

Introduktion till

programmering

med JavaScript

Yrkeshögskolans preparandkurs

Behörighetsförberedande utbildning (BFU)

Förlag: Lieta AB

Med övningar och

projektupppgifter

 2

Titel: Introduktion till programmering med JavaScript

Författare: Taifun Alishenas

 info@taifun.se

Copyright © 2023 Lieta AB

All rights reserved

Tel: 073 - 757 70 69

Maj 2023

Kopieringsförbud!

Denna bok är skyddad av Lagen om upphovsrätt. Kopiering är förbjuden. Förbudet inkluderar
översättning, tryckning, stencilering, kopiering, lagring i elektroniska och digitala media, visning
på bildskärm eller via projektor, bandinspelning osv. Dessa förbud gäller även för koden i alla
programexempel samt övningarnas lösningar som finns i boken. Den som bryter mot lagen om
upphovsrätt kan åtalas av allmän åklagare och dömas till böter eller fängelse i upp till två år samt
bli skyldig att erlägga ersättning till upphovsman/rättsinnehavare.

 3

Innehåll
 Ämne Sida Program

 Programmeringens ABC 5

1.1 Om programmering 6

­ Algoritmiskt tänkande 7

­ Val av programmeringsspråk 8

1.2 Programmeringens miljöer 9

­ Editorer / IDE 9

­ Interpretator vs. kompilator 9

­ Om JavaScript 10

­ Om HTML 11

­ Att hantera filändelser 11

1.3 Att komma igång med JavaScript 13

­ Programmet Welcome 13 Welcome

­ Kommentarer 14

­ Satser i JavaScript 14

1.4 Konkatenering 16 Concat

­ Överlagring 17

1.5 Utskrift i flera rader 18 Break

­ Radbrytning i utskriften med JavaScript 19 Escape

­ Funktionen alert() 20

­ Escapesekvenser 20

Frågor till kap 1 21

Övningar till kap 1 22

 Grundbegrepp i programmering 23

2.1 Variabler 24 Variable

­ Vad är en variabel? 24

­ Tilldelningsoperatorn = 25

2.2 Överskrivning eller kan x = x + 1 vara sant? 27 Overwrite

­ Prioritet av operatorer 28

­ Tilldelning vs. likhet 28

2.3 Inläsning av data 29 Input

­ Funkionerna prompt() och parseInt() 30

2.4 Arrays 31 Arraydef

­ Arrayens initieringslista 34 ArrayInit

2.5 Hantering av slumptal 36 Random

­ Slumptal inom ett intervall 37

Övningar till kap 2 38

Kapitel 1

Kapitel 2

 4

 Ämne Sida Program

 Inlämningsuppgift Gymnastiktävling 39

 Kontrollstrukturer 40

3.1 Vad är kontrollstrukturer? 41
3.2 Enkel selektion: if-satsen 42 SimpleIf

­ Villkor 43

­ Jämförelseoperatorer 44

­ Bestämning av max/min 45 Max

­ Modularisering 46

­ Funktionen max() 47 MaxFct

­ Om funktioner 47
3.3 Tvåvägsval: if-else-satsen 48 IfElse

­ Modulooperatorn 50

­ Tillämpningar av modulo 50
3.4 Flervägsval 51

­ if-else-stegen 52 GissaTal

­ switch-satsen 51 Switch

3.5 Efter-testad repetition: do-satsen 56 Collatz

3.6 För-testad repetition: while-satsen 60 Sum_while

­ Evighetsloop 61
3.7 Bestämd repetition: for-satsen 62 Sum_for

­ for-satsens struktur 62

­ En tillämpning av for-satsen 64 Borr

Övningar till kap 3 66

Kapitel 3

 5

Kapitel 1

Programmeringens

ABC

 Ämne Sida Program

1.1 Om programmering 6

­ Algoritmiskt tänkande 7

­ Val av programmeringsspråk 8

1.2 Programmeringens miljöer 9

­ Editorer / IDE 9

­ Interpretator vs. kompilator 9

­ Om JavaScript 10

1.3 Att komma igång med JavaScript 13

­ Programmet Welcome 13 Welcome

­ Kommentar 14

­ Satser i JavaScript 14

1.4 Konkatenering 16 Concat

­ Överlagring 17

1.5 Utskrift i flera rader 18 Break

­ Radbrytning i utskriften med JavaScript 19 Escape

