program efter behov och behoven bara blir stdrre och stdrre. Man de-
lar upp det stora programmet i mindre moduler for att kunna klara av komplexiteten. P&
vilket satt ska vi nu diskutera i termer av Modularisering och ateranvandning av kod.

Vi kan i denna larobok aldrig komma upp till att kunna presentera sddana komplexa
program som motiverade anvandningen av klasser i programmeringshistorien. Men
idén bakom klasser och principerna i objektorienterad programmering kan dven illustre-
ras med de sma program som vi brukar anvinda for att forklara programmeringens kon-
cept.

80

2.3 Modularisering

De flesta har val ndgon gang som barn, eller tillsammans
med sina barn, byggt ett hus, en bil eller liknande med
Lego-bitar. Efter ett tag har huset kanske rasat och nya
tekniska underverk har konstruerats. Men aven de har na-
gon gang plockats isar. Det enda som blivit kvar &r sjalva
Lego-hitarna som man sa smaningom samlat i en kartong
for att kunna ateranvanda dem senare.

Lego-principen

Vill man l6sa ett komplext problem, t.ex. bygga ett hus
eller en bil, bryter man ned det i ett antal mindre problem
som ar enklare att l6sa. Sedan satter man ihop de sma
enkla losningarna till den stora komplexa losningen. Princien heter modularisering och
kan anvéandas vid bade modellering och problemldsning. Ett stort komplext problem
bryts ned i mindre moduler — motsvarande Lego-bitarna — och bearbetas en i taget. |
objektorienterad programmering &r dessa moduler klasser. Program bryts ned i ett antal
klasser. Varje klass beskriver endast en kategori av saker och ting som &r oberoende av
andra och antagligen enklare att koda &n det stora programmet. Sedan galler det att sétta
ihop modulerna till det stora programmet.

Ateranvandning av kod

ar det andra svaret pa fragan varfor man i programmering sysslar med klasser. Samma
idé finns bakom Lego-biten som minsta ateranvandbara modul for att bygga i princip
vad som helst. Har man i ett program redan beskrivit en kategori av saker och ting som
aven dyker upp i andra sammanhang och vars kod kan vara relevant i andra program, s
vill man ju helst inte satsa tid och resurser for att koda den en gang till. Man vill und-
vika att ateruppfinna hjulet. Detta ar inte bara av teoretiskt-estetiskt intresse utan dven
av stort ekonomiskt intresse. Det man gor ar att separera koden for denna kategori fran
det aktuella programmet och skriva den som en klass for att kunna ateranvanda koden i
vilket annat program som helst. Det kréver att den ursprungliga koden som kanske var
skraddarsydd for just det speciella programmet, nu som klass maste formuleras pa ett
mer generellt sitt. Hela C#:s klassbibliotek bygger pa idén om ateranvandning av kod.

Utan modularisering

| forra avsnitt 2.1 Klassbegreppet presenterades ett program bestdende av tva klasser
som redan var objektorienterat. Men hur kommer man dit om man bdrjat koda icke-ob-
jektorientrat, vilket de flesta nybdrjare gor? Har ska vi visa vagen fran "vanlig" till ob-
jektorientrad programmering (OOP). Om det inte hade varit for pedagogikens skull —
namligen att med enkla sma program illustrera principerna i OOP — hade vi kanske inte
skrivit programparet Password/PasswordUse oObjektorienterat. Vi hade nojt oss med
att skriva all kod rakt ned i Main () i ett enda program, vilket i alla fall hade varit enkla-

81

re. Vi ska gora det nu och sedan modularisera upp till klassnivé steg for steg. Sa hade
det sett ut om vi hade struntat i all modularisering:

// Password All in Main.cs

// Verifierar 1l8senord inmatat i versaler eller gemener
// Ingen modularisering: All kod skriven rakt ned i Main/()
using System;

class Password All in Main

{
static void Main()
{
String input; // Lokala variabler i Main ()
bool ok;
do
{
Console.Write ("\n\tSkriv ditt lésenord:\t");
input = Console.ReadLine() ;
ok = (input == "hemligt" || input == "HEMLIGT") ;
if ('ok)
Console.WriteLine ("\n\tFel lésenord. Fdrsdk igen!") ;
} while ('ok);
Console.WriteLine ("\n\tOK, nu &r du inloggad!\n") ;
}
}

Programmet ovan &r inte ett dugg objektorienterat, men har exakt samma funktionalitet
och ger exakt samma utskrift som det objektorienterade programparet Password/-
PasswordUse (sid 77). | nésta steg ska vi modularisera programmet genom att lyfta en
del av det, skriva den som en namngiven modul — nd&rmare bestdamt en metod — utanfor
Main () och anropa den i Main (). Denna del &r framhdvd i do-loopen med vit bak-
grund i koden ovan och utgér det logiska uttryck som styr bade if£-satsen och do-loo-
pens avslutning.

Modularisering pa metodniva

// Password Method Module.cs

// Verifierar ldsenord inmatat i1 versaler eller gemener
// Modulariserad pa metodniva: Inte objektorienterad
using System;

class Password Method Module

{
static bool Ok (string passwd) // Metodens definition
{
return passwd == "hemligt" || passwd == "HEMLIGT";
}

82

static void Main ()

{
string input;
do
{
Console.Write ("\n\tSkriv ditt ldésenord:\t"):;
input = Console.ReadLine() ;
if ('Ok (input)) // Metodens anrop
Console.WriteLine ("\n\tFel l&senord. Fdrsdk igen!") ;
} while ('Ok(input)) ; // Metodens anrop
Console.WriteLine ("\n\tOK, nu &r du inloggad!'\n") ;
}

}

Klassen Password_Method Module innehller tvd metoder: ok () och Main (). Meto-
den Main () anropar metoden ok () tva ganger. Vid anropet skickas den aktuella para-
metern input:s varde som &r en strang till den formella parametern passwd. Dér jam-
fors den med programmets hardkodade l6senord hemligt resp. HEMLIGT. Sedan retur-
nerar metoden ok () ett sanningsvérde true eller false, vilket i Main () anvénds for
att skriva ut om inloggningen lyckats eller ej. Programmet &r inte objektorienterat an,
darfor att det inte skapats nagot objekt av de befintliga klasserna. Men programmet har
tagit ett forsta steg mot OOP genom att separera en bit kod och skriva den som en namn-
given modul — en metod — utanfér Main (), men fortfarande i samma klass. Nasta steg:

Modularisering pa klassniva

// Password.cs

// Deklarerar klassen Password med 2 datamedlemmar och en metod
// Klassen Password med metoden Ok (): returnerar true eller false
// Kan kompileras men inte exekveras eftersom Main () saknas

using System;

class Password

{
public bool Ok (string passwd) // Metoden Ok ()
{
return passwd == "hemligt" || passwd == "HEMLIGT";
}
}

Klassen Password ar forstds samma som pa sid 77 och skrivs i en separat fil. Som man
ser innehdller den samma metod ok () som vi vid modularisering pd metodniva hade
flyttat ut ur Main (). | en annan fil skrivs den klass som endast innehdller metoden
Main () dar objekt av klassen Password skapas och som &r identisk med Password-
Use pa sid 77:

83

// Password Class Module.cs

// Verifierar 16senord inmatat i1 versaler eller gemener

// Modulariserad pa klassniva: Objektorienterad

// Anvidnder klassen Password, skapar ett objekt av den och

// anropar metoden Ok () som dr definierad i klassen Password

// Utgér med klassen Password ETT program bestdende av 2 klasser
using System;

class Password Class_Module

{
static void Main()
{
string input;
Password p = new Password() ; // Objekt skapas
do
{
Console.Write ("\n\tSkriv ditt lésenord:\t"):;
input = Console.ReadLine() ;
if (!p.Ok(input)) // Metod anropas
Console.WriteLine ("\n\tFel 1l8senord. Fdrsék igen!") ;
} while ('p.Ok(input)) ; // Metod anropas
Console.WriteLine ("\n\tOK, nu &r du inloggad!\n") ;
}
}

Den uppmarksamme lasaren har val konstaterat att vi vid 6vergangen fran modularise-
ring pd metodniva (sid 82) till klassniva (sid 83) har andrat i metoden ok ():s huvud
modifieraren fran static till public. Har féljer en forklaring:

Anledningen varfor vi vid 6vergangen fran modularisering pa metodniva till klassniva
andrade metoden ok ():s modifierare frdn static till public &r att vi i klassen
Password Class_Module (sid 84) redan har ett objekt av denna typ. Darfor kan vi
anropa metoden ok () med hjélp av detta objekts referens: p.0Ok (input). Pga meto-
dens non-static egenskap tillhor metoden objektet och inte klassen. Dessutom méste
metoden ok () ha egenskapen public i sin definition i klassen Password for att kunna
kommas &t fran en annan klass, ndmligen Password_Class_Module.

Anledningen varfor metoden ok () i sin definition i klassen Password Method Mo-
dule (sid 82) har egenskapen static dr att vi vill slippa skapa ett objekt nér vi anropar
den. Darfor kan vi anropa metoden ok () direkt: ok (input). Egenskapen static gor
att metoden tillhor klassen och inte ett objekt av den. Vi vill ju i detta program demon-
strera modularisering pd metodniva och medvetet inte koda objektorienterat. Annars ar
det fullt mojligt att slippa static och istéllet skapa ett objekt av klassen Password-
_Method_Module direkt efter deklarationen av variabeln input. Testa garnal

84

2.4 Anvandning av klasser

Pa sid 76 stélldes upp en defnition for klassbegreppet. Har féljer en annan:

En klass ar en ny, egendefinierad och sammansatt datatyp som skapas
med det reserverade ordet class.

Kan ett begrepp ha flera definitioner? Ja, om de inte motsager varandra och belyser oli-
ka aspekter av begreppet. Vilken som &r relevant i en viss situation avgdrs av samman-
hanget begreppet anvands i. Det finns ingen begransning pé vilka, hur manga eller vilka
kategorier av saker och ting man kan involvera i sin klass, inkl. andra klasser
(Komposition). Allt beror pa den verkliga miljon man vill modellera i sitt program.

Féljande steg maste tas nar man anvander class for att skapa nya, egna datatyper:

1. Deklaration av en klass
2. Definition av ett objekt
3. Atkomst till objektets medlemmar

1. Deklaration av en klass

Med deklaration av en klass menas sjélva koden man skriver for klassen. Denna kod al-
lokerar (reserverar) inget minnesutrymme utan introducerar endast ett nytt ord, en ny
identifierare i programmet, ndmligen en ny datatyp: Deklarationen av en klass kan med
hjalp av det reserverade ordet c1ass generellt skrivas sa har:

class KlassNamn

Deklaration av datamedlemmar
Deklaration av metoder

}

KlassNamn &r ett namn som vi kan valja fritt med hansyn till de kénda regler och rekom-
mendationer som géller for all namngivning (Progrl, 2.2) samt konventionen att inleda
klassnamn med en versal. Sedan kan vi anvanda namnet som datatyp i programmet for
att — och endast for att — definiera nya typer av variabler som kallas referensvariabler.
Det &r variabler som kan lagra adresser till objekt av klassens typ. Med koden ovan
skapas den nya datatypen. Pga den speciella styrkan att kunna beskriva vad som helst
betecknas class sjalv inte l&ngre som datatyp utan som datastruktur, abstrakt datatyp
eller kort som klass d& den fungerar pa en kvalitativt hogre niva 4n vanliga datatyper.
Hér har vi ett exempel pé en klass som beskriver kategorin Anstalld:

// Emp.cs

// Deklarerar klassen Emp med 4 datamedlemmar och 2 metoder
// Bada metoder returnerar strdngar med return-satsen

// AsString () dr klassens strdngrepresentationsmetod

85

using System;

class Emp

{
public int empNo; // Datamedlemmar
public String firstName, lastname;
public float salary;
public String Email () // Metoden Email ()
{
return (firstName.Substring(0, 1) + lastname) .TolLower() ;
}
public String AsString() // Metoden AsString()
{
return "\t" + firstName + " " + lastname + "\n" +
"\tLén: " + salary + "\n" +
"\tE-mail: " + Email() + "\n" +
"\tAnstdllningsnr: " + empNo + "\n" ;
}
}

| filen Emp . cs ovan deklareras den nya klassen Emp som har fyra datamedlemmar emp-
No, firstName, lastname 0Ch salary. Observera att syntaxen for deklarationen av
datamedlemmarna &r som i vanliga deklarationssatser for variabler — med skillnaden att
de dessutom maste deklareras som public for att en annan klass ska kunna komma &t
dem. Annars hade de by default varit private. Man ser ocksé att man i en klass kan
blanda data av helt olika typer, hér: int, String och £loat. Man kan ha datamedlem-
mar inte bara av fordefinierade klasser som string, utan &ven av egendefinierade klas-
ser. | regel &r datamedlemmar i en klass endast deklarerade, men inte initierade &n, det
gors forst nér ett objekt skapas. Skalet ar att klassen enligt definition ska vara generell.
Skulle ett varde till nagon datamedlem vara hardkodad i klassen, skulle alla objekt fa
detta varde, vilket just i exemplet ovan inte vore énskvart. Det finns daremot situationer
dér man uttryckligen vill initiera vissa datamedlemmar i klassen. Mojligheten till det
finns vilket vi kommer att aterkomma senare till.

Metoden Email () konstruerar en strang bestdende av fornamnets initial och hela efter-
namnet — en ganska vanlig policy for e-mailadresser — genom att anropa metoden sub-
string() som tar ut den forsta bokstaven fran £irstName. Den konkateneras med
lastname. LAt 0ss anta att man vill ha hela e-mailstrangen i gemener. D3 kan en annan
String-metod vara till hjalp, namligen ToLower (). P4 sa satt uppstar foljande kod:

firstName.Substring(0, 1) + lastname) .ToLower ()

Den konstruerar en stréng, t.ex. strangen acarlsson om firstName refererar till Anders
och lastname till Carlsson. Denna strdng returneras av metoden Email () nér den an-
orpas — tack vare reserverade ordet return som star framfor hela koden ovan. Darfor
kallas Email () for en metod med returvarde, till skillnad fran void-metoder som inte
returnerar nagot vérde (Progri, 6.6).

86

Aven Emp-klassens andra metod AsString() har en return-sats — snarare bestar
endast av den — och ar darfor en metod med returvérde. Returvérdet dr en konkatenerad
strang bestaende av Emp-klassens datamedlemmar med lite forklarande text och layout
(radbyten). Denna metod &r till for att ge en strdngrepresentation av objektet, dvs for att
fa en strang med en anstéllds alla uppgifter, kort for att ”skriva ut” en anstélld, nar den
skapas som ett Emp-objekt. Det finns &ven mdjligheten att anvanda C#:s fordefinierade
metod ToString ().

2. Definition av ett objekt

Nér en klass definierar en ny datatyp kan objekt av denna klass anses som variabler av
denna nya datatyp. Att definiera ett objekt ar saledes samma sak som att definiera va-
riabler av den datatyp som definieras av klassen. Darfér kan man anse ett objekt som en
ny, mer sofistikerad (sammansatt) typ av variabel. Programmet EmpTest nedan demon-
strerar definition av objekt av klassen Emp, tilldelning och utskrift av de skapade ob-
jektens datamedlemmar samt anrop av deras metoder.

Att en klass ar en ny sammansatt datatyp som skapas med det reserverade ordet class
ser man i klassen Emp (sid 85) som &r sammansatt av klassen string och datatyperna
int och £loat. | programmet EmpTest (sid 87) ser man dessutom att satsen Emp a; att
klassen Emp anvénds som en datatyp for att definiera variabeln a som en referens till
ett Emp-objekt. Forutsattning ar forstas att klassen Emp &r definierad innan.

// EmpTest.cs

// Anvidnder klassen Emp fér att skapa ett objekt av klassen Emp
// Tilldelar objektets datamedlemmar vdrden och skriver ut dem
// Andrar lénen och skriver ut léneskillnaden samt nya data
using System;

class EmpTest

{

public static void Main()

{
float oldSalary, procent = 15; // Lokala variabler
String output;
Emp a; // Referens skapas
a = new Emp(); // Objekt definieras

// och tilldelas a

a.empNo = 123; // Tilldelning av
a.firstName = "Anders"; // datamedlemmar
a.lastname = "Carlsson";
oldSalary = a.salary = 21450;
output = a.AsString() ; // Lagring av gamla data

a.salary = a.salary * (1 + procent/100); // Léneférhéjning

87

// Utskrift av data:
Console.WriteLine ("\n\tAnstdllden\n" + output
"\n\tfar en lénefdérhdjning pa " + procent
"%.\n\tVara lénekostnader kommer att 6ka med "
(a.salary - oldSalary) + ".\n\n\t"
"Uppdaterad anstdlld:\n" + a.AsString());

+

+
+

+

}

Sjalva objektet som skapas av klassen Emp dr den med vit bakgrund framhévda koden
new Emp (), medan a ar en referens till objektet som i sin tur definieras med koden Emp
a. | programmet ovan kopplas de med varandra med tilldelning vilket gor att a far det
nya objektets adress och kan darfor i fortséttningen anvéndas for att referera till objek-
tet. Parenteserna i Emp () maste vara med, annars kan koden inte kompileras vilket
forklaras senare. Ett objekt kan ha flera referenser. T.ex. skulle Emp b = a; ge ytterli-
gare en referens till samma objekt eftersom den far samma adress till objektet. Program-
met ovan anvander bara en referens och producerar foljande resultat nér det exekveras:

Anstidllden

Anders Carlsson
Lon: 21450

E-mail: acarlsson
Anstadllningsnr: 123

far en loénefoérhéjning pa 15%.
Vara lonekostnader kommer att oka med 3217,5.

Uppdaterad anstalld:
Anders Carlsson
Lon: 24667,5

E-mail: acarlsson
Anstadllningsnr: 123

Efter att ha skapat en anstélld dvs ett objekt av typ Emp och tilldelat till den vissa vér-
den, anropas objektets strangrepresentationsmetod Asstring() for att lagra dem i
strdngen output:

output = a.AsString();

Denna strang skrivs ut i slutet av programmet. Vi far den anstélldas oférandrade uppgif-
ter. Vid tilldelning av den anstélldes 16n lagras vardet dessutom i variabeln oldsalary
for att kunna berékna skillnaden efter 16neférhdjningen:

a.salary = a.salary * (1 + procent/100) ;

a.salary - oldSalary ger sedan I6neskillnaden som skrivs ut. Den sista utskriften av
den anstalldas nya uppgifter med den andrade 16nen gors med anropet av AsString ()
direkt i utskriftssatsen.

88

3. Atkomst till objektets medlemmar

Efter att ha skapat ett objekt vill man kunna arbeta med objektets medlemmar. Nar man
generellt pratar om medlemmar maste man skilja mellan tva typer av medlemmar,
datamedlemmar och metoder. Dvs: Att komma &t objektets datamedlemmar och att an-
ropa objektets metoder. For bada dndamal anvands samma teknik som redan namnts i
olika sammanhang och som vi tar upp nu i detalj:

Punktnotation

Som redan tidigare ndmnts betyder notation sattet att skriva. Sattet att skriva kod for att
komma &t bade ett objekts datamedlemmar och metoder kallar vi for punktnotation. Om
vi tar vart exempel i programmet EmpTest med objektet av typ Emp som a refererar till,
har vi redan sett att koden new Emp () skapar objektet genom att allokera minne at det
och fylla det med default-initialvarden. Vill vi sedan tilldela objektets datamedlemmar
vara egna varden, kan vi skriva:

a.empNo = 123;
a.firstName = "Anders";
a.lastname = "Carlsson";
a.salary = 21450;

empNo till den anstélld som a refererar till, ska vara 123 osv. empNo &r en datamedlem i
objektet och inte en fritt tillganglig variabel. Objektet kan jamforas med en behéllare
som innehéller medlemmar bl.a. medlemmen empNo. For att komma at empNo maste vi
forst 6ppna behallaren. Sattet i koden att komma at datamedlemmen empNo ar att forst
skriva objektets referens, sedan en punkt och sist medlemmens namn. Samma sak géller
for de andra datamedlemmarna firstName, lastname OCh salary. Punktnotation
forutsatter forstds objektets och referensens existens dvs kan endast anvéandas efter att
objektet skapats med new:
Klass referens = new Klass() ;

Da ser punktnotation ut s har for atkomst till objektets datamedlem:
referens. datamedlem

Till vanster om punkten maste alltid finnas namnet pa en referens till ett objekt och till
hoger nagon datamedlem tillhérande detta objekt. Punktnotation skrivs for att referera
till just detta objekts datamedlem och kan darfér anvandas antingen for att tilldela den
ett varde (skriva till minnescellen) eller for att hamta vardet (lasa frdn minnescellen).
Satserna ovan kan dven ersattas av en enda:

new Klass () .datamedlem

D& har man skapat ett anonym objekt utan referens och kan darfor inte heller referera
till det efterat.

89

Anrop av metoder med punktnotation

Samma teknik anvands i princip pa ett objekts metoder. Nar ett objekt av typ Emp ska-
pats kan vi anropa dess metod Asstring () dven med punktnotation. Skillnaden ar bara
att efter punkten skrivs ett vanligt anrop av metoden istallet for datamedlemmen:

a.AsString()

Metoden Asstring() anropas i objektet som a refererar till enligt deklarationen i
klassen Emp. Eftersom Asstring () dr en metod inkapslad i en klass och inte fritt till-
ganglig, maste man forst (fore punkten) referera till objektet for att sedan (efter punk-
ten) kunna anropa metoden i detta objekt. Generellt har anropet av en metod i ett objekt
som redan skapats, en syntax som liknar den for atkomst av datamedlemmar:

referens . metodanrop

Till skillnad fran datamedlemmar allokerar metoder inte minnesutrymme i objektet. Nar
objektet skapas allokeras minne endast for datamedlemmar, inte for metoder. De &r bara
deklarerade i klassen och deklarationen skapar inget minne. Forst nar metoden anropas,
allokeras minne at de parametrar och variabler som &r involverade i metoden. Men detta
sker inte i objektet utan i det program som anropar metoden. En narmare titt pa metoden
AsString() i klassen Emp (sid 85) visar att den varken har parametrar eller lokala va-
riabler. Men den involverar klassens alla datamedlemmar som vid anropet tas fran ob-
jektet. Darfor sdger vi att metoden Asstring () anropas i objektet som a refererar till
och har darmed direkt tillgang till datamedlemmarna. Det ar ocksa darfor de far skrivas
i metoden AsString ():s kropp utan punktnotation. Bada befinner sig inuti objektet
och har tillgang till varandra direkt. De & medlemmar i samma klubb — “insiders” s8 att
séga — och kan darfor hilsa varandra utan att ange klubbens namn. Aven om de hade
forekommit i parameterlistan hade de angetts utan punktnotation. Punktnotation maste
och far anvindas endast utanfor objektet.

| programmet EmpTest anropas metoden AssString () tva ganger, forsta gangen i till-
delningssatsen output = a.AsString () ; andra gangen sist i programmet inbakad i
en utskriftsstas (sid 87). Anledning till dessa anropsmiljoer ar att Asstring () &r en me-
tod med returvarde. Darfor maste ett meningsfullt anrop bakas in antingen i en till-
delnings- eller utskriftssats. Anropsmiljon maste ta hand om returvardet (Progri, 6.2).

90

2.5 Klassens konstruktor

Objektorienterad programmering bygger pa tre hérnstenar:

o Inkapsling
e Arv
e Polymorfism

Nu ndr vi inte bara lart kdnna utan daven sysslat en hel del med klasser och objekt kan vi
ga vidare och borja med att stifta bekantskap med koncepten ovan. | detta avsnitt kom-
mer vi att ga igenom det forsta: Inkapsling, medan Arv och Polymorfism kommer att i
detalj behandlas senare (sid 108/113). Foljande klass demonstrerar inkapsling genom att

introducera privata datamedlemmar och klassens konstruktor:

// Circle.cs

// Deklarerar klassen Circle som inkapslar den privata data-
// medlemmen radius och kommer &t den via publika metoder
// En av dem &r klassens konstruktor med parametern r

using System;

class Circle

{
private double radius; // Privat datamedlem
public Circle(double r) // Klassens konstruktor
{ // Publik metod med r som
radius = r; // formell parameter
} // Initierar datamedlemmen
public double Area/()
{
return Math.PI * radius * radius;
}
public double Circumference ()
{
return 2 * Math.PI * radius;
}
}

Atkomstmodifieraren private

| objektorienterad programmering brukar man deklarera klassens datamedlemmar som
private och klassens metoder som public. Tanken dr att via klassens offentliga me-
toder kunna komma at och styra de privata datamedlemmarna. P4 sé satt kan gradvis in-
kapsling uppnas. | klassen circle deklareras datamedlemmen radius som private
dvs kan endast nds fran klassen. private ar en atkomstmodifierare i C# som sparrar
atkomsten till klassens medlemmar utifrdn klassen. Den géller endast for datamedlem-

91

mar och metoder, inte for klasser (férutom s.k. inre klasser), inte heller fér lokala
variabler. private sparrar strikt dtkomsten till datamedlemmar och metoder fran andra
klasser, vare sig dessa deklareras i samma fil eller ej, vare sig de arver varandra eller gj.
For att anda kunna initiera den privatdeklarerade datamedlemmen radius utifran med
ett explicit vérde, definieras en s.k. konstruktor, se nésta sida.

Det man vill astadkomma med denna teknik ar att kunna efterlikna verkligheten i sina
datorprogram sa mycket som mojligt. | verkligheten ar det sjalvklart att vissa egenska-
per hos objekt &r eller ska vara "hemliga”. T.ex. vem kénner till en persons religion eller
politiska installning ndr man ser personen? Allt man kan se, &r personens offentliga
egenskaper, utseendet, harfargen, storleken, kladseln osv. Allt annat 4r oként — sa lange
man inte staller fragor. Och aven da &r det upp till personen att svara, inte svara eller
svara delvis, tala sanning eller ljuga. Egenskaperna kan jamféras med klassens datamed-
lemmar. Att “stilla fragor” kan jamforas med att anropa klassens metoder. Offentliga
metoder anvands for att via dem kunna efterfraga de privata datamedlemmarna.

Inkapsling innebar att deklarera klassens datamedlemmar som private
for att sparra dtkomsten till dem frén andra klasser.
I objektorienterad programmering brukar man deklarera datamedlemmar-
na som private och metoderna som public.
Bdde private och public kallas for dtkomstmodifierare.

Observera att detta inte & nagon absolut regel utan en attityd att jobba med klasser i alla
objektorienterade sprak. Det finns sékert i manga specialfall skal nog att anvanda in-
kapsling dven pa andra satt. Men gor man det som beskrivet ovan, bildar datamedlem-
marna klassens karna som ar skyddad mot direkta o6nskade tillgrepp vare sig fran andra
program eller dven andra programmerare. Metoderna déaremot kan tankas som ett skal
kring karnan som &r till for att hantera klassens datamedlemmar. Man pratar om att me-
toderna bildar klassens gréanssnitt mot anvéandaren. Det &r via dessa metoder man ska
kunna kommunicera med den inkapslade karnan. | sa fall méste granssnittet vara offent-
ligt. Sjalvklart kan man tanka sig dven olika grader av inkapsling. Inte alla datamedlem-
mar maste vara privata. Lika bra kan det finnas skél att d&ven deklarera nagra metoder
som privata. Vissa applikationer kraver kanske mer, andra mindre inkapsling. Detta ar
av betydelse med tanke pd att inkapsling alltid innebér en viss overhead dvs mer pro-
grammeringsarbete. Pa vilket sétt ska vi diskutera nu:

Ett problem som generellt uppstar nar man arbetar med klasser som har privata data-
medlemmar ar: Hur ska dessa datamedlemmar initieras nar de ar oatkomliga? Svaret
ligger i det offentliga granssnittet. Man utnyttjar publika metoder for att initiera klassens
privata datamedlemmar. Initieringsproblematiken &r redan viktig for enkla variabler
och darfor annu viktigare for objekt. Dessutom ar den s& generell — den dyker upp i alla
objektorienterade program — att man i C# har konstruerat ett automatiskt verktyg som
kallas klassens konsruktor. ”Automatiskt” déarfor att den alltid finns med i varje C#-
klass, vare sig vi definierar den sjalva eller kompilatorn gor det at oss by default.

92

Konstruktorns egenskaper

Som namnet antyder &r konstruktorn en byggare, ndrmare bestamt en objektbyggare. |
klassens deklaration kan man definiera en egen konstruktor som en av klassens publika
metoder. Den anropas automatiskt ndr man skapar ett objekt av klassen. Konstruktorns
uppgift ar att initiera objektets datamedlemmar. Det speciella som skiljer konstruktorn
frén klassens alla andra metoder kan beskrivas med féljande tre egenskaper:

1. Namnet &r inte fritt véljbart. Konstruktorn och
klassen maste ha samma namn. Om man sjalv
definierar konstruktorn har man inget val &n
att ge konstruktorn samma namn som klassen.

2. Returtypen saknas. Konstruktorns definition
far inte borja som hos alla andra metoder med
en returtyp. For det forsta kan en konstruktor
inte returnera ett varde. For det andra far den
inte ens ha returtypen void framfor sitt namn
som alla andra void-metoder.

3. Anropet av konstruktorn sker i samma sats
som objektet skapas. For att initiera objektets
datamedlemmar anropas konstruktorn samti-
digt som objektet skapas. Man kan varken ska-
pa ett objekt utan att anropa konstruktorn eller
anropa konstruktorn utan att skapa ett objekt.

De tva forsta egenskaperna maste beaktas nar man definierar en konstruktor i klassen.
Den tredje egenskapen maste tillimpas nar man utanfor klassen anropar konstruktorn
och samtidigt skapar ett objekt. Med konstruktorn erbjuds en bekvam méjlighet att for-
hindra oinitierade datamedlemmar dvs allokera minne at dem utan att tilldela dem var-
den. Darmed minskas risken for icke-val definierade objekt.

Klassen circle har en egendefinierad konstruktor som &r framhévd med vit bakgrund
(sid 91). Med den vill vi testa egenskaperna 1-3 ovan. Som man ser ar de tva forsta egen-
skaperna givna: konstruktornamnet circle = klassnamnet och konstruktorn har ingen
returtyp, inte ens void, vilket gor att bade kompilatorn och vi kan kéanna igen cir-
cle () som konstruktor och kan skilja den fran klassens andra metoder Area () och
Circumference (). Varje forsok att stta en datatyp eller void framfér metodnamnet
kommer att leda till kompileringsfel. Den tredje egenskapen kan vi se ndr ett objekt av
typ Circle skapas vilket gors i programmet Encapsulation pa nasta sida.

Konstruktorn circle () har en formell parameter r av typ double. Den gor i kroppen
inget annat &n att vidarebefordra parametern x:s véarde till klassens privata datamedlem
radius. Vid anrop av konstruktorn i programmet Encapsulation:s metod Main () pa
nasta sida dverfors (kopieras) vardet av den aktuella parametern input till den formella
parametern r.

93

Observera att bade konstruktorn circle () och metoderna Area() och Circumfe-
rence () refererar till datamedlemmen radius utan punktnotation. Orsaken till att de
inte behover punktnotation ar att de refererar inifran klassen dar det inte kan rada nagon
tvivel om att vilken datamedlem som & menad. Alla involverade variabler och metoder
&r medlemmar i en och samma klass och kan referera till varandra utan punktnotation.
Refererar man daremot till ett speciellt objekts medlemmar vare sig i eller utanfor
klassen maste punktnotation anvindas.

// Encapsulation.cs

// Skapar ett objekt av typ Circle och anropar konstruktorn med
// en parameter vars vidrde ldses in for att via konstruktorn

// initiera Circle-objektets privata datamedlem

using System ;

class Encapsulation

{ static void Main()
¢ Console.Write ("\n\tMata in radien till en cirkel: ");
double input = Convert.ToDouble (Console.ReadLine()) ;
Circle c; // Referensvariabel
c = new Circle (input) ; // Ett objekt skapas och
// konstruktorn anropas
// som initierar radius
// till inputs véarde
// c.radius = input; // Ger kompileringsfel
// pga radius privat
Console.WriteLine ("\n\tCirkeln med radien " + input +
" har\n\n\tarean\t\t" + c.Area() + "\n\n\t" +
"och omkretsen\t" + c.Circumference() + '\n');
}
}

En korning ger foljande utskrift:

Mata in radien till en cirkel: 1
Cirkeln med radien 1 har

arean 3,14159265358979
och omkretsen 6,28318530717959

Programmet Encapsulation testar konstruktorns tredje egenskap (sid 93) genom att
anropa konstruktorn i samma sats som ett objekt skapas:

Circle c;
c = new Circle (input) ;

Den forsta satsen skapar en referensvariabel c till av typ Circle.

94

Den andra satsen skapar ett objekt av typ Circle och anropar konstruktorn cir-
cle () med den aktuella parametern input. Det nyskapade objektet initieras till vardet
av den inlésta variabeln input. Definition av objektet och anrop av konstruktorn kan
inte separeras utan maste ske i en och samma sats — allt enligt konstruktorns tredje egen-
skap. Sist tilldelas referensvariabeln c det nya objektet.

I sin struktur liknar satsen ovan det som vi alltid gor for enkla datatyper, namligen:
int number = 5;

Denna sats definierar number som en variabel av typ int och initierar den samtidigt.
Sa gor vi ocksa nu: Vi definierar ett objekt av typ circle och initierar den samtidigt.
Skillnaden ar bara att objektet inte har nagot namn utan en referens som ocksd maste
skapas eftersom datatypen inte langre &r en fordefinierad enkel datatyp — som i fallet av
int — utan en egendefinierad klass. Jamforelsen visar dn en gang att objektorienterad
programmering ar en naturlig och logisk fortsattning pa traditionell programmering.

Nar konstruktorn i satsen ovan anropas med Circle (input) skickar den den aktuella
parametern input till den formella parametern r i objektet dar den tilldelas till objek-
tets datamedlem radius, se konstruktorns definition i klassen circle (sid 91). Pa s&
sétt blir radius initierad fast den &r private. Konstruktorn gor det mojligt att indirekt
initiera den privata datamedlemmen. Varje forsok att initiera den direkt — ja 6verhuvud-
taget att referera till den med punktnotation — kommer att leda till kompileringsfel. Det-
ta forsok finns som kommentar i programmet Encapsulation. Testa!

Programmet Encapsulation har vissa begransningar: | utskriftssatsen har vi hamtat
endast vérdena till area och omkrets fran objektet genom att anropa de resp. metoderna
med punktnotation. Det var mojligt eftersom de var offentliga. Vardet till radius
kunde vi inte hdmta fran objektet utan fran inmatningen med hjalp av den lokala varia-
beln input, eftersom radius ar privat. Darfor kan vi inte komma at den i Main ().
Konstruktorn tillater bara initiering, den skickar endast en forsta gang ett initialvarde till
objektet. Vad som hander efterat har konstruktorn ingen mojlighet att paverka. Det be-
hovs andra offentliga metoder som tar hand om att hamta ut (exportera) privata data-
medlemmar. Aven om vi vill &ndra privata datamedlemmarnas vérden efter initieringen
behover vi speciella offentliga metoder. Med en exportmetod hade vi kunnat hdmta ut
vérdet till radius frén circle-objektet efter att ha initierat den med konstruktorn.
Fragan om hur sadana problem l6ses diskuteras i kapitlets kommande avsnitt.

Default konstruktorn

Experiment:
1. Kommentera bort hela konstruktorns definition i klassen circle (koden som

ar inramad och framhdvd med vit bakgrund, sid 91).
2. Ersitti klassen Encapsulation konstruktorns anrop:

c =new Circle (input) ;

med: c = new Circle();

95

Detta ersatter den egendefinierade konstruktorn med parametern input med en annan
konstruktor namligen circle () utan parameter. Men har vi definierat en sadan i klas-
sen circle? Sjélvklart inte! Slutsats: Den &r automatiskt definierad — by default — vil-
ket bekréftas av en testkdrning av programmet Encapsulation efter &ndringen ovan:

Mata in radien till en cirkel: 1
Cirkeln med radien 1 har
arean 0,000000
och omkretsen 0,000000

For att forsta detta resultat maste vi forsta default konstruktorn:

En default konstruktor @r en konstruktor utan parametrar som automa-
tiskt definieras nar man skapar en klass. Default konstruktorn initierar
klassens alla datamedlemmar till defaultvarden.

Darfor finns den alltid dar i bakgrunden, | véart exempel ser den ut sa har:

Circle()
{

radius = 0;
}

Default-vérdet till en £1oat &r 0. Definierar man ingen egen konstruktor i sin klass, blir
den ~osynliga” default konstruktorn automatiskt klassens konstruktor. Skriver man da-
remot sin egen konstruktor satts default konstruktorn ur funktion. | klassen circle:s
ursprungliga version har vi definierat en egen konstruktor. Om vi nu aktiverar den och
forsoker samtidigt att skapa ett objekt av den med ¢ = new Circle () ; kommer vi att fa
kompileringsfelet There is no argument given that corresponds to the required formal parame-
ter 'r' of 'Circle.Circle(double)'. Det som sker &r att vi samtidigt som vi definierat en egen
konstruktor, anropar default konstruktorn. Men kompilatorn hittar den inte eftersom vi
har satt den ur spel genom att explicit definiera var egen konstruktor. Kommenterar vi
daremot bort den egendefinierade konstruktorn i klassen circle, gar det alldeles ut-
markt att kompilera och kora. Men att resultatet blir som ovan dvs med vérdet o for are-
an och omkretsen, beror pé att default konstruktorn — som nu aktiveras automatiskt —
nollsatter cirkelns radius sa att inmatningen 1 till input inte fors vidare via = till
radius. Man kan sdga att vi i alla program hittills, fére behandlingen av konstruktorn,
har anropat default konstruktorn varje gang vi skapat ett objekt. Sjalvklart kan man, om
man vill, definiera i sina klasser dven en egen konstruktor utan parameter som i dess
kropp initierar datamedlemmarna till andra &n defaultvérden. Lika bra kan man definie-
ra en konstruktor utan parameter som initierar datamedlemmarna till defaultvarden — en
slags simulering av default konstruktorn for att testa dess egenskaper.

96

Flera konstruktorer

En klass kan ha flera konstruktorer som kan anvéndas for att skapa objekt med olika ini-
tieringar. Foljande klass innehéller tre datamedlemmar och tva konstruktorer, en av dem
utan parameter med en kropp som simulerar default konstruktorn, den andra med lika
manga parametrar som klassen har datamedlemmar. Denna kan anvéandas for att initiera
ett objekts datamedlemmar med vilka varden som helst som skickas vid anrop:

// AccountD.cs

// Klass med tvd konstruktorer, en av dem en simulerad default-
// konstruktor, den andra med tre parametrar

using System;

class AccountD

{

int accountNo;

String accountName;

double balance;

public AccountD () // Simulerar default konstruktorn

{ // S& hdr skulle den se ut
accountNo =0; // Den &4r gémd men kan &ven skrivas
accountName = "";
balance = 0.0;

}

public AccountD (int aNo, String aName, double b)

{
accountNo = aNo; // En andra konstruktor
accountName = aName;
balance = b;

}

public String AsString() // Strédngrepresentation av AccountD-

{ // objekt
return "\tKontonr " + accountNo + '\n' +

"\ tKontonamn " + accountName + '\n' +
"\tSaldo " + balance + '\n' ;
}
}

Det &r ganska vanligt med flera konstruktorer. Anledningen &r att man vill ha mojlighe-
ten att initiera sina objekt pa olika sétt i olika sammanhang. Man vill inte begransa sig
pa endast ett satt att konstruera objekt. Men pga konstruktoregenskapen konstruktor-
namn = klassnamn” maéste alla konstruktorer i en klass ha samma namn. Eftersom kon-
struktorer &r speciella metoder, blir det flera metoder med samma namn. Det program-
meringstekniska koncept som gor detta mojligt, ar éverlagring av metoder som vi kom-
mer att behandla i detalj senare (sid 173). Kort sagt, innebér dverlagring av metoder att
ha samma namn pa olika metoder i en och samma klass, men skilja dem genom olika
parameterlistor. Darfor kan vi ha flera konstruktorer i en klass, bara vi forser dem med
olika parameterlistor. | klassen AccountD har den forsta konstruktorn ingen parameter,
den andra har tre parametrar. De skulle kunna ha dven lika manga parametrar, men da

97

maste datatypen till minst en av parametrarna vara olika. Flera konstruktorer &r en av de
viktigaste tillampningarna av éverlagring. Klassen AccountD testas i féljande program:

// CreateAccountD.cs

// Anropar en simulerad default konstruktor 1 samma sats som

// ett objekt skapas och skriver ut defaultvdrdena

// Skapar nytt objekt med annan konstruktor och skriver ut de
// nya vdrdena. Ompekning av referensvariabeln till nya objektet
// Garbage collector ddédar automatiskt det orefererade objektet
using System;

class CreateAccountD

{
static void Main ()
{
AccountD myAccount = new AccountD(); // Anrop av simulerad
// default konstruktor
Console.WriteLine ("\n\tDefaultvarden:\n" +
myAccount.AsString()) ;
myAccount = // Ompekning till
// nytt objekt
new AccountD (123456, "Kalle", 100); // Anrop av den andra
// konstruktorn
Console.WriteLine ("\tNya vadrden:\n" + myAccount.AsString()) ;
}
}

Programmet ovan vars kdrexempel kan beskédas pa nasta sida, demonstrerar anvand-
ningen av flera konstruktorer i en klass. Tvé objekt av klassen AccountD skapas dar:
Det forsta initieras till defaultvdrden genom anrop av den simulerade default
konstruktorn utan parameter (framhé&vd med vit bakgrund). Det andra objektet initieras
till nya varden som skickas vid anropet av den andra konstruktorn som har tre para-
metrar (dven det framhdvd med vit bakgrund). Utskriften bekréftar detta. Vi vet att data-
medlemmen accountName:s datatyp dr String. C# tolkar dock accountName inte
som en strang utan som en referens till ett string-objekt, darfor att string ar en
klass. Referensernas defaultvarde &r nul1, se sid 102.

Defaultvarden:
Kontonr 0
Kontonamn

Saldo 0

Nya varden:
Kontonr 123456
Kontonamn Kalle
Saldo 100

En annan intressant observation som dock tyvérr utskriften inte visar, &r att objekten i
programmet CreateAccountD lagras vid tva olika adresser fast vi refererar till dem i

98

béda fall med en och samma referensvariabel myAccount. Att de tva objekten lagras
vid tva olika adresser, ar inte konstigt darfor att var och ett skapas med en new-sats och
varje new genererar en annan adress. Men vi har anvant for bada objekt samma refe-
rensvariabel myAccount. Dvs det har skett en ompekning: Forst lagrar myAccount det
forsta objektets adress, men sedan dverskrivs den av det andra objektets adress. En kon-
sekvens av denna ompekning &r att det forsta objektet tappat sin referens, dvs den kan
inte langre nas. Det som sker i sadana fall ar att C#:s s.k. garbage collector automatiskt
rensar den fran minnet. Sa det behdvs ingen speciell atgard fran programmet (som
destructor i C++) att ta bort oanvénda eller orefererade objekt.

99

2.6 Referensvariabler

En referensvariabel — kort referens — &r en ny typ av variabel:

[Referens ar en variabel vars datatyp ar en klass.]

Ett exempel &r variabeln a i programmet EmpTest (sid 87) dér a deklareras till Emp som
&renklass: Emp a; Med satsen Emp a; skapas inget objekt utan endast en referens till
ett objekt. Sjéalvaste objektet skapas med koden new Emp ().

Den allmanna formen hur referensvariabler kopplas till objekt, kan beskrivas sa har:

[Klass referensvariabel = new Klass();]

Exempel med klassen Emp: Emp a new Emp () ;

Sjélva objektet skapas med new hoger om tilldelningstecknet. Till vanster deklareras re-
ferensvariabeln a, som tilldelas objekteta adress. Har ser man ocksa att operatorn new
inte foljs av parenteser. Klasserna pa tilldelningens bada sidor maste vara identiska: new
Emp () allokerar minne for lagring av ett Emp-objekt och returnerar minnets adress till
referensen a av samma datatyp (klass) Emp. Tilldelning till en referens av en annan typ
(klass) skulle ge kompileringsfel.

Referensvariabler r ett verktyg for att kunna komma &t objekt. Objekten sjélva kan en-
dast skapas med new som ar en minnesallokeringsoperator. Allokering betyder reserve-
ring av minnesutrymme. Objektens namn &r inga vanliga variabler av enkel datatyp,
utan referensvariabler. Man kan jamfora detta med tyglar till en hést, dar tyglar ar refe-
rensen och histen objektet. Eller fjarrkontrollen (referens) till en TV (objekt). Béda &r
latthanterade verktyg for styrning av tunga objekt. Andra jamforelser lankar till webbsi-
dor eller namnskyltar: Den lilla skylten Gamla Stan (referens) pekar pa den stora 6n
Gamla Stan (objekt). En referens lagrar ndmligen minnesadressen till ett objekt och tar
jamfort med det tunga objektet s& litet minne som en vanlig int: 4 bytes, vilket minnes-
ekonomiskt innebar en stor effektivitet vid exekvering av minneskrédvande program.

Nér det géller vanliga variabler av enkel datatyp hanvisar vi till minnescellerna med va-
riabelnamn. Né&r det géller objekt gor vi det med deras adresser i form av objektens
referenser. N&r man vant sig vid att anvdnda referenser kan man t.o.m. tycka att
hanteringen av data via adresser ar det naturliga sattet, vilket inte 4r ndgon dum idé med
tanke pé att variabelnamn &nda &r en slags mjukvarulank till hardvarans minnesadress.

Man kan, om man inte har behov av att komma at objektet senare, dven skapa s.k. ano-
nyma objekt direkt, ndr man behdver dem, t.ex.: new Emp () .AsString () dar metoden
AsString() anropas i objektet new Emp (). Testa gérna sjélv att i programmet Emp-
Test (sid 87) byta ut a.AsString () MOt new Emp () .AsString().

100

De tomma parenteserna efter klassnamnet i exemplet Emp () och dven i den allmanna
formuleringen Klass() far absolut inte utelamnas dven om de &r tomma. De anropar klas-
sens konstruktor (sid 91), ndrmare bestdmt default konstruktorn (sid 95).

Referensen ”pekar” pa objektet

Vad hénder exakt nér satsen Emp a = new Emp () ; exekveras i programmet EmpTest?
For det forsta definieras referensen a, for det andra skapar new ett Emp-objekt dvs allo-
kerar minnesutrymme for objektet. For det tredje tilldelas minnesadressen till referensen
a. Adressen tilldelas referensen a vilket gor att a nu pekar pa den av new allokerade
minnescellen, sa att minnesbilden i datorns RAM efter satsen ovan ser ut sa har:

new Emp () allokerar: minnesceller: viden adress, t.ex.:
empNo 0 422ede
firstName null
lastname null
salary 0
* pekar pa

Emp a allokerar: |
a | 422ede |

Tilldelningsoperatorn mellan Emp a och new Emp () gOr att objektets adress hamnar i
referensvariabeln a:s minnescell vilket resulterar i att a pekar p& objektet och vi darfor
kan och méste referera till objektet genom att anvanda refrensen a. Alla objekt i C# kan
endast hanteras med referenser. Det &r avgorande att inte forvéxla objekt med referens:
Det &r tva helt olika typer av saker och ting med tva olika minnesplatser och olika egen-
skaper som relateras till varandra pa det beskrivna sittet. Men varfér hamnar 0 och
null i objektets minnesceller? Och vad &r dverhuvudtaget nu11? Att de hamnar dar
beror pa anropet av default konstruktorn Emp () som automatiskt initierar datamedlem-
marna empNo, firstName, lastname 0Ch salary till s.k. defaultvarden.

Automatisk initiering av datamedlemmar

Samtidigt som new allokerar minne fér objektet anropar koddelen Emp () en metod som
initierar objektets datamedlemmar med vissa defaultvarden som beror pé deras dataty-
per. Denna metod som heter klassens konstruktor har samma namn som klassen samt
den viktiga uppgiften att initiera objektets datamedlemmar. En s.k. default konstruktor
skapas alltid automatiskt med nar man deklarerar en klass utan att sjalv skriva en kon-
struktor. Vi kommer att behandla konstruktorer senare i detalj. Default konstruktorn ini-
tierar datamedlemmarna, nér ett objekt skapas, automatiskt till féljande defaultvarden:

0 om de ar tal,

null om de ar referenser,
nolltecknet om de ar tecken,
false om de &r av typ bool.

101

Exempel pa 0 och null har vi i programmet EmpTest: datamedlemmen a. firstName
initieras till null eftersom den &r av typ referens, a.empNo initieras till 0 eftersom den
ar av typ int och a.salary som &r en float far 0 som initieralvarde. Utskriften i
konsolfonstret ovan visar dessa varden. Observera att vi far dessa defaultvarden ut-
skrivna eftersom vi i programmet EmpTest placerade Console.WriteLine ()-satsen
direkt efter objektets definition av och fére den nya tilldelningen av datamedlemmarna.
Kéllan till datatypinformationen ar forstas klassen Emp dar dessa datamedlemmar ar
deklarerade till sina resp. datatyper (sid 85). Alla objekt &r ju kopior av klassen. Vi hittar
dar bl.a. deklarationen String firstName; men havdar dnda att datamedlemmen
a.firstName inte &r en strdng utan en referens till strangar. Anledningen ar att
String dr en klass och inte en enkel datatyp som int och £loat. Men har vi inte lart
oss tidigare att string ar en datatyp och skrivs sa har: string? Jo, det har vi och det
galler fortfarande: string &r en sammansatt datatyp och samtidigt en Kklass, narmare
bestdmt ett alias till klassen string, precis som de enkla datatyperna &r alias till sina
resp. klasser. Att den tomma platsen efter Referens: i kdrexemplet av programmet
EmpTest (forforra sidan) ar det osynliga tecknet null och inte den tomma strangen, kan
testas om man lagger in foljande rader i programmet mellan utskriften av defaultvérde-
na och tilldelningen av nya vérden till objektet a:s datamedlemmar:

if (a.firstName == null) Console.WriteLine("null") ;
if (a.firstName == "") Console.WriteLine("tom strdng");

Referensen null

null i C# betyder inget objekt, dvs en referens som inte pekar pa nagot objekt. Sjalva
ordet null hittar man bland sprékets reserverade ord (Progrl+, 2.3). null &r ett vérde
som kan tilldelas referensvariabler, namligen nar referensen inte lagrar nagon adress till
ett objekt. Just darfor kallas null for referensernas defaultvarde. Aven om null repre-
senteras i datorn med o, far det inte forvaxlas varken med talet 0 eller med tecknet 'o".
null:s datatyp &r varken int eller char, utan null dr av referenstyp, dvs ett vérde
som endast kan tilldelas referenser. Och vi vet ju att referensvariablernas datatyper alltid
&r klasser. En variabel av referenstyp kan endast lagra minnesadresser.

En referens med vardet null pekar pd inget objekt.
I C# ar null referensvariablernas defaultvarde.

null-referenser kan jamforas med parkerade bilar, om bilar i fart jamférs med referen-
ser som pekar pa objekt. Man kan “sétta igang” null-referenser nar som helst genom
att tilldela objektadresser till dem. Omvéant kan man “’parkera” dem igen genom att till-
dela nul1 till dem. Observera att null-referenser inte alls & samma sak som oinitiera-
de referenser. Till skillnad fran nul1-referenser leder oinitierade referenser precis som
alla andra oinitierade variabler till kompileringsfel nar de anvénds. Till skillnad fran
oinitierade referenser har null-referenser ett véarde, bara att deras vérde null inte &r en
adress till ett befintligt objekt utan bara en symbol som betyder “referens i véntan pa att
fa en objektadress” precis som en parkerad bil i véntan pa att sdttas i fart. Man anvinder
null-referenser i C#-program for att initiera referensvariabler direkt efter deklarationen

102

nar det vid deklarationens tidpunkt inte kan avgoras vilket objekt de ska bindas till. P&
sa satt vill man forhindra oinitierade referenser som alltid bar risken med sig att de an-
véands av misstag innan de binds till ett objekt. Det ar rekommenderad att alltid initiera
sina lokala referensvariabler till null om de inte kan tilldelas ett objekt nar de skapas.
Forvéxla inte nul1l med nolltecknet:

Nolltecknet

I listan over defaultvarden till de olika datatyperna pa forra sidan dyker upp nolltecknet
som defaultvardet for teckenvariabler dvs till datatypen char. Man stoter pa det nar
man forsoker skriva ut datatypen char:s undre gréns och anvander sig av explicit typ-
konvertering for att omvandla den till ASCIl-koden 0. Sedan kan man framstélla det
oskrivhara och osynliga nolltecknet med hjalp av escapesekvensen '\o0'. Da kanns det
naturligt att det allra forsta tecknet i ASClI-tabellen med koden 0 anvands som default-
varde for teckenvariabler. Fysiskt bestar det alltsd av av 2 bytes dvs 16 bitar fyllda med
endast nollor. P& den fysiska bitnivan representeras dven nul1l av nollor. Daremot skil-
jer de sig pa den logiska programnivan via sina datatyper: Medan nolltecknet &r av typ
char &r null av typ referens.

Nolltecknet ar i C# char-variablernas defaultvarde
med ASCII-koden 0.

103

2.7 Komposition

Komposition betyder sammanséttning och &r relaterad till modularisering, Lego-princi-
pen och den diskussion vi hade om att bygga program med hjélp av redan skrivna och
testade moduler dvs klasser som kan inga som komponenter i andra klasser. Den 6ver-
gripande strukturen av ett C#-program ar fortfarande en samling av klasser som i sin tur
innehaller datamedlemmar och metoder. Objektorienterade program har for det mesta
bara Main () -metoden kvar och resten ar klasser i vilka man definierar och anropar sina
metoder. Komposition & sammansattning av ett objekt med ett annat objekt. Tank pa en
bil som har en motor. Man satter ihop bilen som ett objekt av klassen Bil genom att byg-
gainiden bl.a. en motor som i sin tur &r ett objekt av en annan klass, klassen Motor.

En bil har en motor. En anstéalld har arbetstider. En sadan relation mellan tva begrepp
kallas i objektorienterad design for en har”-relation och &r den grundldggande forut-
séttningen for komposition av klasser. Om tva begrepp star i en ’har”-relation till va-
randra kan man bygga det ena (stora) med hjalp av det andra (lilla). Ett hus har en dorr
och andra komponenter. En cykel har hjul. En bil har en motor, en motor har i sin tur
cylindrar osv. | praktiken bygger man ocksa alla dessa enkla komponenter separat forst
och sammansatter dem sedan till det mer komplexa objektet.

En annan viktig relation mellan objekt i den reala varlden kallas i objektorienterad de-
sign for ”ar”-relation och maste begreppsmissigt noggrant skiljas fran ”har”-relationen.
Bada ar relevanta klassificeringsverktyg vid modellering och design av en verklig miljo.
»Ar-relationen ar den grundlaggande forutsittningen for arv hos klasser som efter in-
kapsling ar den andra hornstenen i objektorienterad programmering. Klasser kan &rva
varandra om de star i en ”ar”-relation till varandra. En lastbil &r en bil, darfér kan klas-
sen lastbil drva klassen bil dvs ta dver bilens delar och metoder, modifiera och anpassa
dem till lastbilen. Komposition &r vid modellering ibland ett alternativ och ibland en
konkurrent till arv. Vi behandlar forst komposition. | nésta avsnitt tas upp arv.

Komposition av klasser

For att battre kunna forsta skillnaden mellan komposition och arv vill vi i bada avsnitt
behandla samma exempel, namligen en anstalld som férutom for- och efternamn, ocksa
har ett fodelse- och ett anstéliningsdatum. Medan for- och efternamn ar strangar och kan
deklareras som sadana, har fodelse- och anstéllningsdatum inte nagra fordefinierade ty-
per. De &r bada av typ datum, s& vi maste forst deklarera en sddan klass. Observera att
datum och tid inte & samma sak, sa vi kan inte anvanda klassen Time fran tidigare. Me-
dan tid ar en varaktighet bestdende av ett antal tidsenheter, ett intervall med en borjan
och ett slut, & datum en viss tidpunkt. En tid bestdr av manga tidpunkter. | praktiskt
sammanhang &r det i regel tillrackligt att modellera datum som en klass med datamed-
lemmarna dag, ménad och ar. | koden anvander vi engelska beteckningar:

104

// Date.cs
// Deklarerar klassen Date med tva konstruktorer (Sverlagring),
// en allmdn konstruktor och en simulerad default konstruktor

// Metoden AsString() formaterar datum till en strdng
using System;

class Date
int day, month, year;

public Date(int d, int m, int y)

{
day = d; // Allmdn konstruktor
month = m;
year = y;
}
public String AsString() // Strdngrepresentation
{
return year + "-" + month + // Svenskt datumformat
now o4 day;
}

}

Datamedlemmarna i klassen Date dr privata. Darfor finns det en konstruktor som vi
kommer att anropa t.ex. i klassen Composition med new Date (12, 10, 1969) for att
skapa ett Date-objekt och initiera det till 1969-10-12, fodelsedatumet till en antélld.

Set-metoder behdver vi inte i Date darfor att vi i vart exempel inte kommer att ha nagot
behov for andringar av varken fodelse- eller anstéllningsdatum. For andra andamal dar
det behdvs kan man latt komplettera klassen med Set-metoder. VVad géller Get-metoder
ersatter metoden Asstring () alla sddana nar den konkataenerar alla tre datamedlem-
mar och representerar datum som en stréng, dessutom i svenskt datumformat.

Nu, nér vi har klassen pate till forfogande, kan vi anvanda den i féljande klass for att
deklarera en anstallds fodelse- och anstéllningsdatum med den nya datatypen Date:

// Employ.cs

// Komposition av klasser: Klassen Employ sédtts ihop (komponeras)
// bl.a. med hjdlp av klassen Date

// Mellan klasserna Employ och Date finns en "har'"-relation:

// Employ "har" tvd Dates som datamedlemmar

using System;

class Employ
String firstName, lastname;

Date birthDate; // Komposition
Date hireDate;

105

public Employ(String £, String 1, Date b, Date h)
{

firstName = f£; // Konstruktorn
lastname = 1;
birthDate = b;
hireDate = h;

}

public String AsString() // Objektens

{ // strdngrepre-
return "\n\tDen anstidllde " + // sentation

firstName + " " + lastname;
}

}

| klassen Employ har en anstalld ett for- och efternamn som béada &r av typ String.
Faktiskt ar &ven string en klass, dven om en fordefinierad sadan, sé att vi redan har
har att géra med komposition. Sedan kommer den sjalvgjorda kompositionen med klas-
sen Date. En anstalld har ocksa ett fodelse-och ett anstillningsdatum, bada av typ pa-
te. | koden utgoérs denna “’har”-relation av deklarationen av datamedlemmarna birth-
Date 0Och hireDate som Date-0Objekt (framhdvd med vit bakgrund). Metoden As-
String () returnerar en strdng som konkateneras med operatorn + .

Komposition av objekt

Nu har vi tva klasser till forfogande — Employ och Date — dér den ena &r en komponent
i den andra. Darmed kommer varje objekt av typ Employ att vara ett sammansatt objekt,
sammansatt av tva objekt av typ string och tva objekt av typ Date. Som en konse-
kvens har dven konstruktorn tva string-objekt och tva Date-objekt som parametrar:

public Employ(String £, String 1, Date b, Date h)

Parametrarna skapas inte har som objekt utan deklareras endast har. Som komponenter
(delobjekt) skapas de forst nar ett helt Employ-objekt skapas i foljande testprogram:

// Composition.cs

// Komposition av objekt: Ett Employ-objekt byggs upp med hjdlp
// av 2 Date-objekt: F6r att kunna skapa Employ-objektet maste
// férst komponenterna av typ Date skapas och initieras med resp.
// konstruktor. Date-objektens referenser kan sedan skickas till
// konstruktorn Employ () fér att initiera Employ-objektet

using System;

class Composition

{

static void Main ()

{

106

Date birthday
Date hirleday

new Date (12, 10, 1969);
new Date (15, 11, 2001);

Employ emp = v v
new Employ ("Kalle", "Karlsson", birthday, hireday);

Console.WritelLine (emp.AsString() + " &ar fodd " +
birthday.AsString() + "\n\n\toch har jobbat sedan " +
hireday.AsString() + '\n');

}

Objekten birthDate och hireDate ingar som komponenter i objektet Employ. Dar-
for maste de skapas forst. Det gor vi genom att initiera dem med vissa datum och anropa
Date-klassens allménna konstruktor med 3 parametrar. Sedan skickas de som paramet-
rar till Employ-konstruktorn nar objektet emp skapas. Observera att Date-klassens
default konstruktor inte anropas har. Den behdvs bara i fall man i ndgon annan
applikation vill skapa ett pate-objekt med default-initiering och tilldela det nya varden
senare, t.ex. genom att lI&sa in vissa datum.

Slutligen far vi foljande utskrift nar vi kor Composition:

Den anstdllde Kalle Karlsson ar fodd 1969-10-12

och har jobbat sedan 2001-11-15

Namnet skrivs ut med anrop av emp.AsString() som returnerar den konkatenerade
strangen med for- och efternamn med mellanslag déremellan. Darfér kan den integreras
i utskiftssatsen. Datumen déremot skrivs ut med pate-klassens strangrepresentations-
metod som har samma namn. Det &r alltsd tvd olika metoder med sammma namn
AsString (), definierade i tva olika klasser.

I ndsta avsnitt kommer vi att vidareutveckla exemplet med anstéllda genom att flytta en
del av koden fran klassen Employ till en éverordnad klass och etablera en arvrelation
mellan dem. Komposition med klassen pate bibehalls sa att resultatet blir en kombina-
tion av arv och komposition.

107

2.8 Arv

Arv ér efter inkapsling den andra hdrnstenen i objektorienterad programmering. Medan
inkapsling har att géra med dataskydd och dataintegritet, &r arv ett koncept som forverk-
ligar modularisering, ateranvandning av kod och strukturering av program — mal som
ar svart att uppna och som i praktiken ofta uppnas endast delvis. Man skapar en ny klass
som en underkategori av en annan, redan befintlig klass. Man ateranvander den befint-
liga klassens kod i den nya klassen. Den nya klassen arver den befintliga klassen.

/ Arv &r en relation mellan tva \

~

Person

klasser. Ex.: Klassen Employee - firstName: String

arver klassen P eftersom en _ lastname: String
SL =0 - birthDate: Date
anstalld ar en person.
+ Person(): <constructor>
. \\;+ AsString() : String 4//

Subklassen Employee tar over all
kod fran superkiassen Pexson och
lagger till ny kod som specificerar

en anctilld.

Employee

| klassdiagrammet, till hoger, ritas arvrelationen
med en pil fran subklassen Employee riktad
uppat mot superklassen Person.

- hireDate: Date

+ Employee () : <constructor>

7Ar”-relationen

Man kan etablera en arvrelation mellan tva begrepp, om de star i en en ar”-relation till
varandra: En anstélld &r en person. Dérfor kan en ny klass Employee &rva klassen
Person. DA tar den dver all kod som redan finns dar och lagger till ny kod som é&r
speciell for en anstalld. Pa sa satt slipper man skriva om kod som redan finns. T.ex. har
en person ett for- och efternamn samt ett fodelsedatum. Vid modellering av en anstélld
arvs dessa datamedlemmar, och man lagger till den nya datamedlemmen hireDate
som ar speciell for en anstalld. Subklassen Employee drver superklassen Persons alla
datamedlemmar och metoder.

Dock behdver en inte alla arvrelationer motiveras av en “ar”-relation. T.ex. kan en cy-
linder drva en cirkel genom att utvidga den med en héjd, utan att behdva vara en cirkel.

Det som har hdnt med Employee-exemplet jamfort med forra avsnitt ar att en del av
koden har flyttats fran klassen Employee till klassen Person. Det som &r specifik for
en anstalld, datamedlemmen hireDate, dr kvar i Employee. Allt som &r relevant for
alla personer har flyttats till klassen Person. Arvrelationen garanterar att dessa data-

108

medlemmar och metoder kan nas aven fran ett Employee-objekt — sjalvklart upp till at-
komstreglerna. Arv upphaver inte dtkomstmodifierarnas giltighet: En privat medlem ar
absolut oatkomlig utifran klassen, aven fran en subklass.

Observera att klassen pate dr helt oberdrd av denna omplacering av kod (arvkonstruk-
tionen). Fortfarande har” en anstélld ett anstillningsdatum. En person "har” ett fodelse-
datum. Detta &r oberoende av att en anstilld ”ar” en person. Bada relationer forekom-
mer parallellt. D&rfér har vi nu att géra med en kombination av komposition och arv.
Komposition ar nagot helt naturligt och staller inga speciella krav pa syntaxen, medan
arv introducerar ny kod i C#. Fragan ar: Hur ser syntaxen ut for pilen i klassdiagrammet
ovan? Och hur pdverkar arvrelationen konstruktorns kod speciellt i subklassen? For att
fa svar implementerar vi modellen ovan genom att bérja med klassen Person. Observe-
ra att denna klass forutsatter att klassen bate fran forra avsnitt (sid 105) redan ar dekla-
rerad innan och infogat i samma projekt i Visual Studio.

// Person.cs

// Deklarerar klassen Person som en bas- eller superklass till
// alla subklasser av Person, bl.a. Employee

using System;

class Person

{
String firstName, lastname;
Date birthDate;
public Person(String £, String 1, Date b) // Konstruktorn
firstName = £;
lastname = 1;
birthDate = b;
}
public String AsString() // Person som
{ // strdng
return "\n\t" + firstName + " " + lastname;
}
}

Klassen pPerson kan anvandas som en Overordnad kategori, kallad superklass, till
klassen Employee dd varje anstalld ”ar” en Person. Darfor kan klassen Employee drva
klassen Person och bli subklass till den. Person kan &ven anvandas som superklass till
andra subklasser, t.ex. Elev, Dessutom anvands komposition for att definiera klas-
sen Person med bl.a. en datamedlem birthDate av typ Date: Varje Person “har” ett
fodelsedatum.

Som man ser &r klassen Person exakt samma som klassen Employ minus datamedlem-
men hireDate (sid 105). Bara att den dven fungerar nu som en superklass i den ovan
beskrivna UML-modellen. Men av denna roll finns det inget spar i koden. Arvrelationen
skrivs alltid in i subklassen, inte i superklassen. Klassen Person maste vara sa generell

109

att den dven kan anvandas i andra program som behdver en sadan klass. Det &r ju just
meningen med ateranvandning av kod. Sjalvklart kan man tanka sig en annu mer gene-
rell version av klassen Person med fler medlemmar som t.ex. personnr, postadress,
mailadress, telnr osv. Vi ndjer oss dock for enkelhetens skull med versionen ovan.

Arvrelationen

Som ett resultat av ateranvandning av kod blir nu subklassen Employee mycket kort for
det mesta ar redan kodad i superklassen Person:

// Employee.cs

// Deklarerar Employee som en subklass till superklassen Person
// Alla datamedlemmar och metoder &rvs automatiskt fran Person

// utom konstruktorn. En ny datamedlem hireDate tillkommer.

// Konstruktorn mdste explicit drva och anropa superklassens kon-
// struktor samt ldgga till initieringen av den nya datamedlemmen
using System;

class Employee : Person // Employee &drver Person

{

Date hireDate; // Ny datamedlem

public Employee (String £, String 1, Date b, Date h)
base(f, 1, b) // Arv & anrop
// Konstruktorn &rver och an-
// ropar superklassens kon-
// struktor explicit
// base = referens till super-
// eller basklassen Person

hireDate = h; // Initiering av ny datamedlem

}

Employee drver Person: first- 0Ch lastname samt birthDate tas dver frdn Per-
son. En anstilld ar” en Person som dessutom har ett anstallningsdatum. Déarfor lagger
vi till den nya datamedlemmen hireDate till de &rvda datamedlemmarna. Konstruk-
torn maste nu initiera inte bara denna nya datamedlem utan dven de som &r arvda. Men
eftersom Employee drver Person:s metoder, utom konstruktorn, méste vi explicit arva
och anropa Person-klassens konstruktor for initiering av de &rvda datamedlemmarna
med tilldgget : base (firstName, lastname, birthDate) i konstruktorns huvud
dar base ar en referens till super- eller basklassen. Alltsé ar base en referens till per-
son. For att koppla ihop klasserna Employee och Person och etablera en arvrelation
mellan dem méste alltsé tva saker goras:

1. | klasshuvudet maste tillaggas information om att en arvrelation ska etableras uti-
fran den har klassen (subklassen). Namnet pa den klass som relationen ska kopplas
till (superklassen) maste anges. S& har ser den allmanna syntaxen ut:

class subklass : superklass

110

Detta innebdr att subklass arver superklass. : ar i C# symbolen for “arv”. Att

subklass drver superklass innebér att subklassen fortsétter att koda superklas-
sen, fast i subklassen.

I konstruktorns huvud maste s& manga parametrar tas upp i parameterlistan som
det finns privata datamedlemmar bade i super- och subklassen. Det ricker inte bara
med subklassens privata datamedlem. Man maste namligen fran ett Employee-ob-
jekt kunna initiera inte bara hireDate, Utan dven firstName, lastname OCh
birthDate. Man maste kunna initiera ett fullstiandigt Employee-objekt med kon-
struktorn. Darfér maste denna ha fyra parametrar:

public Employee (String £, String 1, Date b, Date h)

De tre forsta parametrarna vidarebefordras till superklassens konstruktor med tillag-
get : base (£, 1, b) till koden ovan vilket innebar bade explicit arv och anrop
av Person-konstruktorn. Slutligen initieras den fjarde parametern, datamedlemmen
hireDate, i Employee-konstruktorns kropp.

S& hir kan subklassen Employee testas. Observera att det inte finns ett spar kvar av
superklassen Person fast hela dess kod anvands i programmet:

Inheritance.cs

Testar klassen Employee

F6ér att kunna skapa ett Employee-objekt skapas férst tva
Date-objekt, ett fédelse- och ett anstdllningsdatum vars
referenser skickas till konstruktorn Employee () med 4 para-
metrar, varav 3 vidarebefordras till superklassen Person

using System;

class Inheritance

{

}

static void Main ()

{
Date birth = new Date(l6, 6, 1978);
Date hire = new Date(12, 3, 2001);
Employee emp = new Employee ("Anders", "Larsson",
birth, hire);
Console.WriteLine (
emp.AsString() + " dr f6dd " + birth.AsString() +
"\n\n\toch har jobbat sedan " + hire.AsString() +
'\n'") ;
}

Programmet ovan testar klassen Employee och &r, ndr det géller koden, néstan identiskt
med Composition (sid 106). Enda skillnaden dr att klassen Employ (sid 105) har byts ut
mot Employee som &r helt annorlunda nu i och med att den tillampar arv. T.ex. har den
ingen metod Asstring (). Andé kan vi i utskriftssatsen anropa denna metod i objektet
emp SOM &r av typ Employee:

emp.AsString()
111

Kompilatorn tittar i klassen Employee och hittar dar ingen metod AssString. Men
eftersom Employee tilldmpar arv och &r subklass till Person, gar kompilatorn “upp”
till superklassen och hittar dér Asstring som en metod i klassen Person. For forsta
gangen anropar vi en metod i ett objekt som inte ar definierad i objektets klass utan i su-
perklassen till objektets klass.

Att kompilatorn gar “upp” i klasshierarkin kan man ta som en analogi till att pilen i
klassdiagrammet &r riktad uppat fran subklassen till superklassen.

Programmet Inheritance producerar foljande utskrift:

Anders Larsson ar fodd 1978-6-16

och har jobbat sedan 2001-3-12

112

2.9 Polymorfism

| foljande exempel &rver klassen MinimalAccount Klassen Account:

[Account \

— accountNo: int
- accountName: String
- balance: double

+ Account():
<constructor> «

\\\f Withdraw(): double A///

A

Polymorfism
MinimalAccount
- myBalance: double
+ MinimalAccount(): <constructor>
\\+ Withdraw() : double <«

Man har tva olika typer av konto i en bank, ett vanligt konto och ett konto med begran-
sad uttagsritt. Operationen “att ta ut pengar” definieras pé olika sétt i dessa tva kontoty-
per, men operationens namn ska alltid vara withdraw (). Metoden withdraw () ar de-
finierad bade i superklassen Account och i subklassen MinimalAccount. Utan arvre-
lation skulle detta varit ett exempel pa vanlig éverlagring av metoder (avsn. 3.7, sid 172).
Men eftersom MinimalAccount “dr” ett speciellt Account kan MinimalAccount &r-
va klassen Account. Etablerar vi arvrelationen blir det polymorfism.

”Poly” betyder manga och “morf” betyder form pa gammal grekiska. Polymorf ar nagot
som har manga former, t.ex. ett ord som har olika betydelser. Det vanliga spraket ar fullt
med sddana ord: Ta bara ordet kdra. Man kan kéra bil, kora tag, kora program osv. Det
&r sammanhanget som avgor den aktuella betydelsen.

En metod beskriver en funktionalitet. Polymorfism definierar en metod i superklassen,
definierar om funktionaliteten i subklassen, men behaller namnet (eng. overriding).

Polymorfism modifierar helt eller delvis funktionaliteten hos metoder
med samma namn som férekommer i en arvhierarki.

Subklassens metod kommer da att dverskugga superklassens metod.

113

Overlagring av metoder som togs upp tidigare (3.7, sid 172) innebar samma namn for
olika metoder. Skillnaden mellan polymorfism och 6verlagring av metoder &r féljande:

I vanlig éverlagring (eng. overloading) definieras i samma klass metoder med samma
namn, som skiljs at genom olika antal eller olika typer av parametrar. Polymorfa meto-
der definieras i olika klasser som dessutom &rver varandra. Dvs polymorfa metoder fo-
rekommer endast i klasser som stér i arvrelation till varandra. De har samma namn och
samma parameterlista, medan deras kroppar (innehall) ar olika.

Vi implementerar modellen ovan i C#. Sa hér kan t.ex. klassen Account se ut:

// Account.cs

// Super- eller basklass till subklassen Minimalkonto

// Definierar bl.a. metoden Withdraw() med en vanlig uttags-—

// policy: Uttag medges ej om uttagsbloppet dr storre &n saldo
// Definieras om 1 subklassen som har en striktare uttagspolicy
using System;

class Account

{
protected int accountNo;
protected String name;
protected double balance;
public Account(int no, String n, double b)
{
accountNo = no; // Konstruktorn
name = n;
balance = b;
}
public String Withdraw(double amount) // Metod som defi-
{ // nieras om i
if (balance - amount < 0) // subklassen
return "\n\tIngen tadckning\n\tfér uttag pa " +
amount.ToString("c") + " pad " + name + "s konto\n";
else
{
balance = balance - amount;
return "\n\tUttag pa " + amount.ToString("c") +
" genomfdrt pa " + name + "s konto\n" g
}
}
public String AsString()
{
return "\tKontonr " + accountNo + '\n' +
"\ tNamn " + name + '\n' +
"\tSaldo " + balance.ToString("c") + '\n' +
"***************************\n\n" g
}
}

114

Overskuggning av metoder (eng. overriding)

Klassen Account beskriver ett vanligt bankkonto med en withdraw () -metod som inte
tillater uttag av pengar om uttagsbeloppet Gverstiger saldot. En bank har daremot manga
olika typer av konton. Tankbart ar t.ex. ett konto som alltid behaller ett visst minimal-
belopp pa kontot och inte tillater uttag av pengar om saldot efter uttag understiger detta
minimalbelopp. Ett sddant specialkonto beskrivs nedan i klassen MinimalAccount
som ett Account med en Withdraw () -metod som implementerar denna afféarslogik.

// MinimalAccount.cs

// Subklass som drver superklassen Account, men definierar om

// den drvda metoden uttag() med en striktare uttagspolicy

// Uttag medges ej om saldo efter uttag &r mindre &n minimalSaldo
// Withdraw () har samma huvud, men en annan kropp dn superklassen
using System;

class MinimalAccount : Account // Arver klassen Account
double myBalance; // Ny datamedlem

public MinimalAccount(int no, String n, double b, double minB)
: base(no, n, b) // Superklassens kon-

{ // struktor
myBalance = minB;

}
public String Withdraw(double amount) // Definierar om super-—
{ // klassen Kontos me-—
if (balance - amount < myBalance) // tod: Inte ldngre < 0
return "\n\tIngen tadckning\n\tfdér uttag pa " +
amount.ToString("c") + " pa " + name + "s konto\n";
else
balance = balance - amount;
return "\n\tUttag pd " + amount.ToString("c") +
" genomfdrt pd " + name + "s konto\n";
}
}

}

MinimalAccount arver klassen Account genom att lagga till den nya datamedlemmen
myBalance och definiera om Account-klassens withdraw () -metod. Vi har med tva
olika metoder withdraw () att gora. | alla objekt av typ Account kommer den ena —
den ursprungliga — att galla, i alla objekt av typ MinimalAccount Kommer den andra
att gélla. Man séger: Den nya, modifierade metoden withdraw() Overskuggar den
gamla. Dvs en metod i en subklass 6verskuggar (slar ut temporart) metoden med samma
namn i sin superklass. Overskuggning (eng. overriding) ar ett koncept som vi redan lart
kanna och anvént nar vi diskuterade lokala variabler. Men dé& handlade det om Gver-
skuggning av variabler medan nu har vi att géra med 6verskuggning av metoder.

115

En konsekvens av att metoderna withdraw () inte langre befinner sig i samma klass, &r
att de inte langre behover skiljas at genom olika parameterlistor. De ar redan skilda
genom sin placering i olika klasser och kommer darfor att anropas i objekt av olika
klasser. De maste tvartom ha t.o.m. samma parameterlista. For att subklassens metod
ska kunna 6verskugga (sla ut temporart) superklassens metod, maste metodhuvuden va-
ra exakt identiska. Darfor har withdraw() | MinimalAccount Samma huvud som
Withdraw () i Account (framhdvd med vit bakgrund). De skiljer sig endast genom
kroppen, ndrmare bestdmt i i£-satsens villkor: | superklassen implementeras den vanli-
ga policyn for uttag av pengar med if (balance - amount < 0), medan i subklassen
ska den speciella uttagpolicyn gélla: if (balance - amount < myBalance). Over-
skuggning av metoder &r en konsekvens och en vasentlig ingrediens av polymorfism.

Atkomstmodifieraren protected

Nar vi diskuterade inkapsling larde vi kianna dtkomstmodifieraren private. Innan dess
hade vi anvant atkomstmodifieraren public. Det finns ytterligare en atkomstmodifiera-
re i C# som heter protected. De reglerar atkomsten till medlemmarna i en klass
utifran klassen. Staller man upp dem i en rangordning fran restriktiv till liberal far man
foljande lista:

® private

® protected

e public

private dr den mest restriktiva modfieraren och sparrar atkomsten absolut. Inte ens en
subklass har tillgang till superklassens privata medlemmar fast den arver allt ovanifran.
public ar den mest liberala modfieraren och friger dtkomsten &t alla utifran. protec-
ted ar en kompromiss som friger atkomsten till klassens medlemmar fran en subklass
och spéarrar atkomsten fran alla andra klasser. Subklassen kan finnas i samma eller i en
annan fil.

I klassen Account dr det ganska naturligt att deklarera datamedlemmarna som pro-
tected. P& sa sitt skyddas uppgifterna om accountNo, accountName 0ch balance
fran all kod som inte har att géra med klassen Account. Samtidigt ar de tillgangliga
fran alla klasser som arver klassen Account dvs dr ocksa konton, fast mer speciali-
serade. Alla dessa specialkonton kommer att ha &tminstone dessa tre grund-datamed-
lemmar. Med protected slipper man skriva Set- och Get-metoder i subklassen Mini-
malAccount, Vilket underlattar programmeringen. Subklassen MinimalAccount kan
t.ex. i sin withdraw () -metod komma &t superklassens datamedlemmar name och ba-
lance tack vare protected. Annars, 0m name 0ch balance hade varit private, ha-
de vi behdvt definiera och anropa Get-metoder.

Nu nér vi testar bade Account- och MinimalAccount-klassen i en valdigt enkel appli-
kation kan vi konstatera att kompilatorn automatiskt valjer ratt withdraw () -metod vid
anrop — trots samma namn och samma parameterlista:

116

// PolymorphTest.cs

// Demonstrerar anrop av den polymorfa metoden uttag/()
// En gdng anropas uttag() 1 ett Account-objekt (kalle)
// den andra gdngen i ett MinimalAccount-objekt (pelle)
using System;

class PolymorphTest
{

static void Main()

{

Account kalle = new Account (12345, "Kalle", 200);
MinimalAccount pelle =
new MinimalAccount (67890, "Pelle", 100, 50);

Console.Write ("\nKalles konto fére uttag:\n" +
kalle.AsString() +
"\tTa ut ett belopp fran Kalles konto: ");
double out = Convert.ToDouble (Console.ReadLine()) ;

Console.Write (kalle.Withdraw(out) + // Hdr anropas super-
// klassens Withdraw ()
"\nKalles konto efter uttag:\n" + kalle.AsString() +
"Pelles konto fdre uttag:\n" + pelle.AsString() +
"\tTa ut ett belopp fran Pelles konto: ");
out = Convert.ToDouble (Console.ReadLine()) ;

Console.Write (pelle.Withdraw (out)+ // Hdr anropas sub-
// klassens Withdraw ()
"\nPelles konto efter uttag:\n" + pelle.AsString()) ;

}

P& den forsta raden i Main () skapas objektet kalle av typ Account, pa den andra
raden objektet pelle av typ MinimalAccount. De initieras med var sin konstruktor.
kalle far 200 kr insatt pa sitt konto, pelle 100. Eftersom pelle har ett Minimal-
Account Mmaste hans konto initieras dven med ett varde till den nya datamedlemmen
myBalance. Darfor skickas som sista parameter till pel1e-konstruktorn vérdet 50 som
enligt affarslogiken alltid ska vara kvar pa ett MinimalAccount. S3, pelle far
maximalt ta ut 50 kr fran sitt konto. Férsoker han ta ut t.ex. 100 kr — vilket vi gor i kor-
exemplet pa nasta sida — godtas inte uttaget och han far meddelandet Ingen téckning
pa Pelles konto SOm har sitt ursprung i anropet pelle.Withdraw (out). Efter det
misslyckade uttagsforsoket &r pelle:s saldo fortfarande 100.

| programmet PolymorphTest férekommer tvd anrop av den polymorfa metoden
Withdraw (), en gang superklassens och en gang subklassens withdraw () -metod:

kalle.Withdraw (out) och pelle.Withdraw (out)

Att vi kallar metoden for polymorf beror pa att det ar tva olika metoder med tva olika
funktionaliteter (tva olika kroppar) med samma namn och samma huvud. Det ar de tvé

117

olika objekten xalle och pelle som gor att kompilatorn valjer ratt metod. Men det
finns i programmet &ven tva ganger tva anrop av metoden AsString():

kalle.AsString() och pelle.AsString()

Ar det hir ocksa tva olika metoder? Ar dven metoden AsString () polymorf? Svaret ar
nej, darfor att det endast finns en metod Asstring () som &r definierad i superklassen
Account. Hur kommer det sig da att vi kan anropa den &ven i pelle-objektet som inte
&r av typ Account? Det kan vi gora darfor att MinimalAccount SOM pelle 4r ett
objekt av, arver Account och darmed dven den publika metoden Asstring (). Darfor
ar metoden withdraw () polymorf, men inte metoden AsString (). S& hér kan en kor-
ning av PolymorphTest Se Ut:

Kalles konto fore uttag:
Kontonr 12345
Namn Kalle

Saldo 200,00 kr
khkkhkkkhkkkhkkhkhkkhkhkkhkkkhkkkkkkk

Ta ut ett belopp fran Kalles konto: 200
Uttag pa 200,00 kr genomfdort pa Kalles konto

Kalles konto efter uttag:
Kontonr 12345
Namn Kalle

Saldo 0,00 kr
khkkhkkkhkkkhkkhkhkkhkhkkhkkkhkkkhkkkk

Pelles konto fore uttag:
Kontonr 67890
Namn Pelle
Saldo 100,00 kr

khkkkhkkhkkhkkhkkkkhkhkhkkkkhkkkkkkk

Ta ut ett belopp fran Pelles konto: 100

Ingen tdckning
for uttag pa 100,00 kr pa Pelles konto

Pelles konto efter uttag:
Kontonr 67890
Namn Pelle

Saldo 100,00 kr
khkkhkkkhkkkhkkkhkkhkkkhkkkhkkkhkkkk

118

2.1

2.2

2.3

24

Ovningar till kapitel 2

Skriv ett program som bestar endast av klassen A11_in_Main som i sin tur inne-
haller endast Main () -metoden. Las in radien r till en cirkel och berakna samt
skriv ut cirkelns area © r2 och dess omkrets 2x r, ddr = 3.14159. Du kan an-
vénda konstanten Math. PI fran C#:s klasshibliotek for n. Programmet ska inte
vara objektorienterat eftersom du inte skapar nagra objekt, utan endast lokala
variabler (radie, area, omkrets). Programmet ska inte heller vara modulariserat
eller proceduralt eftersom all kod (inmatning-bearbetning- utmatning) finns i en
enda metod Main () som definieras i en klass. Dessa steg ska tas i de efterféljan-
de tva Gvningarna. Deklarera alla variabler till double.

Modularisera programmet A11_in_Main fran dvn 2.1 pd metodniva, dvs: Flytta
bearbetningsdelen dvs berdkningen av area och omkrets ur Main () till separata
metoder Area () och Circumference (), men stanna i samma klass. Dop om
klassnamnet till Procedural. | Main () ska finnas kvar variabeln for radien, in-
matning, utmatning och anropen av Area () 0Ch Circumference (). FOrse de
nya metoderna med en parameter som Gverfor radiens vérde fran Main () till
dem. Valj olika namn for den aktuella &n for den formella parametern. Dessutom
ska Area () Ooch Circumference () returnera ett double-vérde och vara statis-
ka. For att testa, mata in 1 for radien. Da ska arean bli = pga = r 2 = © och om-
kretsen bli 2 pga 2% r = 27.

Modularisera programmet A1l in Main fran 6vn 2.1 pd klassnivd, dvs: Dela
upp programmet i tva klasser, lagrade i tva separata filer. Kalla den ena klassen
for circle, den andra for circleTest. Samla all information om begreppet
cirkel i klassen circle, dvs: Deklarera radien r som datamedlem samt Area ()
och Circumference () Som metoder. Ta bort frin metoderna béde static och
parametern for radien. Den andra klassen circleTest ska endast innehélla
metoden Main (). Skapa i den ett objekt av klassen circle. L4s in ett vérde till
objektets datamedlem r och anropa samt skriv ut returvardena till objektets me-
toder Area () och circumference (). Klassfilerna borde ligga i samma projekt.

Skriv en klass Fish som beskriver en fisk med datamedlemmarna sort, weight
och size. Testa din klass i en annan klass FishTest i en separat fil som endast
innehaller metoden Main () dar tva objekt av klassen Fish skapas. Tilldela det
forsta objektets datamedlemmar vérdena Laxforell, 719 (gram) och 38,5 (cm). En-
heterna gram och cm behdéver inte anges. Valj sjalv andra véarden till det andra
objektets datamedlemmar. Skriv ut dessa vérden till konsolen i en tabell av typ:

AWINDOWSsystem3 2iemd. exe

Laxforell
Torsk

119

2.5

2.6

2.7

2.8

2.9

2.10

Ta klassen Fish frdn 6vn 2.4. Forse den med en metod som beraknar priset péa
fisken oberoende av sort, t.ex. 7,25 kr per hekto. Lagg till &ven en metod som be-
raknar och returnerar frakten utifran fiskens vikt och langd genom att t.ex. mul-
tiplicera en viss kostnadsfaktor, sdg 0,02, med vikten, en annan, ség 0,1, med
langden och addera dem. Metoderna ska returnera priset och frakten i hela kronor
utan 6ren. Anropa metoderna fran klassen FishTest:S Main () -metod for de tvé
Fish-objekten. L&gg till nya rubriker Pris och Frakt i tabellen ovan och skriv ut
deras varden till tabellens tva rader.

Modifiera programmet frdn 6vn 2.5 sa att datamedlemmarnas varden inte hérd-
kodas utan lases in. Utskriften ska skickas till konsolen och laggas till tabellen
frdn 6vn 2.4. Skriv din kod sé att den latt kan generaliseras s att man kan mata in
flera fisksorter med hjalp av en loop och en array av referenser till Fish-objekt
som vi kommer att lara oss senare. Dessutom ska programmet kunna modifieras
till att skriva ut till en tabell i en databas istallet for att skriva till konsolen.

Deklarera en klass Triangle med datamedlemmarna side_a, side_b,
side_c, height b av typ int och metoderna Area(), Circumference ().
Skapa i en annan klass som innehaller Main (), ett objekt av klassen Triangle
och tilldela datamedlemmarna varden. Anropa metoderna och skriv ut denna tri-
angels area och omkrets. Skapa en andra referens som pekar pa samma objekt
och anropa metoderna samt skriv ut deras returvarden med denna referens. Du
borde f& samma resultat som med den forsta referensen. Anropa sedan metoderna
Area () OCh Circumference () med tvd anonyma objekt (utan referenser). Kol-
la om du far de forvantade resultaten som ar baserade pd objektens default-
initiering. Sist, peka om Triangle-objektets forsta referens till null och forsok
att anropa metoderna med denna referens. Vad hénder?

Skriv en klass Rectangle med datamedlemmarna width, height samt meto-
derna Area() och Circumference (). Deklarera datamedlemmarna en géng
som private och en annan gang med ingen atkomstmodifierare alls. Deklarera
metoderna som public. Forse klassen med en konstruktor och vélj andra namn
for konstruktorns parametrar an for datamedlemmarna. Testa din klass i en annan
klass genom att i Main () skapa ett Rectangle-objekt vars datamedlemmar ini-
tieras till konstanta varden. Skriv ut dess area och omkrets.

Modifiera klassen Rectangle fran 6vn 2.8 genom att lagga till Get- och Set-me-
toder i klassen. Testa den nya klassen i Main () genom att I&sa in vérden till da-
tamedlemmarna. Efter utskriften av area och omkrets, fordubbla rektangelns
langd och bredd med anrop av Get- och Set-metoderna. Skriv ut en gang till rek-
tangelns area och omkrets. Med vilken faktor véxer arean resp. omkretsen?

Modellera en klass cylinder som subklass till klassen circle. Forse super-
klassen circle med en privat datamedlem radius, en konstruktor, en Get-me-
tod och med berékningsmetoderna Area() och Circumference (). Betrakta
Cylindern som en “utvidgad” Circle som &rver circle och lagger till den en

120

2.11

2.12

privat datamedlem height. FOrse dven subklassen med en konstruktor och en
Get-metod. cylindern ska dessutom ha metoderna volume () och Surface ().
Implementera din objektorienterade modell sa att du vid berdkning av cylin-
derns Volume () och Surface () kan ateranvanda koden till — dvs anropa — cir-
kelns metoder Area () och Circumference (). Testa dina klasser i Main () ge-
nom att l4sa in radius och height samt skriva ut Volume () och Surface().

Employee — en arvhierarki (projekt) Modellera en arvhierarki éver olika
typer av anstallda och anvand den polymorfa metoden salary () i alla klasser
for att berdkna 1énen fér de olika anstalldtyper. Skriv en superklass Employee
som arvs av subklasserna PermEmployee, Seller Och Employee. Varje sub-
klass ska ha privata datamedlemmar, en konstruktor, Properties till varje ny data-
medlem, en AsString()-metod som skriver ut en anstéllds typ, namn och
anstéllningsnummer samt metoden Salary () som i varje subklass definierar om
superklassens metod salary (). Introducera privata datamedlemmar till klasser-
na PermEmployee, Seller 0Ch Employee. Skriv dessutom en subklass
PermSeller som darver klassen seller och har den nya privata datamedlem-
men permSalary. Testa dina subklasser genom att skapa och initiera en instans
av varje subklass och @ndra I6nen till en av dem samt skriva ut deras gamla och
nya data.

Kaffeautomaten (projekt) Du far i uppdrag att programmera en kaffeauto-
mat. Uppdragsgivaren forvantar sig ett professionellt program som latt kan upp-
dateras, om man skulle byta till en nyare automatmodell om négot ar. Darfor
anlitar man en objektorienterad programmerare. Skriv koden s& generellt som
mojligt s att programmet dven kan modifieras for vilken varuautomat som helst,
dessutom enkelt kan dversittas till vilket programmeringssprak som helst.

Programmet ska inte simulera sjélva automaten
utan en aktion i automaten, dvs snarare det man
g6r med den. | handelsernas centrum ska finnas
en klass som beskriver det som pagar i automa-
ten efter att anvéndaren stopppat in pengar i den
och valt en dryck. Deklarationen till denna klass
kan — i stora drag — se ut sa har:

class Automat_action

{
string productName;
double price;
double payment;
double change;

public Automat_action(double money, char product)

{
switch (product)

{

}
121

payment = money;
change = payment - price;

}

public void Change_in coins()

{

}
}

Konstruktorn Automat_action() ska tilldela de by default privata datamed-
lemmarna productName och price varden beroende pa valet av dryck och skri-
va ut ett meddelande om inlagt belopp samt drycken som ska levereras. Detta kan
kodas med hjélp av en switch-sats (ovan). Men istéllet for switch kan man lika
bra anvanda néstlade if-else-satser. Skapa objekt av klassen Automat ac-
tion i en annan klass i en separat fil som endast innehéller Main ().

Borja i Main () med att skriva ut en meny over alla varor samt priserna, t.ex.:

K(affe) 8.00 kr
E(spresso) 9.50 kr
C(hoklad) 7.50 kr

L(Kaffe Latte) 9.00 kr
P(Cappuccino) 9.50 kr

Lat sedan anvandaren lagga in pengar. Las in beloppet till en double-variabel.
Lat anvandaren aven vilja en dryck genom att lasa in begynnelsebokstaven till
varorna ovan med en char-variabel. Sedan kan ett objekt av den ovan deklarera-
de klassen Automat_action skapas in inkl. anrop av konstruktorn Automat-
_action(). Vid detta anrop skickas de inlésta véardena till det inlagda beloppet
och den valda varan som aktuella parametrar till Automat_action (). Efter att
objektet skapats och datamedlemmarna initierats kan metoden Change in-
_coins () anropas.

Komplettera programmet med att ta hand om en eventuellt felaktig eller otill-
racklig betalning fran anvandarens sida. Metoden change_in_coins () Artill
for att dela upp véxeln i automatens tillatna” myntslag (10-kr, 5-kr, 1-kr och 50-
oringar) och skriva ut hur manga av varje “tillitet” myntslag som ska ges
tilloaka. Véxelbeloppet maste omvandlas till detta mynt”system”. For att astad-
komma det, kan foljande algoritm anvéndas:

Myntbetalningen inkl. behandlingen av 50-6ringen beror inte pa nostalgi utan pa internationali-
sering. Vi vill halla mojligheten 6ppen for en dverféring av programmet till andra lander dér auto-
mater med myntbetalning fortfarande finns. Aven ett ev. byte till Euro eller andra valutor dar den
halva valutaenheten finns kvar, ska vara mgjligt. Omvandlingen av vaxelbeloppet till automatens
myntsystem inkluderar en programmeringsteknisk finess som kan vara vérd att lara sig. Logiken
inkl. anvéndningen av modulooperatorn ligger till grund dven for en generell omvandling av det
decimala talsystemet till andra system. L4s mer om det pa nasta sida: Modulooperatorn % .

122

Algoritm fér omvandling av ett belopp till olika myntslag

Eftersom denna algoritm endast fungerar for heltal, maste change som &r ett be-
lopp i kronor och Gren av typ double, forst raknas om till ett rent 6rebelopp av
typ int, vilket kan goras genom att multiplicera det férst med 100 och sedan av-
runda resultatet till heltal:

int total = (int) Math.Round (change * 100) ;

I fortsattningen kommer alltsd den givna véxeln att std som ett 6rebelopp i int-
variabeln total. Anledningen till konverteringen till int i satsen ovan dr att den
fordefinierade metoden Round () som avrundar till ndrmaste heltal, 4nda returne-
rar ett vérde av typ double.

1. For att fa antalet 10-kronor heltalsdivideras total med 1000 eftersom 10-

kronor &r 1000 Oren:
int ten = total / 1000;

Hur manga ganger ryms 1000 — eller 10-kronor — i total? Det antalet tilldelas
till ten. Eller med andra ord: 1000 dras av frdn total s& manga ganger tills
resten blivit mindre @n total. Det antalet som tilldelas till ten blir antalet 10-
kronor. Divisionen ovan &r inte vanlig division utan heltalsdivision eftersom bade
total och 1000 &r heltal. Dvs total divideras med 1000, resultatet tas, resten
ignoreras, t.ex. 6975/1000 ger 6. Resten 975 ignoreras hér, men anvands i fort-
sattningen. Om heltalsdivision l&s pa nasta sida: Modulooperatorn % .

2. For att fa antalet 5-kronor divideras just resten som blev kvar fran punkt 1
med 500 eftersom 5-kronor &r 500 dren:

int five = (total % 1000) / 500;

Hér anvands modulooperatorn %. Las om den nedan. "Resten som blev kvar fran
punkt 1” &r just (total % 1000). T.ex. 6975 % 1000 ger 975. Efter att ha dra-
git av alla 10-kronor frén total divideras resten med 500 for att fa reda pa hur
manga 5-kronor som finns i total. T.ex. 975/500 ger 1. Resultatet av denna di-
vision ges till £ive, resten ignoreras och anvénds i fortsattningen.

| ytterligare tre steg kan de dvriga formlerna for berédkning av antalet 1-kronor
(one), 50-0ringar (half) och resten i Ore (rest) skrivas, nar monstret i algorit-
men (forhoppningsvis) har trétt fram:

int one = ((total % 1000) % 500) / 100;
int half = (((total % 1000) % 500) % 100) / 50;
int rest = (((total % 1000) % 500) % 100) % 50;

Man tar forra stegets formel, ersétter / med % och l&gger till en heltalsdivision
med den nya enhetens 6rebelopp. | det allra sista steget dédremot, dar man &r ute
efter allra sista resten i Gre, maste % anvandas hela vagen. Sjalvklart ar restore-
beloppet inte av praktiskt intresse nér automaten inte kan spotta ut det. Mer om
modulooperatorn och heltalsdivision kan du lasa hér:

123

Modulooperatorn %

% har i C# ingenting med procentrékning att géra utan &r symbolen for ett rak-
nesatt som kallas modulo och innebér resten vid heltalsdivision. Exempel:

Idag &r det fredag, och du vill tréffa din kompis om 11 dagar.
Vilken veckodag blir det?

Om vi numrerar veckodagarna stigande fran 1 med bérjan pa mandag sa att fre-
dag blir den 5:e veckodagen, far du svaret pa frdgan ovan genom att rakna modu-
lo7:

(5 + 11) %7 = 2

Dvs veckodagen i fragan ar tisdag. Man lagger till aktuell veckodag 5, antalet
dagar 11 vilket ger 16, men réknar modulo 7 dvs 16 % 7 = 2, som ar veckodag
nr. 2: tisdag.

| sjalva verket handlar det om en omvandling av det decimala talsystemet med
basen 10 och siffrorna 0-9 — det talsystem vi &r vana vid att rékna med — till vec-
kodagarnas system dvs till talsystemet med basen 7 och siffrorna 0-6.

Modulo dividerar tva heltal (utan att ga vidare till decimaler), tar resten och igno-
rerar resultatet. T.ex. 16 % 5 ger 1, dérfor att 16 heltalsdividerat med 5 ger 3,
och en rest p& 1 blir kvar. Modulooperatorn % ignorerar 3 och returnerar resten
1. Resten vid heltalsdivision kallas modulo: 9 modulo 2 ger 1. Man kan uppfatta
raknesattet modulo dven som en upprepad subtraktion: Man drar av 2 fran 9 s
manga ganger det bara gar och tar det som blir kvar. Fyra ganger gar det att ta
bort 2 frdn 9, kvar blir 1. Darfor 4r 9 % 2 = 1. Generellt innebér att rakna modu-
lo a att man bortser fran alla multipler av heltalet a och behaller resten.

Raknesattet modulo har ménga tillampningar, speciellt vid évergang mellan tva
system, t.ex. mellan talsystem med olika baser som det decimala talsystemet med
basen 10 och det bindra med basen 2. Man kan anvandsa modulo for att omvand-
la ett antal sekunder till antal timmar, minuter och sekunder.

124

2.13 Labyrinten (projekt) Visst ar det roligt att med ett C# program lata datorn
rita en labyrintartad figur pd skarmen som kan se ut sa har:

B CAWINDOWS\system32\cmd.exe - m] X

Ange labyrintens bredd (t.ex. 50): 58
Ange labyrintens hdjd (t.ex. 20): 2@

jﬁ% .:_F'U_ﬂﬂjlf %ITJT “ . I ﬁﬁ%ﬁll_l 0TI
JJH-‘ J—J []Ll II‘ =‘I 1 HE‘”LH_II . IIT\IFII JJ |_II] E
iilm l UJWUF rlljl—u L P{r w1 JJ
s FELELAR b,
’%L#w i LLLL o el

II

4 i |'| ””ELIHHJI—WE ” ;:”"" ‘l—L[PF: ‘r‘ i
T'|r TJ T HJ||' \"F |r I JL‘!l+|_|'|
m::::” " ﬂlﬁﬂvqﬁlﬁﬂ EW |—Hﬂﬂ§nmﬁ %

Press any key to continue . . .

W

Visserligen ar detta ingen riktig labyrint. For en sadan skulle det kravas mycket
mer. En riktig labyrint skulle kunna vara féremal t.ex. for ett spelprojekt, som un-
derliggande grafik, sjalvklart med lite andra finesser, farg osv. Bilden ovan visar
snarare om en labyrintartad figur som ar slumpmassigt ihopsatt av ett antal tec-
ken som vi Kkallar for dubbla linjegrafiktecken (LGT). De &r tagna ur teckentabel-
len Unicode som &r den géllande teckenstandarden i hela varlden. I figuren ovan
&r de ordnade som en sorts tabell (50 rader, 20 kolumner). | koden gér man det
med en dubbel- eller nastlad £or-loop, som &r helt enkelt en (inre) £for-loop i en
(yttre) £oxr-loop. Denna nastlade kontrollstruktur anvénds i alla programmerings-
sprak for att atstadkomma en 2D utskrift — typ tabell — dar den yttre loopen skri-
ver ut raderna och den inre loopen kolumnerna.

Tecknen i figuren ovan &r slumpvis valda. Dérfér borde varje kdrning av pro-
grammet generera en lite annorlunda labyrintartad figur. Du kan gérna férsoka
med en egen algoritm att dstadkomma ett program som ritar en labyrintartad fi-
gur. Men féljer du instruktionerna i évningarna har du i alla fall ett forslag till en
algoritm som fungerar.

125

Gor sa har for att rita “labyrinten”:

Steg 1

Steg 2

Steg 3

Bekanta dig med hantering av tecken i C# inkl. explicit typkonvertering
och Unicode, genom att mata in och testa féljande program:

// Int2char.cs

// Ger tecknet till en inmatad Unicode genom explicit
// typkonvertering fran int till char

using System;

class Int2char

{
static void Main()
{
Console.Write ("\n\tMata in ett heltal:\t");
int code = int.Parse (Console.ReadLine()) ;
Console.WriteLine ("\n\t" +
"Det inmatade talet " + code + " ar " +
"Unicode till tecknet " + (char) code +
"\n\n") ; // Explicit typkonvertering
}
}

Kor programmet Int2char (ovan) for koderna 9552-9580. For att se alla
tecken till dessa koder i en dversikt genomfor Stegen 2-3 :

Studera programmet RandTest i kursboken, sid 137-138, som visar hur
man nastlar en inre for-sats i en yttre for-sats. JAmfor den néstlade
for-satsens kod med programmets korexempel pa sid 138. Anvand idén
till nastlade £or-satser for att konstruera en egen sadan, som du kommer
att behdva i Steg 3:

Skriv ett C# program som producerar foljande utskrift:

B CAWINDOWS\system32\cmd.exe - O x

De dubbla LGT-tecknen i C#:s implementering av Unicode:

9552 = = 9553 = | 9554 = | 9555 = 9556 = |
9557 = g 9558 = g 9559 = q 9560 = L 9561 = L
9562 = L 9563 = 4 9564 = 4 9565 = 4 9566 = |F
9567 = | 9568 = | 9569 = 1 9570 = 4 9571 = 4
9572 = ¢ 9573 = 9574 = 9575 = & 9576 = & ‘
9577 = 4 9578 = 4+ 9579 = 4 9580 = ¥

Press any key to continue . . .

126

2.14

Dessa tecken finns i den standardiserade teckentabellen Unicode och an-
vands i text mode for att rita raka linjer, ramar osv. i konsolen. Vi kallar
dem for linjegrafiktecken (LGT). Deras koder som ar angivna ovan, an-
vands i Steg 5 dér du ska rita den labyrintliknande figuren pa forra sidan
med dessa tecken. Den fullstandiga Unicode-tabellen som ar den géllan-
de teckenstandarden i hela varlden, hittar du t.ex. pa Internet under ad-
ressen: unicode.coeurlumiere. com.

Jamfor garna koderna ovan med denna tabell som &r den gallande tec-
kenstandarden i hela vérlden, och konstatera de smé skillnaderna. C#
foljer inte exakt Unicode-standarden.

Steg 4 Bekanta dig med hantering av slumptal med klassen Random och meto-
den Next (), bl.a. i programmet RandTest i kursboken, sid 137-138.

steg 5 Skriv slutligen det program som med hjalp av de dubbla linjegrafikteck-
nen fran steg 3, C#:s slumpgenerator och en dubbel- eller nastlad fox-
sats ritar en labyrintliknande figur i konsolen som &r slumpmassigt ihop-
satt av de ndmnda LGT-tecknen, se projektets presentation.

Master Mind (projekt) ar ett litet spel som later anvandaren gissa ett slump-
massigt genererat fyrsiffrigt heltal genom att leda spelaren med en inbyggd hjélp-
procedur vars regler ar beskrivna nedan. Aven har géller det att forsoka hitta egna
I6sningar. Foljande ska anses som ett forslag till 16sning:

Borja med att behandla fyrsiffriga heltal som en serie av fyra ensiffriga tal dvs
som en array av heltal med fyra element.

Skriv forst en metod med huvudet void Create (int[] secretNo) som ska
generera det hemliga fyrsiffriga talet och lagra det i en int-array, Sig secretNo,
med 4 element. Varje element i arrayen secretNo kan genereras som ett slump-
tal mellan 0 och 9. Dessutom ska metoden create () kontrollera spelets regel
enligt vilken alla fyra siffror maste vara olika.

Skriv sedan en metod med huvudet void Help(int[] guessedNo, int[]
secretNo) som ska bearbeta spelarens gissning enligt foljande regler:

For varje ratt siffra pa ratt plats fran vanster till hoger skrivs utett R
For varje ratt siffra pa fel plats fran vanster till hoger skrivs ut ett S
For varje fel siffra fran vanster till hoger skrivs ut ett mellanslag ?

Om t.ex. det hemliga talet &r 4693 och spelaren gissar 7498, sa erhélls hjalpen:
? SR?

Nar hjalpen skriver ut RRRR har spelaren lyckats och programmet avslutas med
att skriva ut ett lampligt meddelande. Skriv ett program som tillater flera spelom-
gangar.

127

128

Kapitel 3

Metoder i OOP

Amne Sida Program

3.1 Accessmetoder 129 Empl & GetSet
3.2 Property i C# 133 EmplP/Property
3.3 Statiska datamedlemmar och metoder 135 StatDemo

- Klass- och instansvariabler 135 StatDemoTest

- Allokeringsmodifieraren static 137 RandTest
3.4 Referens i metoder 140 EncryptStr
3.5 Abstrakta klasser och metoder 143 Super

- Implementation av abstrakt metod 144 Subl & Sub2

- Test av abstrakt metod 145 Override
3.6 Virtuella metoder 146 SuperV

- Overskuggning av virtuell metod 147 Sub/TestVirtual
Ovningar till kapitel 3 149

3.1 Accessmetoder

129

Har &teranknyter vi till var diskussion kring inkapsling och klassens konstruktor (sid
91). Accessmetoder ar namligen direkta konsekvenser av inkapsling dvs att man vill ha
privata datamedlemmar. Konstruktorn kan ju l6sa problemet med de privata datamed-
lemmarnas odtkomlighet endast i initialfasen, dvs nar objekten skapas. Men man vill ju
aven i fortsattningen kunna komma ét de inkapslade datamedlemmarna. For detta anda-
mal har man i C# accessmetoder till forfogande.

Det finns tre sorters accessmetoder: Get-metoder for att hamta (lasa), Set-metoder for att
andra (skriva) varden till privata datamedlemmar och s.k. strangrepresentationsmetoder
for att f3 ut och kunna visa de privata datamedlemmarna i lashar textform. Féljande
program visar exempel pa alla tre typer av accessmetoder:

// Empl.cs

// Deklarerar klassen Empl med 3 privata datamedlemmar, en

// konstruktor, en Get- och Set-metod till datamedlemmen salary
// och metoden AsString() som ger ett Empl-objekt i1 strdngform
using System;

class Empl

{

String name;
int empNo;
double salary;

public Empl (String n, int e, float s)

{
name = n; // Konstruktorn
empNo = e;
salary = s;
}
public double GetSalary() // Get-metod
{
return salary;
}

public void SetSalary(double newSalary) // Set-metod
{

salary = newSalary;

}
public String AsString() // Strdngrepresentation
{
return "\tNamn " 4+ name + '\n' +
"\tAnst nr " + empNo + '\n' +
"\tLén " + salary + '\n' ;
}

130

Som man ser handlar det hos den sista metoden Asstring () konkret om att skriva ut
klassens data som en konkatenerad strdng, en slags representation av klassens objekt i
strangform.

Forfarandet som visas hér kan generaliseras, ja t.o.m. automatiseras: Till varje privat
datamedlem kan en Get- och en Set-metod definieras, medan en utskriftsmetod racker
for hela klassen. Om man sedan faktiskt utnyttjar alla dessa verktyg i varje program,
maste avvagas fran fall till fall. Get-metoder ska ha ett returvarde med samma returtyp
som den privata datamedlemmen, inga parametrar och endast en return-sats som re-
turnerar den privata datamedlemmens varde. Alla Get-metoder har detta utssende. Man
kan t.0.m. standardisera namngivningen genom att ddpa Get-metoden till GetX, dar X
&r den privata datamedlemmens namn som man inleder med en versal. Set-metoden da-
remot dr en void-metod med en parameter som har samma datatyp som den privata
datamedlemmen och innehaller endast en tilldelningssats som tilldelar parametern till
den privata datamedlemmen. Namnet ska vara SetY dar Y &r den privata datamedlem-
mens versala initial. Utskriftsmetoden &r av void-typ utan parametrar och skriver ut
alla privata datamedlemmar i en anvandarvénlig layout. Sjalvklart behdver man inte i
alla fall genomfora det ”fulla” forfarandet ovan. I klassen Empl som vi testar i foljande
program har vi nojt oss med att definiera en Get- och Set-metod endast for den privata
datamedlemmen salary:

// GetSet.cs

// Anvdnder klassen Empl fér att skapa en anstdlld, &ndra dess

// salary (som dr privat) med Get- och Set-metoden samt skriva ut
// data, bl.a. den gamla och nya lénen, med AsString/()

using System;

class GetSet

{
static void Main()
{
Empl emp = new Empl ("Kalle Karlsson", 349, 22500) ;
Console.WritelLine ("\n\tFére 1lénefdérhéjning:\n" +
emp.AsString()) ;
emp.SetSalary (emp.GetSalary () *1.25) ; // Andrar 1én
Console.WritelLine ("\tEfter 1l6nefdrhéjning:\n" +
emp .AsString()) ;
}
}

Andringen av salary gors via anrop av Set-metoden SetSalary (). Som parameter
skickas den gamla I6nen hojd med 25%. For att fa tag i den gamla I6nen hamtas den pri-
vata datamedlemmen salary med ett anrop av Get-mtoden GetSalary ().

Programmet Getset:s kdrresultat blir:

131

132

3.2 Property i C#

Property i C# dr inte langre en vanlig egenskap (attribut) eller datamedlem i den bety-
delse vi anvént begreppet hittills, utan ett koncept i C# som automatiserar Get- och Set-
metoder i klasser med privata datamedlemmar for att underlétta programutvecklingen
och minska den overhead av kod som behdvs for att hantera inkapsling. Property i C# &r
motsvarigheten till Beans i Java. Istéllet for att till varje privat datamedlem skriva en
Get- och en Set-metod, kan man definiera en Property till den. Vi tar upp klassen Emp1
fran forra avsnitt, doper om den till Emp1P och ersatter dess Get- och Set-metoder till
datamelemmen salary med en Property:

// EmplP.cs

// Klassen Empl med Property som automatiserar den privata data-
// medlemmen salary:s Get- och Set-metoder

using System;

class EmplP

{
String name;
int empNo;
double salary;
public EmplP(String n, int e, float s)
{
name = n; // Konstruktor samma som fér Empl
empNo = e;
salary = s;
}
public double Salary // Property Salary av typ double
{ // till privat datamedlem salary
get // Kan skrivas till alla privata
{ // datamedlemmar
return salary;
}
set
{
salary = value;
}
}
public String AsString() // Strdngrepresentation
{
return "\tNamn " + name + '\n' +
"\tAnst nr " + empNo + '\n' +
"\ tLdn " + salary + '\n' ;
}
}

133

Propertyn ar framhévd med vit bakgrund. get, set och value &r reserverade ord. Pro-
pertys namn salary daremot kan man valja fritt. Inga parenteser férekommer, for Pro-
perty ar inte nagon metod. Den liknar mycket mer en datamedlem, ja man kan saga, det
ar en slags generaliserad datamedlem, dessutom en publik sadan. Den ar till for att
utanfor klassen kunna lasa vérdet av och skriva ett nytt varde till en privat datamedlem.
Operationerna lasa och skriva ar implementerade i Propertyns delar get och set. Deras
innehall inom { } liknar metoder, fast d4ven de skrivs utan parenteser och darmed inte
kan vara metoder. get:s kod &r identisk med kroppen till var “manuella” Get-metod i
klassen Emp1 dvs bestdr endast av en return-sats. Aven set:s kod &r nistan identisk
med kroppen till var gamla Set-metod, bara att parametern som skickar det nya vardet,
har ersatts av value. Den stora programmeringstekniska fordelen av Property kan forst
ses ndr man anvander den, t.ex. i féljande program som testar klassen Emp1p:

// Property.cs

// Anvidnder klassen EmplP, skapar en anstdlld, &dndrar dess

// salary (som &r privat) med Propertyn Salary och skriver ut
// data, bl.a. den gamla och nya lénen, med AsString/()

// Propertyn Salary anropar automatiskt Get- resp. Set-metod
using System;

class Property

{
static void Main()
{
EmplP emp = new EmplP("Kalle Karlsson", 349, 22500) ;
Console.WritelLine ("\n\tFére 1lénefdérhéjning:\n" +
emp.AsString()) ;
emp.Salary = emp.Salary*1.25; // Andrar privat salary
// med Propertyn Salary
Console.WriteLine ("\tEfter 1léneférhéjning:\n" +
emp.AsString()) ;
}
}

Andringen av den anstalldas 16n gors inte langre via anrop av ndgon metod, utan med
hjalp av Propertyn salary. Om man inte ké&nde till klassen Emp1P:s kod, skulle man
kunna misstanka att salary vore en vanlig datamedlem. Det enda som “’st6r” bilden &r
det stora s. Man ar van vid sma initialer till datamedlemmar. Det stora s avslgjar sala-
ry som en Property, for en metod kan den ju inte vara pga avsaknaden av parenteser.

Det intressanta dr nu att emp . Salary till hdger om tilldelningstecknet automatiskt laser
den privata datamedlemmen salary:s vérde dvs exekverar Propertyns Get-del, medan
emp.Salary till vénster om tilldelningstecknet automatiskt skriver det nya vardet som
bildats till hoger, till den privata datamedlemmen salary dvs exekverar Propertyns set-
del. P& sa satt andras lonen till den anstalld som far en 25%-ig loneférhojning. En
kdrning av programmet Property ger samma utskrift som programmet EmpTest.

134

3.3 Statiska datamedlemmar och metoder

Nar vart allra forsta C# program First introducerades i Progrl sades sa har om meto-
den Main():

”Det ar Virtual Machine (VM) som exekverar vart program
First genom att anropa metoden Main (). FOr att detta anrop
ska kunna utfoéras behdvs de s.k. modifierarna public och
static i metodens huvud.” (Progri, 1.1)

Sedan dess har vi anvant static tillsammans med void i alla vara program i huvudet

till metoden Main ():
static void Main()

En allra forsta forklaring gavs i Progrl sa har:

public innebdr att man kan anropa denna metod utifran klassen First,
static att den kan anropas utan att skapa objekt av klassen First,
void att metoden Main () inte returnerar nagot varde.

Men nu nér vi har mer kunskap om Klasser och objekt ska vi precisera dessa forklarin-
gar. void behandlas i detalj nar vi i nasta kapitel narmare gar in pa metoder. public
kommer att tas upp i samband med private och andra s.k. atkomstmodifierare. Men
static kommer vi att behdva snart néar vi vill skriva egna metoder som ska anropas
frdn Main () utan att skapa ett objekt. Se dven Atkomstmodifieraren static pa sid 137.

Klass- och instansvariabler
En icke-statisk datamedlem kallas for instansvariabel. Féljande Kklass visar ett exempel:

// StatDemo.cs
// Klass med tva datamedlemmar, en statisk och en icke-statisk

class StatDemo

{ public static int klassVar; // Klassvariabel allokeras hér
// 1 klassen. Behdéver inget objekt.
public int instVar; // Foreskrift om att en instansvariabel
// med namnet instVar skall allokeras 1
// varje objekt som skapas av denna klass
}

Programmet nedan demonstrerar skillnaden mellan klass- och instansvariabler i en loop:

// StatDemoTest.cs
using System;

class StatDemoTest

{

135

static void Main ()

{
int i = 0;
Console.WriteLine ("\nKlassvariabeln skapas och initieras" +
" i klassen till: " + StatDemo.klassVar + '\n');
do
{
StatDemo obj = new StatDemo () ; // Nytt objekt i
// varje varv
Console.WriteLine (
"Samma klassvariabel dkar i varje varv:\t\t "o+
StatDemo.klassVar + '\n' +
"Ny instansvariabel skapas i varje objekt: "+
obj.instvar + '\n');
StatDemo.klassVar++; // Okar l&pande
obj.instVar++; // Okar i varje objekt frdn 0-1
} while (i++ < 4); // Fem varv
}

}

Programmet ovan producerar foljande resultat ndr det exekveras:

Klassvariabeln skapas och initieras i klassen till: 0

Samma klassvariabel okar i varje varv: 0
Ny instansvariabel skapas i varje objekt: 0
Samma klassvariabel okar i varje varv: 1
Ny instansvariabel skapas i varje objekt: 0
Samma klassvariabel okar i varje varv: 2
Ny instansvariabel skapas i varje objekt: 0
Samma klassvariabel o6kar i varje varv: 3
Ny instansvariabel skapas i varje objekt: 0
Samma klassvariabel okar i varje varv: 4
Ny instansvariabel skapas i varje objekt: 0

P4 forsta raden skrivs ut klassvariabeln k1lassvar:s initialvarde 0 genom att i program-
mets forsta utskriftssats fore loopen referera till StatDemo.klassvar dvs klassen
StatDemo:s Statiska datamedlem klassvar. Modifieraren static framfor deklara-
tionen av klassVar i klassen statbDemo gor att vi kan referera till denna variabel med
klassnamnet utan att beh6va att skapa ett objekt.

| utskriften ovan visas klassen statbemo:s bade statiska och icke-statiska datamedlem-
mar. Man ser att klassvariabelns varde I6pande 6kar, medan instansvariabeln visar var-
det 0. Utskrifterna &r resultat av en loop i programmet som har fem varv motsvarande

136

raknaren i:s fem vérden 0-4. | varje varv skapas ett objekt av typ StatDemo. Bade
objektets (dvs instansens — instans &r bara ett annat ord for objekt) och klassens variabel
Okar sina varden med 1 i varje varv av loopen. Detta sker i satserna StatDemo.klass-
Var++; och obj. instVar++; som star sist i loopen. Klassvariabeln kommer ihag si-
na gamla varden fran loopens gangna varv eftersom dess 6kning sker i en och samma
minnescell genom hela programmet och darfér Iopande. Instansvariablerna déremot
skapas i varje varv av loopen i sina objekt pa nytt, initieras till 0 och skrivs ut, okar
sedan till 1, men ”dor” i bérjan av nésta varv ndr ett nytt objekt skapas. Narmare be-
stamt, dverskrivs deras adress i referensen obj med det nya objektets adress. Darfor far
de bara vérdena 0 och 1 tilldelade av vilka endast 0 skrivs ut eftersom utskriftssatsen
star fore okningen. Det handlar om olika objekt med olika instansvariabler i varje varv
lagrade vid olika adresser.

I programmet ovan behandlades static for datamedlemmar. Nu ska vi understka
static for metoder. Lat oss forst sammanfatta vad vi vet om static.

Allokeringsmodifieraren static

Allokering betyder reservering av minnesutrymme i datorns RAM-minne under pro-
gramkaérningen. Med modifierare menas en egenskap som ges till en datamedlem, en
metod eller en klass, genom att skriva modifieraren framfor namnet. Medan public &r
en atkomstmodifierare, darfor att den ger en status angdende atkomsten, 4r static en
allokeringsmodifierare, darfor att den talar om pa vilket satt minnesutrymme ska alloke-
ras &t en datamedlem, en metod eller en klass. Regler for static:

KKIasser, datamedlemmar & metoder kan deklareras som static, men
inte lokala variabler. I en statisk klass ar alla medlemmar statiska. Av
en statisk klass kan man inte skapa objekt. Statiska medlemmar
allokeras i klassen och inte i objekten. Darfér anvands de med
klassnamnet.

Qtatiska datamedlemmar kallas aven for k/assvariabler. Ett annat namn/

Statiska datamedlemmar kallas for klassvariabler, darfor att de tillhdr klassen och inte
nagot specifikt objekt och instansvariabler anvands for icke-statiska datamedlemmar,
darfor att de tillhor objekten och inte klassen. Instans &r synonym till objekt. Alla objekt
som skapas av en icke-statisk klass kommer att dela minnesutrymme vid en och samma
adress for sina statiska medlemmar. Andrar man nagot objekt via sin referens kommer
alla objekt i fortsdttningen att ha detta &ndrade varde. Kommer inget objekt att skapas
av denna klass kan man na datamedlemmen direkt via klassnamnet, darfor att minnesal-
lokeringen pga static har gjorts i klassen och inte i objekten. Vid punktnotation skrivs
klassnamnet fore punkten. Ett exempel &r konstanten w som kodas med Math.PI. |
klassen Math &r PI en statisk datamedlem. Darfor behdver vi inte skapa objekt av klas-
sen Math for att kunna komma at PI.

137

Den mest férekommande anvandningen av static ar framfoér metoden Main (). Som
en konsekvens kan man anropa statiska metoder i Main (). T.ex. &r biblioteksmetoden
Console.Write () som ofta anropas i Main (), statisk. Bland vara egendefinierade
metoder &r Encrypt () deklarerad som static (sid 140).

Statiska metoder

Precis som hos datamedlemmar allokerar static minne for en metod en gang for alla i
klassen och inte i varje enskilt objekt som skapas. Darfor anvands ocksa ibland beteck-
ningen klassmetoder for statiska metoder, parallellt till klassvariabler. Att allokera min-
ne for en metod innebdr att allokera minne for alla dess parametrar och lokala variabler.
Av det foljer att dven en statisk metods parametrar och lokala variabler &r statiska.
Sjalvklart kan man inte langre anropa en icke-statisk metod med klassnamnet. Hela
Main () dr ett statiskt kodomrade i vilket man inte kan referera till icke-statiska vare sig
metoder eller datamedlemmar. For att slippa deklarera en metod som static ar det
darfor nodvandigt att skapa ett objekt av referens istéllet for med klassnamnet. Regler:

Statiska medlemmar kan anvandas med klassnamnet.

Icke-statiska medlemmar kan bara anvandas genom att forst skapa
ett objekt. De kan sedan anvandas med obkjetreferenser.

Dessa regler &r logiska ur minnesallokeringssynpunkt: En metod &r en modul som i sin
helhet kan allokeras antingen i klassen eller i enskilda objekt. En blandning & oméjligt.
Féljande program visar att en icke-statisk metod maste i den statiska miljon Main ()
anropas med en objektreferens:

// RandTest.cs

// Simulerar 150 tdrningskast: slumpar heltal mellan 1 och 6
// Icke-statisk metod Next () behéver ett objekt for att anropas
// Ndstlad for-sats ordnar utskrifterna 1 en (10 x 15)-tabell
using System;

uclass RandTest

public static void Main()

{

Random r = new Random() ; // Random-objekt

Console.WriteLine ("\n\tl150 t&rningskast:");

for (int rad = 1; rad <= 10; rad++) // 10 rader
Console.Write ("\n\t") ; // Radbyte 1 tabellen
for (int kol = 1; kol <= 15; kol++) // 15 kolumner

Console.Write(r.Next(l, 7) + " "); // Anrop av icke-

} // statisk metod

Console.WriteLine("\n") ;

}

138

Programmet RandTes t:s korresultat blir t.ex.:

150 tarningskast:

LWworroao DM
NOOBDNNMNNMNDNLADN
Wowubs bW oK
BWWwWWwwwbdudNdDN
WowuowwdhdbRroyWw
WWOUoWRrWAddWR
OWWERErMNMNAOANMDOOL
RPWoWwkRrWbDU &
B WOoRrREPE O EFED
BN WwWboaUMDWDNDW
R OONREROOOB_DNDN
ORrRWONRPROOWWW
PO RN_RE OO AR
RPooUuoURrRENRLW
RPWWaN_WOUDNDDN

Nar ska man deklarera en metod som statisk?

Behovet av statiska metoder uppstar nar en metod fran modelleringssynpunkt inte kan
relateras till ett specifikt objekt med specifika datamedlemmar utan &r en allmén rutin
som kan utforas helt fristdende i objekt av alla mojliga slag. Ett exempel & metoder i
klasser som antingen inte har nagra datamedlemmar alls eller vars datamedlemmar inte
&r relaterade till och darfor inte forekommer i metoderna. En stor grupp statiska metoder
&r rena berdkningsmetoder. T.ex. ar alla metoder i klassen Math, bland dem alla mate-
matiska metoder, statiska darfor att de ar generella och inte bundna till andra data &n
sina egna parametrar (argument). Det vore sloseri med minnesutrymme och datortid om
man behévde skapa forst ett objekt av ndgon klass for att bara berikna t.ex. sinusmeto-
den for ett visst varde, nar denna berékning inte har att géra med objektet: Math. -
sin(x) exekverar endast kod som ar nddvandigt for berédkning av sinusmetoden och
kan anropas i bade statiska och icke-statiska metoder.

Statiska metoder i C# ersatter de fristdende funktioner som man har i andra, mindre ob-
jektorientorienterade programmeringssprak som C++. Ur den objektorientorienterade
programmeringens synpunkt ar statiska metoder forstds av mindre intresse. Men deras
flitiga forekomst i C#:s klassbibliotek visar att det finns behov for dem.

139

3.4 Referens i metoder

Kan en metod ha endast enkla datatyper som parametrar och returvarde, eller kan man
skicka ocksa objekt som indata (parametrar) till en metod och fa &ven tillbaka objekt
som utdata (returvirde)? Aven om fragan kan bejakas utan vidare, maste svaret precise-
ras i den bemarkelse att det inte &r sjalva objekten som skickas och fas tillbaka utan sna-
rare deras referenser. Vi kanner ocksa till att man i C# hanterar objekten med hjélp av
deras adresser och inte direkt. Det vore sléseri med datorns resurser (minnesutrymme)
om man kommunicerade tunga objekt (TV-apparaten) istéllet for latthanterade referen-
ser till objekt (fjarrkontrollen). S&, det ar inget nytt utan snarare det normala att anvanda
referenser som foretradare for objekt — ett slags namn, precis som man anvander vanliga
namn for variabler av enkel datatyp.

Féljande klass visar ytterligare ett exempel pa en metod som har en referens t till ett
String-objekt som parameter, men &ven en string-referens som returvarde. Dessu-
tom har den ocksa en vanlig int-parameter. Krypteringsmetoden Encrypt () Skrivs i
denna klass och anropas fran Main () i klassen EncryptStrTest pa nasta sida. Den &r
véldigt enkel, men kan latt ersattas av mer sofistikerade krypteringsalgoritmer.

// EncryptStr.cs

// Metoden Encrypt () tar emot en strdng t och krypterar den

// genom att férskjuta alla tecken med n steg i teckentabellen
// Den krypterade strdngen skrivs teckenvis till platsen temp
// Sedan returneras den krypterade strdngen frdn metoden

using System;

class EncryptStr

{
public static String Encrypt(String t, int n)
{
char ch;
String temp = null; // null-referensen
for (int i=0; i < t.Length; i++)
{ // Lidser tecknen fran t
ch = Convert.ToChar (t.Substring(i, 1))
ch = (char) (ch + n); // Andrar tecknen
temp += ch; // Lagrar tecknen 1 temp
}
return temp; // Skriver till Encrypt
}
}

Med den forsta parametern t far metoden Encrypt () tillgdng till det string-objekt
som skapas i den anropande metoden Main (). Adressen till detta objekt kopieras dver
till referensvariabeln t nér Encrypt () anropas. Samma sak sker med krypteringsnyc-
keln vars vérde kopieras till den andra parametern n. Sedan har vi i kroppen av metoden
tva lokala variabler ch och temp. Den forsta som &r av typ char initieras i for-loopen
och lagrar varje tecken frdn den inkommande okrypterade strangen t, men aven det

140

krypterade tecknet for att slutligen éverféra det via konkatenering till strdngen temp.
for-satsen gar igenom alla tecken i t genom att initiera sin raknare i till 0 och avsluta
loopen nar raknaren har natt strangens sista tecken. Att man borjar med 0 beror pa att
C# raknar strangens forsta tecken med index 0, det andra med index 1 osv. sa att det
sista tecknet far t.ex. index 25 om strangen innehdller 26 tecken. Length &r en
String-egenskap som ger antalet tecken i strangen, héar t. Darfor har vi i £or-loopen
avslutningsvillkoret i < t.Length. | varje varv av den laggs det uttagna tecknet fran t
i den lokala char-variabeln ch och gors om till ett nytt tecken med satsen ch = (char)
(ch + n) ; déar tecknet ch:s Unicode adderas med heltalet n (se teckenaritmetik, Progri,
3.2). Resultatet omvandlas med explicit typkonvertering till char for att sedan tilldelas
ch och dverskriva dess gamla véarde. Utan explicit typkonvertering skulle vi fa kompile-
ringsfel pga C#:s vagran att automatiskt typomvandla nedat fran int till char (Progri+,
5.7). for-loopens sista sats bygger den krypterade strangen temp som efter for returne-
ras nar Encrypt () anropas i féljande klass:

// EncryptStrTest.cs

// Krypterar strdngen text med en slumpad krypteringsnyckel
// Aterstdller sedan den krypterade texten med den negativa
// krypteringsnyckeln, bdda med samma metod Encrypt ()

using System;

class EncryptStrTest

{
public static void Main()
{
String text = "abcdefghijklmnopgrstuvwxyz";
Random r = new Random() ;
int nyckel = r.Next (40, 200); // Krypterings—
// nyckeln
Console.WriteLine ("\n\tKryptering av text: wH g
Console.Write ("\n\tOkrypterad text: " 4+ text);
text = EncryptStr.Encrypt(text, nyckel); // l:a anropet
// krypterar
Console.Write ("\n\n\tKrypterad text: "o+
text + "\n\n\tKrypteringsnyckeln: " + nyckel) ;
text = EncryptStr.Encrypt(text, -nyckel); // 2:a anropet
// aterstdller
Console.WriteLine ("\n\n\tAterstidlld text: "o+
text + "\n");
}
}

141

Ett korresultat visar foljande utskrift:

Kryptering av text:

Okrypterad text: abcdefghijklmnopgrstuvwxyz
Krypterad text: ¥!1§°0%«a-® °123 g -, to»¥%s%
Krypteringsnyckeln: 68

Aterstalld text: abcdefghijklmnopgrstuvwxyz

Det engelska alfabet som anvénts som teststrang har krypterats med slumpnyckeln 68
och aterstallts med -68. Bada operationer utfors i programmet ovan med anrop av me-
toden Encrypt (), definierad i klassen Encryptstr (sid 140). Det forsta anropet sker
med den key som anropet r.Next (40, 200) genererar, dvs ett heltalsslumpvérde mel-
lan 40 och 199.

Initieringen av datamedlemmen temp till null ar nédvandig darfor att den sedan an-
vands i satsen temp += ch; som pga den sammansatta tilldelningsoperatorn += &r
identisk med temp = temp + ch; . Déarfor maste den vara initierad nar den initialt kon-
kateneras med char-variabeln ch som av + automatiskt typkonverteras till string.
Aven hir ar det avgorande att skilja mellan referensen temp och den tomma strangen
som ett string-objekt.

142

3.5 Abstrakta klasser och metoder

Nér du far instruktionen “Rita en geometrisk figur!” kommer du antagligen att stélla fra-
gan “Vilken geometrisk figur ska jag rita?”. For, utan en niarmare specificering ar det in-
te klart, om du ska rita en cirkel, en kvadrat, en triangel eller Vilken geometrisk fi-
gur du &n ritar, kommer den att vara ett exemplar av ndgon underkategori (cirkel, kvad-
rat, triangel, ...) av huvudkategorin geometrisk figur. Detta beror pa att geometrisk figur
&r en abstrakt kategori som inte kan exemplifieras direkt utan endast via sina underkate-
gorier. Endast cirkel, kvadrat, triangel, ... kan exemplifieras. Ytterligare exempel pé en
abstrakt kategori ar levande vasen, fordon, biljett eller transportmedel.

Vérlden &r full med abstrakta kategorier. Man programmerar dem som abstrakta klasser.
Det vi sa ovan innebér i programmeringstermer att man inte kan skapa objekt av ab-
strakta klasser. Endast deras subklasser kan instansieras. Anda 4r abstrakta klasser av
intresse, darfor att de tillater att forverkliga nagra av den objektorienterade programme-
ringens viktigaste mél, namligen att ateranvinda kod, att modularisera och strukturera
program. Abstrakta Klasser forenar alla egenskaper och metoder som & gemensamma
for alla objekt av denna typ — och med objekt menar vi objekt av de subklasser som &r-
ver den abstrakta superklassen. T.ex. har alla geometriska figurer de gemensamma me-
toderna att rita, att berédkna arean och att berdkna omkretsen. Men dven dessa metoder
kommer att vara abstrakta, eftersom man inte kan utfora dem forran nagon subklass har
specificerats. Abstrakta klasser ger alltsd automatiskt upphov till abstrakta metoder, var-
for vi behandlar dem tillsammans i féljande enkelt exempel:

// Super.cs

// Abstrakt superklass som deklarerar en abstrakt metod

// Endast metodens huvud (signatur) skrivs i klassen

// Overskuggning sker med abstrakt metod i superklassen OCH
// override i subklasserna

abstract class Super

{

public int number; // Datamedlem: Initieras autom. till 0
public abstract void Method() ; // Abstrakt metodhuvud

}

Det ar det reserverade ordet abstract i klasshuvudet som gor att man t.ex. i Main ()
eller i ndgon annan metod inte kan skriva Super a = new Super () ; Dvs forsoket att
skapa ett objekt av klassen super som &r deklarerad som abstract kommer att leda
till kompileringsfel. Klassen super har en datamedlem som deklareras, men inte expli-
cit initieras. Till skillnad fran lokala variabler i metoder som maste initieras explicit, blir
datamedlemmar automatiskt initierade till 0 (om de & number). Sedan har klassen su-
per en klass som vi sjalva valt att deklarera som abstract. Abstrakta metoder ar sada-
na som inte har sin kropp i samma klass som huvudet. Huvudet (signaturen) skrivs hér
och avslutas med semikolon. Kroppen kommer att definieras i subklasser till klassen
super. En mycket strikt regel for abstrakta metoder ar att de maste implementeras (fa
en kropp) i alla subklasser som arver superklassen. Sjélvklart kan en abstrakt klass &ven

143

innehalla icke-abstrakta metoder (vilket inte forekommer i exemplet ovan). Men ab-
strakta metoder kan endast skrivas i abstrakta klasser. En annan regel fér abstrakta me-
toder &r att de inte far deklareras som privata.

Implementation av abstrakt metod

For att testa och battre forstd de ovannamnda reglerna skapar vi foljande subklass som
arver klassen super och implementerar den abstrakta metoden Method () i den:

// Subl.cs

// Subklass till klassen Super som implementerar den abstrakta
// metoden Method(): number &kar med 1

// Method () o6verskuggar (override) klassen Super:s metod Method()
using System;

class Subl : Super // Subl drver Super
public override void Method () // override ersdtter abstract
{
Console.WriteLine ("\n\tSubl:s Method(): " +
"Initialvarde = " + number) ;
number++; // number &Skar med 1
Console.WriteLine ("\tSubl:s Method(): " +
"Uppdaterat vdrde = " + number) ;
}
}

Implementeringen bestar av en 6kning av datamedlemmen number:s varde med 1, inra-
mad av tva utskriftssatser som skriver ut vardet, en géng fore och sedan efter 6kningen.
I huvudet av metoden Method () ersétts abstract (i klassen super) av det reservera-
de ordet override, vilket innebdr att subklassens Method () ska dverskugga dvs &sido-
satta superklassens Method () och utféra den kod som vi skriver i denna kropp. Pa lik-
nande sétt skapar vi en andra subklass till klassen super och implementerar den ab-
strakta metoden Method () i den pa ett lite annorlunda sétt:

// Sub2.cs

// En andra subklass till klassen Super som implementerar den
// abstrakta metoden Method(): number minskar med 1

using System;

class Sub2 : Super // Sub2 drver Super
public override void Method () // override ersdtter abstract
{
Console.WriteLine ("\n\tSub2:s Method(): " +
"Initialvdrde = " + number) ;
number--; // number minskar med 1
Console.WriteLine ("\tSub2:s Method(): " +
"Uppdaterat vidrde = " + number + "\n\n");
}
}

144

Aven hir 6verskuggar Method () klassen super:s metod Method (). Den enda skillna-
den till den forsta subklassen ar att datamedlemmen number:s varde nu minskar med 1.

Test av abstrakt metod

Vi ska nu testa om den rétta metoden anropas ndr vi med samma namn Method () en
gang anropar metoden med ett objekt av den ena, en annan gang med ett objekt av den
andra subklassen. Detta gor vi genom att i Main () skapa objekt av den ena och den an-
dra subklassen. Klassen override ser endast subklasserna subl och sub2, inte super-
klassen super:

// Override.cs

// Testar de &verskuggade metoderna i subklasserna Subl och Sub2
// new Super () kan inte skrivas pga abstract class Super

// Objekten avgdér vilken av metoderna Method() som ska anropas

class Override

{
static void Main()
{
Subl a = new Subl();
a.Method() ; // Anrop av Subl:s Method()
Sub2 b = new Sub2() ;
b.Method () ; // Anrop av Sub2:s Method()
}
}

Sa hér ser en korning av override ut:

Subl:s Method(): Initialvarde = 0

Subl:s Method(): Uppdaterat vdrde = 1
Sub2:s Method(): Initialvdrde = 0
Sub2:s Method () : Uppdaterat vdarde = -1

De tva forsta raderna kommer frén anropet av a.Method () dvs frdn Method () tillho-
rande objektet a av den forsta subklassen sub1l. De tva sista raderna kommer frén anro-
pet av b.Method () dvs frdn Method () tillnrande objektet b av den andra subklassen
sub2. Att datamedlemmen number uppdateras till 1 forst och till -1 sedan visar att
Subl:S Method () Med number++ i kroppen har anropats forst och sub2:s Method ()
med number-- i kroppen sedan. S& bada metoder i de tva subklasserna har verkligen
overskuggat den abstrakta metoden med samma namn Method () i superklassen.

145

3.6 Virtuella metoder

Reglerna kring abstract &r ganska strikta, speciellt regeln att man maste implemente-
ra superklassens abstrakt metoder i alla subklasser. | vissa applikationer vill man inte
gora det. Man vill kanske implementera superklassens metoder i nagra, men inte i alla
subklasser. Da kan man inte anvanda abstrakta metoder. Eller kanske vill man ha en del
av metodkroppen i superklassen och en annan del i en subklass. For att kunna anvénda
objektorientering grad- eller delvis, finns det i C# en lite svagare variant av abstract
som kallas virtual. Med virtuella metoder kan man dverskugga superklassens metod,
man maste inte gora det. Som vi vet innebar polymorfism att man aven kan delvis modi-
fiera superklassens metod. Har ar definitionen fran Progri, Appendix A:

Polymorfism modifierar helt eller delvis funktionaliteten hos metoder
med samma namn som forekommer i en arvhierarki.

Vi ska nu ge ett exempel pa en virtuell metod. Eftersom den inte #r abstrakt, utan “bara”
virtuell, behéver den inte heller definieras i en abstrakt klass. Darfor skriver vi den i fol-
jande icke-abstrakt klass:

// SuperV.cs

// Icke-abstrakt superklass som definierar en virtuell metod som
// sedan ska oOverskuggas 1 en subklass

// Overskuggning sker med virtuell metod hdr i superklassen OCH
// med override i subklasserna
using System;

class Super

{
public int number; // Datamedlem: Initieras
// automatiskt till 0
public virtual void Method () // Virtuell metod med kropp
{
Console.WriteLine ("\n\tSuper:s Method(): Initialvdrde = " +
number) ;
number++;
Console.WriteLine ("\tSuper:s Method(): Uppdaterat vadrde = "
+ number) ;
}
}

Metoden Method () 4r vituell och behdver — till skillnad fran en abstrakt metod — inte
vara i en abstrakt klass. Darfor ar klassen super inte abstrakt. En annan skillnad &r att
Method () :s kropp definieras i klassen super och inte utanfor. Men precis som abstrak-
ta metoder far dven Method () inte vara privat. Sa langt till skillnaderna och de gemen-
samma egenskaperna hos abstrakta och virtuella metoder. Forresten, nagon virtuell
klass finns inte. Det finns bara virtuella metoder.

146

Overskuggning av virtuell metod

Nu ska klassen super f& en subklass dar vi definierar om den virtuella metoden Me-
thod () :

// Sub.cs
// Subklassen Sub &drver Super och modifierar dess metod Method ()
// Overskuggning sker med virtual i superklassen OCH
// med override hdr 1 subklassen
// Testa gdrna: Ta bort virtual fran Super:s Method() och
// override fran Sub:s Method ()
using System;
class Sub : Super // Sub drver Super
{
public override void Method () // override nédvdndigt for
{ // 6verskuggning
Console.WriteLine ("\n\tSub:s Method(): Initialvdrde = " +
number) ;
number--;
Console.WriteLine ("\tSub:s Method(): Uppdaterat vadrde = " +

number + "\n") ;

}

Metoden Method () far i subklassen sub en ny kropp som skiljer sig fran superklas-
sens Method () i och med att datamedlemmen number inte uppdateras till 1 utan till -
1. For att sub-klassens Method () ska kunna Overskugga Super-klassens Method (),
nér den anropas, maste vi forse metodhuvudet med det reserverade ordet override.

Test av virtuell metod

Nu ska vi testa om dverskuggning verkligen sker, dvs om vi med samma namnet Me-
thod () anropar tva olika metoder, en gang Method () med ett Super-objekt, en annan
gang med ett sub-objekt:

// TestVirtual.cs
// Testar Sverskuggning av den virtuella metoden Method ()
using System;

class TestVirtual

{

static void Main()

{
Super a = new Super() ;
a.Method() ; // Anrop av Super:s Method ()
Sub b = new Sub() ;
b.Method () ; // Anrop av Sub:s Method()
a = new Sub() ; // a pekas om till ett Sub-objekt

147

a.Method() ; // Anrop av Sub:s Method()
} // Men: Anrop av Super:s Method ()
} // om Method () dr icke-virtuell

Foljande korning av Testvirtual Visar att anropet a.Method () uppdaterar datamed-
lemmen number:s varde till 1 och att anropet b.Method () &ndrar vardet till -1:

Super:s Method(): Initialvarde = 0
Super:s Method(): Uppdaterat varde = 1

Sub:s Method(): Initialvarde = 0
Sub:s Method(): Uppdaterat varde = -1

Sub:s Method(): Initialvarde = 0
Sub:s Method() : Uppdaterat varde = -1

Detta visar att det forsta anropet a.Method () anropar Super-klassens Method (), ef-
tersom a dr en referens till ett super-objekt, medan det andra anropet b.Method ()
anropar sub-klassens Method (), eftersom b &r en referens till ett sub-objekt. Det andra
anropet &r ett exempel pa 6verskuggning. Darfor ar resultaten olika.

| det tredje och sista anropet a.Method () har a genom ompekningen a = new Sub ()
strax innan blivit en referens till ett sub-objekt. Aven har sker som véntat en éverskugg-
ning dvs a.Method () anropar Sub-klassens Method (), eftersom a pekar pa ett Sub-
objekt.

Men skulle man ta bort virtual frdn Super:s Method () i filen SuperV.cs (sid 146)
och override fran Sub:s Method () i filen sub.cs (sid 147) blir det tredje anropets
korresultat annorlunda:

Super:s Method(): Initialvdrde = 0
Super:s Method () : Uppdaterat varde =1

Sub:s Method(): Initialvdrde = 0
Sub:s Method() : Uppdaterat varde = -1

Super:s Method(): Initialvarde = 0
Super:s Method(): Uppdaterat varde =1

| det tredje anropet a.Method () blir Super:s Method () anropad, fast a pekar pa Sub.
Det uppdaterade vardet 1 visar att det inte sker ndgon dverskuggning. Detta beror pa att
vi inte explicit skriver virtual i Super:S Method () och inte heller override i Sub:s
Method (). Och referensen a pekar pga sin super-typ pa ett super-objekt och inte pa
ett sub-objekt. Testa detta garna sjalv.

148

3.1

Ovningar till kapitel 3

Féljande program ar inte modulariserat:

// Non modularized 1l.cs

// Ldser in tvd heltal, gdr berdkningar med dem och skriver ut

// resultaten med férklarande text.

// Om du t.ex. matar in 3 till det férsta och 4 till det

// andra heltalet, ska programmet skriva ut: 3 ganger 4 &dr 12 osv.
// Innehdller ytterligare rdkneoperationer

// Kan sa& smaningom vidareutvecklas till en liten kalkylator

using System;
class Non _modularized 1

{
static void Main()
{
Console.Write("\n\tMata in ett heltal:\t\t"); // Ledtext
int nol = Convert.ToInt32 (Console.ReadLine()) ; // Input
Console.Write ("\n\tMata in ett heltal till:\t");
int no2 = Convert.ToInt32 (Console.ReadLine()) ;
Console.WriteLine ("\n\n\t" +
nol + " plus " + no2 + " 4&r " + (nol + no2) + "\n\t" +
nol + " minus " + no2 + " 4&r " + (nol - no2) + "\n\t" +
nol + " ganger " + no2 + " 4&r " + (nol * no2) + "\n\t" +
nol + " heltalsdividerad med " +
no2 + " 4r " + (nol / no2) + "\n\t" +
nol + " modulo " + no2 + " &r " + (nol % no2) + "\n\t");
}
}

Modularisera programmet Non_modularized 1 fOr att vidareutveckla det till en
liten kalkylator (fast i konsolen): Separera berékningarna, t.ex. multiplikationen
frdn kodens andra delar dvs fran input och output.

a) Flytta multiplikationen till en metod med returvarde med huvudet static
int Mult(int a, int b) i samma klass som Main (). Anropa metoden
Mult () frdn Main (). Bibehdll alla andra berdkningar. Se upp med att inte
placera den nya metoden i Main (), utan fore eller efter.

b) Fortsatt med att flytta metoden mult () till en annan klass i samma fil. Anro-
pet ska fortfarande goras frdn Main (). Aven har: Se upp med att inte placera
den nya klassen i den gamla, utan fore eller efter.

c) Flytta den nya klassen samt metoden Mult () till en separat fil.

d) Gor samma sak med alla andra berdkningssatt. Lagra var och en klass med
resp. metod i en separat fil. Anropa alla metoder fran Main ().

149

3.2

3.3

Modularisera programmet Non_modularized_2 genom att skriva dess bearbet-
ningsdel som en ny metod i samma klass. Bibehall in- och utmatnigsdelen i
Main () och anropa den nya metoden fran Main (). Avgor sjalv om den nya me-
toden ska returnera ett varde och om den ska vara statisk. Ge metoden ett beskri-
vande namn.

// Non_modularized 2.cs

// Lidser in tiden 1 antal 4r, mdnader och veckor, omvandlar den
// till antal dagar och skriver ut resultatet.

// Anvdnder ett aritmetiskt uttryck for berdkning av antal dagar.
// Inmatning - bearbetning - utmatning. Ndstlat anrop av metoder.
using System;

class Non _modularized 2

{

static void Main()

{

int years, months, weeks, days, totalDays;

/*Inmatning*/
Console.Write("\n\tAnge antal ar:\t\t"); // Ledtext
years = Convert.ToInt32 (Console.ReadLine()); // Nidstlat anrop

Console.Write("\n\tAnge antal manader:\t");
months = Convert.ToInt32 (Console.ReadLine()) ;

Console.Write("\n\tAnge antal veckor:\t");
weeks = Convert.ToInt32 (Console.ReadLine()) ;

Console.Write ("\n\tAnge antal dagar:\t");
days = Convert.ToInt32 (Console.ReadLine()) ;

/*Bearbetning*/ // Aritm. uttryck
totalDays = 365*years + 30*months + 7*weeks + days;

/*Utmatnding?*/
Console.WriteLine ("\n " +
years + " ar, " + months + " manader, " +
weeks + " veckor och " + days + " dagar ar " +
totalDays + " dagar totalt.\n");

a) Vand om problemet fran 6vn 3.2. Dvs Omvandla en tid som &r angiven i dagar
till &r, manader, veckor samt resterande dagar. Skriv ett icke-modulariserat pro-
gram Non_modularized_3, som fragar efter en tid i antal dagar, laser in den, och
sedan beraknar samt skriver ut resultatet i antal ar, manader, veckor samt reste-
rande dagar.

b) Modularisera programmet Non_modularized 3 (losningen fran a) genom att
flytta bearbetnings-och utmatnigsdelen till en void-metod. Dvs skriv ett program
som laser in tiden i ett antal dagar, anropar void-metoden som omvandlar tiden
till antal &r, manader, veckor och restdagar och skriver ut resultaten. Anvand for

150

3.4

3.5

omvandlingen den algoritm som &r implementerad i programmet Non_modula-
rized_3. Varfor dr det inte lampligt hér att anvdnda en metod med returvérde?

Skriv forst ett program med endast Main () -metoden som l&ser in side till en
kub samt beréknar och skriver ut kubens volym side 3 och dess yta 6 X side 2.
Flytta sedan dessa berdkningar till tva metoder, en for volymen, en for ytan, bada
i en separat klass cube. Deklarera side som en datamedlem i klassen Cube. Av-
g6r om metoderna volume () och Surface () ska returnera eller vara av void-
typ. Anropa dem frén Main (). Skriv forst en variant med statiska metoder, byt
sedan till icke-statiska metoder. Testa bada varianter. Avgor slutligen sjalv vilken
variant som ska foredras om I6sningen ska vara objektorienterad.

Modularisera programmet Non_modularized_3 efter eget godtycke.

151

152

Kapitel 4

Mer om metoder

Amne Sida Program
4.1 Algoritm for platsbyte 156 MiniSort
4.2 Varde- och referensanrop 156 CallByVal/ByRef
4.3 In- och utparametrar 161 Outparam
4.4 Variablers livslangd 164 Block
4.5 Overskuggning av variabler 167 OverrideVar
- Referensen this 168
4.6 Overlagring av metoder 172 Overload
4.7 Rekursiva metoder 175 Fibonacci
4.8 Lambdauttryck 178 Lambda
4.9 Delegater 180 Delegate
- Delegat som parameter i metoder 181 DelegateParam
- Varianter av Console.WriteLine () 183 WriteLineOverl
- Lésningen med LINQ 184 CountLINQ
- Metodgrupper 185 MethodGroup
Ovningar till kapitel 4 och projektuppgifter 187

153

4.1 Algoritm for platsbyte

Hur kan man byta plats pa tva objekt nir de star i ”fel” ordning? Detta ar kdrnfragan i
alla forsok att sortera data. Och sortering ar en av de mest efterfragade uppgifterna i
programmering som &r dessutom besldktad med sokning. Vi vill har lagga grunden till
en sok- och sorteringsalgoritm som vi kan anvanda pa alla méjliga objekt. Men vi borjar
med teckentabellen for att lara kdnna principen och begréansar oss till tva tecken — till att
borja med. I foljande program formulerar vi algoritmen for platsbyte av tva tecken forst
utan metoder och kommer i ndsta avsnitt att modularisera koden, for att ha algoritmen
som en metod som kan anropas av andra program.

Algoritmen

Lat oss anta vi har tva tecken charl och char2 som vi vill byta pltas pa. For att kunna
gora det behdvs en tredje, temporar plats. Vi borjar med att lagga undan charl pé den
temporara platsen temp (steg 1). Sedan byter vi plats pd char2 och lagger det i charl
som témdes i steg 1 (steg 2). Och slutligen, i steg 3, lagger vi charl som under tiden
mellanlagrats i temp, in i char2 som tdmdes i steg 2:

1

charl char2 temp
Illustrationen ovan &r en grafisk beskrivning av algoritmen dar 1, 2 och 3 anger ordnin-

gen i den. Den tredje platsen temp, behdvs, for att temporért lagga undan det felplace-
rade tecknet. | féljande program inplementerar vi algoritmen ovan.

Programmet

// MiniSort.cs

// Ldser in 2 tecken och sorterar dem i teckentabellens ord-
// ning med hjdlp av en algoritm fér platsbyte av tva objekt
using System;

class MiniSort

{

static void Main ()
{
char charl, char2, temp;
Console.Write ("\n\tTva osorterade tecken:\n\n\t" +
"Mata in tva tecken skilda med mellanslag:\t") ;
string str = Console.ReadLine() ;

154

charl = text[0]; // Fdrsta tecknet tas ut

char2 = text[2]; // Andra tecknet tas ut

if (charl > char2) // tecknen tolkas som tal

{
temp = charl; // Algoritm for platsbyte
charl = char2; // av tva tecken charl, char2
char2 = temp;

}

Console.WriteLine ("\n\tDe tva tecknen sorterade:\t\t\t" +

charl + ' ' + char2 + "\n\n");

}

Sjalva sorteringsalgoritmen finns i if-satsen av programmet MiniSort. Om de tva
tecknen blir inmatade i rétt ordning, ska de inte byta plats utan skrivas ut i oférdndrad
ordning. Déarfor tas upp i if-satsens villkor endast fallet charl > char2 dvs nér
tecknen &r inmatade i fel ordning. Foljande kdrexempel sorterar de inmatade tecknen z
och a i rétt dvs i Unicode-tabellens ordning:

Tva osorterade tecken:
Mata in tva tecken skilda med mellanslag: Z A

De tva tecknen sorterade: A Z

Algoritmens karna ligger i if-satsen med sina tre satser. | den forsta satsen lagger vi
undan charl:s varde i temp (Steg 1 i bilden ovan). | den andra satsen byter vi plats pa
char2:s vérde och lagger det i charl (steg 2). Och slutligen 14ggs temp som under ti-
den har mellanlagrat chari:s varde, in i char2 (steg 3). Platsbytet pd charl och
char2 dger endast rum om de inmatade teckenvérdena éar felplacerade dvs endast om
charl > char2. Annars behdller de sina platser.

| kérexemplet ovan jamfor if-satsens villkor charl > char2 vérdena z och A med
varandra. Men tecken kan inte séttas i en relation av typ “storre &n” till varandra. |
sjélva verket &r det Unicode-koderna till z och a som jamférs med varandra. Det &r en-
dast tal som kan jamféras med varandra. Jamforelseoperatorn > behandlar char-
variablerna char1 och char2 som tal precis som aritmetiska operatorer gor.

155

4.2 Varde- och referensanrop

| det hér avsnittet ska vi lara oss pa vilket sétt parametrar dverfors mellan metoder. Det
finns ndmligen i C# olika typer for parameterdverforing, en av dem &r vardeanrop (Call
by Value) som demonstreras i foljande program dér Main () anropar en metod dér man
kan studera parametererdverforingen.

// CallByVal.cs

// Demonstrerar Vdrdeanrop: Vid metodanrop &verférs VARDENA

// De formella parametrarna (kopior) &ndras 1 metoden

// Men dndringen paverkar inte aktuella parametrarna (originalen)
using System;

class CallByVal

{

static void Main ()

{

int hour = 5, min = 35, sec = 49;

Console.WriteLine ("\nI Main() FORE anrop av metod:\ttim=" +
hour + ", min=" + min + ", sec=" + sec);

int total = totalsek (hour, min, sec); // Anrop av metoden: De
// aktuella parametrar-—
// nas VARDEN skickas

Console.WriteLine ("\nI Main() EFTER anrop av metod:\ttim="
hour + ", min=" + min + ", sec=" + sec + "\n\t\t\t\tger "
total + " sekunder totalt.\nVARDEANROP:\n\nAndringen av"
" de formella parametrarna (kopior)\npaverkar inte de "
"aktuella parametrarna (originalen).\n")

~ o+ 4+ o+

/***/
static int totalsek(int t, int m, int s)

{
Console.WriteLine ("\n\tI metoden FORE &ndringen:\n\tt=" +
t+ ", m=" +m+ ", s=" + s);
int resultat = 3600 * t + 60 * m + s;
t=m=s =0; // Andring av formella

// parametrar
Console.WriteLine ("\n\tI metoden EFTER &ndringen:\n\tt=" +
t+ ", m=" +m+ ", s=" + s);
return resultat;

/***/

}

Varfér har vi valt andra namn for de aktuella hour, min, sec an for de formella para-
metrarna t, m, s fast de lagrar samma varden? Bada representerar timmar, minuter och
sekunder. Fragan &r: Lagras dessa varden i 3 eller 6 minnesceller? Om det 4r 3 vore va-
let av samma namn motiverat, darfor att de lagrar samma varden. Men om det &r 6 vore

156

det battre att aterspegla verkligheten aven i koden genom att valja olika namn for de
aktuella an for de formella parametrarna.

Parametrar som skrivs i en metods anrop — i vart exempel hour, min, sec — kallade vi
for aktuella parametrar *, en beteckning som ska framhava deras skillnad till de for-
mella parametrar som skrivs i metodens definition. Med aktuell menas att de har ak-
tuella varden som géller vid anropet for att skickas till metodens formella parametrar.
Darfor maste de vara val definierade variabler eller konstanter. | exemplet ovan lases in
de i Main (). De formella parametrarna — i vart exempel £, m, s — maste alltid vara va-
riabler som definieras i metoden totalsek ():s parameterlista ndr denna skapas. Sina
varden far de forsta gangen inte tilldelade i metodens kropp utan fran de aktuella pa-
rametrarna vid metodens anrop. Sedan &ndras deras vérden i metoden: De sétts allihop
till 0 for att testa vilken paverkan denna &ndring har pa de formella parametrarna. Men
for att anda kunna fa resultatet med de ursprungliga vardena beraknas antalet totalse-
kunder och sparas undan i variabeln resultat som slutligen returneras fran metoden.
Innan dess skrivs ut vérden som andrats till 0.

I Main () skriver vi ut de aktuella parametrarnas varden fore och efter anropet av meto-
den for att se om de formella parametrarnas andring i metoden péverkar de aktuella
parametrarna. Foljande kdrexempel visar att detta inte &r fallet:

I Main() FORE anrop av metod: hour=5, min=35, sec=49

I metoden FORE &dndringen:
t=5, m=35, s=49

I metoden EFTER &andringen:
t=0, m=0, s=0

I Main() EFTER anrop av metod: hour=5, min=35, sec=49
ger 20149 sekunder totalt.
VARDEANROP:

Andringen av de formella parametrarna (kopior)
paverkar inte de aktuella parametrarna (originalen).

Korexemplet visar att de formella och aktuella parametrarna har var sitt eget liv. Det
enda som relaterar dem till varandra ar att de tar 6ver vérdena fran varandra. Andringen
av de formella parametrarna paverkar inte alls de aktuella parametrarna. Av detta kan
man dra slutsatsen att hour, min, sec 0Ch t, m, s r tvé olika uppsattnigar variabler.
De lagras i 6 olika minnesceller. Aven om vi skulle vélja samma namn fér dem — vilket
vore tillatet da de ligger i tva olika metoder och dirmed i tvé olika block — kommer

*

Andra beteckningar som forekommer i litteraturen &r anropsparametrar eller argument. Spe-
ciellt argument anvénds ofta da det &r en inkord matematisk term: T.ex. &r V3 ett anrop av funk-
tionen Vx dar x — i matematiska termer — 4r variabeln” och 3 “argumentet”. I programmerings-
termer skulle x kallas for den formella och 3 den aktuella parametern.

157

namnen fortfarande beteckna 6 olika minnesceller. Aven om beteckning &r av sekundar
betydelse vill vi i fortsattningen vélja andra namn for de aktuella &n fér de formella pa-
rametrarna for att aterspegla denna verklighet. Kodens lasare ska inte luras som om de
vore samma variabler pga namnvalet.

En annan slutsats av kdrningen ovan &r: Parameterdverforingen mellan metoderna
totalsek () och Main () realiseras genom kopiering av vardena fran de aktuella till
de formella parametrarna. Denna parameterdverforingsmetod kallas vardeanrop darfor
att det &r sjalva varden som kopieras dver ndr metoden aropas. Minnesbilden av vér-
deanrop ser ut sa har:

Vardeanrop:
Kopiering
hour 5 YEO t
min 35 350 m
sec 49 49 0 s

Andring av kopiorna, de formella parametrarna t, m, s, pdverkar inte
originalen, de aktuella parametrarna hour, min, sec.

Vid denna parameterdverforingsmetod skapas alltid en dubbel uppsattning av minnes-
celler: 6 om vi har 3 parametrar. Darfor leder vardeanrop oundvikligen till férdubblad
minnesatgang. Datatypen till respektive parameter ar avgorande for den automatiska til-
lampningen av vardeanrop. Det géller foljande regel:

I C# valjs automatiskt vardeanrop (Call by Value) for parameter-
overforing vid metodanrop, om parametern ar av enkel datatyp.

Férdubblingen av minnesatgangen anses inte som ett stort problem eftersom enkla data-
typer i alla fall tar upp relativt litet minnesutrymme. For datatyper som kréver storre
minnesutrymme anvands en annan teknik som undviker denna férdubbling och som he-
ter referensanrop.

Ur minnessynpunkt ar forstas fordubblingen av minnesatgangen en nackdel. Men vérde-
anrop har &ven fordelen att just pga minnesbilden ovan de formella och de aktuella pa-
rametrarna har var sitt liv och inte paverkar varandra. | vissa sammenhang &r detta énsk-
vart, i andra inte. Sa, beroende pé applikationen kan man vélja bland de tva parameter-
6verforingsmetoderna vérde- och referensanrop genom att vélja ratt datatyp till sina pa-
rametrar. Enkel datatyp leder automatiskt till vardeanrop. Vilken datatyp som automa-
tiskt leder till referensanrop ska vi ta upp pa de féljande sidorna.

158

Referensanrop (Call by reference)

Vérdeanrop anvander sig av kopiering av parametervardena till nya minnesceller och
tillampas ndr parametrarna ar enkla datatyper. Nackdelen med véardeanrop ar att den
medfor fordubbling av minnesatgangen. Alternativet till det ar referensanrop som éver-
fér minnesadressen istéllet for vardet och dar man slipper denna nackdel. Referensanrop
ar relaterad till datatypen referens som behandlades tidigare varifran ocksd namnet har-
stammar. Anledningen &r att parametrarnas datatyp automatiskt styr valet av overfo-
ringsmetoden. Det géller ndmligen:

I C# valjs automatiskt referensanrop (Call by reference) for parameter-
Overforing vid metodanrop, om parametern ar av datatypen referens.

Samtidigt kommer vi att se att det for vissa problem t.o.m. &r nddvéndigt att anvénda re-
ferensanrop da det inte gér att modularisersa dem med vérdeanrop. Man vill t.ex. skicka
vissa parametrar till en metod dar de andras och man vill fa tillbaka andringen till
huvudprogrammet. Ta féljande exempel: Vi vill skicka tva parametrar till en metod som
ska sortera dem. Skickar vi dem i fel ordning ska metoden stélla dem i rétt ordning och
skicka tillbaka dem i den ratta ordningen — grunden till alla sorteringsalgoritmer. Ett
exempel pa ett sddant problem som vi ska ta upp har, & modulariseringen av program
MiniSort (sid 154) som presenterade en algoritm for platsbyte mellan tva tecken. Vi ska
nu separera sjalva algoritmen och skriva den som en metod med tanke pa att den
kommer att utvecklas till en allmén sorteringsalgoritm for stérre dataméngder senare.
Det programmeringstekniska verktyget for att f4 parametrar av typen referens ar det
reserverade ordet ref som satts framfor parameterdeklarationerna och fungerar som en
slags adressoperator: ref char t1 blir adressen till char-parametern t1:

// Swapping.cs

// Klass med metoden Swap () som tar in 2 tecken och byter plats
// pa dem om de kommer in i fel ordning enligt Unicode-tabellen
// De ombytta parametrarna i Swap () blir dven ombytta i den

// anropande metoden pga parametrarna dr deklarerade som

// referenser med det reserverade ordet ref: Referensanrop

class Swapping

public static void Swap(ref char tl, ref char t2)

{

char temp;
if (t1 > t2)

{
temp = tl1; // Algoritm fér platsbyte
tl = t2; // av de tva teckenvdrdena
t2 = temp; // tl och t2

}

159

Bearbetningsdelen av MiniSort (sid 154) har flyttats till en void-metod. Parametrarna
t1 och t2 ar definierade som referenser. De tar inte emot nagra teckenvarden fran
charl och char2 (se nedan) utan endast deras adresser. t1 och ref charl &r tva olika
referenser till samma vérde charl. Samma sak &r det med t2 och ref char2. Nér
vardena andras i metoden med hjalp av referenserna t1 och t2 kan andringen ses i
Main () med charl och char2:

// CallByRef.cs

// Ldser in 2 tecken, skickar dem till metoden Swap () i klassen
// Swapping som sorterar dem 1 teckentabellens ordning

// Andringen dr synlig i Main() pga referensanrop som patvingas
// med ref sa att adresserna skickas vid anrop, inte vidrdena
using System;

class CallByRef

{
static void Main()
{
char charl, char2;
Console.Write ("\n\tTva osorterade tecken:\n\n\t" +
"Mata in tva tecken skilda med mellanslag:\t") ;
string str = Console.ReadLine() ;
charl = str[0]; // Férsta tecknet tas ut
char2 = str[2]; // Andra tecknet tas ut
Swapping.Swap (ref charl, ref char2); // Metodanrop
Console.WriteLine ("\n\tDe tva tecknen sorterade:\t\t\t" +
charl + ' ' + char2 + '\n');
}
}

Metoden swap () staller i ratt ordning tecken som &r inmatade i fel ordning vilket en
korning av ovanstaende program visar:

Tva osorterade tecken:
Mata in tva tecken skilda med mellanslag: Z A

De tva tecknen sorterade: A Z

Gor garna foljande test: Ta bort re£ fran definitionen av bada parametrarna i parameter-
listan av metoden Swap (), Sd att £1 och t2 blir vanliga chaz-variabler. Ta aven bort
ref fran de aktuella parametrarna i anropet av metoden Swap() i Main() sa att
vardena skickas och inte adresserna. Du kommer inte fa tecknen sorterade i ratt ordning
om du matar in dem i fel ordning. Anledningen &r att genom borttagningen av ref£ blir
t1 och t2 variabler av enkel datatyp s att vardeanrop tillampas automatiskt. Andringen
av t1 och t2 i metoden kommer inte att paverka charl och char2 i Main ().

160

4.3 In- och utparametrar

Nu har vi lart oss en hel del om metoder, med och utan returvérde, med en, flera eller
inga parametrar, varde- och referensanrop osv. Anda kan vi inte returnera flera vérden
fran en metod. Det beror pa att alla metoder i C# returnerar endast ett eller inget vérde.
Men for att vara mer noggrant, borde vi ldgga till med return-satsen. Begreppet
returvérde anvands i programmeringsterminologin endast for varden som skickas med
return-satsen via metodnamnet. | denna bemarkelse finns det inga metoder med flera
returvérden. Men metodens granssnitt mot omgivningen dvs mot andra metoder &r inte
begransad till metodnamnet. Aven parameterlistan tillh6r granssnittet och kan anvandas
for kommunikation med andra metoder. Hittills har denna kommunikation varit enkel-
riktad: Vara parametrar importerade data bara in i metoden. Fragan &r: Kan man inte
anvanda dem aven for export av data ut ur metoden? | sa fall skulle vi kunna fa tillbaka
aven flera vérden frdn en metod genom att anvanda flera parametrar. Detta & mojligt
fast man kallar sdana data inte langre for returvarden da de inte skickas med return-
satsen via metodnamnet, utan via parametrarna. De kallas for utparametrar. Hittills har
vi anvant bara inparametrar. | detta avsnitt ska vi lara kdnna utparametrar. Verktyget
som behovs for det ar datatypen referens som behandlats tidigare (sid 100). Det enda
som behdvs for att kédnneteckna en parameter som utparameter ar namligen att definiera
den i parameterlistan som referens vilket kan goras med ref eller out.

| foljande metod finns det en inparameter som tillfér metoden ett varde och fem ut-
parametrar vars vérden exporteras ur metoden. De kommer in i metoden oinitierade, ini-
tieras dar och anvands sedan i Main () som anropar metoden. | sjalva verket ar utpara-
metrarna endast referenser till de aktuella parametrarna i Main (). Dér &r de endast defi-
nierade. | metoden sker initieringen med referenserna.

// Outparam.cs

// Tar in vidxelbeloppet a och delar upp det i antalet t 10-

// kronor, f 5-kronor, o l-kronor, h 50-ringar och

// resten r i 6re. Endast b 4r en inparameter pga enkel datatyp
// t, f, o, h och r dr utparametrar pga referensdatatypen out int

class Outparam

{
public static void Change (double a, out int t, out int £,
out int o, out int h,
out int r)
{
int total = (int) (a * 100); // vdxel som int
t = total / 1000; // 10-kronor
f = (total % 1000) / 500; // 5-kronor
o = ((total % 1000) % 500) / 100; // l-kronor
h = (((total % 1000) % 500) % 100) / 50; // 50-6ringar
r = (((total % 1000) % 500) % 100) % 50; // rest i &re
}
}

161

Den reala bakgrunden till metoden &r féljande problem: | en automat erbjuds vissa va-
ror. Man valjer en vara och stoppar in en viss summa pengar, i regel mer &n varan kos-
tar. Sedan ska automaten ge tillbaka véaxelpengar vilket endast ar méjligt med ett antal
myntslag som ar foreskrivna i automaten. Lat oss saga det ar 10-, 5-, 1-kronor och 50-
oringar (Las fotnot pa sid 122). | s& fall maste vaxelbeloppet omvandlas till detta mynt-
”system”. Just denna berékning utfors av void-metoden Change () ovan. Men hur ge-
nomfors omvandlingen med de uttryck for £, £, o, hoch r som star i metoden? Fol-
jande algoritm som redan ndmndes i Automaten, 6vn 8.8 (sid 123), l6ser problemet:

Algoritm for omvandling av ett belopp till olika myntslag

Eftersom denna algoritm endast fungerar for heltal méste véxelbeloppet b som &r en
double forst konverteras till int, vilket gors i metoden Change () :s forsta sats explicit
eftersom automatisk typkonvertering inte kan omvandla nedét i datatypshierarkin.
Véxelbeloppet i kronor och 6ren konverteras till ett rent érebelopp som lagras i int-va-
riabeln total. | fortsattningen star alltsa det givna vaxelbeloppet i variabeln total.

1. For att fa antalet 10-kronor divideras total med 1000 d& 10-kronor 4 1000 oren:
t = total / 1000;

Hur manga ganger ryms 1000 — eller 10-kronor — i total? Det antalet tilldelas till t.
Eller med andra ord: 1000 dras av frén total sd manga ganger tills resten blivit mindre
&n total. Det antalet som tilldelas till t blir antalet 10-kronor. Divisionen ovan &r inte
vanlig division utan heltalsdivision da bade total och 1000 &r heltal. Dvs total
divideras med 1000, resultatet tas, resten ignoreras, t.ex. 6975/1000 ger 6. Se kor-
exemplet pa nasta sida. Resten 975 ignoreras har, men anvands i fortsattningen.

2. For att fa antalet 5-kronor divideras resten som blev kvar fran punkt 1 med 500 da
5-kronor &r 500 oOren:
£ = (total % 1000) / 500;

”Resten som blev kvar fran punkt 1” &r just (total % 1000). Har anvands en annan
operator som ar beslédktad med heltalsdivision, ndmligen modulooperatorn % (sid 124).
% har ingenting att géra med procentréakning utan ger resten vid heltalsdivision. T.ex.
6975 % 1000 ger 975. Efter att ha dragit av alla 10-kronor fran total divideras resten
med 500 for att f& reda p& hur manga 5-kronor som finns i total. T.ex. 975/500 ger
1. Resultatet av denna division ges till £, resten ignoreras och anvénds i fortsattningen.

| ytterligare tre steg skulle man kunna forklara de dvriga formlerna for berdkning av e,
h och r. Men nu har ménstret i algoritmen kommit fram: Man tar forra stegets formel,
ersétter / med % och lagger till en heltalsdivision med den nya enhetens drebelopp. |
det allra sista steget ddremot, dar man &r ute efter allra sista resten i 6re, maste % anvan-
das hela véagen. Sjalvklart ar restorebeloppet inte av praktiskt intresse ndr automaten inte
kan spotta ut det. Las om heltalsdivision / och modulooperatorn % pa sid 124.

For att testa algoritmen ovan anropas metoden change () av foljande program:

162

// OutparamTest.cs

// Efter inkdp av en vara 1 en automat ska vidxeln ges tillbaka
// 1 form av ett antal foéreskrivna myntslag:

// 10-kronor, 5-kronor, 1l-kronor, 50-6ringar (och en rest i Ore)
// Main() ldser in ett vidxelbelopp, skickar det till metoden

// Change () 1 klassen Outparam som omvandlar vidxeln till mynt
using System;

class OutparamTest

static void Main ()

{
double amount;
int ten, five, one, half, rest; // Ingen initiering behdvs
Console.Write ("\nAnge ett vixelbelopp i kronor, éren: ");
amount = Convert.ToDouble (Console.ReadLine()) ;
Outparam.Change (amount, out ten, out five, // Endast ut-
out one, out half, // parametrar-
out rest); // nas adresser
// skickas
Console.WriteLine ("\n" + amount + " kr =\t" +
ten + " tio-kronor\n\t\t" +
five + " fem-krona\n\t\t" +
one + " en-kronor \n\t\t" +
half + " femtio-dring\n\nDet blir\t" +
rest + " Oren kvar\n");
}

}

Vaxelbeloppet lases in. Metoden Change () anropas varvid forutom belopp de aktuella
parametrarna ten, five, one, half Och rest:s adresser skickas. Dessa tas emot i
Change () aVv t, £, o, h och r, dvs referenserna till ten, £ive, one, half 0Ch rest.
Nar berakningen gors dar med hjalp av referenserna kan man komma &t resultaten i
Main () darfor att t &r en referens till ten. Samma sak ar det med de 6vriga parametrar-
na.

Ett kdrexempel visar att vi verkligen far tillbaka till Main () de varden som beraknas i
metoden pga referensanrop som automatiskt tillampas vid utprametrar av referenstyp.

Ange ett vaxelbelopp i kronor, 6ren: 69,75

69,75 kr = 6 tio-kronor
1 fem-krona
4 en-kronor
1 femtio-6ring

Det blir 25 o6ren kvar

Vad man sedan gor med det sista restorebeloppet beror pa teknikaliteter i automaten.
163

4.4 Variablers livslangd

Alla program i C# gar ut pa att ett antal objekt kommunicerar med varandra genom att
anvéanda vissa egenskaper, funktionaliteter eller fardigheter de forfogar 6ver — precis
som i det verkliga livet. Programmeringstekniskt sett sker denna kommunikation i och
med att objekt anropar andra objekts metoder. | stdrre program kan detta jamforas med
trafikflodet i en storstad. Ingen storstadstrafik fungerar utan trafikregler. Pa liknande
sétt finns det i C# strikta regler vad galler samverkan mellan objekt och deras metoder,
narmare bestdamt mellan objektens och metodernas variabler samt mellan variablerna
sinsemellan. Dessa regler tillimpas automatiskt och blir speciellt pétagliga, nar en me-
tod anropas nastlad i en annan metod, t.ex. i satsen

Convert.ToInt32 (Console.ReadLine()) ;

Detta gjorde vi for att kunna l1&sa in ett heltal till ett program. Metoden ReadLine () tar
emot en strang som inmatning varfor den maste omvandlas till heltal. Men d& handlade
det om ett nastlat anrop av biblioteksmetoder. Nu ska vi kunna géra samma sak med
egendefinierade metoder.

| detta avsnitt ska vi studera C#:s regler for livslangden eller rackvidden av variabler i
olika block. For att kunna gora det ska vi aktualisera var forstaelse om block(struktur). |
detta sammanhang ska vi daven belysa skillnaden mellan datamedlemmar och lokala va-
riabler. I nésta avsnitt kommer vi att ta upp ett fall av_ namnkonflikt mellan variabler
som &r en konsekvens av blockstruktur och som kallas for éverskuggning av variabler,
inte att forvéxla med Overskrivning av variabler (Progrl+, 4.5).

Blockstruktur
Vad &r ett block i C# ?

Ett antal satser som omsluts av klamrarna { och } kallas for ett
block. ... Klamrarna &r granser mellan programmets olika
block. De sétter gréns for variablers livslangd. For att dverskri-
da dem maste vissa regler beaktas, se nedan.

Vad hander med en variabel nar man Gverskrider blockgranserna? Hur langt gar en
variabels rackvidd (eng. scope)? Man pratar om variablers livslangd. Generellt géller:

fRegIer for livslangden (scoping) av variabler: \
Variablers livslangd boérjar med deklarationen och slutar med det

block i vilket de ar deklarerade. De ar giltiga (synliga) i det block de
ar deklarerade och i alla underblock, men inte i dverordnade block.

Variabler "soker" efter sin deklaration uppat i blockstrukturen.

-)

164

Lat oss testa dessa regler i ett program som i Main () skapar ett inre (undre) block. Sjal-
vaMain () skulle man kunna beteckna som det yttre (6vre) blocket:

// Block.cs
// Variablers r&dckvidd (scoping) och blockstruktur i C#
using System;

class Block

{
static void Main ()
{
int x = 10; // x gdller i hela Main() och
// i alla dess underblock
String output = "\tUtskrift utanfér det inre blocket:" +

"\n\n\tx fére det inre blocket &r " + x;
/***/

{ // Hir bérjar det inre blocket
int y = 100; // y gdller endast i inre blocket
xX++; // Men x gdller &dven har

Console.WriteLine (
"Utskrift fradn det inre blocket:\n\n" +
"x &r " + x + " och y 4&r " + y + "\n\n");
} // Hidr slutar det inre blocket

/***/

// v gdller inte lidngre f.o.m.hdr:
Console.WriteLine (output +
"\n\tx efter det inre blocket &r " + x + "\n\n");

}

I det yttre blocket definieras variabeln x och initieras till 10, i det inre blocket definieras
variabeln y och initieras till 100. | koden markerar den inledande klammern { strax fore
y:s definition borjan och den avslutande klammern } slutet pa det inre blocket. For bittre
laslighetens skull skiljs dessutom blocken & med kommentarrader fyllda med stjarnor.
Utskriften fran det inre blocket leds direkt till konsolen medan all utskrift utanfor det
inre blocket samlas i string-variabeln output och skrivs ut sist. Resultatet blir:

Utskrift fran det inre blocket:

x ar 11 och y ar 100

Utskrift utanfor det inre blocket:

x fore det inre blocket ar 10
x efter det inre blocket ar 11

Som man ser har i programmet Block metoden Main () :s lokala variabel x med initial-
vérdet 10 trdngt genom” det inre blocket dér dess virde Okats till 11 och har efter det
inre blocket det dkade vardet 11, vilket ar ett exempel pa regeln: Variabler ar giltiga i

165

det block de &r deklarerade och i alla underblock. x &r i hela Main () en och samma va-
riabel, bade i och utanfor det inre blocket. Vi kallar x for lokal variabel i Main () for att
skilja den fran begreppet datamedlem. Hade x varit deklarerad tre rader innan hade den
varit klassens datamedlem och inte metoden Main () :s lokala variabel. Vi hade da ham-
nat i ett dverordnat block: Klassen kan uppfattas som 6verordnat block till alla dess me-
toder. Sa det ar deklarationens plats i koden som avgar skillnaden mellan datamedlem-
mar och lokala variabler. | andra programmeringssprak som C++ maste man skilja mel-
lan lokala och globala variabler, men:

[I C# finns det inga "globala" variabler.]

De har blivit ersatta av datamedlemmar. Man kan ocksa sdga att i strikt objektoriente-
rade sprak ersatter klassens datamedlemmar globala variabler. Klassens variabler ar da-
tamedlemmar (“’globala”), medan metodernas variabler &r lokala. Utanfor klassen kan
ingen kod skrivas (utom using-direktivet) och darmed kan inte heller nagon variabel
deklareras, vilket daremot &r mojligt i C++.

Programmet Block har dessutom en variabel y som deklareras och initieras till 100 i ett
block som ar nastlat i Main () -blocket och darfor kallas for inre eller underblock. Dess
livslangd gar endast till slutet av detta underblock. Efter den avslutande klammern }
som terminerar det inre blocket, &r y inte langre giltigt. Varje forekomst av y efter klam-
mern kommer att leda till kompileringsfel. Det ar ett exempel pé regeln: Variabler &r in-
te giltiga i 6verordnade block: Main () -blocket &r 6verordnat det inre blocket dér y &r
deklarerad. y soker efter sin deklaration uppat i blockstrukturen och hittar den i det inre
blocket och &r darmed det inre blockets lokala variabel. Déarfor kan vi skicka den till ut-
skrift endast fran det inre blocket. Nar vi gor det far vi dess véarde 100 i konsolfonstret.

Variabeln x gor samma sak, soker t.ex. med satsen x++; som utgangspunkt efter sin
deklaration uppat i blockstrukturen, hittar den daremot inte i det inre blocket, soker dar-
for vidare i det overordnade Main () -blocket och hittar den dar. Darmed maste x be-
traktas som Main () -blockets lokala variabel. Den &r giltig overallt i Main (), &ven i
dess underblock. Darfor kan vi skicka den till utskrift fran det inre blocket efter upp-
dateringen av dess ursprungliga vardet 10 med x++; och far vardet 11 i konsolfonstret.
Men till skillnad fran y kan vi skriva ut x dven efter det inre blocket i Main () och far
samma varde 11. En utskrift av x fore det inre blocket — via string-variabeln output
— hade gett vardet 10 pga att den skedde innan uppdateringen x++;

Blockstrukturen i programmet Block &r konstruerad for att testa C#:s allménna regler
for variablers livslangd med ett sd enkelt exempel som méjligt. Man inser inte nodvén-
digheten av blockbildningen. Men liknande och mycket mer komplicerade situationer
kan uppstd om man istallet for ett inre block har ett anrop av en metod vars kropp i sd
fall tar Gver rollen av det inre blocket n&r metoden anropas. Program med metoder som
anropar andra metoder ger upphov till blockstruktur. Nasta avsnitt tar upp ett sadant fall.

166

4.5 Overskuggning av variabler

Har ska vi ta upp ett koncept som l6ser namnkonflikter vilka kan uppsta nar lokala va-
riabler och datamedlemmar har samma namn: éverskuggning (eng. overriding) kallas
det och férekommer inte bara hos variabler utan &ven hos metoder som defnieras i klas-
ser som arver varandra. Det sista tas upp senare nar vi gatt igenom arvbegreppet som &r
en hdrnsten inom objektorienterad programmering. Som en slags forberedelse pa det
ska vi har bekanta oss med sjalva begreppet 6verskuggning genom att tillampa det pa
variabler. P& kopet kommer vi att lara kanna C#:s reserverade ord this.

Titta pa foljande klass med tre datamedlemmar och tva metoder dar den ena, Main ()
anropar den andra, Inner (). Forsok sedan med de kunskaper du fatt i forra avsnitt om
variablers livslangd, att besvara nagra fragor:

class OverrideVar

double salary, bonus; // Datamedlemmar gdller 1
String mess; // bade Main() och Inner()

static void Main()

OverrideVar y = new OverrideVar() ; // Objekt skapas
y.salary = 60000;
y.bonus = y.salary * 0.20;

y.mess = " lamplig fo6r bonus";
< >yuInner(); // Anrop av en annan metod

// bildar inre block

:::: y.mess = "Den anstdllde " + y.mess;

}

void Inner ()

{
double salary = 50000; // 2 nya lokala variabler
double bonus = 0; // Sverskuggar datamedlem
mess = "Andersson inte" + mess; // Anvdnder datamedlem
this.bonus = salary * 0.30; // this pekar pa objektet

@—) // kommer sa at datamedlem
}

}
Foljande fragor kan vara intressanta:

1. Vilka vérden har variablerna salary, bonus 0ch mess i position @ ?
2. Vilka vérden har samma variabler i position ?
3. V“kavémenharsalary,bonus,this.bonusOChmessipoﬁﬁ0n<:::>?

167

Referensen this

En nyhet i programmet ovan dr C#:s reserverade ord this som alltid &r en referens till
det objekt i vilket den star. Men var star this har? this star i metoden Inner () som
anropas i Main () med y.Inner (). Darfor blir this en referens till det objekt som y
pekar pad. Dvs this.bonus dr en annan beteckning for y.bonus. Men y finns inte i
Inner () pga reglerna fér variablers livslangd. Darfor: this.bonus. Detta for att skilja
datamedlemmen bonus fran Inner ():s lokala variabel bonus. Foljande program be-
svarar frdgorna ovan genom att skriva ut de efterfragade véardena i resp. position:

// OverrideVar.cs

// Datamedlemmar Overskuggas av lokala variabler med samma namn

using System;

class OverrideVar

{

double salary, bonus; // Datamedlemmar gdller i

String mess;

static void Main()

{

OverrideVar y
y.salary

y .bonus

y .mess

String output =

y.Inner () ;

// bdade Main() och Inner()

new OverrideVar() ; // Objekt skapas
60000 ;

y.salary * 0.20;

" lamplig for bonus";

"\tUtskrift fran yttre Main()-blocket:" +
"\n\n\tPosition 1 FORE anrop av Inner ()\n"+
"\tlén = " + y.salary + '\n' +
"\tbonus = " + y.bonus + '\n' +
"\tmedd = " + y.mess + "\n\n" 9

// Anrop av en annan metod
// bildar inre block

y.mess = "Den anstdllde " + y.mess;

Console.WriteLine (output + "\tPosition 2 " +
"EFTER anrop av Inner()\n" + "\tlén = " + y.salary + '\n'+
"\tbonus = " + y.bonus + "\n\tmedd = " + y.mess + '\n') ;

}

void Inner ()

{
double salary

= 50000; // 2 nya lokala variabler

double bonus = 0; // Sverskuggar datamedlem
mess = "Andersson inte" + mess; // Anvidnder datamedlem
this.bonus = salary * 0.30; // this pekar pa objektet
Console.WriteLine ("Utskrift fran metoden Inner():"

"\nLokal bonus = " + bonus + "\nbonus = " + this.bonus

+
"\n\nPosition 3\nLokal salary = " + salary +
+

"\nmedd = "

+ mess + '\n') g

168

Precis som programmet Block leder dven programmet overridevar utskriften fran
det inre blocket — hdar metoden Inner () — direkt till konsolen medan all utskrift utanfor
det inre blocket samlas i string-variabeln output och skrivs ut sist. Darfor far vi fol-
jande utskrift nér vi kor programmet overrideVar:

Utskrift fran metoden Inner():

Position 3

Local salary = 50000

Local bonus = 0

bonus = 15000

mess = Andersson inte lamplig for bonus

Utskrift fran yttre Main()-blocket:

Position 1 FORE anrop av Inner ()

salary = 60000
bonus = 12000
mess = 1lamplig for bonus

Position 2 EFTER anrop av Inner()
= 60000
bonus = 15000
= Den anstdllde Andersson inte lamplig for bonus

For att fa klarhet over de har resultaten maste vi kartlagga de olika variablerna och folja
upp deras vérden. Vilka variabler &r inblandade i klassen overridevar? Samma namn
behover ndmligen inte betyda samma variabel nér olika block ar inblandade och dessu-
tom &r nastlade. Man ser variablerna salary, bonus, och mess dyka upp pa olika stal-
len i programmet. Men &r de hela vagen de samma eller dr det olika variabler med sam-
ma namn? Tillampar vi vara kunskaper om variablers livslangd fran forra avsnitt, kan vi
konstatera foljande: Det finns tva olika variabler som har namnet salary och tva olika
variabler som har namnet bonus, en gang som datamedlemmar, en gang som lokala va-
riabler i metoden Inner (). De refererar till olika minnesceller dvs olika fysiska adres-
ser med samma logiska namn i olika block, vilket &r tillatet. Daremot finns det endast en
variabel mess i hela programmet som ar datamedlem och inte férekommer som lokal
variabel. Har foljer en detaljerad genomgang av programmet Ooverridevar i den ord-
ning som saker och ting hander nér programmet kors:

1. I klassen overridevar géller datamedlemmarna salary, bonus, och
mess i princip i klassens alla metoder dvs i Main () och Inner (). Vi
sager i princip”, darfor att det finns undantag, t.ex. ndr metoden In-
ner () anvander samma namn for sina lokala variabler. D& slér ut de
lokala variablerna datamedlemmarna i metodens kropp och satter dem
temporart ur spel. D&rfor pratar vi om 6verskuggning, se punkt 2. Né&r
Vi i Main () skapar ett objekt av typen overrideVar, tilldelas objek-
tets datamedlemmar foljande varden:

169

salary 60000
bonus 12000
mess lamplig for bonus

Detta visas ocksa i utskriften pd forra sidan under Position 1 FORE
anropet av Inner().

Sedan &r anropet av metoden Inner () pa tur som sker i Main () med
satsen y. Inner () ; dvs Inner () anropas i det objekt som y pekar pa.
Metoden Inner () har tvd nya lokala variabler salary och bonus
med samma namn som klassens datamedlemmar. | namnkonflikten
mellan lokala variabler och datamedlemmar galler féljande regel i C#:

Att 6verskugga betyder att sld ut temporart. En lokal variabel i
en metod 6verskuggar en datamedlem med samma namn.

Overskuggning (eng. overriding) bor inte forvéaxlas med 6verskrivning
(eng. overwriting). Skillnaden &r att 6verskuggning ar tempordr medan
dverskrivning ar definitiv och odterkallelig. Overskriva kan man bara
variabelns vérde t.ex. med en ny tilldelning. Da blir det gamla vardet
overskrivet for gott, kan aldrig aterskapas och det nya vardet gller i
fortsattning (Progri, 2.4). Overskuggning har inget att gora med varia-
belns varde utan med variabelns giltighet. | en metod kastar den lokala
variabeln med samma namn en “skugga” Over datamedlemmen, fast
temporart dvs i metodens kropp. Bilden av skuggan ska betona feno-
menets tempordra karaktar. Fore och &ven efter metodens anrop har da-
tamedlemmen sin fulla giltighet. | metoden Inner () initieras de “eg-
na” lokala variablerna salary och bonus till:

Local salary 50000
Local bonus 0

Men vad géller variabeln mess som anvands i Inner () har ingen ny
definition av den skett i metoden. Darfor &r mess hdr samma variabel
som galler i hela klassen, ndmligen datamedlemmen mess. Den hade
redan i objektet som skapades i Main (), fatt virdet 1amplig £6r bo-
nus, Se punkt 1. Men hur vet vi att det & samma objekts datamedlem
som vi har att géra med i metoden Inner ()? Dér i Main () hade vi
refererat till objektet med y och darmed till datamedlemmen med
y.mess. Men referensen y géller bara i Main () och &r inte tillgénglig i
Inner (). Hari Inner () refereras till datamedlemmen med mess utan
y. Svaret &r att vi ”hér i Inner ()” hela tiden befinner oss i det objekt
som y pekar pé eftersom anropet i Main () har ursprungligen skett med
y.Inner (). Darfér & mess hdr en och samma variabel y.mess i
Main () som enligt punkt 1 hade vérdet 1amplig £6r bonus. Detta

170

varde dverskrivs nu i satsen mess = "Andersson inte" + mess; 0Och
uppdateras genom konkatenering till:

mess [Andersson inte lamplig f8r bonus |

Efter den hér &ndringen av mess foljer i metoden Inner() satsen
this.bonus = salary * 0.30; som andrar variabeln bonus’ virde.
Men vilken variabel bonus &r det? Fragan besvaras av this som &r en
referens till det objekt som y pekar pa, darfor att satsen i vilken this
star, utfors i anropet y.Inner () (sid 168). this.bonus refererar i
kroppen av metoden Inner () till overridevar-objektets datamed-
lem bonus for att skilja den fran Inner():s lokala variabel bonus.
Utan this hade det blivit det lokala bonus. this hdmtar det dver-
ordnade objektets datamedlem in i den lokala metoden och upphaver pa
sa satt dess dverskuggning, vilket ar en teknik som anvands ofta och
som vi kommer att aterkomma till senare. Vid berékning av det nya
virdet av this.bonus maste nu beaktas att salary (till hoger om
tilldelningstecknet) &r den lokala variabel vars vérde & 50000. Dérmed
blir det foljande uppdatering av datamedlemmen bonus:

bonus [15000 |

Alla varden som visades under punkt 2 skrivs ut till konsolen pa forfor-
ra sidan under Position 3 Utskrift fran metoden Inner ().

3. Slutligen skrivs ut objektets datamedlemmar efter anropet av metoden
Inner () och efter uppdatereringen mess i Main (). Datamedlemmen
salary har inte andrats sedan fore anropet av Inner (), inte heller i
Inner () och har ddrmed samma vérde som i position 1. Datamed-
lemmen bonus diaremot har i Inner () fétt ett nytt varde som fortsit-
ter att gédlla nu i Main () efter anropet. Aven datamedlemmen mess 4n-
drades i Inner () med hjélp av referensvariabeln this och uppdateras
Nu i Main () i satsen y.mess = "Den anstédllde " + y.mess; innan
alla datamedlemmar skrivs ut, s& att foljande minnesbild visas pa for-
forra sidan som utskrift frdn Position 2 EFTER anropet av In-

ner ().
salary 60000
bonus 15000
Den anstallde
mess Andersson inte
lamplig for bonus

Programmet overrideVvar anvénder referensvariablerna this och y som lagrar iden-
tiska adresser: this och y ar tva olika referenser till samma objekt (sid 168).

171

4.6 Overlagring av metoder

Overlagring av operatorer har vi namnt tidigare. D4 sag vi att t.ex. symbolen + betydde
béde additions- och konkateneringsoperatorn. Det var sammanhanget dar symbolen an-
vandes, som avgjorde vilken av dessa betydelser som géllde. Aven operatorn / &r over-
lagrad: En gdng som symbol for heltalsdivision, en gang for vanlig division. P4 samma
sétt kan metoder vara 6verlagrade, t.ex. metoderna Console.WriteLine () 0Ch Mes-
sageBox.Show (). Aven Next () och dess varianter som genererar slumptal pé olika
satt ar exempel pa Gverlagring av metoder (eng. overloading).

Overlagring av metoder innebér olika metoder med samma namn.
De bildar en metodgrupp. Signaturen skiljer &t deras varianter.

Signaturen
Det som avgor om tva metoder ar identiska eller olika &r metodens signatur, dvs:

« Metodens namn
« Antal parametrar
« Parametrarnas datatyper

Signaturen ar alltsd en metods igenkanningstecken. T.ex. har metoden public static
String Encrypt (String t, int n) som vi anvént tidigare, foljande signatur:

Encrypt(String t, int n)

Signaturen ovan bestar av namnet Encrypt, antalet tva (parametrar) och datatyperna
String och int. OBS! Returtypen och modifierarna ingar inte i signaturen. Metoder
med samma signatur anses vara identiska. Metoder som skiljer sig pa nagot av signatur-
elementen anses vara olika. Tva eller flera metoder i en och samma klass kan ha samma
namn om deras parameterlistor ar olika dvs om metoderna antingen har olika antal
parametrar eller lika antal, men olika datatyper. Da 6verlagrar de varandra. En klass
daremot med tva metoder som har samma signatur kan inte kompileras.

Overlagring ar ett koncept inom programmering som anvands for att koda funktiona-
liteter som ar beslaktade med varandra men &nda inte exakt identiska. Verkligheten ar
full av 6verlagring. Ta foljande exempel: Att bromsa en lastbil gors pa ett annat satt an
att bromsa en bét. Det finns ingen anledning att hitta pd ett annat namn for funktio-
naliteten “att bromsa” hos olika typer av fordon. Tvértom, det vore t.o.m. forvirrande att
anvanda olika namn. Vem skulle kunna komma ihag alla dessa namn? Man vill ju helst
slippa att tanka pa de tekniska skillnaderna mellan olika typer av fordon nar man pratar
om bromsning. En och samma funktionalitet ar realiserad pa olika satt. Med andra ord,
man gdr “samma sak”, fast anda lite annorlunda. Programmering tar Gver detta koncept
genom att vélja ett och samma namn for olika metoder. C#:s klassbibliotek &r fullspéc-
kat med overlagrade metoder. C#-kompilatorn skiljer at Gverlagrade metoder genom
den annorlunda parameterlistan och skickar automatiskt rétt anrop till ratt metod.

172

Féljande program innehéller ett exempel pa Gverlagring av C#:s biblioteksmetoder och
tva egendefinierade metoder som 6verlagrar varandra:

// Overload.cs

// Tva exempel pa dverlagring av metoder:

// 1) 2 String-metoder med samma namn fOr delstrdngbildning

// 2) 2 egendef. metoder med samma namn men olika parameterlistor
// En berdknar potensen "bas upphéjd till int-exponent"

// Den andra potensen "bas upphdjd till double-exponent”
using System;

class Overload

{ static void Main()
Console.WriteLine (
"Overlagring av egendefinierad metod:\n\n" +
"2 upphéjd till 3 = " + Power(2, 3) + '\n' +
"2 upph6jd till 3.0 = " + Power(2, 3.0) + '\n' +
"2 upphéjd till 3.5 = " + Power(2, 3.5) + '\n') ;
String s = "abcdefghijklmnopgrstuvwxyzadd" ;
Console.WritelLine (
"\tOverlagring av biblioteksmetod:\n\n" +
"\tHela stidngen: " + s + "\n\tSubstring(10) =" +
"delstrdng fran index 10 till stradngens slut\n\t\t\t= " +
s.Substring(10) + "\n\tSubstring(0, 6) = " +
"delstrdng fran index 0 av langden 6\n\t\t\t= " +
s.Substring(0, 6) + '\n') ;
}
static int Power (int bas, int exponent) // Potens med en
{ // int-exponent
int resultat = 1;
for (int i=1; i <= exponent; i++) // Loopen bygger
resultat *= bas; // potensen med
return resultat; // upprepad mul-
} // tiplikation
static double Power (double bas, double exponent) // Potens
{ // med en
return Math.Exp (exponent*Math.Log (bas)) ; // double-
} // exponent
}

For att testa dverlagring anropar vi bada metoderna Power () frdn Main () : C#-kompi-
latorn skiljer at dem via parameterlistan och skickar automatiskt anrop med int-para-
metrar till den forsta och sddana med double-parametrar till den andra potensmetoden.
Det forsta anropet Power (2, 3) gar automatiskt till den férsta potensmetoden med en
int som exponent eftersom den andra parametern, heltalskonstanten 3, &r en int. De
tva sista anropen gar automatiskt till den andra potensmetoden med en double som ex-

173

ponent eftersom decimaltalskonstanterna 3.0 och 3.5 tolkas som double. En kdrning
av programmet Overload ger:

Overlagring av egendefinierad metod:

2 upphojd till 3 = 8
2 upphoéjd till 3.0 = 8
2 upphojd till 3.5 = 11,3137084989848

Overlagring av biblioteksmetod:

Hela stédngen: abcdefghijklmnopqrstuvwxyzaad

Substring (10) delstradng fran index 10 till strangens slut
klmnopqrstuvwxyzaad

delstrang fran index 0 av langden 6

abcdef

Substring (0, 6)

| programmet overload har de tvd metoderna Power () samma namn, men olika da-
tatyper till parametrarna. Den ena metoden har int som datatyp till parametrarna bas
och exponent. Denna metod berdknar bas upph6jd till exponent™ nér exponent &r hel-
tal, t.ex. 2 upphdjd till 3, dvs 2:2-2, genom enkel upprepad multiplikation i en for-sats
som gor samma sak som: resultat = bas * bas * bas om Vi tilldmpar exemplet 2
upphojd till 3. Den andra beréknar potensen nér exponent ar decimaltal, t.ex. 2 upphgjd
till 3.5 genom att anvinda en avancerad matematisk formel da det 4r meningslost att
multiplicera 2 med sig sjalv 3.5 ganger. Man tillampar tva olika metoder for berdkning
av potensen beroende pd om exponenten &r heltal eller decimaltal. Vilken datatyp basen
har, ar déremot irrelevant for val av metod. Sjéalvklart tdcker den matematiska formeln
dven berdkningen av “’bas upphdjd till heltal”. Men varfor gora det komplicerat nar det
gar enklare? Den matematiska formeln anvander biblioteksklassen Math som definierar
metoderna Exp () och Log (). Dessutom kan man minska risken for avrundningsfel nar
man anvander en enklare berdkningsmetod for den enklare uppgiften. Darfor ar det mo-
tiverat att stalla bada metoder till forfogande. Overlagring ger oss dessutom mdjligheten
att dopa dem till samma namn. Det &r tvd metoder som bada gér samma sak” nimligen
potensiering, men &nda inte &r exakt identiska.

Metoden Substring()

Klassen string har bl.a. tvd metoder Substring () som Gverlagrar varandra. Bada tar
ut delstangar ur en strang. Den ena har en parameter n och tar ut delstrangen fran och
med index n till strangens slut. Darfér ger anropet Substring (10) delstrdngen k1mn-
opgrstuvwxyzaad ur det svenska alfabetet eftersom k har index 10, Den andra har tva
parametrar a, b och tar ut delstrangen fran och med index a av langden b. Darfor ger
anropet Substring (0, 6) delstrangen abedef fran a dvs index 0 och av langden 6 —
ett exempel pa Gverlagring av biblioteksmetoder. Begreppet index forekommer i array-
sammanhang som behandlas i nésta kapitel. Det som vi behdver veta om det just nu &r
att det &r en numrering som borjar att rakna fran o och inte fran 1.

174

4.7 Rekursiva metoder

Rekursiva metoder ar sadana som anropar sig sjalva, ungefar som hundar som bitar sig i
svansen. Ordet rekursiv kommer fran recurrere pa latin som pa engelska betyder to run
back eller to run again dvs att ga tillbaka och kéra igen.

Rekursion &r ett koncept som anvénds for att 16sa problem genom successiv upprepning
av vissa berakningar (algoritmer). Upprepade berdkningar ar datorn bra pa. Rekursiva
algoritmer genererar kort och elegant kod som & mycket ndra matematisk notation. |
regel finns det &ven icke-rekursiva, s.k. iterativa Idsningar till samma problem.

Ett exempel pa problem som kan I6sas rekursivt ar foljande uppgift som den italienske
matematikern Leonardo Pisano Fibonacci ar 1202 formulerade i sin bok Liber abaci
(Boken om réknekonsten). Den handlar om kaniners fortplantning:

Ett kaninpar foder fran den andra mdnaden av sin tillvaro
ett nytt par varje mdnad. Samma galler fér de nya paren.

Hur mé&nga par kommer det att finnas om ett ar?

Fibonacci hade val knappast kunnat drémma om att hans problem skulle bli foremal for
datoriserade losningar med rekursiva metoder 810 ar senare.

Om vi foljer uppgiftens lydelse och réaknar fram de forsta manaderna far vi féljande:

Antal méanader 1 2 3 4 5 6 7 8
Antal kaninpar 1 1 2 3 5 8 13 21

Det uppstar en talfoljd i den andra raden av tabellen som kallas Fibonaccis talféljd eller
kort fibonaccitalen. S har uppstar de:

De tva forsta manaderna finns det 1 kaninpar. De foder sitt forsta barnpar forst efter 2
manader dvs i manad nr 3, varfor det finns 2 kaninpar i manad 3. | manad 4 foder det
forsta paret sitt andra barnpar, varfor det finns 3 par i ménad 4. | manad 5 foder det
forsta paret sitt tredje barnpar, men dven deras forsta barnpar foder ett nytt par, eftersom
det har gatt 2 manader sedan deras fodelse. Dérfor finns det 5 par i ménad 5. Osv. ...

Praktiskt taget blir det allt svarare att halla reda pé antalet kaninpar nar antalet manader
vaxer. Man maste kanske rita ndgon sorts diagram och anteckna allt fran manad till ma-
nad. En utvdg ur dilemmat vore att upptécka ett monster, en struktur, t.ex. ett samband
mellan antal manader och kaninpar, en slags laglighet i bildandet av fibonaccitalen som
kan beskrivas i form av en algoritm for att sedan kunna skrivas som program. Underso-
ker man tabellen noga kan man se foljande enkelt monster: Summan av tva pa varandra

175

féljande fibonaccital ger nasta fibonaccital. Kolla sjalv! Men hur kav vi beskriva detta
mdnster? Vi infor beteckningarna:

n = Antalet manader
F. = Antalet kaninpar i manaden n

Monstret som vi upptackte ovan kan vi nu beskriva s har:

F]_:l, F2:1
Fo=Fni+Fn, forn=3,4,5, ...

Den forsta raden sager att de forsta tva fibonaccitalen ar 1 och 1. Den andra raden sager
att det n-te fibonaccitalet & summan av de tva foregéende, vilket &r bara en annan for-
mulering av samma monster vi upptackte i tabellen. Formeln ovan kallas Fibonaccis re-
kursionsformel. Men vad &r det rekursiva i denna formel? | en vanlig, icke-rekursiv for-
mel star den stkta storheten vanster om likhetstecknet och alla givna storheter hoger om
likhetstecknet. Men har star den sokta storheten, fibonaccitalen, pa bada sidor likhets-
tecknet, fast for olika manader, for olika parametrar sa att sdga. For att berakna ett fibo-
naccital maste man kénna till de tva foregaende. Men eftersom vi har de tva forsta F;
och F,, s.k. startvarden, kan vi berdkna alla andra successivt utgdende fran dessa start-
varden. Att det sokta star pa bada sidor likhetstecknet ar alltsa det rekursiva, vilket, nar
vi kodar formeln, resulterar i en metod som anropar sig sjalv, fast med olika parametrar.
S& har ser den rekursiva metoden ut nar vi implementerar Fibonaccis rekursionsformel:

// Fibonacci.cs
// Rekursiv metod Fib() som f6r varje n returnerar fibonaccitalet
// Rekursiv didrfér att metoden anropar sig sjalv

class Fibonacci

public static long Fib(int n)

¢ if (n <= 1)
return n;
else
return Fib(n-1) + Fib(n-2); // 2 rekursiva anrop
} // i metodens kropp

}

Som man ser &r koden en ren éversattning av Fibonaccis rekursionsformel till C#-kod.
Dérfor ar den ocksa valdigt kort. For n=0 eller 1 returneras n sjalv, dvs 0 eller 1 déar 1 &r
enligt formeln det forsta fibonaccitalet. For alla andra n returneras summan av de tvé fo-
regdende dvs Fib (n-1)+Fib (n-2). Men de i sin tur ar var och en, anrop av Fib ().
Men dessa anrop star i sjalva metoden Fib () :s kropp, vilket ar just det rekursiva. Ett
anrop av Fib (4) t.ex. resulterar i att Fib (3) och Fib (2) anropas, Fib (3) i sin tur re-
sulterar i att Fib (2) och Fib (1) anropas, osv. Varje anrop av metdoden resulterar i ett
stort antal foljdanrop. Véxer n leder det till en valdigt stor méngd av berdkningar. For
stora fibonaccital ar tidsatgangen stor. Lat oss testa metoden Fib () i féljande program:

176

// FibonacciTest.cs

// Testar metoden Fib () genom att anropa den fér de férsta
// 30 fibonaccitalen och skriva ut dem

using System;

class FibonacciTest

{
static void Main ()
{
Console.Write ("\n\n\tDe férsta 30 fibonaccitalen:\n\n\t");
for (int i = 1; i <= 30; i++)
{
Console.Write (Fibonacci.Fib (i) + "\t"), // Anropen
if (i % 6 == 0)
Console.Write ("\n\n\t") ;
}
Console.WriteLine() ;
}
}

Det dr i for-satsen metoden Fib () anropas. Réknaren i blir metodens parameter, vil-
ket genererar de forsta 30 fibonaccitalen. | var 6:e utskrift 14ggs in ett radbyte:

De forsta 30 fibonaccitalen:

1 1 2 3 5 8
13 21 34 55 89 144
233 377 610 987 1597 2584

4181 6765 10946 17711 28657 46368
75025 121393 196418 317811 514229 832040

S& kan vi besvara den inledande fragan: Det kommer att finnas 144 kaninpar om ett &r.

Nackdelen av rekursiva metoder

Rekursiva metoder har en stor berdkningskomplexitet. Man pratar om exponentiellt
vaxande tidskomplexitet av typ 2" for att berakna Fib (n). Dvs tidsatgangen véxer med
en faktor 2". T.ex. om det tar 24 = 16 nanosekunder for att berdkna Fib (4), tar det 240

dvs éver 10™ nanosekunder (ca. 2% timmar) for att berékna Fib (40), vilket uppenbart
ar ineffektivt. | s& fall 4r det effektivare att anvanda en alternativ icke-rekursiv, t.ex. en
iterativ implementering av Fibonaccis rekursionsformel. Darmed &r det inte sagt att
rekursiva metoder alltid &r ineffektiva. Det finns problem som enklast 16ses med re-
krursiv teknik, t.ex. att manipulera datastrukturer som trdd och grafer. Det finns t.0.m.
problem dar rekursiva metoder leder till effektivare losningar &n alternativa icke-re-
kursiva algoritmer, t.ex. sortering. Ett annat problem &r hur svart det &r att beskriva och
implementera dessa algoritmer. Man borde alltsa avvaga fran fall till fall om rekursiv
eller iterativ metod ska anvandas.

177

4.8 Lambdauttryck

Lambdauttryck (eng. /ambda expressions) ar korta funktioner utan namn.

De anropas i samma kod som de definieras. Ex.: (a, b) => a+b
=> kallas for Lambdaoperatorn och skiljer parameterlistan (a, b) frén

kroppen a+b. Detta lambdauttryck ar en funktion som adderar a med b. Vid

exekveringen ersatts lambdauttrycket av summans varde: a+b.

Féljande exempel demonstrerar lambdauttryck:

/7

Lambda.cs

Lambdauttryck skrivs med Lambdaoperatorn => som separerar
funktionens parametrar (vdnster) fran dess kropp (héger)

=> betyder "ska skickas till" (OBS! ingen jdmférelseoperator)

using System;
using System.Ling; // Krdvs fér Where(...)
class Lambda

{

static void Main ()

int[] numbers = { 11, 37, 52, 26, 57, 90, 101 };

int[] oddNum
int[] divBy3
int[] square
int[] sorted

numbers.Where(n => n % 2 == 1) .ToArray() ;
numbers.Where(n => (n % 3) == 0) .ToArray() ;
numbers.Select(n => n * n).ToArray() ;
numbers.OrderBy (n => n) .ToArray () ;

Console.Write ("\n\tAlla heltal:");
foreach (int element in numbers)
Console.Write("\t" + element) ;
Console.Write("\n\tSorterade:") ;
foreach (int element in sorted)
Console.Write("\t" + element) ;
Console.Write ("\n\tKvadraterna:") ;
foreach (int element in square)
Console.Write("\t" + element) ;
Console.Write ("\n\tDe udda talen:");
foreach (int element in oddNum)
Console.Write("\t" + element) ;
Console.Write("\n\tDelbara med 3:");
foreach (int element in divBy3)
Console.Write("\t" + element) ;
Console.WriteLine ("\n") ;

178

n => n % 2 == 1 &r sjalva lambdauttrycket dvs anonyma funktionen vars definition och
anrop sammanfaller i denna kod. n &r funktionens parameter. Den behdver inte deklare-
ras. n skickas med => till kroppen, dvs till n % 2 == 1. Detta logiska uttryck evalueras
lokalt och returnerar sant eller falskt, beroende pa n % 2 == 1 eller ej. n % 2 ger resten
vid heltalsdivision av n med 2 (se modulooperatorn, sid 124). Darmed blirn % 2 == 1
sant om och endast om n &r udda. Dvs endast de udda talen selekteras fran arrayen num-
bers. Det gdrs genom att skicka den anonyma funktionens returvérde till Ling-meto-
den where () och skapa den nya arrayen oddNumbers. Ling dr ett bibliotek i C# som
bl.a. tillhandahaller metoden where () . Den selekterar enligt returvardets sanningsvarde
element fran arrayen numbers. Eftersom where () ar definierad som en generisk metod
maste dess returvarde med metoden ToArray () omvandlas till array av int for att
kunna tilldelas int-arrayen oddNumbers. De filtrerade talen frén arrayen numbers
skrivs ut nar man kér programmet Lambda;

Alla heltal: 11 37 52 26 57 90 101
Sorterade: 11 26 37 52 57 90 101
Kvadraterna: 121 1369 2704 676 3249 8100 10201
De udda talen: 11 37 57 101

Delbara med 3: 57 90

Innan vi gér vidare fljer en parentes om LINQ som vi anvénde i programmet Lambda.

Vad ar LINQ ?

| programmet Lambda finns koden: numbers.Where(n => n % 2 ==1)
Hir ~fragas” arrayen numbers om den har element som &r udda tal. Metoden Where ()
&r definierad for arrays i biblioteket system.Ling som &r ett till&gg till C#.

| koden ovan har man kombinerat lambdauttryck med sprakelement fran LINQ for att
astadkomma effektiv kod. LINQ star for Language Integrating Query och ar en sprakmodul
vars syntax liknar fragespraket SQL (Structured Query Language). SQL har funnits sedan
lange som standardsprak for kommunikation med databaser. Microsoft har utvecklat
och implementerat LINQ i versionen 3.5 av sin .NET-plattform som slapptes ar 2007.
Man har integrerat LINQ bl.a. i C# och udvidgat darmed spraket. Implementationen
finns i biblioteket System.Ling. Men ambitionen har varit att ga vidare och presentera
LINQ som ett nytt sétt att tinka och skriva kod inte bara inom .NET utan inom program-
mering i storsta allménhet — som ett slags nytt paradigm dar man forsdker dra nytta av
databastinkandet i objektorienterad programmering. Men spraket anvands inte bara i
samband med databaser. LINQ har manga olika anvandningsomraden, bl.a:

LINQ to SQL som anvands for att friga databaser, LINQ to XML for att fraga XML-doku-
ment, LINQ to Array for att fraga arrays och LINQ to Object for att frdga objekt. LINQ to
Array har vi anvant i programmet Lambda.

179

4.9 Delegater

Ex.. d = (a, b) => a+b
Delegaten d ar en referens till den anonyma funktionen (lambdauttrycket).
d kan anvandas for att anropa funktionen eller for att skicka den som parame-
ter till andra metoder — som representant fér den anonyma funktionen.

OBS! Det har ar nagot helt nytt i programmeringen:

Hittills kunde vi skicka variabler, arrays, ja t.o.m. objekt (med hjalp av referenser) som
parametrar till andra metoder. Men vi kunde aldrig skicka metoder som parametrar till an-
dra metoder. Med hjélp av delegater kan vi skriva om vara metoder som anonyma funk-
tioner (lambdauttryck), namnge dem med delegater och skicka dem som parametrar till
andra metoder, dar de sedan kan anropas. Det kan vi gora genom att tilldela lambda-
uttrycken till referenser som da kallas for delegater — en slags representant for lambda-
uttrycken.

| programmet Delegate nedan visas ett vanligt anrop. | belegateParam l&ngre fram
demonstreras anrop av en delegat som skickats som parameter till en annan metod.

// Delegate.cs
// Delagat som referens till en anonym funktion
using System;

class Delegate

delegate void Dtype (string t); // Deklarerar den nya

// delegattypen Dtype
static void Main()

Dtype d; // Deklarerar delegat

d = text => Console.WritelLine (text); // Delegat pekar pa
// anonym funktion
d("Denna strang kommer fran delegate"); // Anropar funktionen

}
}

En delegat skapas i tva steg: Forst deklareras en ny datatyp av typen delegate med ett
namn som vi véljer. | exemplet ovan har vi valt namnet Dtype:

delegate void Dtype(string t);

Som man ser inleds metodens huvud med det reserverade ordet delegate. Denna sats
skrivs pd samma plats som klassens datamedlemmar och pa samma satt som man dekla-

180

rerar en metod utan kropp. Sedan anvénds den nya datatypen for att i Main () deklarera
en delegat av denna nya datatyp som &r en delegattyp:

Dtype d;

Den nyss deklarerade delegaten tilldelas en anonym funktion som formuleras med ett
lambdauttryck:

d = text => Console.Writeline (text) ;

I den har anonyma funktionen (gramarkerad) ska parametern text skickas till att skri-
vas ut. Men 4 ar en referens av typ Dtype. En sadan referens kan endast tilldelas ett ob-
jekt av typ btype. Darfér maste den ovan gramarkerade anonyma funktionen samtidigt
vara ett objekt av typ Dtype. Vi kan i fortséttningen referera till detta objekt med 4, vil-
ket vi gor i nasta sats:

d("Denna strdng kommer fran delegate");

Har anropas den anonyma funktionen med referensen d. Dérvid skickas strangen i pa-
rentesen som aktuell parameter till den formella parametern text. Dar skickas den vi-
dare till utskrift. Darfor ser resultatet av en krning av programmet Delegate Ut s har:

Denna strédng kommer fran delegate

Vi ser i programmet Delegate pa vilket satt en funktion samtidigt kan vara ett objekt.
Detta tack vare delegatkonceptet dvs en referens som kan peka pa en funktion.

Varfor vi forresten sager funktion och inte metod beror pa funktionens anonymitet just
hér i det behandlade programexemplet. Eftersom funktionen inte har ndgot namn kan
den inte heller vara medlem i klassen belegate och darmed inte en metod. Men gene-
rellt kan delegater peka dven pa metoder. Vi kommer i slutet av det har avsnittet att ta
upp ett exempel pé delegater som pekar pa metoder, ja t.o.m. pa s.k. metodgrupper. Da
kommer det ocksa att avslojas varfor dessa referenser till metoder heter delegater. Men
innan dess ska vi g vidare lite med delegater:

Delegat som parameter i metoder

Vi har lart oss att skicka vanliga variabler, referenser, arrays, listor och dven objekt som
parametrar till metoder. Men hittills har det inte varit mojligt att skicka metoder, ja inte
ens funktioner, som parametrar till andra metoder. Medan det t.ex. i matematik &r gans-
ka vanligt att bilda funktioner av funktioner, s.k. sammansatta funktioner, har vi i pro-
grammering inte haft denna mdjlighet. Men det ska nu bli annorlunda, for delegater
Oppnar dorren till denna nya vérld. Kan man skicka referenser som parametrar till meto-
der, da borde man &ven kunna gora det med sddana referenser som pekar p& metoder,
dvs med delegater. Foljande programexempel ska ge oss en insikt i delegate:s mojlig-
heter att &ven i programmering anvadnda sammansatta metoder:

181

// DelegateParam.cs

// Rdknar ut hur manga element i1 en given array som &dr nollor,
// hur manga som dr negativa och hur manga som dr positiva

// Delegat skickas till metoden MyCount () :s parameter

// Ddr anropas den metod som delegaten pekar pa

using System;

class DelegateParam
delegate bool Dtype (int number) ;// Deklaration av delegattyp

// OCH av metod med returvirde
static void Main()

{
Dtype d0 = a => a == 0; // Delegater som pekar pa anony-
Dtype dl1 = a => a < 0; // ma funktioner (lambdauttryck)
Dtype d2 = a => a > 0;

int[] vector ={ -1, 2, -3, 0, 5, 0, -4, 1, 6, 8, -9, 0 };

Console.WriteLine ("\n\tDet finns {0} nollor i vektorn.",
MyCount (vector, d0)) ;
Console.WriteLine ("\n\tDet finns {0} negativa tal i vektorn.",
MyCount (vector, dl));
Console.WriteLine ("\n\tDet finns {0} positiva tal i vektorn.\n",
MyCount (vector, d2));
}

static int MyCount(int[] v, Dtype d)// Metod med en delegat
// som parameter

{ // Rdknar antal element i v
// som uppfyller det villkor
int counter = 0; // som skickas med delegat-
foreach (int element in v) // parametern d
if (d(element)) // Anrop av delegaten d i
counter++; // if-satsens villkor

return counter;

}
}

Sa har ser resultatet av en korning av DelegateParam Ut:

Det finns 3 nollor i vektorn.
Det finns 4 negativa tal i vektorn.

Det finns 5 positiva tal i vektorn.

182

Det som gor att dessa tre rader skrivs ut ar tre anrop av den egendefinierade metoden
MyCount () inbyggda i System-metoden Console.WriteLine(). Metoden My-
Count () raknar antalet av de vector-element som uppfyller det villkor som definieras
av den delegat som skickas till den andra parametern d till MyCount (). | férsta anropet
skickas delegaten 4o som returnerar sant om vector-elementet ar lika med 0: Antalet
nollor returneras. | andra anropet skickas delegaten d1 som returnerar sant om vector-
elementet &r < 0: Antalet negativa element returneras. | tredje anropet skickas delegaten
d2 som returnerar sant om vector-elementet ar > 0: Antalet positiva element returne-
ras. Vi menar forstas ...delegaten dx vars metod som den pekar pa, returnerar sant....
For att undvika alltfor komplexa formuleringar ndmner vi ofta bara referensen.

Anropet av delegaten d som kommer in i metoden MyCount () via den andra parame-
tern, sker i foreach-satsens if-sats. D&r bestdms delegatens sanningsvérde, vilket av-
gor om raknaren ska counter uppdateras. MyCount () returnerar detta varde till ut-
skriftssatsen i Main ().

Overlagrade varianter av Console.WriteLine ()

Av forekommen anledning ska vi lagga in hér en parentes: | forra programexemplet
DelegateParam anvands i utskriftssatsen en syntax som skiljer sig fran vara utskrifts-
satser hittills. Sa har lyder t.ex. den forsta Console.WriteLine () -satsen:

Console.WriteLine ("\n\tDet finns {0} nollor i vektorn.",
MyCount (vector, d0));

For det forsta har metoden Console.WriteLine () har tva parametrar och inte en. Dvs
vi har att géra med en dverlagrad variant av denna metod. Anledningen &r att vi vill
undvika manuella konkateneringar av strangar med konverterade variabelvarden i con-
sole.WriteLine () -satsen, vilket kan komplicera koden. En forenkling ar da att anvén-
da den tvaparametriga, dverlagrade varianten av Console.WriteLine ()-metoden dar
den andra parametern MyCount () Som returnerar ett varde, automatiskt konverteras till
strang och infogas i den forsta strangparametern pa en plats som anges med syntaxen {0}.
Med detta menar man det forsta elementet (med index 0) i den serie av parametrar som
foljer efter den forsta strangparametern. Man skulle alltsd — med en flerparametrig variant
av metoden — kunna skriva ytterligare parametrar med varden som infogas i den forsta
strangparametern med t.ex. {1}, {2}, {3} osv. Men hos oss &r {0} ingenting annat &n
MyCount (vector, d0), konverterad till strang.

Foljande program visar med en fyrparametrig variant av Console.WriteLine () hur
smidigt det kan vara att 1ata de Gverlagrade varianterna automatisk konvertera variablerna
i den 2:a, 3:e och 4:e parametern till strdngar och konkatenera dem med dvs infoga dem i
den 1:a parametern (utskriftsstrangen):

183

// WriteLineOverl.cs

// Console.WriteLine ()-metoden med 4 parametrar
// Att infoga variabelvdrden i utskriftsstrdngen
using System;

class WriteLineOverl

{
static void Main ()
{
int nol = 9, no2 = 3, sum;
sum = nol + no2;
Console.WriteLine ("\n\t Addition:\t {0} + {1} ger {2} \n",
nol, no2, sum);
}
}

Programmet writeLineOverl ger foljande utskrift:

Addition: 9 + 3 ger 12

Losningen med LINQ

Efter parentesen om de olika varianterna av Console.WriteLine () ska vi atervianda
till delegater, ndrmare bestamt till delegater som parametrar i metoder. Vi ska titta om
vi kan skriva programmet DelegateParam (sid 182) lite effektivare. Dar anvéande vi en
delegat som parameter i den egendefinierade metoden MyCount () som réknade antalet
element i en given array som uppfyllde en viss egenskap. Sjalva egenskapen formulera-
des i Main () med ett lambdauttryck och skickades till MyCount () med en delegat.
Men vi hade redan i programmet Lambda (sid 178) sett att man kunde fréga en array om
dess element uppfyllde en viss egenskap, ndmligen att vara udda tal. Det gjorde vi med
hjalp av Ling-metoden Where (). Fragan ar om det dven finns en Ling-metod som
fragar en array efter antal element som uppfyller en viss egenskap som kan formuleras
med ett lambdauttryck. Den har gangen for att bestimma hur manga element i arrayen
som &r nollor, hur manga som &r negativa och hur manga som &r positiva. | sa fall skulle
vi kunna byta ut var egendefinierade metod MyCount () mot denna Ling-metod och
slippa koda sjélva. Faktiskt finns det en sddan metod som heter count (). Det &r an-
markningsvart att Ling-metoden Count () kommer att géra anvandningen av delegat
onddigt eftersom den kommer att kunna anropas direkt i Main (). Vi slipper att skicka
en parameter till en egendefinierad metod. Aven har kommer vi att dra nytta av kombi-
nationen av LINQ och lambdauttryck som ger en effektiv och elegant kod.

Foljande Ling-version av programmet DelegateParam ger exakt samma resultat som
DelegateParam, men utan delegat:

184

// CountLINQ.cs

// Anropar Ling-metoden Count () med ett lambdauttryck

using System;

using System.Lingq; // Krdvs for Ling-metoden Count ()

class CountLINQ

{

static void Main()

{
int[] vector = { -1, 2, -3, 0, 5, 0, -4, 1, 6, 8, -9, 0 };

Console.WritelLine ("\n\tDet finns {0} nollor i vektorn.",
vector.Count(a => a == 0));

Console.WriteLine ("\n\tDet finns {0} negativa tal i vektorn.",
vector.Count(a => a < 0));

Console.WriteLine ("\n\tDet finns {0} positiva tal i vektorn.\n",
vector.Count(a => a > 0));
}

}

Utskriften blir den samma som utskriften av programmet DelegateParam (sid 182): An-
tal element i arrayen vector som ar 0, negativa och positiva skrivs ut.

Metodgrupper

En metodgrupp &r mangden av samtliga dverlagringar av en metod. T.ex. har metoden
Console.WriteLine () 18 olika Overlagringar (varianter) som bildar metodgruppen

Console.WritelLine

For forsta gangen skriver vi Console.WriteLine utan parenteserna () vilket innebar
att det inte handlar om en metod utan om metodgrupp. Metodgruppen kan direkt tilldelas
en delegat. Forst vid anropet av delegaten avgors vilken av gruppens metoder (varianter)
ska exekveras, for da skrivs en parameterlista till delegaten som specificerar den metod
som ska anropas. | och med detta far ocksa begreppet delegat sin betydelse, namligen
som en foretradare eller representant for gruppen. Féljande program demonstrerar detta:

// MethodGroup.cs

// Delegat pekar pa metodgruppen Console.WriteLine utan parentes
// dvs pa Console.WriteLine ()-metodens alla dverlagrade varianter
// Delegat representerar metodgruppen

// Anrop via delegat avgdér vilken av gruppens metoder anropas
using System;

class MethodGroup

{ // Delegattypen deklareras:
delegate void Dtype(string t, string a, string b, string c);

185

}

static void Main ()

{

int nol = 9, no2 = 3, sum;
sum = nol + no2;

Dtype d; // En delegat deklareras

d = Console.WriteLine; // Delegat tilldelas metodgruppen
// utan parentes: Alla varianter
d("\n\t Addition:\t {0} + {1} ger {2} \n",
nol.ToString (), no2.ToString(), sum.ToString()) ;
// 4 parametrar skickas via
// delegat till metodgruppen

Programmet MethodGroup ger samma utskrift som programmet WriteLineOverl:

Addition: 9 + 3 ger 12

Denna utskrift kommer frdn metoden Console.WriteLine (), nNdrmare bestamt fran
den variant av den som har fyra parametrar. Detta trots att vi endast har tilldelat me-
todgruppen console.WriteLine till delegaten d och inte specificerat vilken av grup-
pens metoder som ska anropas. Att 4&ndd just den metod av gruppen automatiskt valjs
som har fyra parameter, beror pé att anropet av delegaten i programmets sista sats sker
med just fyra strangar i parameterlistan. Pa sé& satt anvands delegaten som en lank mel-
lan metodgruppen Console.WriteLine 0ch programmet. Samtidigt ser man att dele-
gaten 4 blir en representant for hela metodgruppen.

186

4.1

4.2

4.3

4.4

4.5

Ovningar till kapitel 4

Varfor ger féljande program kompileringsfel? Atgarda felet genom att flytta pa
kod, utan att ta bort nagon klammer och utan att ha tomma klamrar:

using System;
class Ovn_4_1

{
static void Main()
{
{
int t = 30;
}
Console.WritelLine ("t = " + t);
}
}

Modularisera programmet MiniSort fran (sid 154) efter eget godtycke.

Skriv en rekursiv metod Faculty () som implementerarn! =1-2-3. ... - n.
Testa metoden i en klass FacTest genom att anropa den forn=1, 2, 3, ... , 20.
Tillagg till Pyramiden (projekt) Modularisera programmet Pyramiden

frdn 6vn. 1.10 (sid 66) genom att flytta koden som bestammer det tillitna antalet
rader 1-13 till en metod som deklareras i en separat klass och anropas fran
Main () innan pyramiden “ritas”.

Kalkylatorn (projekt) | detta projekt ska skapa en klass calculator som
stodjer foljande funktionaliteter: addition, subtraktion, multiplikation, division
och potensiering av tva tal samt att kunna ange det storsta och minsta av tva
inmatade tal. Dessutom ska din kalkylator vara igang kontinuerligt tills anvan-
daren valjer att stanga av den, vilket innebar att du maste lagga in en loop. De
olika rakneoperationerna ska definieras i separata metoder och anropas i Main ().

Klassen Calculator:

Féljande metoder ska definieras i klassen Calculator:

public double Add(double operandl, double operand2)

{
// Additon av operandl och operand2

}

public double Sub(double operandl, double operand2)

{
// operandl - operand?2
// Aven subtraktion av negativa tal ska vara m&jligt

187

public double Mult(double operandl, double operand2)
{

// Multiplikation av parametrarna

}

public double Div(double operandl, double operand2?)

{
// operandl / operand?2
// Division med 0 far ej férekomma (operand2 != 0)

}

public double Potens (double operandl, double operand2)

{
// Berdkning av potens: operandl upphdjt till operand2

}

public double max(double operandl, double operand2)

{
// Returnera det stérre vdrdet av operandl och operand2
// Hdr kan du anvdnda dig av den fddefinierade metoden
// Math.Max (double a, double b) fér att snabbt
// avgéra vilken av operanderna som dr stdrre

}

public double Min(double operandl, double operand2?)

{
// Returnera det mindre vdrdet av operandl och operand?2
// Math.Min (double a, double b) kan anvdndas

}

Programmet skall exekvera kontinuerligt tills anvandaren véljer att avsluta kor-
ningen. For att astadkomma detta kan du exempelvis anvanda dig av en do-
sats, se programmet GuessbDo i kap 6. Kalkylatorn kan avslutas genom att an-

vandaren matar in t.ex. tecknet ’q’ (Quit) istéllet for en operator.

Du fér sjalv bestamma om du vill placera all kod i en fil eller om du hellre
skapar en separat fil for klassen calculator med alla ovanndamnda metoder
och en klass med Main () i en annan fil som testar klassen calculator. Det

senare ar att foredra.

Det &r upp till dig om du lagger in kod for att kunna hantera fel inmatning av

operator eller andra felaktiga inmatningar.

188

Kapitel 5

Tillampning av OOP

Amne Sida Program
5.1 Arrays 190
- Definition och initiering av en array 192 Array
- foreach-satsen 194
5.2 Arrayens initieringslista 197 ArrayInit
5.3 Array av referenser 199/200 Fish/ArrayOfRef
5.5 Array som parameter i metoder 203 Arrayparam
5.6 So6kning och sortering 207 RandArray
- Slumptal i en array 207 Search
- Bubbelsortering 210 Bubble
5.7 Generiska metoder 214 G_Output/G_Bubble
- Generisk bubbelsortering 217 GenericTest
5.8 Kryptering av text 219 EncryptChar
5.9 2D Array 222 DoubleArray
5.10 Dynamiska arrays: Listor 226 List
Ovningar till kapitel 5 230

189

5.1 Arrays

Ordet array betyder i engelskan ordnad samling eller ordnad uppstéllning (battle array
= stridsordning). Andra beteckningar som anvénds i litteraturen &r falt, vektor, lista,
Vi kommer att anvénda array.

En array ar en ordnad mangd av variabler av samma datatyp grupperade
under samma namn och lagrade i ett sammanhéngande minnesomrade.

En array bestér av ett antal element. Elementens position i arrayen
kallas for index. Indexnumreringen bérjar med 0O, inte med 1.

Anta att vi vill definiera 20 variabler av typ int. Hittills behévde vi skriva 20 satser for
att gora det. Men nu ger array oss méjligheten att géra samma sak med endast en sats:

Hittills: enkel datatyp int: Nu: int-array med referens:
int nol;
int no2;
—_— int[] no = new int[20];

/

int no20;

Vi definierar en variabel no av datatypen int[], dvs array av int, anvander new och
l&gger till informationen om antalet element inom hakparentes: [20]. Det reserverade
ordet new avslojar att det dr ett objekt. new allokerar minnesutrymme for ett objekt be-
stdende av 20 int-virden och returnerar den sammanhangande “minneskedjans” adress
— ndrmare bestdmt adressen till dess forsta cell — till variabeln no som &r en referens.
Dess datatyp int[] &r en referens till en int-array. For att gora det tydligare kan man
skriva det dven i tva separata satser:

int[] no;
no = new int[20];

Det &r inte den forsta utan den andra satsen, ndrmare bestdmt koden new int[20] som
skapar sjalva arrayen. Darfor star ocksa storleken 20 dar det behdvs, namligen i satsen
dar new allokerar minne. Typiskt for array ar hakparenteserna [1, pa engelska brac-
kets. | satserna ovan har [] tva olika betydelser: | den forsta satsen specificerar int[1]
variabeln no:s datatyp som en referens till en int-array, i den andra satsen innehaller
[20] arrayens storlek. Referensvariabeln no ersétter de 20 vanliga int-variablerna no1,
no2, ..., no20, vilket medfér en stor effektivitet i koden. Tank dig att det &r inte 20 utan
fler data vi vill jobba med. no pekar fysiskt pa det forsta elementet av arrayen som allo-
keras i ett sammanhangande minnesutrymme. Dérfor kan man komma &t de andra ele-
menten via indexering som &r bara ett annat namn for numrering.

190

Indexering i en array
Lat oss anknyta till exemplet ovan dar bade arrayen och dess referens no definieras:
int[] no = new int[20];

Lat oss ytterligare anta att vissa varden — de som visas i bilden nedan — har tilldelats ar-
rayens element efter satsen ovan. Eftersom elementen lagras i ett sammanh&ngande
minnesomrade uppstar foljande minnesbild av arrayen i datorns RAM:

Minnesbild av arrayen no:
Index: 0 1 2 17 18 19
190d11 [25 [1257 [-10 | ... [358 [65 [219 |
Kod: no[0] no[l] no[2] no[l7] no[l8] no[l9]
no [_isoi]

Index ar synonym till nummer och specificerar varje elements position i arrayen for att
”adressera” elementet. Elementen kan i sin tur vara av enkel, sammansatt eller av refe-
renstyp. En array ar den enklast tinkbara sammansatta datatypen. Som exempel tar vi en
array som ar sammansatt av den enkla datatypen int. Varje element i en sddan array
kan betraktas som en indexerad dvs numrerad variabel av typ int.

Medan sjalva arrayens allokering (den dvre delen) gors av new int [20], allokeras min-
nescellen no (den undre delen) av int[] no. Kopplingen mellan dem gors av tilldel-
ningsoperatorn, vilket gor att arrayens adress (t.ex. 190d11 — ett hexadecimalt tal) SOM new
har genererat, hamnar i minnescellen no. Den s& uppkomna situationen innebér att no
pekar pé eller refererar till arrayen. Under arrayens minnesceller har vi skrivit C#-kod
som kommer at varje elements varde: no[01 ger den forsta minnescellens vérde 25 som
har index 0, no[1] ger den andra minnescellens vérde 1257 som har index 1 0sv. no[0]
lagras vid adressen till arrayens forsta minnescell. no[1] lagras vid adressen till den
andra minnescellen som ligger 1 x 4 bytes — storleken for en int — langre bort fran no.
no[2] lagras vid adressen som ligger 2 x 4 bytes langre bort fran no osv. Adressering i
RAM sker namligen byte-vis, s att bytes som &r grannar till varandra, har adresser som
skiljer sig pa en enhet. Avgorande for denna indexeringsteknik &r att en array alltid allo-
keras i ett sammanhangande minnesomrade. Ser man pa det hela ur hardvarans syn-
punkt kan man forsta varfor indexnumreringen borjar med 0 och inte med 1: no[0] kan
tolkas som den adress som ligger 0 x 4 bytes langre bort frn no, dvs no[0]:s adress &r
identisk med adressen no.

191

Dérfor galler:

Indexregeln: I arrays borjar numreringen av index alltid med 0.
Darfor galler: elementets position = index + 1

Med position menas numret som ménniskan anvander for att numrera elementen. Man-
niskor &r vana vid att pabdrja numreringen av saker och ting med 1. Med index menas
numret som datorn anvénder for samma sak. C# och de flesta andra programmerings-
spraken borjar numreringen av index i en array med o. Tillampad p& exemplet: Det 1:a
elementet i den array som no refererar till har vardet 25 och index 0: Positionen &r 1
medan indexet dr 0. Det 2:a elementet (vérdet 1257) har index 1 och koden no[1], det
3:e elementet (vardet —-10) har index 2 och koden no[2] osv. Det n:e elementet har
alltid index n-1. Darfor har ocksa det 20:e elementet (vérdet 219) index 19.

Det ar avgorande ndr man arbetar med array och &r samtidigt felkélla nr 1 — om man
glommer det — att hélla isdr det manskliga sattet att numrera som borjar med 1 fran C#-
kodens satt som borjar med 0. | exemplet ovan har vi definierat en array av 20 heltals-
element med referenserna no[0], ..., no[19]. Antalet element &r 20. Indexen déare-
mot gar fran o till 19. Felkalla nr 2 ar att forvaxla en arrayelements index med dess var-
de: Det sista elementet i exemplet ovan har index 19, men vérdet 219. Man har alltid
med tva tal att gora, index (position) och varde (innehall). Det galler att halla isar posi-
tionen fran innehallet.

Tre egenskaper skiljer objekt fran array:

e Indexering
e Allokering i ett sammanhangande minnesomrade
e Allaarrayelement har samma datatyp.

Annars behandlas array i C# som objekt: Bada maste skapas med new och man kan
komma &t bada endast med referensvariabler. Bada initieras till defaultvarden dven om
de kan forekomma som lokala variabler i metoder. Detta visas i foljade program:

Definition och initiering av en array

Hér testas allt vi sagt hittills om array speciellt indexregeln. Utdver det visas ytterligare
en egenskap hos array som relaterar den till objekt, ndmligen en egenskap Length som
lagrar arrayens storlek nér den skapas. Programmet demonstrerar ocksa vad som hander
om man overskrider arrayens maximala index: Man kan kompilera, men inte exekvera —
ett tecken pa att arrayens allokering sker vid run time.

// Array.cs

// Definierar en array av 4 int-vdrden, skriver ut arrayens

// storlek, initieringsvdrdena 0 och de nya tilldelade vdrdena
// Overskridning av arrayens index leder till exekveringsfel

using System;

192

class Array

¢ static void Main()
int[] no; // Deklarerar referensen no
// utan att skapa arrayen
no = new int[4]; // Skapar arrayen vars adress
// tilldelas referensen no
// int[] no = new int[4]; // Alternativt 1 EN sats
Console.Write ("\n\tArrayens storlek:\t\t");
Console.WritelLine (no.Length) ;
Console.Write ("\n\tArrayens default-initiering:\t");
foreach (int element in no)
Console.Write (element + "\t");
no[0] = 64; // Tilldelar 1l:a elementet
no[l] = 86; // vdrdet 64 osv. Overskriver
no[2] = 34; // default-initieringen
no[3] = -6;
Console.Write ("\n\n\tArrayen efter tilldelning:\t");
foreach (int element in no)
Console.Write (element + "\t");
Console.WriteLine (
"\n\n\tOverskridning av arrayens index leder till " +
"programavbrott:\n\n\t\tno[4] inte definierad\n\t" +
"\tIndex 4 Overskrider gradnsen: Exekveringsfel!") g
nol[4] = 1; // no[4] kan kompileras, men
} // leder till exekveringsfel
}

Inte alla satser i programmet Array exekveras. Det blir avbrott ndr den kompilerade ko-
den no[4] i allra sista satsen ska exekveras dar index 4 oOverstiger arrayens tillatna
maximala indexgrans som ar 3 darfor att new i borjan av programmet allokerar endast 4
minnesceller at arrayen, namligen de med index 0, 1, 2 och 3. Nagon minnescell med
index 4 &r inte allokerad. Darfér kan vi inte heller referera till den med no[4]. Men ef-
tersom arrayens allokering sker med new och dédrmed under exekveringstid (eng. run
time) leder detta till exekveringsfel, medan kompilatorn godtar den syntaxméssigt kor-
rekta koden no[4]. Programmet Array ger féljande utskrift ndr man kor det:

Arrayens storlek: 4
Arrayens default-initiering: 0 0 0 0
Arrayen efter tilldelning: 64 86 34 -6

Overskridning av arrayens index leder till programavbrott:

193

no[4] inte definierad
Index 4 overskrider gransen: Exekveringsfel!

Unhandled Exception: System.IndexOutOfRangeException: Index was
outside the bounds of the array.

at Array.Main() in C:\Programmering\Programmering 2\200P\Array.cs
:line 32

Vi drar slutsatsen:

[Att referera till icke-definierade element i en array leder till exekveringsfel.]

Man kan aven sdga att C#-interpretatorn (VM) kontrollerar indexgranserna och inte til-
later &tkomsten till icke-allokerade minnesplatser, vilket ur allméin datasakerhetssyn-
punkt ar en fordel. Programmen blir stabilare. Andra programmeringssprak som C++
har i detta avseende en mer liberal attityd. Dar ligger ansvaret for kontroll av indexgrén-
serna helt och héllet hos programmeraren.

Man kan ju undra varfor no[4] inte dr definierat — som vi havdar ovan — fast talet 4
”forekommer” i definitionssatsen new int[4]. Detta beror pa att hakparenteserna [] i
no[4] inte har samma betydelse som i new int[4]. Den korrekta tolkningen av [] be-
ror pd sammanhanget. Man kan ocksa sdga att [1 &r symbolen for tre olika operatorer
som Gverlagrar varandra dvs betyder olika i olika sammanhang (sid 195):

foreach-satsen

Denna sats som anvénds i programmet Array (sid 192) &r en ny kontrollstruktur som inte
kunde tas upp i kapitlet om kontrollstrukturer (Progrl) darfor att den forutsétter array-
begreppet eller liknande sammansatta datatyper, som vi inte hade hunnit ga igenom da.

foreach-satsen &r idealisk for att skriva ut sammansatta datatypers varden. Den gor
samma sak som for-satsen, men har en lite annorlunda — ja t.o.m. lite enklare syntax,
om man &r fortrogen med arrays. | programmet Array (sid 192) ser satsen ut sa har:

foreach (int element in no)
Console.Write (element + "\t");

Oversatt till svenska:
FOr varje element av arrayen no
Skriv ut elementet f6ljt av en tabulator.

element — ett namn som ar valt av oss — kallas fér foreach-satsens iterationsvariabel.
Den definieras till int och motsvarar for-satsens raknare. element pekar pa vardet
(innehdllet) som star i arrayen. Iteration betyder upprepning och innebér har att satsens
kropp upprepas: Programflodet fortskrider fran element till element tills alla element &r

194

genomgangna. Det reserverade ordet in betyder av eller element av. no pekar pé arra-
yen som ska loopas igenom. Dérfor: ” FOr varje element av arrayen no”.

foreach-satsens enkelhet bestar i att den till skillnad frdn £ox-satsen varken behdver
ett start-, steg- eller slutvérde resp. avslutningsvillkor. Den gar helt enkelt igenom arra-
yens alla element, fran det forsta till det sista. Det ar sjdlva arrayen som bestammer
start-, steg- och slutvardena. Variabeln element pekar i varje varv av loopen pé resp.
arrayelementets véarde och kan sedan anvéandas i loopens kropp for att géra det man
onskar. | vart exempel for att skriva ut arrayens element f6ljt av en tabulator.

foreach-satsens iterationsvariabel maste ha samma datatyp som arrayelementen eller
en sadan datatyp som arrayelementens datatyp automatiskt kan konverteras till. | vart
exempel har vi int. Det dr t.o.m. mojligt att ha egendefinierade datatyper dvs klasser.
Ett exempel pa det &r programmet ArrayOfRef£ (sid 200). Dér deklareras iterationsvaria-
beln i en foreach-sats till den egendefinierade klassen Fish (sid 199), for att skriva ut
ett Fish-objekts sort, vikt, 1angd, pris och frakt.

En viktig egenskap av iterationsvariabeln ar att den inte kan andra arrayelementens var-
den i foreach-satsens kropp. Den &r sé att sdga read only. | praktiken innebar detta att
iterationsvariabeln inte far forekomma till vanster om tilldelningsoperatorn (=) i nagon
sats i foreach-satsens kropp. Vill man i foreach-satsens kropp andra pa arrayelemen-
tens varden maste man anvanda £or-satsen istéllet med arrayens index som raknare.

Hakparentesernas tre olika betydelser

1. []1 som storleksoperator omsluter i definitioner med new antalet element i arra-
yen specificerar darmed arrayens storlek. T.ex. innebér koden

new int[4]

i programmet Array att new skapar en array av int med 4 element dvs att 4 min-
nesceller reserveras for lagring av int-vérden. Det gemensamma for alla dessa ele-
ment &r att de lagras en efter den andra vid adressen eller referensen no:

no [0 [o [o [o |

Hér &r fragan om “Hur ménga element?”. I matematiken kallas detta kardinaltal.

2. [1 som indexeringsoperator omslutar indexet till varje element av en array. Har
handlar det om ett elements position i arrayen. Man anger index inom hakparente-
ser for att referera till elementet ndr man vill hdmta eller tilldela det ett vérde. In-
dexregeln (sid 192) tillampas enligt vilken indexeringen bérjar med 0. Darfor ar
no[4] iarrayen ovan inte definierat:

no | no[0] | nof[l] | no[2] | no[3] |

Hér &r fragan om ”Vilket element?”. T matematiken kallas detta ordinaltal.

195

3. [1 som en del av datatypen “referens till array” omsluter ingenting utan &r tom
och skrivs direkt efter en datatyp for att definiera en ny referenstyp. T.ex. innebér

satsen
int[] no;

i programmet Array att en minnescell allokeras (en referensvariabel med namnet
no definieras) fér lagring av en adress till en int-array. Vi kan i fortsattningen an-
véanda namnet no for att komma at arrayen vid denna adress. | satsen ovan har refe-
rensen no inte initierats. Det sker inte heller automatiskt, for no &r en lokal variabel
i Main (). Det sker forst med tilldelningen no = new int[4]; som initierar refe-
rensen explicit.

Default-initiering av en array

Det anmadrkningsvarda &r nu att det som géller for referensen no — att den &r oinitierad
nar den skapas — inte galler for sjalva arrayen. Referensen no &r oinitierad och maste
initieras explicit eftersom den &r en lokal variabel i Main (). Men trots att &ven arrayen
ar lokal i Main () initieras den till de defaultvarden vi namnde for datamedlemmar i
objekt (sid 101), vilket ar ett tecken pa att array aven i detta avseende behandlas som ob-
jekt. Programmet Array skriver ut arrayelementens vérden en gang innan och en andra
gang efter att de har fatt vardena 64, 86, 34 och -6. Utskriften pa forra sidan visar for ar-
rayens alla element initialvardet 0 som ar den foreskrivna default-initieringen for va-
riabler av typ int vilket &ven galler for element i en int-array. Generellt géller:

Alla element i en array initieras automatiskt till defaultvarden (precis som
datamedlemmar i ett objekt) aven om arrayen skapas lokalt i en metod.

196

5.2 Arrayens initieringslista

Man kan effektivisera hanteringen av arrays inte bara med foreach-satser utan dven
genom att anvanda sig av en s.k. initieringslista som slar ihop definitionen med initie-
ringen — en kortform som ersétter koden new, men bibehaller dess egenskaper:

// ArraylInit.cs

// Initieringslista: Kortform fér definition och initiering av en
// array 1 en och samma sats utan new

// Utskrift av arrayens element med foreach-satsen

using System;

class Arraylnit

{

static void Main ()
{
int[] no = { 64, 86, 34, -6 }; // Initieringslista:
// Definition OCH ini-
// tiering av en array
// int[] no = new int[4] { 64, 86, 34, -6 }; // G6r samma sak

Console.Write ("\nViardena fran arrayen skrivs ut med" +
" referensen:\n\n\t") ;
foreach (int element in no)
Console.Write (element + "\t");
int[] copy = no; // Ny referens till no
// samma array
Console.Write ("\n\n\tArrayens vidrden skrivs ut" +
" med den nya referensen copy:\n\n\t");
foreach (int element in no)
Console.Write (element + "\t");
Console.WriteLine ("\n\n\tEndast referensen kopieras,
inte arrayen.\n");

}

En koérning visar att vardena i initieringslistan som forst tillelas arrayen no verkligen
kopierats Over till arrayen copy, for det ar de som skrivs ut:

Arrayens vadrden skrivs ut med referensen no:

64 86 34 -6

Arrayens varden skrivs ut med den nya referensen copy:
64 86 34 -6

Endast referensen kopieras, inte arrayen.

Bade definitionssatsen och initieringssatserna i programet Array (sid 192) — det ar de 5
forsta satserna i Main () — kan slas ihop till en enda sats:

197

int[] no = { 64, 86, 34, -6 };
Satsen ovan ar bara en forkortning pa:
int[] no = new int[4] { 64, 86, 34, -6 };

Dvs initieringslistan kan skrivas efter new int[4] som egentligen skapar eller definie-
rar arrayen. Men new int[4] far utelamnas. Detta visar att den forkortade versionen
gor tva saker: Forst, fram till tilldelningstecknet definieras referensen no (utan nagon
uppgift om arrayens storlek). Sedan, fran och med tilldelningstecknet tilldelas arrayen
no:s element fyra varden som star i en kommaseparerad lista grupperad inom klamrarna
{ } som kallas arrayens initieringslista. Kortformen gor precis samma sak som satsen
med new. Kompilatorn far informationen om arrayens storlek genom att i initieringslis-
tan rakna antalet element inom klamrarna { }. Det &r inte ens tillatet att explicit ange
det korrekta antalet element inom hakparenteserna [1. Det blir kompileringsfel om
man gor det, darfor att no endast &r en referens till en array, inte arrayen sjalv. Ob-
servera aven att man inte far anvanda initieringslistan separat utan endast i samma sats
som definitionen.

Valet av variabelnamnet copy kan vara missledande i foljande sats av programmet Ar-
rayInit om man inte beaktar skillnaden mellan referens och array:

int[] copy = no;

copy blir ndmligen en kopia av referensen no i satsen ovan, inte av arrayen — en ny
referens som kommer att peka pd samma array som den gamla referensen no pekar pa.
Det skapas ingen ny array eftersom det varken finns ndgon new eller nagon initierings-
lista som skulle ersatta new. Anledningen till detta &r — som vi konstaterat tidigare — fol-
jande viktigt faktum:

[En array i C# ar alltid ett objekt som behéver en referens.]

For att skapa ett objekt maste en new-sats skrivas. En referens definieras utan new.

Minnesméssigt lagras arrayen pa en och samma adress som fran programmet kan nas
med referenserna no eller copy:

no | 64 | 86 | 34 | -6 |

copy

198

5.3 Array av referenser

Hittills har vi bildat arrays endast av den fordefinierade datatypen int. P4 samma sétt
kan man ocksa definiera arrays av alla andra enkla datatyper. Men kan man bilda aven
arrays av klasser dvs egendefinierade datatyper? Fragan maste preciseras: Menar man
arrays av referenser, &r svaret ja, darfor att klasser — referensernas datatyper — har exakt
samma “rittigheter” som vilka andra datatyper som helst och kan dérfor skrivas dverallt
i koden dar en fordefinierad datatyp kan std. Precis som referensvariabler kan skrivas
overallt, dar dven en variabel av enkel typ kan std. Menar man arrays av objekt, ar svaret
nej, vilket vi kommer att forklara i detta avsnitt. Vi kommer att inse att en array av
objekt inte & nodvandig, nar man har en array av referenser vars element pekar pa ett
objekt. Array av referenser gr oss samma tjanst som array av objekt.

Vi borjar med att deklarera en klass so&8m vi sedan i programmet ArrayOfRef (nésta si-
da) kommer att anvanda for att konstruera en array av referenser som i sin tur ska anvén-
das for att peka pa objekt av denna klass:

// Fish.cs
// Deklarerar klassen Fish med tre datamedlemmar och tvda metoder
using System;

class Fish

{
public string sort;
public float weight, size;

public int Price()

{
}

public int Shipping()
{

}

return (int) Math.Round(weight * 7.25 / 100) ;

return (int) Math.Round(weight * 0.02 + size * 0.1);

}

Klassen Fish modellerar en fisk med datamedlemmarna sort, weight och size. En
laxforell t.ex. med en viss vikt i gram och en viss langd i cm kan vara ett objekt av
denna klass, dar laxforell ar fiskens sort. Metoden Price () berdknar priset pa fisken
oberoende av sort, med 7,25 kr per hekto. Metoden shipping () berdknar transport-
kostnaden utifran fiskens vikt och langd genom att t.ex. multiplicera kostnadsfaktorn
0,02 med vikten och 0,1 med langden och addera dem. Bada Metoder returnerar priset
och frakten i hela kronor utan 6ren. Biblioteksmetoden Math.Round () avrundar till
narmaste heltal. Sjalvklart kan man anmérka att den h&r modelleringen har vissa brister
ur praktisk synpunkt: For det forsta ar fiskpriser i praktiken inte oberoende av sorten.
For det andra ar béade pris och frakt i regel belopp i kronor och 6ren dvs decimaltal och
inte heltal. Men vi gor medvetet bada forenklingar i modellen for att férenkla imple-

199

menteringen och koncentrera oss pa det programmeringstekniska konceptet av array av
referenser. Vi vill namligen anvanda detta koncept, for att pa ett effektivt satt skapa
och hantera manga objekt av klassen Fish. For det har &ndamalet ar de namnda bris-
terna i modelleringen irrelevanta. Féljande program skapar en array av referenser till
Fish-objekt och anropar metoderna Price () och Shipping () for att sedan registrera
(skriva ut) alla uppgifter till varje objekt:

// ArrayOfRef.cs

// Skapar férst en array av 5 referenser till Fish-objekt, skapar sedan 5
// Fish-objekt pa vanligt sdtt och tilldelar dem till referenserna.

using System;

class ArrayOfRef
static void Main()
Fish[] f = new Fish[5]; // Array av referenser

// OBS! Inga objekt
for (int i = 0; i < f.Length; i++)

{
£[i] = new Fish(); // Skapar objekt och
// tilldelar adressen
// till en referens
Console.Write ("\n\tMata in sorten till fisk" + (i+l) + ":\t");
f[i] .sort = Console.ReadLine() ; // Input
if (£[i].sort.Length <= 7) f[i].sort += '\t';
Console.Write ("\tMata in vikten till fisk" + (i+1) + ":\t"):;
f[i] .weight = (float) Convert.ToDecimal (Console.ReadLine()) ;
Console.Write("\tMata in langden till fisk" + (i+1) + ":\t");
f[i] .size = (float) Convert.ToDecimal (Console.ReadLine()) ;
}
Console.Write ("\nFisksort\tVikt i g\tlLingd i cm\tPris\tFrakt\n" +
Tl e e e e e e e — — — — —— ——— \n") g
foreach (Fish element in f)
{
Console.WritelLine (element.sort + "\t " +
element.weight + "\t\t " + element.size + "\t\t " +
element.Price() + "\t " + element.Shipping() + "\n")]
}

}

| programmet ArrayOfRef skapas en array av 5 referenser till Fish-objekt med satsen:
Fish[] £ = new Fish[5];

Observera att denna sats inte skapar nagot objekt alls, for da skulle det behtvas koden
new Fish () — OBS! parentesen — som inte finns med i satsen ovan. Forvéntar man sig
att en “array av 5 Fish-objekt” skulle skapas med new Fish () [5] sa ar det fel, for den
har koden kan inte kompileras — ett tecken pa att begreppet “array av objekt” maste
forkastas. Istdllet maste man ga tva steg: Forst maste en array av rena referenser

200

definieras som i satsen ovan. Initieringsproblematiken 16ses automatiskt pga att en array
alltid initieras till sin datatyps defaultvarden och att datatypen referens default-initieras
till nul1 (sid 101). D& spelar det ingen roll om det handlar om referenser till objekt av
klassen Fish eller av ndgon annan klass. Sedan kan man fundera hur man explicit
initierar referenserna sa att de pekar pa verkliga objekt av typ Fish. Detta gors i pro-
grammet ArrayOfRe£f med:

f[i] = new Fish();

som star i for-satsen. Forst efter den har satsen har vi allokerat minnesutrymme for
ETT objekt av typ Fish, inte for en array av objekt, for i koden ovan finns inget spar av
en sadan array. Detta objekts minnesadress tilldelas referensarray-elementet £[i] dar i
tack vare for-loopen gar fran o till 4. Vi har endast att géra med en array av referenser
till Fish-objekt, for hakparentesen — arrayens symbol — star efter referensvariabeln £
som pekar pa denna referensarray. Varje element i denna referensarray pekar i sin tur pa
ett separat Fish-objekt. De tva stegen som tas ar: Forst fran £ till referensarrayen och
sedan fran den till objekten. Det forsta steget star utanfor och det andra steget i for-
loopen. Efter objektens definition initieras varje objekts datamedlemmar sort, weight
och size i for-loopen till varden som lases in fran konsolen. Sedan skrivs de fullstan-
diga uppgifterna till varje objekt, dvs &ven priset samt fraktkostnaden, ut. Anropet av
metoderna Price () 0ch shipping () dr inbakade i utskriftssatsen. En kdrning av pro-
grammet ArrayOfRef kan ge foljande slutlig dialog:

Mata in sorten till fiskl: Laxforell
Mata in vikten till fiskl: 719
Mata in langden till fiskl: 38,5
Mata in sorten till fisk2: Torsk
Mata in vikten till fisk2: 423
Mata in langden till fisk2: 28,7
Mata in sorten till fisk3: Aborre
Mata in vikten till fisk3: 550
Mata in langden till fisk3: 25,5
Mata in sorten till fisk4: Gadda
Mata in vikten till fisk4: 985
Mata in langden till fisk4: 58
Mata in sorten till fisk5: GOs
Mata in vikten till fisk5: 395
Mata in ldngden till fisk5: 14

201

Fisksort Vikt i g Langd i cm Pris Frakt

Laxforell 719 38,5 52 18
Torsk 423 28,7 31 11
Aborre 550 25,5 40 14
Gadda 985 58 71 26
Gos 395 14 29 9

“Array av objekt” ?

For att kunna datorisera en verksamhet med fiskar behdver vi objekt av typ Fish. Sjélv-
klart skulle man kunna skapa sadana objekt t.ex. med Fish £1 = new Fish() ; OSV.
Men vad gér man om man vill modellera en handel med stora fiskmangder under en
langre period? Array skulle dé vara den givna lésningen for att effektivisera kodningen.
Men funderar man narmare pa begreppet “array av objekt” av typ Fish dyker upp fol-
jande fraga: Vilket defaultvarde ska t.ex. en array av Fish-objekt fa vid initieringen?
Till de enkla datatyperna i C# kommer de fordefinierade defaultvardena o, tom strang,
null, nolltecknet och false (sid 101). Men Fish &r ju ingen fordefinierad datatyp. Det
finns ingen begrénsning pa egendefinierade datatyper (klasser) och det gar inte att forut-
sdga vilka man kan skapa i C#. Och darfor gar det inte heller att fastsla vilken default-
initiering en sadan array skulle f. Vi ser att begreppet “array av objekt” leder till en
atervandsgrand. Losningen &r array av referenser — referenser till objekt dvs en tva-
stegslosning som anvandes i programmet ArrayOfRef£ (sid 200).

202

5.5 Array som parameter i metoder

Array som bearbetar stérre datamangder ger upphov till mer komplexa och sofistikerade
program. Exempel pa det ar applikationer som soker, sorterar eller krypterar data. Vi
kommer i fortsattningen att behandla enkla varianter av saddana program. Modularise-
ring &r metoden for att bryta ned stora komplexa program i mindre och enklare moduler.
Helst vill man ha program som bestar av ett antal enkla, 6verskéadliga metoder dar varje
metod loser ett specifikt problem. Sedan vill man sétta ihop dem dvs anropa dem med
ett antal parametrar fran Main () och kontrollera hela handelseforloppet fran denna
metod som helst ska ha sa lite kod som mojligt. Ju mer avancerade datatyper man
anvander i sitt program desto stdrre blir behovet av modularisering. Sjalvklart vill man
&ven modularisera program som anvénder array. | C# &r det mojligt att skicka en array
som parameter till en metod dvs att definiera en array i parameterlistan. | ndsta program
definieras en void-metod Method () med en array av int Som parameter:

// ArrayParam.cs

// Skickar en stor array till en metod, men:

// Array som parameter i en metod behandlas som en referens
// Parameterdverfdring sker med referensen: adressen skickas
using System;

class ArrayParam

{

static void Method (int[] b) // Array som parameter
{ Console.WriteLine ("\n\tI metoden\n\tdr arrayens sista " +
"element fore andringen " + b[999]);
b[999] = 1; // Andringen
Console.WriteLine ("\n\t\t\t och efter &andringen " +
b[999] + '\n'");
}

/***/

static void Main()

{

int[] a = new int[1000]; // Array med 1000 nollor
Console.WriteLine ("\n\tI Main () \n\tdr arrayens sista " +
"element FORE anropet " + a[999]);

Method (a) ; // Referensanrop: arrayens
// adress skickas till metod
Console.WriteLine ("\tI Main() \n\tdr arrayens sista " +
"element EFTER anropet " + a[999] + '\n');

}

Lat oss borja titta pd Main () innan vi gar in pa hur arrayen b i metoden Method () be-
handlas. | Main () har vi en int-array a med 1000 element, alla initierade till default-

203

vérdet 0. En kdérning av ArrayParam avsldjar dven en del intressanta nyheter for oss.
Den viktigaste &r att en &ndring som gdérs i en annan metod aterspeglas i Main ():

I Main()
4r arrayens sista element FORE anropet 0

I metoden
dr arrayens sista element fore &dndringen 0

och efter &andringen 1

I Main ()
dr arrayens sista element EFTER anropet 1

Som man ser har arrayen a:s sista element a[999] — kom ihag att indexeringen hos ar-
rays borjar med 0 — som hade initialvardet 0, EFTER anropet av metoden fétt vérdet 1,
fast denna &ndring inte gjorts i Main () utan i metoden Method (), dessutom med arra-
yen b och inte med a. Detta verkar bryta mot de regler vi lart oss om lokala variablers
livslangd, darfor att a trots allt ar en lokal variabel i Main () och dérmed inte giltig i
Method (). Samma sak géller for b som &r lokal variabel i Method () och darmed inte
giltig i Main (). Gatans losning &r att det handlar endast om en och samma array till
vilken a och b 4r bara tva olika referenser. Darfor pratar vi i utskriften ovan inte om
arrayen a och inte om arrayen b utan om arrayen, for det finns bara en. For att forsta
detta battre 1at oss titta p& foljande minnesbild som ska fortydliga vad som hander i
programmet ArrayParam:

Index: 0 1 2 3 998 999
a = 12EFE0 | 0 | 0 | 0 | 0 | | 0 |/61|
4000 bytes
b
4 bytes

Vi vet att varje int tar 4 bytes i minnesutrymme. Dérmed tar hela arrayen a med 1 000
int-element 4 000 bytes. Detta “’stora” minnesutrymme allokeras av satsen:

int[] a = new int[1000];

a &r en referensvariabel som lagrar ett hexadecimalt tal, sdg 12EFEO (decimalt: 1241056)
som dr arrayens adress. Adresser visas i datavarlden — det ar en de facto-standard — som
tal i hexadecimalt format. Med adress menas alltid en plats i datorns RAM-minne (Ran-
dom Access Memory). Nér en array definieras lagras den vid en adress och arraynamnet
blir en 1ank mellan programmet och denna fysiska adress. N&r arrayen a sedan i metod-
anropet Method (a) ; skickas som en aktuell parameter, da dverfors inte arrayens var-

204

den utan arrayens adress till metoden Method (). Denna adress tas emot av den formel-
la parametern b som &r definierad i metodens parameterlista som en array av int. P4 sd
sétt hamnar a:s adress, det hexadecimala talet 12EFEO i minnescellen b. Dvs b lagrar a:s
adress som tar 4 bytes. Darmed pekar bade a och b pa en och samma array. Nagon ko-
piering av arrayinnehallet pd 4 000 bytes till en ny plats forekommer inte. Endast adres-
sen pa 4 bytes kopieras till b vid metodanropet. | Main () kommer man at arrayen med
a och i Method () gor man det med b. N&r vi sedan i Method () &ndrar vardet i arra-
yens sista element med b fran o till 1, kan &ndringen ses i Main () med a.

Den ovan beskrivna metoden for éverforing av parametrar kallas referensanrop. Dvs
inte parametrarnas varden utan deras adresser overférs vid metodanropet. Nar paramet-
rarnas adresser dverfors och inte deras varden, férekommer ingen férdubbling av min-
nesatgang. Alla eventuella andringar i metoden aterspeglas i Main (). Valet av parame-
terdverforingsmetod styrs av datatypen:

I C# valjs automatiskt referensanrop (Call by reference) for parameter-
overforing vid metodanrop, om parametern ar av datatypen array.

LAt oss nu aven ga in pd med vilken syntax programmet ArrayParam anvinder en
array som en parameter i en metod.

1. Att definiera en metod med array som parameter
har gjorts i metoden Method () genom att definiera den formella parametern som en ar-
ray av int dvs samma datatyp som den aktuella parametern har i anropet:

int[] b

Antalet element inom hakparentesen fér inte anges. Att antalet element inte behdvs har
beror pd att en formell parameter fér sitt initialvarde fran den anropande metoden. Aven
arraystorleken foljer med vid anropet. Detta har i sin tur att géra med att hela definitio-
nen av en metod endast & en mall, en foreskrift om vad som ska hdnda om metoden
anropas, en potentiell kod som blir aktuell férst nér vi anropar metoden. | metoden
Method () star definitionen av parametern b till datatypen array av int som vanligt i
parameterlistan och ddrmed i metodhuvudet:

static void Method (int[] b)

2. Attanropaen metod med array som parameter
sker genom att skriva den aktuella parametern som array utan hakparenteser i anropet:

Method (a) ;

Anmarkningsvart dr att det for forsta gdngen dyker upp en array utan hakparenteser. Sa,
tittar man inte pa definitionssatsen ndgra rader ovan kan man inte kanna igen a som
array. Anledningen till att hakparentesen inte far std efter arrayen a i anropssatsen &r
just det vi sade ovan om referensanrop: Anropet skickar inte hela arrayen med dess vér-
den till Method () utan endast referensen a. En hakparentesens skulle tolkas som kod
som anger index som specificerar ett visst element i arrayen. En anropssats av typen

205

Method (a[999]) ; skulle skicka endast ett element av arrayen ndmligen det med index
999. Det blir i sa fall ett tal av typ int som skickas till metoden. Man kommer att fa
kompileringsfel i alla fall eftersom metodens formella parameter b &r definierad som en
array av int och inte som en vanlig int. Den enkla datatypen int kan inte konverteras
till den sammansatta datatypen array av int. De automatiska typkonverteringsreglerna
géller endast for enkla datatyper. Det tdnkbara alternativet Method (a[]) ; fungerar inte
heller av samma anledning: Det handlar om en icke-definitionssats dar hakparentesens
innehall tolkas som index. Men index féar aldrig utelamnas (se punkt 1). For att skicka
en array som parameter till en metod maste alltsd arrayen i metodanropet skrivas endast
med arraynamnet utan hakparentes. Sjalvklart maste arrayen innan anropet vara definie-
rad i Main () som vanligt med hakparentes och en uppgift om storleken. Arraynamnet
anvands vid anropet som adressen till arrayen.

206

5.6 Sokning och sortering

Ett viktigt — numera sjélvklart — anvandningsomrade for datorer &r sokning i och sorte-
ring av stora datamangder. Programmeringstekniskt sett kan sadana applikationer inte
skrivas utan arrays (eller hogre datatyper). Darfor ar sokning och sortering klassiska
tillampningar for sammansatta datatyper. Samtidigt 6kar behovet av modularisering ju
mer avancerade datatyper man anvénder i sitt program. Nu ndr vi lart oss att skicka
arrays som parametrar till metoder, kan vi modularisera program som arbetar med
arrays. Detta dr nodvandigt for att koncentrera sig pa den egentliga uppgiften namligen
s6kning, sortering eller andra applikationer som t.ex. kryptering (kommer att tas upp i
nasta avsnitt). Nar man soker i eller sorterar data finns redan ett material i form av data-
baser, tabeller eller listor osv. som man anvander. For att skaffa ett liknande underlag
for vara testprogram har vi valt att Iata den i C# inbyggda slumptalsgeneratorn produ-
cera materialet och lagra det i en array.

Slumptal i en array

Eftersom vi i fortsattningen kommer att jobba med flera program som anvander slump-
tal lagrade i en array vill vi skriva en metod som kan anvéndas av alla dessa program.
Vi har valt formen av en void-metod for att generera ett antal slumpvérden och tilldela
dem till elementen i en array:

// RandArray.cs

// Ny metod Rand () slumpar fram en array av heltal mellan
// a och b, lagrar dem i arrayen no och skriver ut dem
// Anropar biblioteksmetoden Next () i1 en loop fér att fa
// ETT slumptal i varje varv

using System;

class RandArray

public static void Rand(Random r, int[] no, int a, int b)
{
Console.Write ("\n\t" + no.Length + " heltal mellan " +
a+ " och " + b + " slumpas fram:\n\n\t");
for (int i=0; i < no.Length; i++)

{ no[i] = r.Next(a, b);
Console.Write(no[i] + " ")
if ((i % 16 == 0) && (i '= 0))
Console.Write ("\n\t");
}

Console.WriteLine ("\n\n") ;

}

For forstaelse av biblioteksmetoden Next () hanvisas till hantering av slumptal pa sid
65. Det nya i koden ovan &r att slumptalen lagras i en array som kommer att anvéndas
av fler program vilket demonstrerar inte bara modularisering utan aven ateranvandning

207

av kod. Filen ovan innehéller inte ett fullstandigt program utan endast en klass med
void-metoden Rand () som har fyra parametrar varav den ena &r en array av int,
kallad no som lagrar slumptalen. Arrayen deklareras i parameterlistan och tilldelas i
kroppen mellan a och b via satsen:

no[i] = r.Next(a, b);

som i en for-sats anropar den biblioteksmetoden Next () som i sin tur i varje varv av
loopen slumpar fram ett slumptal mellan a och b. Vi har anvant denna metod tidigare i
andra program. for-satsen som anropar metoden skriver ut slumptalen. Antalet
arrayelement bestdms i borjan av Main () i féljande program:

// SearchTest.cs

// Skapar en array och skickar den till metoden Rand() ddr den
// tilldelas slumptal. Andringen fads tillbaka pga referensanrop.
// Den tilldelade arrayen skickas vidare till metoden MySearch ()
// som sbker efter ett inldst tal bland slumptalen

using System;

class SearchTest

{ static void Main()
{ Random r = new Random() ;
int a =1, b = 1000, searchedNo;
int[] intArray = new int[200]; // Default-initiering
RandArray.Rand(r, intArray, a, b); // Slump-tilldelning
Console.Write ("\tAnge tal som programmet ska sdéka efter:\t");
searchedNo = int.Parse (Console.ReadLine()); // S&kt tal
Search.MySearch (intArray, searchedNo) ; // Anrop av
} // sbkmetoden
}

Aven om vi inte gatt igenom programmets alla delar — klassen Ssearch med metoden
MySearch () fattas — ska vi titta pa en korning for att béttre forsta vad som hander:

200 heltal mellan 1 och 1000 slumpas fram: \\

237 255 104 898 422 575 712 34 775 299 192 530 442 17 656 344 276
18 929 282 720 967 336 17 934 378 427 667 600 787 581 838 346

525 224 576 710 484 865 211 360 686 858 798 455 501 142 521 138
405 101 747 951 13 889 271 567 88 612 45 796 46 82 989 366

355 832 918 441 728 635 440 801 719 570 35 757 539 563 434 237 Anrop av
907 177 843 334 835 535 981 637 954 657 623 520 468 63 315 252 >>
870 80 101 317 872 728 58 771 662 594 880 444 502 162 676 173 RandArray.Rand ()

179 809 890 517 887 303 532 468 852 282 488 719 660 568 981 657
256 784 888 460 463 118 13 180 120 73 673 242 303 538 783 793
982 98 342 660 174 446 13 215 549 281 113 591 241 987 759 95
261 224 836 719 922 217 711 709 444 358 398 815 631 938 166 962
147 696 738 563 874 322 484 811 419 674 912 830 653 423 587 781

962 226 982 80 703 712 519 ./
Ange tal som programmet ska sdka efter: 519 Anrop av
Det s6kta talet 519 &r det 200:e elementet bland talen ovan.| search.MySearch()

208

| programmet SearchTest:s Main () -metod finns bara anrop av tva metoder samt defi-
nition av deras aktuella parametrar och inlasning av det sokta talet. En array av int har
definierats med 200 element och tilldelats referensen intArray. | anropssatsen Rand-
Array.Rand(r, intArray, a, b); skickas arrayen till metoden. Det anméarknings-
varda ar foljande: Nér arrayen intArray som aktuell parameter i anropet dverfors till
den formella parametern no i metoden RandArray.Rand (), ar den definierad och de-
fault-initierad till o-varden. Faktum &r att, nar parametern &r en array, sa anvénds refe-
rensanrop (sid 199) dar den aktuella parametern intArray, och den formella parametern
no, endast ar tva olika referenser till ett och samma minnesomrade, till en och samma
array. Med intArray definierar vi arrayen i Main() och anropar RandArray.-
Rand () . Med no tilldelar vi samma array i metoden RandArray.Rand () slumpvérden
som overskriver arrayens default-varden. En sddan “arbetsdelning” mellan olika
metoder kan endast géras med referensanrop.

Efter anropet av slumpmetoden l&ses in ett varde till variabeln searchedNo som
tillsammans med arrayen intaArray skickas till metoden search.MySearch (). N&r
MySearch () anropas ar arrayen intArray bade definierad och tilldelad slumpvarden.
Sokmetoden far alltsd slumptalsvarden som overfors till den formella parametern t. Vid
sidan om no ar t nu en till minnescell som lagrar arrayen intArray:s adress i detta
program. Aven den har parameterdverforingen sker med referensanrop. Vid anropet
skickas inte vdrdena i arrayelementen till metoden utan endast adressen som lagras i
intArray. | sjdlva verket ar det arrayens adress som &verfors till Mysearch (), tas
emot av t och anvénds sedan i sokmetoden for att hitta det sokta talet i arrayen:

// Search.cs

// Metoden MySearch () tar emot tva parametrar:

// arrayen t och heltalet s, det sbkta elementet

// Sbker efter den férsta fdrekomsten av s bland arrayelementen
using System;

class Search

public static void MySearch(int[] t, int s)

{
int i;
for (i = 0; i < t.Length; i++) // Sbker igenom array t
if (t[i] == s) // Sékkriteriet
{
Console.WriteLine ("\n\tDet sdkta talet " + t[i] +
" dar det " + (i+l) + ":e elementet" +
" bland talen ovan.\n\n");
break; // Bryter for-satsen
} // ndr det sékta hittats
if (i == t.Length)
Console.WriteLine ("\n\tDet sdkta talet finns ej " +
"bland talen ovan.\n\n") ;
}

209

Det sokta talet skickas med den aktuella parametern searchedNo och tas emot av den
formella parametern s. Nu ska vi titta pd vad void-metoden MySearch () egentligen
gor och hur den hittar eller inte hittar det sokta talet. Arrayen och det sokta talet &r
givna. Fragan ar: finns det sokta talet i arrayen? Om ja, pa vilken position? Algoritmen
&r valdigt rak och enkel och kallas for linjar sokalgoritm:

1. Gé igenom alla element i arrayen dvs sok igenom arrayen t fran borjan till slutet
(linjar sdkning).

2. Jamfor varje element med det sokta talet. Finns likhet med nagot element, skriv ut
ett hittat-meddelande samt elementets position som ar lika med index + 1. Har du
hittat en likhet avbryt sékningen.

3. Har du gatt igenom alla arrayelement utan att hitta ndgon likhet skriv ut ett ej-
hittat-meddelande.

Denna algoritm hittar endast den forsta forekomsten av det sokta talet i arrayen och tar
inte hansyn till att det ev. kan finnas flera exemplar av det sokta talet i arrayen. Pro-
gammeringstekniskt har vi 6versatt algoritmens punkt 1 till C#-kod genom att i metoden
MySearch () skriva en for-sats som soker igenom arrayen t fran index o till
t.Length-1. | denna for-sats finns en if-sats som implementerar algoritmens punkt 2
och i sin tur innehaller tva satser: Hittat-meddelandet och break-satsen. En break-sats
avbryter alltid den loop eller den switch-sats i vilken den star, har alltsid £or-satsen.
Det &r den som enligt anvisningen i punkt 2 gor att programmet endast hittar den forsta
forekomsten av det sokta talet i arrayen. | punkt 3:s implementering — den sista if-
satsen i MySearch () — utnyttjar vi att for-satsens réknare i ar vél definierad dven ef-
ter for-satsen och att den har kvar det vérde den fick ddr. Om sokningen gatt igenom
alla arrayelement utan att hitta nagot element som &r lika med det sokta talet, har for-
satsens raknare i natt vardet t.Length eftersom detta ar forsta vardet som inte uppfyl-
ler for-satsens villkor i < t.Length. | detta fall avslutas for-satsen utan break med
vérdet t.Length for i s att villkoret till den efterfoljande i£-satsen blir uppfyllt och
skriver ut ett Ej-hittat-meddelande.

Bubbelsortering

Sokning i och sortering av stora datamangder &r klassiska tillampningar fér sammansat-
ta datatyper, speciellt for arrays. Medan sokning i forra exemplet baserades pé en linjar
algoritm, bygger sortering pa en ny algoritm, dven om den har vissa likheter med sok-
ning. Vi ska fortsétta kapitlet om arrays med en sorteringsalgoritm som &r en vidare-
utveckling av algoritmen for platsbyte av tva varden. Vi har i programmet MiniSort
(sid 154) anvant denna algoritm pa tva tecken:

if (charl > char2)

{
temp = charl;
charl = char2;
char2 = temp;
}

210

Om tecknen stér i fel ordning ska de byta plats. For att gora det laggs chari:s varde un-
dan i en tredje, temporér variabel temp. Sedan tar vi char2:s varde och l&gger det i
charl. Till sist l&ggs vérdet i temp (som ju har mellanlagrat charl:s vérde) in i
char2. lllustrationen pa sid 154 bor underlatta forstdelsen av denna process. | sjalva
verket beskriver den en algoritm for sortering av tva véarden. For att utvidga algoritmen
till flera varden kopplar vi den till den linjara sokalgoritmen som vi anvande for sok-
ning. Principen dar var en if-sats inbakad i en for-sats. for-satsen soker igenom vér-
dena i en array och ig£-satsen innehaller sokkriteriet. Nar det galler sortering maste i£-
satsen istallet byta plats pa tva varden om de stér i fel ordning. Denna i£-sats har vi ju
redan skrivit for tva tecken (se ovan). Det galler bara att formulera den for tva array-
element och stoppa in den i en for-sats:
for (i=0; i<n-1; i++)
if (t[i] > t[i+1])

{
temp = t[i];
t[i] = t[i+1];
t[i+l] = temp;
}

dar t ar en array som innehdller vardena som ska sorteras och n antalet element i arra-
yen. Nar tva pa varandra foljande arrayelement £[i] och t[i+1] star i oonskad ord-
ning ska de byta plats dar i genomldper alla index. Man skulle kunna tro att problemet
vore l6st med detta. Men eftersom i£-satsen endast testar om tva grannvérden star i fel
ordning och byter sedan plats pa dem, racker koden ovan inte till att sortera arrayen
fullstandigt, d&ven om for-satsen soker igenom hela arrayen. Jamforelsen mellan tva
grannvarden tar inte hansyn till varden som star langre bort. Ett experiment bekraftar
detta: Om man tillimpar koden ovan pa en array av 20 heltal som med metoden
RandArray.Rand () ar utvalda ur intervallet [1, 100] far man foljande resultat:

20 heltal mellan 1 och 100 slumpas fram:
75 2 24 94 30 88 10 42 50 54 27 47 45 83 34 86 67 66 14 14
De 20 slumptalen efter koden ovan:

2 24 75 30 88 10 42 50 54 27 47 45 83 34 86 67 66 14 14 94

Resultatet visar att sorteringen inte ar klar, men att vi ar pa ratt vag. Arrayen ar delvis
sorterad. Bara om tva grannvarden stod i fel ordning har de bytt plats och detta har
gjorts lopande genom hela arrayen. Denna delsortering kallas for ett pass i en sorte-
ringsalgoritm som ar kand under beteckningen bubbelsortering. For att uppna en full-
standig sortering maste detta pass upprepas flera ganger vilket innebar att lagga in ovan-
stdende £or-sats i en ny £or-sats som gar igenom flera pass. | varje pass kommer en del
vérden att placera sig i rétt ordning. Metoden kan jamforas med luftbubblor i vattnet
som s& smaningom stiger upp till vattenytan. Darav namnet bubbelsortering. Vi har im-
plementerat bubbelsorteringsalgoritmen i féljande externlagrade void-metod:

211

// Bubble.cs

// Sorterar heltal lagrade 1 arrayen t med en algoritm

// (bubbelsortering) som baseras pa algoritmen fér platsbyte av
// tvd objekt i programmet MiniSort (sid 154)

using System;

class Bubble

{ public static void sort(int[] t)
{
int temp;
for (int pass=0; pass<t.Length-1; pass++)
for (int i=0; i<t.Length-1; i++)
if (t[i] > t[i+1]) // Sortering i stigande
{ // ordning
temp = t[i]; // Algoritm fér platsbyte
t[i] = t[i+1]; // av de tva elementen
t[i+l] = temp; // t[i] och t[i+1]
Console.WriteLine("\tDe " + t.Length +
" slumptalen efter sortering:");
Console.Write ("\n\t") ;
for (int i=0; i < t.Length; i++) // Sorterad utskrift
Console.Write(t[i] + " ")
Console.WriteLine ("\n\n") ;
}
}

Bubbelsorteringsalgoritmen bestar alltsd av en if-sats inbakad i en nistlad for-sats dar
if-satsen implementerar algoritmen for platsbyte av tvd véarden. Den inre for-satsen
soker igenom arrayelementen, utfor ett sorteringspass och den yttre £or-satsen upprepar
sorteringspassen. Metoden sort () har arrayen t som ska sorteras som parameter och
anvands i den inre £or-satsen. Den anropas frdn Main () i féljande program efter defi-
nitionen av arrayen intaArray och dess tilldelning i metoden RandArray.Rand () :

// BubbleTest.cs
using System;

class BubbleTest

{
static void Main ()
{
Random r = new Random() ;
int a =1, b = 100;
int[] intArray = new int[17];
RandArray.Rand(r, intArray, a, b);
Bubble.sort (intArray) ;
}
}

212

En kérning av programmet BubbleTest Visar att sorteringen nu genomforts fullstan-
digt:

17 heltal mellan 1 och 100 slumpas fram:

23 76 23 31 67 94 79 38 46 10 85 100 87 61 17 71 14

De 17 slumptalen efter sortering:

10 14 17 23 23 31 38 46 61 67 71 76 79 85 87 94 100

Andra algoritmer

Som en sista anmarkning till kapitlet sokning och sortering bor papekas att de algorit-
mer som avhandlats hér, &r enkla och elementédra. De ar daremot inte de mest effektiva
nar det géller att minimera antalet operationer och maximera snabbheten. Det finns ef-
fektivare (och mer komplicerade) algoritmer bade nér det galler s6kning och sortering
som vi inte tar upp hér. Vi ndmner bara en algoritm som kallas bin&rstkning som heter
sa for att den i varje steg halverar arrayen man ska séka i. Den behdver ett mindre antal
operationer och &r darmed snabbare. Nar det galler sortering finns den effektiva algorit-
men Quicksort som bygger pa rekursion. Rekursiva metoder &r metoder som anropar sig
sjalva — ett alternativ till repetition (loopar) som behandlas pa sid 175.

213

5.7 Generiska metoder

| programmering &r variabler platshallare for véarden.
| generiska metoder kan variabler dven anvandas som platshallare for datatyper.

Generiska metoder ar metoder vars parametrar har variabla datatyper.
Ex.: I metoden public static void G_out <T> (T[] t) ar
parametern t &r en array av typ T dér T ar en platshéllare fér datatyper.
Den variabla datatypen T (Type) definieras med <T> och kan anvandas
istallet for vilken datatyp som helst: int, double, char, string,

I generiska metoder &r de involverade datatyperna inte specifierade forrén man utveck-
lar koden. De bestams forst ndr metoderna anropas av de aktuella parameternas data-
typer. Detta innebér en generalisering som kallas fér Generics som kan tillampas dven
pa klasser. Man kan skriva ETT program for manga tillampningar.

Generics

| de flesta programmeringsspraken har man infort Generics som ett tillagg till standar-
den forst i de nyare versioner av spraket. | C++ t.ex. kom motsvarigheten Templates
forst pd 9o0-talet. 1 Java introducerades generics 2004. | C# har det funnits stod for
Generics sedan 2005.

Genom att anvanda Generics behdver man inte langre skriva olika varianter av ett pro-
gram som i praktiken l6ser (ndstan) samma problem. Dessa skiljer sig programmerings-
tekniskt endast i datatypen till de involverade parametrarna. Alla dessa varianter kan
forenas i ett och samma — numera generiskt — program i vilka datatyperna ar variabler.
L&t oss séga, vi vill skriva ett program for sortering av olika slags objekt. Det kan hand-
la om sortering av heltal, decimaltal, bokstéver, stringar, eller Sorteringsalgoritmen
till alls dessa program &r den samma oavsett man sorterar heltal, decimaltal, bokstéver
eller strangar. Metoden som implementerar algoritmen skrivs da generiskt, dvs med
variabla datatyper, sa att den kan anvéndas for att sortera olika typer av objekt beroende
pa i vilket syfte den anropas. LAt oss titta pa foljande exempel:

// G_Output.cs

// Generisk metod G out <> () skriver ut en array av godtycklig
// variabel datatyp T som kan vara int, double, char eller string
// foreach loopar igenom och skriver ut listans alla element
using System;

using System.Collections.Generic;

class G_Output

{
public static void G_out <T> (T[] t)

Console.Write ("\t");

214

foreach (T element in t)
Console.Write (element + " ");
Console.WriteLine ("\n") ;

}

Metoden G_out <> () i klassen G_output &r en generisk variant av den vanliga meto-
den ut () i klassen skriv som presenterades tidigare nér vi behandlade listor (Progrl,
7.9). Det som gor att denna metod &r generisk &r den annorlunda syntaxen i metod-
huvudet:

public static void G_out <T> (T[] t)

Till skillnad fran vanliga metoder har denna metod tv& parameterlistor. Den ena ar den
vanliga med runda parenteser (T[] t) som innehéller parametern t, bara att dess data-
typ &r en array av T. Den andra &r den “generiska parameterlistan” <T> ddr T definieras
som en formell parameter for en datatyp som bestams nar metoden anropas, t.ex. sa har:
G_Output.G_out (hel) ; T far den datatyp som i det anropande programmet har till-
delats variabeln hel. Har vi t.ex. definierat hel som en int, sa antar den formella para-
metern T den aktuella parametern int. | generiska metoder finns det alltid en sadan typ-
parameter. | det program ddr vi testar generiska metoder, anropas G_out <> () fyra
ganger, varje gdng med en annan datatyp, narmare bestimt med int, double, char
och string. Med hjélp av dessa bildas sedan med koden T[] arrays av int, double,
char och string. Den vanliga parametern t definieras da med koden T[] t till sddana
arrays. Har foljer nu det program som testar och anropar tva generiska metoder:

// GenericTest.cs

// Testar de generiska metoderna G out <> () och G sort <> ()
// Skapar 4 arrays av olika typer: int, double, char och string
// och skickar dem till G out <> () fér utskrift och till

// G _sort <> () fér sortering

// Generiska metoderna anropas som vanliga metoder

// Utskrift sker fére och efter sortering

using System;

class GenericTest

{

public static void Main()
¢ int[] hel =
double[] deci
{9%9.9, 7.7, 2.2, 1.1, 8.8, 5.5, 4.4, 3.3, 6.6 };
char[] boks = {lhl’ ‘C‘, 'f', |a|, |e|’ ‘i‘, 'b', ‘d‘, |g|};
string[] text { "zeta", "beta", "gamma", "psi", "alpha" }
Console.WriteLine (
"\n\tOlika datatyper skrivs ut med samma generiska metod" +

4 7/ 2I 1/ 8[5/ 4[3/ 6 }’.

-~
©

’

"\n\tFORE SORTERING:\n") ; // Osorterad utskrift
G_Output.G_out (hel) ; // Anrop av generisk
G_Output.G_out(deci); // metod G out <> ()

G_Output.G_out (boks) ;

215

G_Output.G_out (text);
Console.WriteLine (
"\tDe olika typerna sorteras med samma generisk metod") ;

G_Bubble.G_sort (hel) ; // Sortering: Anrop
G_Bubble.G_sort (deci) ; // av generisk metod
G Bubble.G sort (boks) ; // G sort <> ()

G_Bubble.G_sort (text) ;

Console.WriteLine ("\toch skrivs ut EFTER SORTERING:\n") ;
G_Output.G_out (hel); // Sorterad utskrift
G_Output.G_out(deci) ;

G_Output.G_out (boks) ;

G_Output.G_out (text);

}

Den vitmarkerade koden visar fyra anrop av den generiska metoden G_out <> (). Det
anmarkningsvirda ar att dessa anrop inte skiljer sig alls fran anrop av vanliga metoder.
De aktuella parametrarna hel, deci, boks och text ar definierade som arrays av int,
double, char resp. string och skickar, nar de anropas, inte bara sina vanliga varden
— heltalen, decimaltalen, bokstéverna och strdngarna — till de anropade metoderna, utan
aven sina datatyper. Medan de vanliga véardena i resp. array gar till den formella para-
metern t i resp. metods runda parameterlista, gar datatyperna arrays av int, double,
char 0ch string till parametern T i resp. metods ”generiska” parameterlista <T>. Dar-
med blir varje datatyp specificerad och insatt pa alla stéllen dar T star i den generiska
metoden, vare sig i huvudet eller i kroppen. Sa har blir resultatet av en korning av pro-
grammet GenericTest

Olika datatyper skrivs ut med samma generiska metod
FORE SORTERING:

9 7 2 1 8 5 4 3 6

9,9 7,7 2,2 1,1 8,8 5,5 4,4 3,3 6,6
h ¢ £ a e i b d g

zeta beta gamma psi alpha

De olika typerna sorteras med samma generiska metod
och skrivs ut EFTER SORTERING:

1 2 3 4 5 6 7 8 9
i, 2,2 3,3 4,4 5,5 6,6 7,7 8,8 9,9
a b c¢c d e £ g h i

alpha beta gamma psi zeta

216

Som man ser har heltalen, decimaltalen, bokstaverna och strangarna dvs vardena i de fy-
ra olika arrays skrivits ut som ett resultat av de vitmarkerade anropen i programmet Ge-
nericTest pa forra sidan. Alla fyra anrop har gatt till en och samma generisk metod
G_out <> () (sid 214) som skriver ut dem. Visserligen behéver man skriva fyra olika
anrop i programmet GenericTest. Men man behover definiera och koda sjélva meto-
den bara en gang, vilket innebér en stor effektivitet i utvecklingsarbetet.

Generisk bubbelsortering

Men korresultatet ovan har ocksa andra delar, precis som sjédlva programmet Generic-
Test. Efter att vardena skrivits ut skickas de till en annan generisk metod som sorterar
dem. Detta gors i GenericTest med anropen:

G_Bubble.G_sort(hel);
G_Bubble.G_sort(deci) ;
G_Bubble.G_sort (boks) ;
G_Bubble.G_sort(text);

Aven dessa anrop kan man inte skilja fran anrop till vanliga metoder, fast metoden
G_sort <> () 4r generisk. Efter sorteringen skickas arrayvérdena igen till utskrift, sa
att vi ser dem sorterade i utskriften ovan — och detta sker inte bara for hel- och decimal-
talen samt bokstaverna utan &ven for strangarna. Aven hér anvander vi oss av en enda
generisk metod som vi nu ska titta narmare pa:

// G_Bubble.cs

// Genersik metod G sort <> () sorterar en array av godtycklig

// variabel datatyp T som kan vara int, double, char eller string
using System;

using System.Collections.Generic;

class G_Bubble

public static void G_sort <T> (T[] t) where T : IComparable<T>
{ // Krdvs fér CompareTo ()
T temp;
for (int pass=0; pass<t.Length-1; pass++)
for (int i=0; i<t.Length-1; i++)
if (t[i].CompareTo(t[i + 1]1) > 0) // Om t[i] > t[i+1]

{ // Sortering i sti-
temp = t[i]; // gande ordning
t[i] = t[i + 1]; // Algoritm fér
t[i+l] = temp; // platsbyte

}

}
}

Metoden 6_sort <> () iklassen G_Bubble dr en generisk variant av den vanliga me-
toden sort() i klassen G_Bubble som presenterades nar vi behandlade s6kning och
sortering (Progrl, 7.7). Hér géller samma som vi sa om den forsta generiska metoden
G_out <> ():Den generiska formella parametern T star for datatyper som &r kopplade

217

till den aktuella anropsparametern som skickas till den vanliga formella parametern t,
dvs for datatyperna till de objekt som ska sorteras.

Constraints

Till skillnad frdn G_out <> () har vi i den generiska metoden G_sort <> () ett til-
lagg i metodhuvudet:

public static void G_sort <T> (T[] t) where T : IComparable<T>

Tilligget where T : IComparable<T> &r en s.k. constraint, dvs en restriktion som
laggs pa T. Den &r nédvandig eftersom vi i metodens kropp anvander oss av ett villkor i
if-satsens huvud som ska jamfora tva pa varandra foljande element i arrayen:

if (t[i].CompareTo(t[i + 1]) > 0)
Motsvarigheten till detta i den vanliga icke-generiska metoden soxrt () &r:
if (t[i] > t[i + 1])

Anledningen till att denna kod inte fungerar i den generiska metoden &r att vi inte langre
har att géra med en array av int vars element ska jamféras med varandra, utan med en
generaliserad datatyp T som kan vara vilken datatyp som helst. Hur ska koden avgéra
sanningsvardet till ett sadant villkor om T &r t.ex. en strang? Sjalvfallet maste den ta
strdngarnas begynnelsebokstéver och jamfoéra deras ASCII-koder med varandra for att
avgora vilken som &r stérre. Men en saddan “intelligens” finns inte automatikst inlagd i
den generaliserade datatypen T, utan den ar forprogrammerad i metoden CompareTo ().
For att kunna &t denna kod maste T arva denna metod som i sin tur finns i Interfacet
IComparable<>. Det ar darfor vi maste skriva tilligget where T : IComparable<T> i
huvudet till metoden G_sort <> (). Annars kan vi inte kompilera i£-villkoret

t[i] .CompareTo(t[i + 1]) > O

Det enklare alternativet t[i] > t[i + 1] som betyder samma sak, fungerar inte hel-
ler ndr vi arbetar med den generaliserade datatypen T istéllet for med int eller en annan
specifik datatyp.

I generisk programmering kallas konstruktionen where T : IComparable<T> en con-
straint dvs en restriktion som man ldgger pa T. Just denna constraint innebér att data av
typ T ska vara jdmforbara. Man ska kunna anvanda jamforelseoperatorerna >, <, == 0sv.
pa dem. Interfacet IComparable<> innehaller ett antal fordefinierade metoder som im-
plementerar denna mojlighet.

218

5.8 Kryptering av text

Vi ska nu dra lite praktisk nytta av vara samlade kunskaper om bl.a. slumptal, ASCII-ko-
der, array, stranghantering, metoder och referensanrop, for att med ganska enkla medel
skriva en liten applikation om kryptering av text. Egentligen har vi redan skrivit en sa-
dan, ndmligen klassen EncryptStr med return-metoden Encrypt () (sid 140). Men
da 1ostes problemet med bibliotekslkassen string. Nu ska vi gora det med en egen ar-
ray av char och en void-metod istéllet. Foljande program ldser in text som en char-
array, skickar den till void-metoden Encrypt () dér den Kkrypteras resp. terstalls tec-
kenvis med ett slumptal som krypteringsnyckel. Tekniken som anvands for kryptering
ar samma som i EncryptStr-metoden, fast annu enklare i och med man arbetar pa
char-niva. Ett string-objekt kan inte manipuleras pd char-niva. Nu behdver strangen
sjalv inte kopieras till en annan plats utan kan pga referensanrop krypteras pd samma
stélle, varfor char-programmet behdver halften av det minnesutrymme som det gamla
String-programmet behdvde.

// EncryptCharTest.cs

// Ldser in text som en char-array och skickar den med en slump-
// krypteringsnyckel till metoden Encrypt () ddr den krypteras

// Referensanrop gdr den krypterade texten tillgdnglig i Main()
// Encrypt () anropas en andra gdng med den krypterade texten och
// inverterad (negativ) krypteringsnyckel fér att adterstdlla den
using System;

class EncryptCharTest

{ static void Main()
{
Random r = new Random() ;
int key = r.Next(1l, 501); // Slump-krypte-
// ringsnyckeln
Console.Write ("\nSkriv text som ska krypteras:\t");
char[] text = Console.ReadLine () .ToCharArray() ;
Console.Write ("\n\tOkrypterad text:\t");
Output (text) ;
EncryptChar.Encrypt (text, key):; // 1l:a anropet
// krypterar
Console.Write ("\n\n\tKrypterad text:\t\t");
Output (text) ; // text dr &ndrad
EncryptChar.Encrypt (text, -key); // 2:a anropet
// dterstdller
Console.Write ("\n\n\tAterstilld text:\t");
Output (text) ; // text dr &ndrad
Console.WriteLine ("\n\nKrypteringsnyckeln:\t\t" +
key + '\n');
}

219

static void Output(char[] a) // Metod som

{ // skriver ut
for (int i = 0; i < a.Length; i++) // en array
Console.Write(a[i]) ;

}

Med en array av char allokeras minne for texten med en maximal langd som ar fore-
skriven av metoden Console.ReadLine (), nagot antal tecken som ryms pa en rad,
kanske 80 eller lite fler. Sedan dverférs parametern text med ett forsta anrop av meto-
denEncrypt(ﬁ

EncryptChar.Encrypt (text, key);

som &r definierad i klassen EncryptChar (se nedan), till metoden Encrypt (). | detta
anrop anvands automatiskt referensanrop eftersom text ar definierad som array. Darfor
&r andringarna som gors med text i metoden Encrypt (), tillgdngliga efter anropet.
Texten &r okrypterad fore och krypterad efter anropet bade i Encrypt () och i Main ().
Den andra parametern key daremot dverfors med vanligt vardeanrop — dvs med
kopiering av vérdena — eftersom denna parameter &r definierad till den enkla datatypen
int. Efter Encrypt ():s forsta anrop skrivs den krypterade texten ut. Sedan anropas
Encrypt () andra gangen med -key, det negativa vérdet av key, for att aterstalla
texten som sedan skrivs ut for kontroll. Hur krypteringsmetoden fungerar, forstar man
bast om man samtidigt tittar pa metoden Encrypt ():

// EncryptChar.cs

// Tar emot en text via arrayen t och krypterar den genom att
// férskjuta alla tecken med n steg 1 teckentabellen

// Kontrollerar textens slut med arrayegenskapen Length

class EncryptChar

{
public static void Encrypt(char[] t, int n)
for (int i = 0; i < t.Length; i++)
t[i] = (char) (t[i] + n);
}
}

Krypteringsmetoden ar véldigt enkel: tecknens ASCII-varden 6kas med n i satsen t[i]
= (char) (t[i] + n); genom vanlig addition. Att det verkligen adderas n till ASCII-
koden till t[i] beror pa att £[i] 4r av typ char och att en teckenvariabel i aritmetiska
uttryck tolkas som sin ASCII-kod — ett tal man kan rakna med. for-satsen som gar ige-
nom hela strdngen genom att koppla loopens réknare till arrayens index, gor att hela
texten forskjuts med n steg i ASClI-tabellen. n fér sitt varde genom kopiering (vérde-
anrop) fran key vid forsta och fran —key vid andra anropet. key:s varde i sin tur slum-
pas fram i Main() med hjélp av Random-metoden Next (). Dess anrop med para-

220

metrarna 1 och 501 gor att vi far ett slumpvérde som &r ett heltal mellan 1 och 500 som
sedan skickas som krypteringsnyckel till Encrypt () via dess andra parameter. Vid an-
dra anropet av Encrypt () skickas -key for att aterstalla texten. Genom att ersétta
t[i] + n med mer sofistikerade formler kan man utveckla mer avancerade krypterings-
algoritmer.

Programmet EncryptCharTest kan koras pa olika satt. Varje kérning ger en annan
slumpmassig krypteringsnyckel. Har ett exempel pa en kérning:

Skriv text som ska krypteras: abcdef
Okrypterad text: abcdef
Krypterad text: azceéé
Aterstilld text: abcdef

Krypteringsnyckeln: 132

Man kan kontrollera krypteringen for hand: Man ser att bokstaven a forskjutits till &.
Krypteringsnyckeln har vid denna korning varit 132. ASCII-koden till a som &r 97, har
forskjutits 132 steg vidare till 97 + 132 = 229 som &r koden till tecknet &. Testa garna
med programmet Int2Char (sid 126). Darfor har a forskjutits till & med krypterings-
nyckeln 132. P& samma satt gors det med de andra tecknen i texten abcdef£.

Sjélvklart borde i en skarp applikation krypteringsnyckeln inte skrivas ut utan endast
sparas i variabeln key for att anvanda den vid &terstallningen. Vi gor det har endast for
experimentens skul.

Lagger man till filhantering i programmet EncryptCharTest kan samma metod En-
crypt () anvandas for kryptering av filer.

Vi ska avsluta detta kapitel med ett sista avnsnitt som behandlar en utvidgning av array-
begreppet: en array vars element i sin tur &r arrays.

221

5.9 2D Array

Med array kunde vi bearbeta stérre méngder av data. Men ibland &r inte kvantiteten av-
gorande utan strukturen av data. Foljande problem illustrerar detta:

”Sex elever i en klass har skrivit fyra olika prov och fatt poang i dem. Skriv ett program
som lagrar elevernas poang i alla prov och skriver ut dem. Sedan ska man kunna andra
ett provresultat till en elev samt skriva ut den uppdaterade elevens poiang.”

Elevernas poéng i olika prov kan lampligast lagras i en tabell. Tvadimensionell array
som anvands i féljande program, &r den naturliga datastrukturen for att lagra tabeller:

// DoubleArray.cs

// Elevernas podng 1 olika prov lagras 1 en 2D-array (table)

// En elevs podng i ett prov uppdateras och visas

// Bade den ursprungliga och uppdaterade podngtabellen skrivs ut
// Tvddimensionell array modellerar tabellen och kommer &t

// arrayens element dvs tabellvdrdena

using System;

class DoubleArray
{ Comr D

static void Main()

{
int[,] table = { {67, 78, 84, 56}, // (6 x 4)-array
{49, 37, 59, 74},
{89, 54, 68, 34},
{72, 51, 85, 63},
{39, 41, 52, 27},
{98, 69, 79, 80} };
Console.Write ("\n\t6 elevers provresultat i 4 prov:\n\n");
PrintTable (table) ;
Console.Write ("Elev 4 har forbattrat poang i prov 2. " +
"Mata in ny poédng:\t");
table[3, 1] = int.Parse(Console.ReadLine()) ;
Console.Write ("\nElev 4:s nya poang:\t");
for (int k=0; k<4; k++) // 4:e uppdaterade raden
Console.Write (table[3, k] + " "),
Console.WriteLine ("\n\n\tUppdaterad podngtabell:\n") ;
PrintTable (table) ;
}

222

static void PrintTable(int[,] t)

for (int r=0; r<6; r++)

{ Console.Write ("Elev " + (r+1l) + ":\t\t"):;
for (int k=0; k<4; k++)
Console.Write(t[r, k] + " ")
Console.WriteLine() ;
}

Console.WritelLine() ;

}

En tabell &r en tvadimensionell struktur som vi redan stétt pa i olika sammanhang, t.ex.
i nastlade for-satser med vars hjélp vi skrivit ut tabeller. Men vi har aldrig kunnat lagra
tabeller i véara program for att sedan kunna referera till, komma &t och hantera
tabellenvirdena. Tvadimensionell array ar i C# och andra programsprék den data-
struktur som kan l6se detta problem. | programmet DoubleArray definieras och initie-
ras den tvadimensionella arrayen table med koden:

int[,] table = { {...} ... {...} }

som &r en array vars element i sin tur ar arrays, dvs en dubbel eller nastlad array av int
av storleken 6 x 4, dvs en stor array bestdende av 6 sma arrays, var bestdende av 4 int-
element, &ven kallad en (6 x 4)-array. Strukturen i arrayen kan jamforas med en tabell av
6 rader och 4 kolumner, se den nastlade initieringslistan pa forra sidan. Storleken far
inte anges explicit i hakparentesen, om man fortsatter initiera arrayen med ini-
tieringslistan. Storleken avlises automatiskt fran initieringslistan pa hoger sidan. I sjalva
verket ar det inget annat &n en 6-array av 4-arrays av int, om vi tillater att elementen i
en array i sin tur kan vara arrays. Eller varfor inte prata om nastlade arrays? Pa sa satt
kan man forestalla sig arrays av annu hogre dimension an tva. | C# finns det ingen
begransning for att bilda flerdimensionella arrays: Man bara 6kar antalet nivaer och i
koden antalet komma i hakparentesen i definitionen ovan. Vi néjer oss dock med tva
dimensioner dar vi har den enkla tabellanalogin.

Deklarationen av den tvadimensionella arrayen table anvander sig av initieringslistan
som introducerades for endimensionella arrays pa sid 197. Observera att det vid initie-
ringen — narmare bestamt strax efter tilldelningsoperatorn — star tva inledande klamrar
efter varandra { {67, ... ochaveni slutet av initieringssatsen tva avslutande klamrar

, 80} }; Klamrarna dr nastlade i varandra, vilket ar ett kiannetecken for en tvédi-
mensionell array. Ett annat & kommat i annars tomma hakparentesen vid definitionen.
Vi har alltsé att géra med en array pa forsta niva — representerad av de yttre klamrarna. |
denna forsta niva-array finns det 6 element som i sin tur ar arrays. Darfor 4r 6 storleken
pa denna forsta niva-array. Dess element som i sin tur ar arrays, befinner sig péa en
djupare andra niva — representerade av de inre klamrarna — och har 4 element som &r
vanliga int-varden. Darfor ar 4 storleken pa dessa andra nivéa-arrays. Man kan ocksa
sdga, Vi har en yttre stor array som innehaller 6 inre sma arrays med 4 int-element var,

223

som &r nastlade i den stora arrayen. Darfor ar det hela en tvadimensionell (6 x 4)-array.
Med hjélp av kodens layout har vi férsokt att anknyta till tabellform. Tabellen har 6
rader och 4 kolumner. Varje rad representerar en elev med sina poang i olika prov. Var-
je kolumn visar ett prov med poéng tillhérande olika elever. Darmed har vi bilden av en
(6 x 4)-tabell till en (6 x 4)-array. Generellt kan tvadimensionella (m x n)-strukturer kodas
med (m x n)-arrays d&r m och n &r positiva heltal.

Atkomst till element i en tvadimensionell array

Har hanvisas till diskussionen pa sid 195: En arrays hakparenteser [] har inte samma
betydelse i programmets alla satser. | definitionssatser omsluter hakparenteserna antalet
element i arrayen dvs arrayens storlek. | alla andra satser omslutar hakparenteserna in-
dex till varje element av en array. Detta géller forstas aven for tvadimensionella arrays.
Hakparenteserna i koden table[3, 1] i programmet DoubleArray, innehaller in-
dexen till ett element i arrayen table. Sjalvklart ar det ett dubbelindex som refererar till
ett int-varde. Man vill komma &t en tabellplats och &ndra dess varde genom att lasa in
ett nytt varde till den som kommer att skriva 6ver det gamla. Lat oss saga, en elev har
gjort omprov i ett &mne, forbattrat sina poéng, och man vill 1&sa in det nya véardet och
fora in det i tabellen. Men vilken elev och vilket prov ar det, vilket element i arrayen
table ar det? Aven hir méste vi hinvisa till indexregeln som &ven galler for tvadimen-
sionella arrays: Numreringen av index bérjar alltid med 0 (sid 192). Det géller: ele-
mentets position = index + 1, dar med position menas numret som manniskan anvander
for att numrera elementen, medan index ar det som skrivs i koden. Darfor betyder dub-
belindexet [3, 1] isatsen ovan inte elev 3, prov 1, utan enligt indexregeln: elev 4, prov
2. De héardkodade vardena till arrayen table i programmet DoubleArray Visar att det
ar véardet 51 som star i korset mellan rad 4 och kolumn 2 (sid 222). Alltsa refererar koden
table [3, 1] till vardet 51. Man tar det forsta indexet 3 och réknar — genom att borja
med 0 — raderna i den stora arrayen table. S& kommer man till tabellens rad 4 eller
elev 4. Det innebér att soka igenom arrayen table pa forsta niva. Sedan tar man det
andra indexet 1 och rédknar — genom att bérja med 0 — kolumnerna i den redan hittade
raden 4. S& kommer man till tabellens kolumn 2 eller prov 2 och hittar dar vardet 51.
Det 4r samma som att soka igenom arrayen table pa andra, djupare niva. Dubbel-
indexets forsta index refererar till arrayens forsta och det andra index till arrayens andra
niva. Denna generella regel tillimpas dven i den néstlade for-satsen som lagger hela
poangtabellen i string-variabeln box for att senare skriva ut box pa skarmen:

for (int r=0; r<6; r++) // Ligger table i box

for (int k=0; k<4; k++)
box += table[r, k] + " ",
box += '\n';

}

Den inre £or-slingan skriver ut en rad, narmare bestdmt den r:te raden genom att halla
fast det forsta indexet r och lata det andra indexet k ga igenom kolumnindexen o, 1, 2,
3. Dessutom skickas mellan kolumnerna en tabulator till utskrift. Den yttre for-slingan
later den inre slingan att skriva ut raderna 6 ganger genom att lata det forsta indexet

224

ga igenom radindexen 0, 1, 2, 3, 4, 5. Dessutom skickas ett radbyte mellan raderna till
utskrift. P4 liknande satt hade vi med nastlad for-sats skrivit ut en tabell 6ver tal och
multiplikationstabellen.

Efter uppdateringen av elev 4:s podng i prov 2 vill vi verifiera dndringen genom att skri-
va ut just denna elevs poéng i alla prov dvs ta ut hela raden 4 ur tabellen med:

for (int k=0; k<4; k++) // Ldgger den 4:e uppdate-
box += table[3, k] + " ", // rade raden 1 box

Som man ser &r detta en kopia av den inre slingan fran den néstlade for-satsen ovan
med r = 3. Raden 4 har enligt indexregeln index 3. Observera att poang:s forsta index
hélls fast och det andra indexet raknas upp. Varje enskild rad kan skrivas ut pa det har
sattet. Att ta ut en enskild kolumn ur tabellen och skriva ut alla elevers poang fran ett
prov, t.ex. prov 2, borde ga med féljande sats:

for (int r=0; r<6; r++)
box += table[r, 1] + '\n';

Har har vi tagit den yttre slingan fran den nastlade for-satsen ovan, eliminerat den inre
slingan och ersatt den med utskrift av ett enda varde per rad. Till skillnad fran radut-
skrift halls table:s andra index fast och det forsta indexet réaknas upp. Dessutom har
radbytet lyfts in i satsen da blanksteg inte behovs nar man skriver ut endast en kolumn.
Prova gérna! Slutligen ger ett kérresultat av programmet boubleArray:

6 elevers provresultat i 4 prov:

Elev 1: 67 78 84 56
Elev 2: 49 37 59 74
Elev 3: 89 54 68 34
Elev 4: 72 51 85 63
Elev 5: 39 41 52 27
Elev 6: 98 69 79 80

Elev 4 har forbattrat poang i prov 2. Mata in ny poang: 99
Elev 4:s nya poang: 72 929 85 63

Uppdaterad poangtabell:

Elev 1: 67 78 84 56
Elev 2: 49 37 59 74
Elev 3: 89 54 68 34
Elev 4: 72 99 85 63
Elev 5: 39 41 52 27
Elev 6: 98 69 79 80

225

5.10 Dynamiska arrays: Listor

Array har manga fordelar nar det galler hantering av stora dataméngder, men ocksa en
stor nackdel, namligen att man i forvag maste ange storleken pa arrayen utan att ha moj-
ligheten att &ndra den vid behov senare. Anta att vi vill ha ett program som l&ser data,
t.ex. laddar ned text, bild eller ljud — fran nagon kalla, sag en fil, och vi vet inte hur
mycket data filen innehaller, nar vi skriver kod. Det har problemet kan inte 16sas med en
vanlig array eftersom den tillampar s.k. statisk minnesallokering, dvs minnesutrymmets
storlek bestdms nar man definierar arrayen. Nar koden kompileras reserveras minne av
den angivna storleken som inte langre kan &ndras under exekveringen. Darfor kan en
array inte klara av den har uppgiften. Nar man laser data fran en fil ska minnesallokerin-
gen helst goras samtidigt som filen lases under programmets kdrning. | det enklaste
fallet ska man kunna lasa in data till ett C#-program utan att pa forhand behdva ange
dess storlek. Ldsningen vore dynamisk minnesallokering, dvs minnesutrymmet kan ut-
Okas efter behov under programmets exekvering. En slags dynamisk array behovs. Och
just en sadan dynamisk array dr den nya datastrukturen List som vi ska stifta bekant-
skap med i detta avsnitt. List &r inte bara dynamisk utan har &ven en mangd fordefinie-
rade kraftfulla metoder som sorterar, soker i eller p& annat satt manipulerar listor, sa att
man sjalv inte behover koda sa mycket. | denna bemérkelse ar listor béttre arrays.

Féljande program visar ett exempel pa denna nya datastruktur:

// List.cs

// Skapar en lista och skickar den till metoden Rand() ddr den
// fylls med slumptal. Listan skickas vidare till List-metoden
// Sort() didr den sorteras. Utskrift sker fdre + efter sortering.
using System;

using System.Collections.Generic; // Krdvs fér List

class List

{
static void Main()
¢ List<int> intlist = new List<int>(); // List-objekt av int
Random r = new Random() ;
int a =1, b = 1000;
Console.WriteLine (
"\n\t100 heltal mellan " + a + " och " + b +
" slumpas till ett List-objekt:\n");
RandList.RandL(r, intList, a, b); // Slump-tilldelning
Print.Out (intList) ; // Osorterad utskrift
intList.Sort () ; // List-sortering
Console.WriteLine (
"\tHeltalen sorteras med List-metoden Sort():\n");
Print.Out (intList) ; // Sorterad utskrift
}
}

226

Klassen List

Klassen nist ar fordefinierad i C#-biblioteket System.Collectins.Genetric. FOr
att anvanda listor maste vi skapa ett objekt av denna klass. Det gér man med satsen:

List<int> intList = new List<int>();

Variabeln som refererar till det nya objektet kallar vi intList. Det speciella med klas-
sen List &r att den maste kopplas till en datatyp. Hér &r den kopplad till int, dvs
klassen heter egentligen List<int>. Vi har skapat en lista av int, ganska liknande en
array av int, bara att vi nu inte behdver ange antal element. Det &r just det dynamiska i
listor till skillnad fran arrays. Som en konsekvens far vi tilldela till en lista av int ocksa
bara heltal av typ int. Varje forsok att tilldela till den andra an int-varden kommer att
leda till kompileringsfel. Man kan forstas skapa &ven objekt av listor av alla andra
datatyper inkl. andra klasser. Har man t.ex. definierat en klass Person kan man med
List<Person> p = new List<Person>(); skapa en lista 6ver personer. p refere-
rar da till ett objekt av typ List<Person>. Varje element i denna lista &r i sin tur ett
objekt av typ Person.

Listan intList vi skapat ovan r just nu tom. Den blir inte heller tilldelad i koden pa
forra sidan. For att fylla den med vérden skickar vi den som parameter till metoden
RandL () som vi definierar i klassen RandList:

// RandList.cs

// Metod Rand() slumpar fram heltal mellan a och b och
// lagrar dem i ett List-objekt med List-metoden Add /()
using System;

using System.Collections.Generic;

class RandList

public static void RandL(Random r, List<int> no, int a,
int b)
{

for (int i=0; i < 100; i++) // Har fylls listan
no.Add(r.Next(a, b)) ; // med slumptal

}

Deklarationen av parametern i metoden RandL ():S parameterlista sker med koden
List<int> no. Namnet no pa den formella parametern ar ovasentligt. Eftersom re-
ferensanrop tillampas, pekar no i alla fall pd samma objekt som intList dvs den lista
som skapades i Main (). Sa fyller vi den i £or-satsen med 100 slumptal genererade av
den gamla Rand () -metod som vi anvant tidigare och som i varje varv skapar ett slump-
tal mellan a och b (1 och 1000). For att placera dem i listan anvander vi 0ss av metoden
Add () som ar definierad i klassen List, darfor anropet no.add () . Varje anrop infogar
ett slumptal i listan. Vi beh6ver inte ange i férvag hur Iang listan ska vara. Den ar ppen
och véxer vid behov. Det &r férdelen med dynamiska arrays som tillhandahalls i klassen

227

List. Slumptalsgenereringsmetoden Next () anropas i Add () -metodens parameterlista
med r.Next (a, b) som ar definierad i biblioteksklassen Random (sid 65) .

Vi har dven modulariserat utskriftsproceduren med all layout som tillhér den, i metoden
out () iden externa klassen Print som ser ut sa har:

// Print.cs

// Metoden Out () skriver ut en lista med en foreach-sats som
// loopar igenom listans ALLA element

using System;

using System.Collections.Generic;

class Print

public static void Out (List<int> t)

{
Console.Write("\t") ;
int i = 1;
foreach (int element in t)
{
Console.Write (element + " ") ;
if (i % 14 == 0) // Radbyte var
Console.Write ("\n\t") ; // 14:e utskrift
i++;
}
Console.WriteLine ("\n") ;
}

}

I metodens huvud véljs namnet t for den formella parametern. Eftersom metodens an-
rop i Main () sker med den aktuella parametern intList, pekar t pd samma lista som
intList. Darfor skrivs ut listans innehall — de 100 slumptalen — nar out () anropas
forsta gangen direkt efter att listan blivit tilldelad i Rand () -metoden. Andra gangen
sker anropet efter sorteringen. All utskrift i out () sker med hjélp av en kontrollstruktur
som &r typisk for listor och arrays och som inleds med det reserverade ordet foreach.

foreach-satsen i listor

Det &r en kontrollstruktur som behandlades tidigare i detta kapitel (sid 194), fast d& var
det i samband med array. Nu anvénds foreach med listor. Skillnaden &r dock obetyd-
lig. | klassen Print (ovan) ser huvudet till foreach-satsen ut sa har:

foreach (int element in t)
Oversatt till svenska:
For varje element av listan t gor:

Iterationsvariabeln element definieras till int. Men till skillnad fran for-satsens rak-
nare dr element inget index (nr) i listan utan en variabel som pekar pa sjalva vérdet
(innehdllet) som stdr i listan. t ar en referens till listan som ska loopas igenom. for-

228

each-satsen gar igenom listans alla element, fran det forsta till det sista. Variabeln
element SOM i varje varv pekar pa resp. listelementets varde, anvands sedan i loopens
kropp for att gora det man Gnskar. | vart exempel sétts den i foljande anrop for att skriva
ut listans element féljt av ett mellanslag:

Console.Write (element + " ");

Mellanslaget samt resten av koden i metoden out () ar till for att fa en snygg layout i
utskriften. Raknaren i som vi sjalva definierar, haller reda pa loopens varv och ger oss
mojligheten att i foljande i£-sats infoga ett radbyte samt tabulator var 14:e utskrift utom
i den allra forsta:
if (i % 14 == 0)
Console.Write("\n\t");

Antligen kan vi testa programmet List som kan resultera i foljande utskrift:

100 heltal mellan 1 och 1000 slumpas till ett List-objekt:

378 297 220 134 803 115 218 227 346 300 508 559 845 872 417
829 559 105 477 869 602 493 117 713 541 92 572 988 796

982 184 431 259 39 566 724 465 722 14 817 235 751 446

256 650 231 413 914 907 297 464 943 557 957 999 533 181

155 594 359 191 231 79 365 764 725 948 454 307 341 12

485 739 661 635 852 695 862 711 958 680 659 729 147 166

242 522 303 688 681 544 958 129 656 274 652 320 82 493

573

Heltalen sorteras med List-metoden Sort():

12 14 39 79 82 92 105 115 117 129 134 147 155 166 181
184 191 218 220 227 231 231 235 242 256 259 274 297 297
300 303 307 320 341 346 359 365 378 413 417 431 446 454
464 465 477 485 493 493 508 522 533 541 544 557 559 559
566 572 573 594 602 635 650 652 656 659 661 680 681 688
695 711 713 722 724 725 729 739 751 764 796 803 817 829
845 852 862 869 872 907 914 943 948 957 958 958 982 988
999

”Kan resultera”, déarfor att det blir andra siffror i varje korning pga at det dr slumptal
som genereras och som &r olika varje gang man kor programmet. Sorteringen gors i pro-
grammet List:S anrop (sid 226) av metoden sort () som é&r fordefinierad i klassen
List.

229

5.1

5.2

5.3

5.4

5.5

5.6

5.7

5.8

Ovningar till kapitel 5

Skriv ett program som laser in 10 heltal fran konsolen, lagrar dem i en array och
skriver ut dem i omvand ordning.

Skriv ett program som slumpar fram 1000 heltal mellan 60 och 140 (tdnkbara has-
tigheter pa en motorvag), lagrar dem i en array kallad hastighet, berdknar och
skriver ut deras medelvarde med forklarande text. Anvand klasserna RandArray
(sid 207) och RandomNo som externa moduler.

Skriv ett program som laser in en stréng, lagrar den i en array av char och skri-
ver ut den baklanges. Anvand tekniken i programmet EncryptCharTest (sid
219) for att omvandla den inlésta strdngen i en array av char.

Skriv ett program som l&ser in text i gemener, lagrar den i en array av char och
skriver ut den framhévd i versaler och med mellanslag mellan varje tecken.

Skriv ett program som fragar efter anvandarens for- och efternamn, hélsar sedan
anvéndaren i en utskrift med fullstdndiga namnet, férnamnets langd samt efter-
namnets forsta och sista bokstav. Los uppgiften generellt utan att anvénda infor-
mation om nagot speciellt for- och efternamn.

Skriv ett program dér Main () laser in en persons fullstindiga namn och hélsar
tillbaka med namnets initialer. Dessa ska bestdmmas och skrivas ut i en annan
metod — med huvudet static void Initials(char[] name) — SOM anro-
pasiMain().

Modifiera programmet List (sid 226) sa att sorteringen av slumptalen gérs med
var egen bubbelsorteringsmetod sort () (sid 212) istéllet for med den fordefinie-
rade List-metoden Sort (). Testa forst med array-notationen som sort () &r
skriven i. Forsok sedan att skriva om sort () till en List-version.

Modifiera programmet ArrayOfRef (sid 200). Deklarera klassen Fish:s data-
medlemmar som private och metoderna som public. Forse klassen med en
konstruktor och en strangrepresentationsmetod AsString(). | Ovrigt ska det
modifierade programmet gdra samma sak som det ursprungliga.

230

Fullstandiga ldsningar till dvningar (Facit)

I programmering finns alltid flera méjliga 16sningar till en uppgift. Darfor &r det, som
slarvigt kallas for I6sningar, i sjélva verket endast 16sningsforslag. Dessutom ges inga
I6sningsforslag till projektuppgifterna eller uppgifter som &r relaterade till ett projekt,
for att uppmuntra till egna I6sningar. Istéllet finns det i projektens lydelse en mer eller
mindre utforlig ledning resp. algoritm till 16sningen.

Kapitel 1 Windowsprogrammering, sid 63:

Ovning 1.1
Skapa en Console Application och kalla den fér AdditionC. Den ska definiera och initiera tva hel-
talsvariabler och producera t.ex. féljande utskrift till konsolen:

Summan av 9 och 2 ar 11
9 och 2 ska vara de vérden som heltalsvariablerna blivit inirierade till i programmet.

Ldsningen: (= betyder musklickning, vénster- eller hgermusklick)
- New Project = Console Application, Name: AdditionC, Location: ... > OK.

SOLUTION EXPLORER: - Program.cs - Exclude From Project > AdditionC > Add

- New Item... > Code File > Name: AdditionC.cs > Add

Skriv féljande kod i filen AdditionC.cs:

// AdditionC.cs

// Adderar talen 9 och 2 samt skriver ut resultatet
// fran en konsolapplikation till konsolen

using System;

class AdditionC

{
static void Main()
{
int numberl = 9; // Definition och initiering
int number2 = 2;
Console.WriteLine ("\n\t" +
"Summan av " + numberl + " och " +
number2 + " &r " + (numberl + number2) + '\n');
}
}
Ovning 1.2

Skapa en Windows Forms Application och kalla den AdditionW. Den ska géra samma sak som
I6sningen i 6vning 1.1, bara att MessageBoxen ska visas nar man klickar pa en knapp (med texten
Visa MessageBox) i formfonstret. Férse MessageBoxen med rubriken Windows Addition.

Lésningen:
- New Project > Windows Forms Application, Name: AdditionW, Location: ... = OK.
HUVUDMENYN: - View - Toolbox

231

TOOLBOX: = Common Controls: Dubbelklicka pa kontrollen Button.
PROPERTIES: Sétt button1-egenskaperna till féljande vérden:

Egenskap Varde
AutoSize True
Font Tahoma; 12pt; style=Bold
Location 56; 45
Text Visa MessageBox

Dubbelklicka p& knappen i formfonstret och skriv kod i hindelsemetoden buttonl_Click() sé att
filen Form1.cs far foljande utseende:

// Forml.cs

// Adderar talen 9 och 2 samt skriver ut resultatet
// frdn en Windows applikation till en MessageBox
using System;

using System.Windows.Forms;

namespace AdditionW

public partial class Forml : Form

public Forml ()

{
InitializeComponent() ;
}
private void buttonl Click (object sender, EventArgs e)
{
int numberl = 9;
int number2 = 2;
MessageBox.Show ("Summan av " + numberl + " och " + number2 +
" 4r " + (numberl + number2), "Windows Addition");
}
}
}
Ovning 1.3

I bade 6vn 1.1 och 1.2 &r heltalsvéirdena 9 och 2 hardkodade. Vidareutveckla dessa 6vningar ge-
nom att skapa ett anvandarvanligt, interaktivt grafiskt granssnitt dar man kan mata in vilka heltal
som helst och f& summan utskriven i en MessageBox nar man klickar pa en knapp med texten
Addera. Vélj l&mpliga rubriker for formen och MessageBoxen. Kalla projektet for Addition.

Lésningen:
- New Project > Windows Forms Application, Name: Addition, Location: ... = OK.
PROPERTIES: Séatt Form1-egenskaperna till foljande véarden:

Egenskap Varde
Text Addition
Size 400; 200

HUVUDMENYN: - View - Toolbox
TOOLBOX: = Common Controls: Dubbelklicka pa kontrollen Label.

232

PROPERTIES: Sétt label1-egenskaperna till féljande vérden:

Egenskap

Varde

Location

30; 30

Text

Tal 1:

TOOLBOX: Dubbelklicka pa kontrollen TextBox.

PROPERTIES: Sétt textBox1-egenskaperna till féljande véarden:

Egenskap Varde
Location 90; 27
Size 100; 20
TextAlign Center

TOOLBOX: Dubbelklicka pa kontrollen Label.
PROPERTIES: Sétt label2-egenskaperna till foljande vérden:

Egenskap

Varde

Location

30; 80

Text

Tal 2:

TOOLBOX: Dubbelklicka pa kontrollen TextBox.

PROPERTIES: Sétt textBox2-egenskaperna till féljande vérden:

Egenskap Varde
Location 90; 77
Size 100; 20
TextAlign Center

TOOLBOX: Dubbelklicka pa kontrollen Button.
PROPERTIES: Sétt button1-egenskaperna till féljande vérden:

Egenskap Varde
Location 275; 25
Size 90; 25
Text Addera

Dubbelklicka pa knappen Addera i formfonstret och skriv kod i handelsemetoden buttonl_Click()

sd att filen Form1.cs far foljande utseende:

// Forml.cs

// Lidser av tva tal frdn tva textfdlt i1 formfénstret och adderar dem

// Skriver ut resultatet till en MessageBox

using System;
using System.Windows.Forms;

namespace Addition

{

public partial class Forml :

{
public Forml ()
{
InitializeComponent ()
}

Form

’

233

private void buttonl Click(object sender, EventArgs e)

double nol = Convert.ToDouble (textBoxl.Text) ;
double no2 = Convert.ToDouble (textBox2.Text) ;

MessageBox.Show ("Summan av " + nol + " och " + no2 + " ar " +
(nol + no2), "Resultat");

Ovning 1.4

Skapa en Windows Forms Application och kalla den Division. Modifiera I6sningen i 6vn 1.3 s
att berakningens resultat hamnar i ett textfalt i formen istéllet for i en MessageBox. Vélj den hér
gangen division som rakneoperation.

Ldsningen:
- New Project > Windows Forms Application, Name: Division, Location: ... = OK.
PROPERTIES: Sétt Form1-egenskaperna till féljande vérden:

Egenskap Varde
Text Division
Size 450; 250

Den grafiska designen av de tva forsta labels och textfalten ar identisk med 6vn 1.3. S ta 6ver
darifran. En tredje label och ett tredje textfalt kommer till:

TOOLBOX: Dubbelklicka pa kontrollen Label.
PROPERTIES: Sétt label3-egenskaperna till féljande vérden:

Egenskap Varde
Location 215; 150
Text Resultat:

TOOLBOX: Dubbelklicka pa kontrollen TextBox.
PROPERTIES: Sétt textBox3-egenskaperna till féljande vérden:

Egenskap Varde
Location 275; 147
Size 100; 20
TextAlign Center

TOOLBOX: Dubbelklicka pa kontrollen Button.
PROPERTIES: Sétt button1-egenskaperna till féljande varden:

Egenskap Varde
Location 275; 25
Size 90; 25
Text Dividera

234

Dubbelklicka pa knappen Dividera i formfonstret och skriv kod i handelsemetoden buttonl-
_Click() sa att filen Form1.cs far foljande utseende:

// Forml.cs

// Lidser av tva tal frédn tva textfdlt i formfénstret och dividerar dem
// Skriver ut resultatet till ett tredje textfdlt

using System;

using System.Windows.Forms;

namespace Division

public partial class Forml : Form

{
public Forml ()
InitializeComponent () ;
}
private void buttonl Click(object sender, EventArgs e)
double nol = Convert.ToDouble (textBoxl.Text) ;
double no2 = Convert.ToDouble (textBox2.Text) ;
textBox3.Text = (nol / no2) .ToString() ;
}
}
}
Ovning 1.5

Skapa en Windows Forms Application och kalla den SafeDivision. Ta bort filerna Form1.cs och
Form1.Designer.cs fran projektet. Infoga istéllet filerna med samma namn fran projektet Division
(6vn 1.4) i projektet SafeDivision. Dép om i bada filerna raderna namespace Division till name-
space SafeDivision. Modifiera koden i Forml.cs genom att infora ett egengenererat undantag
(Progrl, 8.2) i programmet for fallet att anvandaren matar in O i det andra textféltet, dvs ndr di-
vision med 0 uppstar. Styyr meddelandena fran undantagshanteringen till en MessageBox.

Lésningen:

- New Project = Windows Forms Application, Name: SafeDivision, Location: ... = OK.
SOLUTION EXPLORER: - Forml.cs > Delete - Forml.Design.cs - Delete - SafeDivision
- Add - Existing Item... > Forml.cs (frdn projektmappen Division) = Add - SafeDivision
- Add > Existing Item... = Form1.Design.cs (frn projektmappen Division) = Add

- Forml.cs: Ersétt namespace Division med namespace SafeDivision.

- Forml.Design.cs: Ersatt namespace Division med namespace SafeDivision.

Modifiera filen Form1.cs sa att den far foljande utseende:

// Forml.cs

// Ldser av tva tal frdn tva textfdlt i formfénstret och dividerar dem
// Skriver ut resultatet till ett tredje textfalt

// Kastar och hanterar undantag om det matas in 0 i det andra textfdltet
using System;

using System.Windows.Forms;

namespace SafeDivision

{
235

public partial class Forml : Form

public Forml ()
{

}

private void buttonl Click (object sender, EventArgs e)

InitializeComponent() ;

double nol = Convert.ToDouble (textBoxl.Text) ;
double no2 = Convert.ToDouble (textBox2.Text) ;
try
if (no2 == 0)
throw new DivideByZeroException(); // Undantag kastas
else

textBox3.Text = (nol / no2) .ToString() ;

catch (DivideByZeroException exception) // Undantag fdngas upp

{
MessageBox.Show ("\tOBS! Du forsdkte dividera med 0.\n\t" +
"Det gar inte att dividera med 0.\n\n\t" +
"C# undantagsmeddelande:\n\n" +
exception.ToString (), "Felmeddelande") ;
} // Undantag skrivs ut
}
}
}
Ovning 1.6

Vidareutveckla évningsserien 1.1-1.5 till en komplett kalkylator med interaktivt grafiskt granssnitt
och undantagshantering som inkluderar de fyra rékneséatten.

Lésningen:
- New Project = Windows Forms Application, Name: Calculator, Location: ... 2 OK.
PROPERTIES: Séatt Form1-egenskaperna till féljande vérden:

Egenskap Varde
Text Calculator
Size 450; 250

Den grafiska designen av de tre labels och textfalten &r identisk med 6vn 1.3 resp. 1.4. S& ta Gver
darifrdn. D6p om de tre labels Text-egenskaper till Numberl:, Number2: och Result. Daremot
bygger vi har fyra nya knappar for de fyra raknesatten:

TOOLBOX: Dubbelklicka pa kontrollen Button.
PROPERTIES: Sétt button1-egenskaperna till féljande varden:

Egenskap Varde
Location 275; 25
Size 90; 25
Text +

236

Dubbelklicka pa knappen + i formfonstret. Atergé till formfénstret.

TOOLBOX: Dubbelklicka pé& kontrollen Button.
PROPERTIES: Satt button2-egenskaperna till féljande varden:

Egenskap Varde
Location 275; 50
Size 90; 25
Text -

Dubbelklicka pa knappen - i formfonstret. Aterga till formfonstret.

TOOLBOX: Dubbelklicka pé& kontrollen Button.
PROPERTIES: Sétt button3-egenskaperna till féljande varden:

Egenskap Varde
Location 275; 75
Size 90; 25
Text X

Dubbelklicka p& knappen x i formfénstret. Atergé till formfonstret.

TOOLBOX: Dubbelklicka pa kontrollen Button.
PROPERTIES: Sétt button4-egenskaperna till féljande varden:

Egenskap Varde
Location 275; 100
Size 90; 25
Text /

Dubbelklicka pa knappen / i formfonstret. Aterga till formfonstret.

Skriv kod i knapparnas handelsemetoder sa att filen Form1.cs far foljande utseende:

// Forml.cs

// Kalkylator fér de fyra rdknesdtten

// Ldser av tva tal fradn tva textfdlt och berdknar deras
// summa, differens, produkt eller kvot

// Skriver ut resultatet till ett tredje textfdlt

// Kastar och hanterar undantag vid division med 0
using System;

using System.Windows.Forms;

namespace Calculator
public partial class Forml : Form

public Forml ()
{

}

private void buttonl Click (object sender, EventArgs e)

InitializeComponent () ;

double nol = Convert.ToDouble (textBoxl.Text) ;
237

double no2 = Convert.ToDouble (textBox2.Text) ;
textBox3.Text = (nol + no2) .ToString() ;

}

private void button2 Click (object sender, EventArgs e)

double nol = Convert.ToDouble (textBoxl.Text) ;
double no2 = Convert.ToDouble (textBox2.Text) ;

textBox3.Text = (nol - no2) .ToString() ;

}

private void button3_Click (object sender, EventArgs e)

double nol = Convert.ToDouble (textBoxl.Text) ;
double no2 = Convert.ToDouble (textBox2.Text) ;

textBox3.Text = (nol * no2) .ToString() ;

}
private void button4 Click (object sender, EventArgs e)
{
double nol = Convert.ToDouble (textBoxl.Text) ;
double no2 = Convert.ToDouble (textBox2.Text) ;
try
if (no2 == 0)
throw new DivideByZeroException(); // Undantag kastas
else
textBox3.Text = (nol / no2) .ToString() ;
catch (DivideByZeroException exception) // Undantag féangas upp
{
MessageBox.Show ("\tOBS! Du forsdkte dividera med 0.\n\t" +
"Det gar inte att dividera med 0.\n\n\t" +
"C# undantagsmeddelande:\n\n" +
exception.ToString (), "Felmeddelande");
} // Undantag skrivs ut
}

Kapitel 2 Objektorienterad programmering (OOP), sid 119:

Ovn 2 1

Skriv ett program som bestdr endast av klassen All in Main som i sin tur
innehdller endast Main () -metoden. Lds 1in radien r till en cirkel och be-
rdkna samt skriv ut cirkelns area pi*r*r och dess omkrets 2*pi*r, didr pi=
3.14159. Du kan anvdnda konstanten Math.PI fran C#:s klassbibliotek for
pi. Programmet ska inte vara objektorienterat eftersom du inte skapar
nagra objekt, utan endast lokala variabler (radie, area, omkrets). Pro-
grammet ska inte heller vara modulariserat eller proceduralt eftersom all
kod (Input-Bearbetning-Output) finns i en enda metod Main() som definie-
ras 1 en klass. Dessa steg ska tas 1 de efterféljande tva JSvningarna.
Deklarera alla variabler till double.

238

using System;
class All in Main

{

static void Main()

{

double radius, area, circumference; // Lokala variabler

Console.Write ("\n\tAnge radien till en cirkel:\t");
radius = Convert.ToDouble (Console.ReadlLine()); // Input

area = Math.PI * radius * radius; // Bearbetning
circumference = 2 * Math.PI * radius;

Console.WriteLine (// Output
"\n\tEn cirkel med radien " + radius +
"\n\thar arean " + area +
"\n\toch omkretsen " 4 circumference + '\n');
}
}
Ovn_2 2

Modularisera programmet All in Main frdn évn 2.1 pd metodniva, dvs: Flyt-
ta bearbetningsdelen dvs berdkningen av area och omkrets ur Main() till
separata metoder Area() och Circumference(), men stanna 1 samma klass.
D6p om klassnamnet till Procedural. I Main() ska finnas kvar variabeln
fér radien, inmatning, utmatning och anropet av Area() och Circumferen-
ce(). Foérse de nya metoderna med en parameter som Overfdér radiens vdrde
frdn Main() till dem. V&1j olika namn f6r den aktuella &n fér den formel-
la parametern.Dessutom ska Area() och Circumference() returnera ett
double-vdrde och vara statiska. FOr att testa mata in 1 fér radien. D&
ska arean bli pi pga pi*r*r = pi och omkretsen bli 2*pi.

using System;
class Procedural

{
static void Main() // Metoden Main ()
{ // med
double radius; // lokal variabel
Console.Write("\n\tAnge radien till en cirkel:\t");
radius = Convert.ToDouble (Console.ReadlLine()); // Input
Console.WriteLine (// Output
"\n\tEn cirkel med radien " + radius +
"\n\thar arean " 4+ Area(radius) +
"\n\toch omkretsen " 4 Circumference(radius) + '\n');
} // aktuell parameter
1 e e e e
static double Area(double r) // Metoden Area () med formell
{ // parameter r som tar emot
return Math.PI * r * r; // aktuell parameter radius
}
1 e e e e e e e e e e e e e e e e
static double Circumference (double r) // Metoden Circumference ()

{

return 2 * Math.PI * r;

239

Ovn_2 3 Class

Modularisera programmet All in Main fran évn 2.1 pd klassniva, dvs: Dela
upp programmet 1 tva klasser, lagrade 1 tva separata filer. Kalla den ena
klassen fér Circle, den andra fér CircleTest. Samla all information om
begreppet cirkel i klassen Circle, dvs: Deklarera radien r som datamedlem
samt Area () och Circumference () som metoder. Ta bort fran metoderna bade
static och parametern fO6r radien.

using System; // Krdvs fér Math
class Circle
{
public double radius; // Publik datamedlem
public double Area() // Publik metod
{
return Math.PI * radius * radius;
}
public double Circumference () // Publik metod
{
return 2 * Math.PI * radius;
}

}

Datamedlemmen radius och metoderna Area() och Circumference() maste vara
publika fér att den externa klassen CircleTest ska kunna komma &t dem.

Ovn_2 3 Test

Den andra klassen CircleTest ska endast innehdlla metoden Main(). Skapa i
den ett objekt av klassen Circle. Lds 1in ett vdrde till objektets
datamedlem r och anropa samt skriv ut returvdrdena till objektets metoder
Area () och Circumference (). Bdda klassfiler borde ligga 1 samma projekt.

using System;
class CircleTest

{
static void Main()
{
Circle myCircle; // Definirerar endast en referensvariabel
// av typ Circle utan att skapa objekt
myCircle = new Circle(); // Skapar ett objekt av typ Circle
// och tilldelar objektets adress till
// referensvariabeln.
Console.Write ("\n\tAnge radien till en cirkel:\t");
myCircle.radius = Convert.ToDouble (Console.ReadLine()) ; // Input
Console.WriteLine (// Output
"\n\tEn cirkel med radien " + myCircle.radius +
"\n\thar arean " + myCircle.Area() +
"\n\toch omkretsen " + myCircle.Circumference() + '\n');
}
}

240

Ovn_2 4 Class
Skriv en klass Fish som beskriver en fisk med datamedlemmarna sort,
weight och size. Borde ligga 1 samma projekt som filen Ovn 2 4 Test.

class Fish

public string sort;
public double weight, size;

Ovn_2 4 Test

Testa din klass i1 en annan klass FishTest 1 en separat fil som endast in-
nehdller metoden Main () ddr tva objekt av klassen Fish skapas. Tilldela
det fOrsta objektets datamedlemmar vdrdena Laxforell, 719 (gram) och 38.5
(cm). Enheterna gram och cm behdver inte anges. Vdlj sjdlv andra vdrden
till det andra objektets datamedlemmar. Skriv ut dessa vdrden till konso-
len i en tabell av typ:

Fisksort Vikt 1 g Ldngd i cm
Laxforell 719.0 38.5
Torsk 423.0 28.7

using System;
class FishTest

{

static void Main()

Fish fl = new Fish(); // Objekt skapas (definieras)
// och initieras by default

fl.sort = "Laxforell"; // Objekt tilldelas vdrden
fl.weight = 719;
fl.size = 38.5;

Fish f2 = new Fish(); // 2:a objekt skapas
f2.sort = "Torsk\t"; // \t fér layoutens skull
£f2.weight = 423;

f2.size = 28.7;

Console.WriteLine ("\n\tFisksort\tVikt i g\tLingd i cm" +

B e \n\t" +
fl.sort + "\t " + fl.weight + "\t\t " + fl.size + "\n\t" +
f2.sort + "\t " + f2.weight + "\t\t " + f2.size + "\n\n");

Ovn_2 5 Class

Ta klassen Fish fran 6vn 2.4. FOrse den med en metod som berdknar priset
pa fisken oberoende av sort, t.ex. 7.25 kr per hekto. Ldgg till &ven en
metod som berdknar och returnerar frakten utifrdn fiskens vikt och genom
att t.ex. multiplicera en viss kostnadsfaktor, sdg 0.02, med vikten, en
annan, sdg 0.1, med ldngden och addera dem. Metoderna ska returnera pri-
set och frakten i hela kronor utan &ren.

241

using System;
class Fish

{
public string sort;
public float weight, size;

public int Price()

{
}

public int shipping()

return (int) Math.Round(weight * 7.25 / 100);

return (int) Math.Round(weight * 0.02 + size * 0.1);

Ovn_2 5 Test

Anropa metoderna fran klassen FishTest:s Main()-metod fér de tva Fish-
objekten. Ldgg till nya rubriker Pris och Frakt i tabellen ovan och skriv
ut deras vdrden till tabellens tva rader

using System;
class FishTest

{
static void Main()
Fish fl = new Fish(); // l:a objekt skapas (definieras)
// och initieras by default
fl.sort = "Laxforell"; // l:a objekt tilldelas vdrden
fl.weight = 719;
fl.size = 38.5f;
Fish £2 = new Fish(); // 2:a objekt skapas
£f2.sort = "Torsk\t"; // \t fér layoutens skull
£2.weight = 423; // 2:a objekt tilldelas védrden
f2 .size = 28.7f;
// Metoderna anropas 1 utskriften:
Console.WriteLine ("\nFisksort\tVikt i g\tLangd i cm" +
"\tPris\tFrakt\n" +
Ml e e e e \nll +
fl.sort + "\t " + fl.weight + "\t\t "+ fl.size + "\t\t " +
f1.Price() + "\t " + fl.shipping() + "\n" +
£f2.sort +"\t " + f2.weight + "\t\t " + f2.size + "\t\t "+
£2.Price() + "\t " + £2.shipping() + "\n\n");
}
}

Ovn_2 6 Test

Modifiera programmet frdn d&vn 2.5 sa att datamedlemmarnas vdrden inte
hardkodas utan 1ldses in. Utskriften ska skickas till konsolen och 1ldggas
till tabellen ovan. Skriv din kod sa& att den 14tt kan generaliseras sa
att man kan mata in flera fisksorter med hjdlp av en loop och en array av

242

referenser till Fish-objekt som vi kommer att ldra oss senare. Dessutom
ska programmet kunna modifieras till att skriva ut till en tabell i en
fil eller en databas istdllet for att skriva till konsolen.

using System;
class FishTest

{
static void Main()
{

Fish f1 = new Fish(); // l:a objekt skapas

Fish £2 = new Fish(); // 2:a objekt skapas

Console.Write ("\n\tMata in sorten till fiskl:\t");

f1l.sort = Console.ReadLine() ; // Input

if (fl.sort.Length < 6) f2.sort += '\t';

Console.Write ("\tMata in vikten till fiskl:\t");

f1l.weight = (float) Convert.ToDecimal (Console.ReadlLine()); // Input

Console.Write("\tMata in langden till fiskl:\t");

f1l.size = (float) Convert.ToDecimal (Console.ReadLine()) ; // Input

Console.Write ("\n\tMata in sorten till fisk2:\t");

£2.sort = Console.ReadLine() ; // Input

if (f2.sort.Length < 6) f2.sort += '\t';

Console.Write ("\tMata in vikten till fisk2:\t");

f2 .weight = (float) Convert.ToDecimal (Console.Readline()); // Input

Console.Write ("\tMata in en till fisk2:\t");

£f2.size = (float) Convert.ToDecimal (Console.ReadLine()) ; // Input

Console.WriteLine ("\n\nFisksort\tVikt i g\tLingd i cm" +
"\tPris\tFrakt\n" +

Tl e e e e e e e e e e \nu +

fl.sort + "\t " + fl.weight + "\t\t " + fl.size + "\t\t " +

fl.Price() + "\t " + fl.shipping() + "\n" +

f2.sort + "\t " + f£2.weight + "\t\t "+ £2. + "\t\t " +

£2.Price() + "\t " + £2.shipping() + "\n\n");

}
}

Ovn_2 7 Class
Deklarera en klass Triangle med datamedlemmarna side a, side b, side c,
height b av typ int och metoderna Area (), Circumference().

class Triangle

{
public int side a, side b, side c, height b;
public int Area()
{
return side b * height b/2;
}
public int Circumference ()
{
return side_a + side b + side_c;
}
}

Ovn_2 7 Test

Skapa 1 en annan klass som innehdller Main(), ett objekt av klassen Tri-
angle och tilldela datamedlemmarna vdrden. Anropa metoderna och skriv ut
denna triangels area och omkrets. Skapa en andra referens som pekar pa
samma objekt och anropa metoderna samt skriv ut deras returvdrden med
denna referens. Du borde fa samma resultat som med den férsta referensen.
Anropa sedan metoderna Area() och Circumference() med tvd anonyma objekt
(utan referenser). Kolla om du far de férvdntade resultaten som 4r base-
rade pd objektens default-initiering.Sist, peka om Triangle-objektets
férsta referens till null och fOrsdék att anropa metoderna med denna refe-
rens. Vad hdnder?

using System;
class TriangleTest

{

static void Main()

{

Triangle tri = new Triangle() ; // Skapar ett objekt med en
// férsta referens tri

tri.side a = 4;

tri.side b = 6;

tri.side ¢ = 5;

tri.height b = 3;

Console.WriteLine ("\n\tMed den fdérsta referensen:\n" +
"\tArea = " + tri.Area() + '\n' +
"\tOmkrets = " + tri.Circumference() + '\n');

Triangle t = tri; // Ny referens till samma objekt

Console.WriteLine ("\n\tMed den andra referensen:\n" +

"\tArea =" + t.Area() + '\n' +
"\tOmkrets = " + t.Circumference() + '\n');
Console.WriteLine
("\n\tAndra, anonyma objekt som default-initieras:\n" +
"\tArea = " + new Triangle() .Area() + '"\n' +
"\tOmkrets = " + new Triangle().Circumference() + '\n');
tri = null; // Ompekning till null: tri

// pekar pa inget objekt ldngre
Console.WritelLine ("Anvdndning av null-referens ger " +
"exekveringsfel:\n") ;
Console.WritelLine (tri.side a);
}
}

Det som hander, ar att ett objekt skapas med referensen tri som Overfdrs
till en ny referens t, sa att bade tri och t pekar pa samma objekt. Men
sedan gors en ompekning av tri till null, dvs tri kopplas bort fran ob-
jektet. Programmets sista sats forsdker att med tri referera till objek-
tet vilket leder till ett s.k. NullReferenceException.

Ovn_2 8 Class

Skriv en klass Rectangle med datamedlemmarna width, height samt metoderna
Area() och Circumference(). Deklarera datamedlemmarna en gang som private
och en annan gdng med ingen atkomstmodifierare alls. Deklarera metoderna

244

som public. Férse klassen med en konstruktor och vdlj andra namn fér kon-
struktorns parametrar dn fér datamedlemmarna.

class Rectangle

{
private int length, width;
public Rectangle(int 1, int w) // Konstruktorn
{
length = 1;
width = w;
}
public int Area()
{
return length * width;
}
public int Circumference ()
{
return 2 * (length + width);
}
}

Ovn_2 8 Test

Testa din klass i1 en annan klass genom att i Main() skapa ett Rectangle-
objekt vars datamedlemmar initieras till konstanta vdrden. Skriv ut dess
area och omkrets.

using System;
class RectangleTest

{
static void Main()
{
Rectangle rekt = new Rectangle (8, 4); // Objekt rekt av typ Rek-
// tangel skapas och klas-
// sens konstruktor anropas
Console.WriteLine ("\n\tArea = " + rekt.Area() + '\n' +
"\n\tOmkrets = " + rekt.Circumference() + '\n');
}
}

Ovn_2 9 Class

Modifiera klassen Rectangle frdn &6vn 2.8 genom att ldgga till Get- och
Set-metoder i klassen.

class Rectangle new
{
private int length, width;
public Rectangle new(int 1, int w)

length
width

1;
w;

245

public int GetLength () // Get-metod fér length

{

return length;

}
public void SetLength(int newLength) // Set-metod fér length
{
length = newlLength;
}
public int GetWidth() // Get-metod fér width
{
return width;
}
public void SetWidth (int newWidth) // Set-metod for width
width = newWidth;
}
public int Area()
{
return length * width;
}
public int Circumference ()
{
return 2 * (length + width);
}

Ovn_2 9 Test

Testa den nya klassen 1 Main() genom att ldsa in vdrden till datamedlem-
marna. Efter utskriften av area och omkrets, férdubbla rektangelns ldngd
och bredd med anrop av Get- och Set-metoderna. Skriv ut en gdng till rek-
tangelns area och omkrets. Med vilken faktor vdxer arean resp. omkretsen?

using System;
class Rectangle newTest

{

static void Main()

{

Console.Write("\n\tMata in langd:\t");
int nol = Convert.ToInt32 (Console.ReadLine()) ;

Console.Write ("\n\tMata in bredd:\t");
int no2 = Convert.ToInt32 (Console.ReadLine()) ;

Rectangle new rekt = new Rectangle new(nol, no2);

Console.WriteLine ("\nFdére fdrdubblingen:\n" +
"\n\tArea = " + rekt.Area() + '\n' +
"\n\tOmkrets = " + rekt.Circumference() + '\n');

rekt.SetLength (2 * rekt.GetLength())
rekt.SetWidth (2 * rekt.GetWidth()) ;

246

Console.WritelLine ("\nEfter fdrdubblingen:\n" +
"\n\tArea = " + rekt.Area() + '\n' +
"\n\tOmkrets = " + rekt.Circumference() + '\n');

}

Arean vaxer med faktor 4 ndr rektangelns sidor fordubblas, medan omkret-
sen vaxer med faktor 2, eftersom arean ar en kvadratisk funktion av si-
dorna, medan omkretsen &r en linjar funktion av dem.

Ovn_2 10_Class

Modellera en klass Cylinder som subklass till klassen Circle. Denna mo-
dellering ser Cylindern som en Circle som dessutom har en héjd. Betrakta
ddrfér Cylindern som en "utvidgad" Cirkel som d&drver Circle och 1ldgger
till den en privat datamedlem height. Férse dven subklassen med en kon-
struktor och en Get-metod. Cylindern ska dessutom ha metoderna Volume ()
och Surface (). Vid berdkning av Cylinderns Volume() och Surface() ska
koden kunna dteranvdnda cirkelns metoder genom att anropa dem.

class Cylinder : Circle // Cylinder drver klassen Circle

{

private double height; // Den nya datamedlemmen

public Cylinder (double radius, double height) : base(radius)
// Cylinderns konstruktor

{ // Anrop av Circle:s konstruktor
this.height = height;

}

public double GetHeight ()

{
return height;

}

public double CylinderVolume () // Cylinderns metod fér volym

{ // dteranvdnder Circle:s metod
return CircleArea() * height; // f6r area genom att anropa den

}

public double CylinderSurface () // Cylinderns metod for yta ater-—

{ // dteranvidnder Circle:s metod for
return CircleCircumference() * (GetRadius() + height) ; // omkrets

Ovn_2 10_SuperClass
Férse superklassen Circle med en privat datamedlem radius, en konstruk-
tor, en getmetod och med berdkningsmetoderna Area() och Circumference().

using System;
class Circle

{

private double radius;

public Circle (double radius)

247

{

this.radius = radius;

}
public double GetRadius () // Get-metod fér att exportera radius
{ // bl.a. till klassen Cylinder som
return radius; // behéver den fér Surface ()
}
public double CircleArea ()
{
return (Math.PI * radius * radius);
}
public double CircleCircumference ()
{
return (2 * Math.PI * radius);
}

Ovn_2 10 _Test
Testa dina klasser 1 main() genom att ldsa in en cylinders radie och héjd
samt skriva ut Volume () och Surface().

using System;
class CylinderTest

{
static void Main()
{
Console.Write ("\n\tMata in radie:\t"):;
int nol = Convert.ToInt32 (Console.ReadLine())
Console.Write("\n\tMata in hdéjd:\t");
int no2 = Convert.ToInt32 (Console.ReadLine()) ;
Cylinder c = new Cylinder(nol, no2); // Ett objekt skapas och
// konstruktorn anropas som
// initierar radius och height
Console.WriteLine ("\nEn cylinder med radien " + c.GetRadius() +
" och héjden " + c.GetHeight() + " har volymen " +
c.CylinderVolume () + "\n\t\t\t\t\t och ytan " +
c.CylinderSurface() + "\n");
}
}

Kapitel 3 Metoder i OOP, sid 149:

Oovn_3 la
Modularisera programmet Non modularized 1 (sid 149) fér att vidareutveck-
la det till en liten kalkylator (fast i konsolen) :Separera berdkningarna,
t.ex. multiplikationen fran kodens andra delar dvs fran input och output.
a) Flytta multiplikationen till en metod med returvdrde med huvudet
static int Mult(int a, int b) 1 samma klass som Main(). Anropa metoden
Mult () fran Main(). Bibehall alla andra berdkningar. Se upp med att

248

inte placera den nya metoden i Main(), utan fére eller efter.

using System;
class Ovn_3 la

{
static void Main()
{
Console.Write ("\n\tMata in ett heltal:\t\t"); // Ledtext
int nol = Convert.ToInt32 (Console.ReadLine()); // Input
Console.Write ("\n\tMata in ett heltal till:\t");
int no2 = Convert.ToInt32 (Console.ReadLine()) ;
Console.WriteLine ("\n\n\t" +
nol + " plus " + no2 + " &r " + (nol + no2) + "\n\t" +
nol + " minus " + no2 + " 4&r " + (nol - no2) + "\n\t" +
// Anropet:
nol + " ganger " + no2 + " Ar " + Mult(nol, no2) + "\n\t" +
nol + " heltalsdividerad med " +
no2 + " 4ar " + (nol / no2) + "\n\t" +
nol + " modulo " + no2 + " 4r " + (nol % no2) + "\n\t");
}
VY oo e e e e e e S S S e o mmm

// Metoden Mult () som tar in tvd heltal via sina parametrar a
// och b och returnerar ett heltal som dr a * b

static int Mult(int a, int b) // Metoden Mult ()
{
return a * b;
}
T o e e o e o e o e e e e o o o 5 o 5 5 5 0 e 5 0 S S S e S
}
Ovn_3 1b

Modularisera programmet Non modularized 1 (sid 149) fér att vidareutveck-
la det till en liten kalkylator (fast i konsolen) :Separera berdkningarna,
t.ex. multiplikationen frdn kodens andra delar dvs fran input och output.
b) Fortsdtt med att flytta metoden Mult () till en annan klass i samma
fil. Anropet ska fortfarande géras frdn Main(). Aven hdr: Se upp med
att inte placera den nya klassen i den gamla, utan fére eller efter.

using System;
class Ovn_3 1b

{
static void Main()
{
Console.Write ("\n\tMata in ett heltal:\t\t"); // Ledtext
int nol = Convert.ToInt32 (Console.ReadLine()) ; // Inldsning
Console.Write ("\n\tMata in ett heltal till:\t"):;
int no2 = Convert.ToInt32 (Console.ReadLine()) ;
Console.WriteLine ("\n\n\t" +
nol + " plus " + no2 + " 4&r " + (nol + no2) + "\n\t" +
nol + " minus " + no2 + " &r " + (nol - no2) + "\n\t" +
nol + " ganger " + no2 + " ar " + // Anropet:
Multip.Mult(nol, no2) + "\n\t" +
nol + " heltalsdividerad med " +
no2 + " ar " + (nol / no2) + "\n\t" +
nol + " modulo " + no2 + " 4r " + (nol % no2) + "\n\t");
}
}

249

// Ny klass Multip i samma fil som Ovn 3 1b

class Multip // Klassen Multip()
public static int Mult(int a, int b) // Metoden Mult ()
{
return a * b;
}
}
Ovn_3 1lc

Modularisera programmet Non modularized 1 (sid 149) fér att vidareutveck-
la det till en liten kalkylator (fast 1 konsolen) :Separera berdkningarna,
t.ex. multiplikationen fran kodens andra delar dvs frdn input och output.
c) Flytta den nya klassen samt metoden Mult () till en separat fil.

using System;
class Ovn_3 1lc

{
static void Main()
{
Console.Write ("\n\tMata in ett heltal:\t\t");
int nol = Convert.ToInt32 (Console.ReadLine());
Console.Write ("\n\tMata in ett heltal till:\t"):;
int no2 = Convert.ToInt32 (Console.ReadLine()) ;
Console.WriteLine ("\n\n\t" +
nol + " plus " + no2 + " 4r " + (nol + no2) + "\n\t" +
nol + " minus " + no2 + " d&r " + (nol - no2) + "\n\t" +
nol + " gadnger " + no2 + " &r " + // Anropet:
Multip.Mult(nol, no2) + "\n\t" +
nol + " heltalsdividerad med " +
no2 + " 4ar " + (nol / no2) + "\n\t" +
nol + " modulo " + no2 + " &r " + (nol % no2) + "\n\t"):;
}
}
Ovn_3 lcd

Separat fil som borde ligga 1 samma projekt som filen Ovn 3 1c och ndr
programmet Ovn 3 1d kérs, 1 samma projekt som filen Ovn 3 1d

class Multip // Klassen Multip
{
public static int Mult(int a, int b) // Metoden Mult ()
{
return a * b;
}
}
Ovn_3 1d

Modularisera programmet Non modularized 1 (sid 149) fér att vidareutveck-

la det till en liten kalkylator (fast i konsolen) :Separera berdkningarna,

t.ex. multiplikationen fran kodens andra delar dvs fran input och output.

d) GOr samma sak med alla andra berdkningssdtt. Lagra var och en klass
med resp. metod i en separat fil. Anropa alla metoder frdn Main().

250

using System;
class Ovn_3_1d

static void Main()

{
Console.Write ("\n\tMata in ett heltal:\t\t");
int nol = Convert.ToInt32 (Console.ReadLine()) ;
Console.Write ("\n\tMata in ett heltal till:\t"):;
int no2 = Convert.ToInt32 (Console.ReadLine()) ;
Console.WriteLine ("\n\n\t" + // Anropen
nol + " plus " + no2 + " &r " + Addit.Add(nol, no2) + "\n\t" +
nol + " minus " + no2 + " &r " + Subtr.Sub(nol, no2) + "\n\t" +
nol + " gadnger " + no2 + " ar " + // Anropet:
Multip.Mult(nol, no2) + "\n\t" +
nol + " heltalsdividerad med " +
no2 + " dr " + Div.IntDiv(nol, no2) + "\n\t" +
nol + " modulo " + no2 + " A4r " + Modu.Mod(nol, no2) + "\n\t") ;
}
}
Ovn_3 1da
Separat fil i samma projekt som filen Ovn 3 1d
class Addit // Klassen Addit
{
public static int Add(int a, int b) // Metoden Add()
{
return a + b;
}
}
ovn_3_1ds
Separat fil i samma projekt som filen Ovn 3 1d
class Subtr // Klassen Subtr
public static int Sub(int a, int b) // Metoden Sub ()
{
return a - b;
}
}
Ovn_3 1dD
Separat fil i samma projekt som filen Ovn 3 1d
class Div // Klassen Div
{
public static int IntDiv(int a, int b) // Metoden IntDiv ()
{
return a / b;
}
}

251

Ovn_3 1dM
Separat fil i samma projekt som filen Ovn 3 1d

class Modu // Klassen Modu
public static int Mod(int a, int b) // Metoden Mod ()
{
return a % b;
}
}
Ovn_3 2

Modularisera programmet Non modularized 2 (sid 150) genom att skriva dess
bearbetningsdel som en ny metod 1 samma klass. Bibehdll in- och utmat-
nigsdelen i Main() och anropa den nya metoden fran Main (). Avgbr sjdlv om
den nya metoden ska returnera ett vdrde och om den ska vara statisk. Ge
metoden ett beskrivande namn.

using System;
class Ovn_3 2
{
static void Main()
{
/* Inmatning?*/
Console.Write ("\n\tAnge antal ar:\t\t");
int years = Convert.ToInt32 (Console.ReadLine()) ;

Console.Write ("\n\tAnge antal manader:\t");
int months = Convert.ToInt32 (Console.ReadLine()) ;

Console.Write ("\n\tAnge antal veckor:\t");
int weeks = Convert.ToInt32 (Console.ReadlLine()) ;

Console.Write ("\n\tAnge antal dagar:\t");
int dag = Convert.ToInt32 (Console.ReadLine()) ;

/*Utmatning?*/

Console.WriteLine ("\n\t"
months + " manader, "
dag + " dagar ar "

years + " a&r, " +
weeks + " veckor och " +
total (years, months, weeks, dag)

" dagar totalt." + '\n') 8

}

static int total(int y, int m, int w, int d) // Ny metod total()
{ // med returvdrde
/*Bearbetning?*/
return 365*y + 30*m + 7*w + d;

Ovn_3 3a

a) Vdnd om problemet fran évn 3.2: Dvs Omvandla en tid som &r angiven 1
dagar till &r, mdnader, veckor samt resterande dagar. Skriv ett icke-
modulariserat program Non modularized 3, som frdgar efter en tid 1 antal

252

dagar, ldser in den, och sedan berdknar samt skriver ut resul tatet i an-
tal 4r, manader, veckor samt resterande dagar.

// Non _modularized 3

// Omvandlar antal dagar till ar, manader, veckor och restdagar
// Overlagring av operatorn / som heltalsdivision

// Modulooperatorn % (Progrl, 2, Ovningar)

using System;
class Non modularized 3

{
static void Main()
{
int years, months, weeks, restDays, totalDays;
/*Inmatning?*/
Console.Write ("\n\tAnge antal dagar:\t\t");
totalDays = Convert.ToInt32 (Console.ReadLine()) ;
/*Bearbetningh?*/
years = totalDays / 365;
months = (totalDays % 365) / 30;
weeks = ((totalbDays % 365) % 30) / 7;
restDays = ((totalDays % 365) % 30) % 7;
/*Utmatndingt*/
Console.WriteLine ("\n\t" + totalDays + " dagar &r " +
years + " ar, " + months + " manader, " +
weeks + " veckor och " + restDays + " dagar.\n");
}
}
Ovn_3 3b

b) Modularisera programmet Non modularized 3 (Ovn 3 3a) genom att flytta
bearbetnings- och utmatnigsdelen till en void-metod. Dvs skriv ett program
som ldser in tiden 1 ett antal dagar, anropar void-metoden som omvandlar
tiden till antal &r, manader, veckor och restdagar och skriver ut resulta-
ten. Anvidnd fér omvandlingen den algoritm som dr implementerad i programmet
Non modularized 3. Varfdr dr det inte ldmpligt hdr att anvédnda en metod med
returvdrde?

using System;
class Ovn_3 3b

{
static void Main()
{
/*I nmatning?*/
Console.Write ("\n\tAnge antal dagar:\t");
int totalDays = Convert.ToInt32 (Console.ReadLine()) ;
ConvertTime (totalDays) ; // Anropet av void-metod
}
static void ConvertTime (int total) // void-metod
{

int years, months, weeks, restDays;

/* Bearbetning?*/

253

years = total / 365;

months = (total % 365) / 30;
weeks = ((total % 365) % 30) / 7;
restDays = ((total % 365) % 30) % 7;

/*Utmatning?*/

Console.WriteLine ("\n\t" + total +
" dagar &r " + years + " ar, " + months + " manader, " +
weeks + " veckor och " + restDays + " dagar.\n")

}

Det &r inte lampligt att anvédnda en metod med returvarde, darfdér att en
metod med returviadrde endast kan returnera ETT varde. H&r behdvs 4 varden
som ska skrivas ut. Void-metoden berdknar OCH skriver ut dem.

Ovn_3 4 Test

Skriv férst ett program med endast Main()-metoden som ldser in side till
en kub samt berdknar och skriver ut kubens volym side ® och dess yta 6 x
side ? . Flytta sedan dessa berdkningar till tv4 metoder, en fér volymen,
en f6r ytan, bdda 1 en separat klass Cube. Definiera side som en datamed-
lem i klassen Cube. AvgSr om metoderna Volume () och surface() ska retur-
nera eller vara av void-typ. Anropa dem fran Main(). Skriv férst en va-
riant med statiska metoder, byt sedan till icke-statiska metoder. Testa
bada varianter. Avgér slutligen sjdlv vilken variant som ska fdredras om
16sningen ska vara objektorienterad. OBS! F6ljande 16sningsférslag visar
endast den optimala varianten.

using System;
class CubeTest

{
static void Main()
{
Cube myCube; // Definierar en referensvariabel
// av typ Cube utan att skapa objektet
myCube = new Cube() ; // Skapar ett objekt av typ Cube och

// tilldelar objektets adress till re-
// ferensen. By default: side = 0.0
// Sedan tilldelas side ett nytt vidrde:
Console.Write ("\n\tAnge sidan till en kub:\t");
myCube.side = Convert.ToDouble (Console.ReadLine()) ;

Console.WriteLine ("\n\tEn kub med sidan\t" + myCube.side +
"\n\thar volymen\t\t" + myCube.Volume() +

"\n\toch ytan\t\t" + myCube.Surface() +

'\n');

Ovn_3 4 Class
Separat fil i samma projekt som filen Ovn 3 4 Test

class Cube

{
public double side;

public double Volume ()
254

{
}

public double Surface()
{

}

return side * side * side;

return 6 * side * side;

Ovn_3 5 Test
Modularisera programmet Non modularized 3 (sid 253) efter eget godtycke.

using System;
class TidTest

{
static void Main()
{
/*Inmatning*/
Console.Write ("\n\tAnge antal dagar:\t");
int totalDays = Convert.ToInt32 (Console.ReadLine()) ;
TimeConversion t = new TimeConversion(); // Objekt skapas
t.ConvertTime (totalDays) ; // Objektets metod anropas
/*Utmatning?*/
Console.WriteLine ("\n\t" + totalDays + " dagar ar "+
t.years + " ar, " + t.months + " manader, " +
t.weeks + " veckor och " + t.restDays + " dagar.\n")
}
}

Ovn_3 5 Class
Separat fil i samma projekt som filen Ovn 3 5 Test

class TimeConversion

{
public int years, months, weeks, restDays;
public void ConvertTime (int total)
{
/* Bearbetning?*/
years = total / 365;
months = (total % 365) / 30;
weeks = ((total % 365) % 30) / 7;
restDays = ((total % 365) % 30) % 7;
}
}

Kapitel 4 Mer om metoder, sid 187:

// Ovn_4 1l.cs
// Varfér ger féljande program kompileringsfel? Atgidrda felet

255

// genom att flytta pd kod, utan att ta bort ndgon klammer
// och utan att ha tomma klamrar:

// class Ovn 4 1

// {

// static void Main ()

// {

// {

// int t = 30;

// }

// Console.WriteLine ("t = " + t);
// }

// }

using System;
class Ovn_4_1

{
static void Main()
{
int t;
{
t = 30;
}
Console.WriteLine("\n\tt = " + t + '\n"');
}
}

/* Kompileringsfelet i programmets férsta variant berodde pa att varia-
beln t var definierad 1 ett inre block och att programmet refererade
till den utanfér det inre blocket didr t inte ldngre var giltig.

*/

KA A

// Ovn_4 2 Test.cs
// Modularisera programmet MiniSort fran kap 4 (sid 154)
// efter eget godtycke.

using System;
class MiniSortTest

{

static void Main()

{

Console.Write ("\n\tTva osorterade tecken:\n\n\t" +
"Mata in tva tecken skilda med mellanslag:\t");
string str = Console.ReadLine() ;

MiniSort m = new MiniSort(); // Objekt skapas
m.charl = Convert.ToChar (str.Substring(0, 1)); // Objektets data
m.char2 = Convert.ToChar (str.Substring(2, 1)), // initieras

m.sortera() ; // Objektets metod anropas

Console.WriteLine ("\n\tDe tva tecknen sorterade:\t\t\t" +
m.charl + ' ' + m.char2 + "\n\n");

// Ovn_4 2 Class.cs
// Separat fil i samma projekt som filen Ovn 4 2 Test.cs

256

class MiniSort
public char charl, char2;

public void sortera()

{

char temp;

if (charl > char2) // Hidr tolkas tecknen som tal

{
temp = charl; // Algoritm fér platsbyte
charl = char2; // av de tva teckenvidrdena
char2 = temp; // charl, char2

}

KA A

Kapitel 5 Tillampning av OOP, sid 230:

// Ovn_5 1l.cs
// Skriv ett program som ldser in 10 heltal fran konsolen, lagrar dem 1
// en array och skriver ut dem i omvdnd ordning.

using System;
class Ovn_5_1

{

static void Main()
int[] no = new int[10];

Console.WriteLine ("\n\tSkriv in 10 heltal:\n");
for (int 1 = 0; 1 <= 9; i++)
{
Console.Write ("\tTal nr " + (i+l) + ":\t");
no[i] = int.Parse(Console.ReadLine()) ;

}

Console.WriteLine ("\nDina tal i omvand ordning:\n");
for (int 1 = 9; 1 >= 0; i--)
Console.Write (no[i] + "\t");

Console.WriteLine() ;

}

A A

// Ovn_5 2.cs

// Skriv ett program som slumpar fram 1000 heltal mellan 60 och 140

// (tdnkbara hastigheter pd en motorvdg), lagrar dem i en array kallad
// hastighet, berdknar och skriver ut deras medelvdrde med férklarande
// text. Anvdnd klasserna RandArray (sid 207) och RandomNo som externa
// moduler.

using System;
class Ovn_5_ 2

{

static void Main()

257

Random r = new Random() ;
int[] hastighet = new int[1000];
RandArray.Rand (r, hastighet, 60, 140);
int sum = 0;
for (int i = 0; i <= 999; i++)
sum += hastighet[i];
Console.WriteLine ("\tMedelvardet av 1000 mdéjliga hastigheter " +
"mellan 60 och 140 &r: " 4+ sum/1000 + '\n');

// RandArray.cs (sid 207)

// Separat fil i samma projekt som filen Ovn 5 2.cs

// Ny metod Rand() slumpar fram en array av heltal mellan
// a och b, lagrar dem i arrayen no och skriver ut dem
// Anropar biblioteksmetoden Next () i en loop f6r att fa
// ETT slumptal i varje varv

using System;
class RandArray

public static void Rand(Random r, int[] no, int a, int b)
{
Console.Write ("\n\t" + no.Length + " heltal mellan " +
a+ " och " + b + " slumpas fram:\n\n\t");
for (int i=0; i < no.Length; i++)
{
no[i] = r.Next(a, b);
Console.Write(no[i] + " "),
if ((1 % 16 == 0) && (i '= 0))
Console.Write ("\n\t");

Console.WriteLine ("\n\n");

}

KA A

// Oovn_5 3.cs

// Skriv ett program som ldser in en strdng, lagrar den 1 en array
// av char och skriver ut den bakldnges.

// Anvédnd tekniken 1 programmet EncryptCharTest (sid 219) fér att
omvandla

// den inldsta strdngen 1 en array av char.

using System;
class Ovn_5_ 3
{
static void Main()
{
Console.Write ("\n\tSkriv in text:\t\t"):
char[] text = Console.ReadLine () .ToCharArray () ;

Console.Write ("\n\tTexten bakldnges:\t");
for (int i = text.Length-1; i >= 0; i--)
Console.Write (text[i]);

258

Console.WriteLine('\n');

}

KA AA

// Ovn_5 4.cs

// Skriv ett program som ldser in text i gemener, lagrar den i1 en array
// av char och skriver ut den framhdvd i versaler och med mellanslag
// mellan varje tecken.

using System;
class Ovn_5_4

{

static void Main()
{
Console.Write ("\n\tSkriv in text:\t\t");
char[] text = Console.ReadLine() .ToCharArray() ;

Console.Write ("\n\tTexten framhiavd:\t"):;

for (int i = 0; i < text.Length; i++)
Console.Write("" + (char) (text[i] - 32) + ' '");

Console.WriteLine('\n');

}

A AR

// Ovn_5 5.cs

// Skriv ett program som fragar efter anvdndarens fér- och efternamn,

// hdlsar sedan anvdndaren i en utskrift med fullstdndiga namnet, fér-
// namnets ldngd samt efternamnets férsta och sista bokstav. L&s upp-

// giften generellt utan att anvdnda information om nagot speciellt for-
// och efternamn.

using System;

class Ovn_5_5

static void Main()
{
char surname0 = '0'; // Undviker villkorlig initiering
Console.Write ("\n\tSkriv in ditt f£ér- och efternamn:\t");
string input = Console.Readline() ;
char[] name = input.ToCharArray()

int 1 = 0;
while (name[i] != ' ') // Gar igenom endast fdrnamnet
{
i++;
if (name[i] == "' ") // Hittar fér- och efternamnets avskiljare
surnameO = namel[i+l]; // Hittar efternamnets fdrsta bokstav
}
Console.WriteLine ("\n\tHej, " + input

"\n\tDitt fdérnamns lidngd &r " + i

"\n\tDitt efternamns férsta bokstav ar "

"\n\tDitt efternamns sista bokstav &r "
name [name.Length-1] + '\n');

surname0 +

+ 4+ + +

}

A A

259

//
/7
//
//
7/

Ovn_5 6.cs

Skriv ett program ddr Main() ldser in en persons fullstdndiga namn och
hédlsar tillbaka med namnets initialer. Dessa ska bestdmmas och skrivas
ut 1 en annan metod - med huvudet static void Initials(char([] name) -
som anropas i Main().

using System;
class Ovn_5 6

static void Main()

{
Console.Write ("\n\tSkriv in ditt £6r- och efternamn:\t");
string input = Console.Readline() ;
char[] dittNamn = input.ToCharArray();

Console.Write("\n\tHej, " + input +
"\n\n\tDina initialer ar\t\t\t");

Initials (dittNamn) ; // Anropet

Console.WriteLine('\n');

}

static void Initials(char[] name) // Metoden

{

int i = 0;
Console.Write (name[i]) ; // Fdérsta initialen
while (name[i] !'= "' ') // Gar igenom endast fdrnamnet
{
i++;
if (name[i] == "' ") // Hittar f8r- och efternamnets
// avskiljare
Console.Write (name[i+1]) ; // Andra initialen
}

}

A AR

//
/7
/7
/7
/7
/7

Ovn_5 7.cs

Modifiera programmet List (sid 226) sa att sorteringen av slumptalen
gbérs med var egen bubbelsorteringsmetod sort () (sid 212) istdllet for
med den foérdefinierade List-metoden Sort (). Testa fOrst med array-
notationen som sort () dr skriven 1. F6rsék sedan att skriva om sort ()
till en List-version.

using System;
using System.Collections.Generic; // Krdvs fér List
class List

{

static void Main()
{ List<int> intlList = new List<int>(); // List-objekt av int
Random r = new Random() ;
int a =1, b = 1000;
Console.WriteLine (
"\n\t1l00 heltal mellan " + a + " och " + b +
" slumpas till ett List-objekt:\n");

RandList.Rand(r, intList, a, b); // Slump-tilldelning
Print.Out (intList) ; // Osorterad utskrift
Bubble.sort (intList) ; // List-sortering

Console.WriteLine (

260

"\tHeltalen sorteras med List-metoden Sort():\n");
Print.Out (intList) ; // Sorterad utskrift

// BubblelList.cs (List-versionen av Bubble.cs sid 212)

// Separat fil i samma projekt som filen Ovn 5 7.cs

// Sorterar heltal lagrade i arrayen t med en bubbelsorteringsalgoritm
using System;

using System.Collections.Generic;

class Bubble

{
public static void sort(List<int> t)
{
int temp;
for (int pass=0; pass<t.Count-1; pass++)
for (int i=0; i<t.Count-1; i++)
if (t[i] > t[i+1]) // Sortering i stigande
{ // ordning
temp = t[i]; // Algoritm fér platsbyte
t[i] = t[i+1]; // av de tvd elementen
t[i+l] = temp; // t[i] och t[i+1]
}
}
}
/T

// Print.cs (sid 228)

// Separat fil i samma projekt som filen Ovn 5 7.cs

// Metoden Out () skriver ut en lista med en foreach-sats som
// loopar igenom listans ALLA element

using System;
using System.Collections.Generic;
class Print

public static void Out(List<int> t)
{
Console.Write ("\t");
int i = 0;
foreach (int element in t) // Loop

Console.Write (element + " ");
if ((1i % 14 == 0) && (i '= 0)) // Radbyte var
Console.Write ("\n\t"); // 14:e utskrift
i++;
}

Console.WriteLine ("\n") ;

// RandList.cs (sid 227)

// Separat fil i samma projekt som filen Ovn 5 7.cs

// Metod Next () slumpar fram heltal mellan a och b och
// lagrar dem 1 ett List-objekt med List-metoden Add()

261

using System;
using System.Collections.Generic;
class RandList

public static void Rand(Random r, List<int> no, int a, int b)

{
for (int i=0; i < 100; i++) // Hir fylls listan
no.Add(r.Next(a, b)); // med slumptal

}

KA A

Ovn_5 8 Test

Modifiera programmet ArrayOfRef (sid 200). ... (se klassen Fish priv)
Det modifierade programmet ska gbra samma sak som det ursprungliga.

using System;
class ArrayOfRef ny

{
static void Main()
{
string fiskSort;
float fiskVikt, fiskLangd;
Fish priv[] f = new Fish priv[5]; // Array av referenser
for (int i = 0; i < f.Length; i++)
{
Console.Write ("\n\tMata in sorten till fisk" + (i+1l) + ":\t");
fiskSort = Console.ReadlLine(); // Input
if (fiskSort.Length <= 7) fiskSort += '\t';
Console.Write ("\tMata in vikten till fisk" + (i+l) + ":\t");
fiskVikt = (float) Convert.ToDecimal (Console.ReadLine()) ;
Console.Write("\tMata in langden till fisk" + (i+1) + ":\t");
fiskLangd = (float) Convert.ToDecimal (Console.ReadLine());
f[i] = new Fish priv(fiskSort, fiskVikt, fiskLangd);
}
Console.Write ("\nFisksort\tVikt i g\tLdngd i cm\tPris\tFrakt\n" +
Tl e e e e e e e — — — —— ——— \nll) g
for (int i = 0; i < f.Length; i++)
Console.WriteLine (f[i].toString()) ;
}
}

Ovn_5 8 Class

Deklarera klassen Fish:s datamedlemmar som private och metoderna som pub-
lic. Férse klassen med en konstruktor och en strdngrepresentationsmetod.

using System;
class Fish priv

{
private string sort;
private float weight, size;

public Fish priv(string S, float w, float s)
262

263

264

Appendix

Visual Studio

Amne Sida

Installation av Visual Studio 266
Konfiguration och anvandning av Visual Studio 267
- Tva olika typer av applikationer 267

- Projekt i Visual Studio 268

- Console Application 268

- Windows Forms Application 273

265

1)

2)

3)

4)

5)

6)

7)

8)

9)

Installation av Visual Studio

Ga till webbadressen: https://visualstudio.microsoft.com/vs/

Webbsidan Visual Studio 2019 visas. G& med

musen 6ver knappen Download Visual Studio = D< Download Visual Studio

Vilj i dropplistan som dyker upp:

Installationsfilen vs_community_....exe laddas ner. Dubbelklicka pa den just ham-
tade installationsfilen. Svara Ja pa fragan om du ska tillata att den har appen far go-
ra andringar pa din dator. Klicka pa Continue nar det dyker upp rutan Visual Studio
Installer.

Visual Studio Installer 6ppnar ett stort vitt fonster med den lilla rubriken Installing —
Visual Studio Community 2019 ... och den bldmarkerade fliken Workloads. | den finns
till vanster ett antal rutor. Leta efter féljande ruta (3:e till vanster):

Markera rutan med rubriken [v]
m .NET desktop development v

NET deSktOp development ge_ '—.J Build WPF, Windows Forms, and console applications using

nom att bocka den lilla bla rutan C#, Visual Basic, and F.

i det dvre hogra hornet.

Klicka sedan i det nedre hogra hornet av det stora fonstret p& knappen &I Det-
ta kan ta ett tag — beroende pa din dators prestation.

Visual Studio 2019 &r en gratis programvara vars licens ar tidsbegransad. Du beho-
ver skapa ett Microsoft-konto med din e-mailadress som anvandarnamn. Nér du gor
det glém inte att anteckna och spara ditt 16senord. Du kommer att behéva det nér du
efter ett tag maste uppdatera licensen. Félj instruktionerna som kan involvera veri-
fiering via din e-mailadress. Det ar gratis, gar fort och medfér inga komplikationer.

Om du far upp en ruta med dropplistan Development Settings vilj C#. Om alterna-
tivet inte finns 1at General std dar. Klicka sedan pa knappen [SEURUEIEIRS O]

Nar du lyckats med installationen startas Visual Studio antingen automatiskt eller du
kan gora det sjélv. Stang rutan Visual Studio Installer.

Beroende pa vilken typ av applikation du vill skapa fortsatt enligt instruktionerna pa
sid 268 for Console Application eller sid 273 for Windows Forms Application.

266

Konfiguration och anvandning

av Visual Studio

Efter lyckad installation av Visual Studio enligt anvisningarna i forra avsnitt kan du hér
lasa nu hur man anvander programvaran. For att kunna géra det kradvs namligen en kor-
rekt konfiguration av Visual Studio, vilket i borjan kan verka lite invecklad. Anlednin-
gen till det &r att Visual Studio ar en integrerad programutvecklingsmiljé (IDE) som &r
skapad for professionella utvecklare och darfor ar ganska stor och komplex. Vi vill i
denna beskrivning hélla oss till det absolut minimala vad galler miljon for att kunna
koncentrera oss pa sjalva spraket C#. Beskrivningens viktigaste moment ar:

Att valja ratt typ av applikation

Att skapa ett projekt

Att lagga till en C#-kallkodsfil till projektet

Att kompilera och exekvera C#-koden i projektet

Det finns olika typer av C#-program. Ett annat ord for program &r applikation.

Tva olika typer av applikation

| Visual Studio finns det ménga olika typer av applikation. Av dessa behandlas hér en-
dast foljande tva:

1. Console Application ar ett C#-program vars korresultat ar en utskrift i textform som
hamnar i Windows Kommandotolk, den s.k. konsolen, ett svart fonster, ibland dven kal-
lat for DOS-fonstret. Ett sddant program har inga grafiska komponenter. Programexem-
plen i boken Programmering 1 med C# domineras av Console Applications.

2. Windows Forms Application involverar bade text och grafik och producerar fonster
samt dialogrutor av olika slag. Med sadana program kan anvandaren kommunicera via
grafiska granssnitt. Windows Forms Applications introduceras i denna bok pa sid 13.

Féljande tre steg maste alltid tas for att kunna kora ett program i Visual Studio — vare sig
det ar en Console Application eller en Windows Forms Application:

1. Att skapa eller 6ppna ett befintligt projekt
2. At lagga till en C#-kallkodsfil till projektet
3. Att kompilera och exekvera

For program av typ Console Application gar vi igenom dessa tre steg pa nasta sida. Men
forst: Vad exakt &r ett projekt i Visual Studio och varfér behdver vi det?

267

Projekt i Visual Studio

For att kunna kora ett C#-program i Visual Studio maste koden infogas i ett s.k. projekt.
Ett projekt ar en samling filer — alltid sjalva C#-kallkoden, men ocksé andra relaterade
filer inkl. ev. bilder — som sammanlagt utgor ett C#-program. Denna samling filer bildar
béde en fysisk mapp pa harddisken och en virtuell arbetsplats i Visual Studio. De kom-
municerar med varandra hela tiden nar vi utvecklar och testar vara program. Visual
Studio kan endast kompilera och kéra C#-program som &r inbdddade i projekt, &ven om
det ar det enklast tdnkbara program som bestar av endast en fil. Det ar inte mojligt att
kompilera C#-kallkod utanfor ett Visual Studio-projekt. Sa, innan vi kan borja skriva
C#-kod maste vi antingen skapa ett nytt eller 6ppna ett befintligt projekt.

Den dvergripande termen till projekt i Visual Studio &r solution. Dvs flera projekt kan
samlas i en solution. Sjalvklart kan en solution &ven besté av ett enda projekt. Vi kom-
mer till att borja med inte att anvénda flera projekt i en solution utan endast ett projekt.
And& kommer vért projekt att automatiskt vara paketerat i en solution.

Console Application
Starta Visual Studio fran Windows Start-meny genom att klicka fram dig till:
Start > Visual Studio 2019

Ett vitt fonster 6ppnas med rubriken Visual Studio 2019. | kolumnen till hdger under
rubriken Get started finns ett antal rutor.

1. Att skapa eller éppna ett befintligt projekt: Beroende pd om vi vill skapa ett
nytt eller 6ppna ett befintligt projekt, tar vi ett av féljande alternativen a) eller b):

a) Om vi vill skapa ett nytt projekt — och det vill vi nu — klickar vi i det vita Visual
Studio 2019-fonstret pa rutan

Create a new project

En ny dialogruta dyker upp med rubriken Create a new project. Scrolla ned den
(pa hoger sidan) och leta efter rutan som ser ut sa har och har rubriken Console
App (.NET Framework):

ﬁc* Console App ((NET Framework)

A project for creating a command-line application

C# Windows Console

Markera rutan ovan. Klicka i dialogrutan Create a new project som omfattar
denna ruta, pa knappen Next langst ned till hoger.

En ny dialogruta dyker upp med rubriken Configure your new project. Fyll i
den uppgifterna enligt féljande:

268

Configure your new project

Console App (NET Framework) < Windows Console
Project name

MyConsoleProject

Location

CA\C# -

Solution name €

Place solution and project in the same directory

Framework

NET Framework 4.7.2 -

| den 6vre delen av dialogrutan déper vi vart projekt till MyConsoleProject. |
textrutan Location anger vi den fullstdndiga sokvagen till den mapp vi vill pla-
cera vart projekt i. Lat oss saga vi vill samla vara C#-program i en mapp som
vi kallar C# i enheten C:\ pa var dator. | s& fall anger vi som Location C:\C#. |
denna mapp kommer projektmappen MyConsoleProject placeras. Visual Studio
skapar automatiskt bade den nya projektmappen samt dess innehall. Bocka for
den lilla rutan Place solution and project in the same directory. Klicka pa knap-
pen Create langst ned till hoger. Ga till punkt 2 nedan. Dvs hoppa 6ver b).

b) Om vi vill ppna ett redan befintligt projekt — det gor vi kanske senare — klic-
kar vi i det vita Visual Studio 2019-fénstret pa rutan
Open a project or solution
Vi far upp dialogrutan Open Project/Solution. For att 6ppna det projekt vi vill
jobba med, navigerar vi i datorns filsystem till projektmappen och éppnar dar
filen med dndelsen . esproj. G till punkt 2.
Att l1agga till en C#-kéallkodsfil till projektet: Efter att ha l&mnat dialogrutan

Configure your new project med Create-knappen enligt 1. a) eller dialogrutan Open
Project/Solution med Open-knappen enligt 1. b) 6ppnas projektet. Ett grafiskt gréns-
snitt kommer upp som liknar en webbsida bestdende av en massa menyer, flikar,

lankar och fonster som ser ut sa har:

269

File Edit View Project Build Debug Test Analyze | Searc. P MyConsoleProject 0 = u] X
Tools Extensions Window Help
R Debug - | | AnyCPU - st BN " IR LiveShare &
wn
2 Programcs B X ~ Solution Explorer > X
£ | [E MyConsoleProject 5 M Prograr a i - g /
m ¥) .3 v Ji ograrr a ! Gﬁ:l.-' @"-'Ciﬁ'-'r@
B 1 Slusing System; +
5 - . Search Solution Explorer (Ctrl+ P -
o 2 System.Collections.Generic; - . F
. 3 System.Ling; %] Solution "MyConsoleProject’ (1 of 1 project)
S . .
S 4 System.Text; 4 [cz] MyConsoleProject
g 5 g System.Threading.Tasks; b }; Properties
: HvComsalepraiect b =8 References
- namespace onsoleProjec
. : P ¥ J ¥ App.config
P ¢* Program.cs
9 B} class Program
10 {
11 F static void Main(string[] args)
12 {
13 1 Solution Explorer | Team Explorer
14 }
15 } Properties v 3 x
v
1R Program.cs File Properties M
100% - @ No issues found i 4 » = 9 ! s
N
o= |z
Output MERS O Advanced -
Show output from: _ InteliCode - E " BuidAction Compile
[vsiX 1] Trace log: C:\Users\taifun\AppData\Local\Temp\vsFeedbackIntelliCodelof a Copy to Output Dire Do not copy
[vsSIX I] version: 2.2.182.4985 Custom Tool
[CSharp.Package I] [C# IntellicCode] C# IntelliCode Completions package is stari— Custom Tool Names; -
[csharp.Package I] [c# Intellicode] Obtained VS Workspace and TaskCenterService Advanced
[csharp.Package I] [C# IntelliCode] Running out-of-process. from RegisterIntell
4 »

4 Add to Source Control =

Man ser ett antal fonster: till hoger ovan fonstret Solution Explorer dar projektets
innehall visas med ett antal automatiskt skapade filer, bl.a. filen Program.cs som vi
har markerat i bilden ovan. Till vanster ser man det stora kodfonstret som visar
denna fils innehall som &r en mall for ett C#-program. Den &r lamplig for dem som
vill anvanda mallen for att snabbt kunna utveckla en applikation. Vi déremot ska
lara oss C# fran grunden och vill inte anvanda kod som vi inte skrivit sjalva. Darfor:

Markera Program.cs, hdgerklicka och vélj Exclude From Project.

Darmed har vi avlagsnat denna fil fran projektet for att kunna infoga vart eget C#-
program i projektet. Det finns tva alternativ att gora det: Antingen vill vi skapa ett
helt nytt program, skriva in koden, spara den i en fil och infoga den i projektet eller
vi vill lagga till en redan befintlig fil som innehéller ett C#-program, som vi kanske
har skrivit tidigare. Vi ska behandla bada varianter och borjar med den forsta:

a) Att skapa en ny fil och infoga det i projektet:

Markera i Solution Explorer projekthamnet MyConsoleProject, hdgerklicka och
valj:
Add > New ltem...

Dialogrutan Add New Item — MyConsoleProject dyker upp. Scrolla ner fénstret i
mitten tills du ser filtypen Code File. Markera Code File i mittfonstret:

270

Add New Item - MyConsoleProject ? X

4 |nstalled Sort by: Default -| & Search (Ctrl+E) P~
4 pTnleiems ?D Application Configuration... Visual C# Items Wi Wil (G lime

Code Ablank C# code file

Data Application Manifest File Visual C# Items

General

) =c#
Windows Forms DI Assembly Information File Visual C# Items
WPF
E Bitmap File Visual C# Items

b Online

@ Code Analysis Rule Set Visual C# Items

Ca
h I Code File Visual C# ltems
m Cursor File Visual C# Items
-
!D Custom Control Visual C# Items
ii DataSet Visual C# Items

cs
| Debugger Visualizer Visual C# ltems

Name: First.cs

Add Cancel

Ange i den undre delen av dialogrutan i textrutan Name: First.cs. Ddrmed har du
skapat en fil av typ Code File och dépt den till First.cs.

Klicka pa Add-knappen. Sa snart du gjort det laggs den tomma filen First.cs till
projektet. Samtidigt skapas denna fil i projektmappen MyConsoleProject. Och nér
du i Solution Explorer markerar filen visas till vanster ett stort vitt fonster som du
kan anvanda som en editor for att skriva C#-kod i. Skriv in dér t.ex. féljande kod:

using System;

class First

{
static void Main ()
{
Console.WriteLine ("\n\tMitt férsta C#-program!\n") ;
}
}

Det rekommenderas att bibehalla kodens layout, for att félja God programme-
ringsstil, se t.ex. Progrl+, 4.1. Visual Studio har stéd for detta. Koden kan sparas
och lagras t.ex. i filen First.cs sa snart du kompilerar projektet, se punkt 3. Vi
kommer att referera till den med programmet First som samtidigt &r klassnam-
net i koden, vilket dock inte &r obligatoriskt utan en konvention vi foljer.

b) Att lagga till en befintlig fil till projektet:

Har du redan en C#-kallkodsfil bland dina filer pa harddisken, markera i Solution
Explorer projektnamnet MyConsoleProject, higerklicka och valj:

271

Add -> Existing Item...

Dialogrutan Add Existing Item — MyConsoleProject dyker upp som tillater dig att
navigera genom datorns filsystem for att ladda en existerande C#- kallkodsfil. G&
till den fil du vill ladda, markera den och klicka pd knappen Add i dialogrutan
Add Existing Item — MyConsoleProject. | Solution Explorer kan du konstatera att
den fil du valde har kommit till projektet MyConsoleProject. Markera den for att
se innehallet i kodfonstret till vanster som nu kan anvandas som en editor.

Att kompilera och exekvera: Nu nar projektet ar skapat och innehéller en C#-
kallkodsfil kan man kompilera det vilket innebar att d&ven kallkoden ovan kompile-
ras. Om det inte redan finns ett Output-fonster langst ned pa sidan under kodféns-
tret, klicka i menyraden langst upp pa menyn:

View -> Output

Du far ett nytt Output-fonster for att kunna se resultatet av kompileringen och dven
se eventuella kompileringsfel. Akta pa vad som skrivs i det nar du kompilerar ko-
den frdn menyraden langst upp med:

Build - Build Solution
Om du far foljande meddelande i Output-fonstret har kompileringen gatt bra:
------ Build started: Project: MyConsoleProject, Configuration: Debug Any CPU

MyConsoleProject -> C:\C#\MyConsoleProject\bin\Debug\MyConsoleProject.exe

======== Build: 1 succeeded, © failed, © up-to-date, © skipped ==========

Meddelandet ovan sager att koden inte innehaller nagra kompileringsfel. Har du
syntaxfel i koden kommer du att 4 felmeddelanden i Output-fonstret. Atgérda alltid
endast det allra forsta kompileringsfelet och kompilera om med kommandot ovan,
eftersom de andra kan innehélla foljdfel. Ett mojligt kompileringsfel kan vara att du
glomt att exkludera filen Program.cs fran projektet, se sid 270.

For att exekvera koden, klicka i menyraden langst upp pa menyn:
Debug - Start Without Debugging

Om allt har gétt bra bor det se ut s& har pa din skarm:

BN CAWINDOWS\system32\cmd.exe — O X

Press any key to continue . . .

Mitt férsta C#-program!

272

Far du detta pé& skdarmen har du lyckats med att kompilera och exekvera den kod du ma-
tade in pa sid 271 och skapa en C# Console Application: Programmet First finns nu
lagrad i filen First.cs och i projektet MyConsoleProject. cspro3j.

Grattis/

Vill du skapa nya konsolapplikationer behdver du inte géra om hela proceduren. Du be-
héver bara ladda projektet MyConsoleProject i Visual Studio, exkludera filen First.cs
fran det och infoga nya filer resp. skriva ny kod, spara och kora enligt instruktioner pa
sid 270-271. Ett projekt racker for alla konsolapplikationer. Sa det var vart modan.

Windows Forms Application

En fullstindig genomgéng av denna typ av applikation finns utforligt pa sid 13-17 dar
bokens forsta Windowsapplikation Interaction behandlas i detalj. Vi hanvisar till den.

273

274

Programférteckning

Program Amne Sida

Kapitel 1 Windowsprogrammering

Interaction Introduktion till interaktiva grafiska grénssnitt 16
PassWdTextBox Interaktion med kontrollen TextBox 18
Bartender Checkboxar och radioknappar 20
ColorTest Fargtest med kontrollen HscrollBar 24
TryCatchTest Undantagshantering: Automatiskt genererade undantag 28
ThrowTest Egengenererade undantag 30
ListBoxes Listboxar 33
DeliveryDate Leveransdatum 35
TaxCalculator En réntekalkylator 38
Draw Linjer, rektanglar och ovaler 41
Arcs Vinklar och bagar 43
MyFirstBrowser Enegen webbldsare 48
DevBrowser En mer utvecklad webbl&sare 54
Menus Menyer 58
MDI Multiple Document Interface 62

Kapitel 2 Objektorienterad programmering (OOP)

Password Var forsta egendeklarerade klass utan Main () 77
PasswordUse Anvandning av klassen Password 77
P_All in Main Program utan modularisering 82
P_Method Module Modularisering pd metodniva 82
P_Class_Module Modularisering pa klassniva 84
Emp } Deklaration av klass med class 85
EmpTest Test av klassen Anst: Definition av objekt med new 87

Atkomst till objekt med referens, punktnotation
Automatisk initiering av datamedlemmar, null i C#

Circle Klass med konstruktor och privat datamedlem 91
} Atkomstmodifieraren private
Encapsulation Test av klassen circle med anrop av konstruktorn 94
AccountD Klass med flera konstruktorer, default konstruktorn 97
CreateAccountD} Testar klassen AccountD 98
Date Klass med tvéa konstruktorer och en utskriftsmetod 105
Employ } Komposition av klasser 105
Composition Komposition av objekt 106
Person Superklass till klassen Employee 109
Employee } Arver klassen Person, anrop av superklassens konstruktor 110

275

Program Amne Sida
Inheritance Arv: Testar klassen Employee 111
Account Superklass till klassen MinimalAccount 114
Atkomstmodifieraren protected
MinimalAccount(Arver klassen Account: Overskuggning av metoder 115
PolymorphTest Polymorfism: Anrop av polymorf metod withdraw () 117
Kapitel 3 Metoder i OOP
Empl Klass med accessmetoder: Get- och Set-metoder 130
GetSet } Test och anrop av accessmetoder 131
EmplP Automatiserar Get- och Set-metoder med Property 133
Property } Testar och anropar Property-metoden 134
StatDemo } Statiska datamedlemmar med modifieraren static 135
StatDemoTest Test av klassen statDemo: Klass- och instansvariabler 135
RandTest Simulerar térningskast med slumpheltal 138
EncryptStr Klass som deklarerar metoden Encrypt () 140
Text krypteras med referens som parameter och returvérde
EncryptStrTest] Testav klassen EncryptStr med anrop av Encrypt () 141
Super Abstrakt superklass med abstrakt metod 143
Subl Arver klassen super: Implementerar abstrakt metod 144
Sub2 Arver super: Overskuggning av metod med override 144
Override Testar 6verskuggning av abstrakt metod 145
SuperV Icke-abstrakt superklass med virtuell metod 146
Sub } Arver klassen superv : Modifierar virtuell metod 147
TestVirtual Testar 6verskuggning av virtuell metod 147
Kapitel 4 Mer om metoder
MiniSort Algoritm for platshyte av tva objekt 154
CallByVal Vardeanrop vid 6verféring av parametrar i metoder 156
Swapping Klass med metod som byter plats pa tva objekt 159
CallByRef Referensanrop vid 6verforing av parametrar i metoder 160
Outparam In- och utparametrar i metoder 163
Block Variablers livslangd (scoping) och blockstruktur i C# 165
OverrideVar Overskuggning av variabler, referensen this 168
Overskuggning av datamedlemmar med lokala variabler
Overload Overlagring av bade for- och egendefinierade metoder 173
Fibonacci Klass med rekursiv metod 176
FibonacciTest Testar rekursiv metod 177
Lambda Demonstration av lambdauttryck 178
Delegate Introduktion till delegater 180
DelegateParam Delegat som parameter i metoder 182
WriteLineOverl Varianter av Console.WriteLine () 184

276

Program Amne Sida
CountLINQ Introducerar Language Integrating Query (LINQ) 185
LINQ-version av programmet DelegateParam

MethodGroup Introduktion till metodgrupper 185
Kapitel 5 Tillampning av OOP

Array Definition och initiering av arrays 192
ArrayInit Arrayens initieringslista 197
Fish } Deklarerar klassen Fish 199
ArrayOfRef Array av referenser till Fish-objekt 200
Arrayparam Array som parameter i metoder 203
RandArray Metod som slumpar fram en array av heltal 207
Search } Metod som soker efter ett element i en array 209
Bubble Laser en tabell fran en fil och visar innehallet 212
G_Output Demonstration av en generisk metod 214
GenericTest } Test av generiska metoder 215
G_Bubble Generisk variant av bubbelsorteringsmetoden 217
EncryptChar Klass med krypteringsmetod 220
DoubleArray 2D Array 222
List Demonstrerar dynamiska arrays: Listor 226

277

abstract

Abstrakta klasser

Abstrakta metoder

Abstraktion

Accessmetoder

Anonyma funktioner

Argument

Array
Default-initiering
Definition
Hakparenteser
Indexering
Indexregeln
Initiering
Parameter i metoder
Referensanrop

Array av referenser

Arv

Arvrelation

Attribut

Bartender
Blockstruktur
Bubbelsortering
Button

C#-program
CH#-programvara
konfiguration
Calculator
Component tray
Console Application

D

Datamedlem
Automatisk initiering
Atkomst till

143, 144,

73,

210,

Register

143
143
145

71
130
178
157

196
192
194
191
192
192
203
203
199
108
110

70

20
164
217

12

76

267
64
55

267

73
101
89

278

E
Egen webblasare

F
Fargtest

G
Geometriska figurer
Get-metod
Grafiskt granssnitt
GroupBox

Granssnitt med menyval
Granssnitt mot Internet
Granssnitt mot kalendern

H

HscrollBar
Handelsemetoder

Handelsestyrd programmering

Indexregeln
Instansvariabel
Interaktion

Klass
Datatyp
Deklaration
Sammansatt datatyp
Test av
Varfor klasser?
Klassdiagram
Klassvariabel
Konstruktor
Default-konstruktor
Fleraien klass
Koordinatsystem
Kryptering

45

24

40
131
12
21
55
45
34

24
17
12

192
135
12

85
85
85
85
88
80
108, 113
135
93
95
97
40
140, 219

Text 140, 219
L

Label 18

Labyrint | (projekt) 125

Lambdauttryck 178

Leveransdatum 34

LINQ 179

Lista 226

Livslangd 164

M

Master Mind (projekt) 127

Menyer 55

MessageBox 17

Metod 73,130
Accessmetod 130
Anrop med punktnotation 90
Statisk 137
Overlagring 172
Overskuggning 115

Metodgrupper 185

Modularisering 75, 81, 108

N

Navigate()-metoden 48

Navigate-dialogrutan 50

Navigate-menyn 52

nolltecknet 103

Null i C# 102

0]

Objekt 70
Definition 87
Skillnad till referens 100

Objektorienterad design 70

Objektorienterad programmering 70

Overloading 172

Override 145

Overriding 115

P
Paradigmskifte 70

279

PasswdTextBox
Pixel
Polymorfism
Program i C#
Property
protected
Punktnotation

Referens

| metoder
Referens som parameter
Referens till Objekt
Referensanrop
Rekursiva metoder
Ritning

Scope
Set-metod
Signatur
slumpArray-klassen
Slumptal
Array
SlumpTal-klassen
Sortering
Platsbyte
static
Strukturering av kod
Sokning

TextBox

this

Toolbox
MultiLine

U

UML
Undantagshantering
Undermenyer

18

40
74,113
76

133
116
72,89

140
140
88
156
175
40

164
131
172
207
138
207
138
210
154
137
75,108
209

18
168

36

70,73
28
55

V,W

virtual
Virtuella metoder
Vardeanrop
Webblasare

Enkel
WebBrowser-kontrollen
Where i LINQ

146

146, 147
156

45

47

47

179

280

o

A

Ateranvandning av kod 75, 108
(0]

Overlagring av metoder 172

Overskuggning av abstrakta metoder 145
Overskuggning av metoder 115, 143, 146
Overskuggning av variabler 167
Overskuggning av virtuella metoder 147

Programmering 3 med C# ar en fortsattning pa denna bok och behandlar
programmeringens mer avancerade koncept samt tillampningar, bl.a.
filhantering och databaser, speciellt relationsdatabaser. Databasers

kommunikationssprak SQL introduceras som ett inbaddat sprak i C#.

281

Programmering 1 med C#

MED C#

TAIFUN ALISHENAS

FORAG
TAIFUN EDUCATION

Koda matte med
Python

Programmering i matematik

En enkel, pedagogisk larobok som kom-
pletterar matematikundervisningen med
inslag av programmering. Den véagleder
bade larare och elever genom att kombi-
nera teori med praktiska évningar och
fullstdndiga I6sningar. Boken presente-
rar ett pedagogiskt koncept om hur pro-
grammering kan integreras i kurserna
Matematik &k 7-9 och Matematik 1 (a,b,c).
Ett 6vningshéfte for elever med lektions-
upplagg planeras till varterminen 2020.

282

Ur innehallet:

Grundbegrepp i programmering
Datatyper, variabler & tilldelning
Utskrift till grafisk miljo
Windowsprogrammering

C# Console & Win Applications
Interaktiva grafiska granssnitt
Kontrollstrukturer

Klasser, objekt och referenser
Metoder

Rekursiva metoder

Sammansatta datatyper: Arrays
Dynamiska arrays: Listor

Sokning & sortering

Kryptering av text

Hantering av slumptal
Undantagshantering

Vad ar objektorienterad programmering?
Installation av Visual Studio.NET
Konfiguration av Visual Studio.NET
Projekt i Visual Studio.NET
Ovningar & projektuppgifter
Fullstandiga I6sningar till dvningar

MATTE
PYTHON

TECH

www.kodamatte.se

Programmering 2 med C#

Ur innehdllet

Windowsprogrammering
Grafiskt granssnitt mot Internet
Egen webblasare

Grafiskt granssnitt med menyval
Multiple Document Interface
Objektorienterad programmering
Obj. modellering & implementation
Metoder i OOP

Arv och polymorfism
Lambdauttryck

Delegater

LINQ

Abstrakta klasser & metoder
Sokning och sortering
Kryptering med slumptal
Rekursion

Generiska metoder

2D Array

Virtuella metoder
Metodgrupper

Visual Studios C# milj6
Windows Forms Applications
Ovningar & projektuppgifter
Fullstandiga I6sningar till dvningar

Utveckla en egen webblasare (ex. ur boken, sid 45-54):

Navigate Help

ﬂ Mattekollen

Fa koll pa gymnasiematten

Mattekollen gor gymnasiematten roligare, snabbare och

lattare att lara sig.

Lar dig i din egen takt med:

+ Genomgangar med pedagogiska bilder och lasta

exempel

Paters med aosltle exponat:
=2.8.3=8
LR

Potens - upErepac multplikation
@ 2 med sig siahe. § ghnger,

TechPages Forlag Tel 08-792 36 28

« Quiz som hjalper dig att snabbt komma igang.

« Ovningsuppgifter som forbereder dig infor proven.
Da Mattekollen foljer Skolverkets kursplaner sa ar appen
perfekt for egenstudler. repetition, om du har missat vad

som gicks igenom pa lektionen, for att fa ett forspang eller
for att plugga infor nationella proven och hdgskoleprovet.

Mattekollen (Beta) finns nu i som webbapp samt till Android
och iOS. —

& <0 sor cETToN .)
Webbapp * Google Play [App Store

Foters mec “egalv exonent
1 1
2%~ =
2t 8
Invertera potenicn mad pasty
experent.

1
24 “inverters® Lex 10 ger —
s oaluee

info@techpages.se www.techpages.se