­ Funktionen alert() 20

­ Escapesekvenser 20

Frågor till kap 1 21

Övningar till kap 1 22

 6

1.1 Om programmering

Världen vi lever i är full med prylar

som är programmerade. De kallas för

"intelligenta". Man pratar om artificiell

intelligens. Men prylarna kan inte tänka

själva. Någon har programmerat dem,

närmare bestämt de elektroniska kom-

ponenterna i dem – små datorer. Det är

de som styr all funktionalitet.

Programmering är ett av de mest spännande kapitlen i teknologihistorien. Inte bara

därför att den har lagt grunden till den moderna IT-industrin och på gott och ont

revolutionerat världen. Den har också bidragit till att förverkliga den urgamla

mänskliga drömmen att förenkla mödosamma arbeten. Istället för att plåga sig in-

struerar man en maskin med idéer. Programmering realiserar önskemålet att låta

datorn göra jobbet för att ha mer tid över för annat i livet.

När man tröttnat på att använda program som andra skrivit – maila, surfa eller

lyssna på musik – är det dags att börja programmera själv. Det är roligare att köra

en bil än att bara åka med. Det är kreativiteten och det fria skapandet som lockar.

Med programmering kan du testa helt nya egna idéer.

"Everyone in this country should

learn how to program a computer.

Because it teaches you how to think."

 Steve Jobs

Men hur programmerar man?

Egentligen gör vi det varje dag utan

att vara medvetna om det. Är t.ex. en

lampa trasig följer vi ungefär det som

kan beskrivas med bilden till höger,

ett s.k. flödesschema. I praktiken lö-

ser vi problemet att ersätta en trasig

lampa genom att tänka och göra så

utan att någonsin rita ett flödessche-

ma. Flödesschemat illustrerar och do-

kumenterar dock algoritmen, dvs tillvägagångssättet för problemets lösning. När

 7

den en gång är ritad skulle den kunna användas av vem som helst som vill byta en

trasig lampa. Den blir en slags allmängiltig manual för just detta problem. Men

ännu viktigare är att metodiken kan tas över till svårare problem.

Ett annat vardagligt exempel är matlagning. Vare sig vi använder ett recept ur en

kokbok eller lagar efter känsla, följer vi en algoritm som dessutom – till skillnad

från lampalgoritmen – även har en input, råvaror och en output, maträtten. Hård-

varan som hjälper oss är köket med alla sina instrument. Matreceptet är mjukvaran

dvs programmet. Det är precis samma struktur när vi kör ett program på datorn,

matar in indata och får ut utdata som resultat. Programmet vi använder är avgöran-

de för resultatet, precis som matreceptet samt dess förverkligande är avgörande för

om vi lyckas med maträtten.

Algoritmiskt tänkande

Båda exemplen visar: Det är algoritmer som medvetet eller omedvetet styr hur vi

gör – ett sätt att tänka vars gemensamma drag kan generaliseras så här:

1. Att formulera problemet och definiera målet. Hur når vi målet – proble-

mets lösning?

2. Genom att bryta ner problemet i mindre, överskådliga och enklare delar,

s.k. moduler. Varje modul ska i princip kunna utföras av vem som helst.

Detta kallas för modularisering som är en allmän princip inte bara i pro-

grammering utan i all problemlösning.

3. Genom att ge instruktioner som leder till problemets lösning. De måste

formuleras på ett entydigt sätt så att de inte kan tolkas på olika sätt. För

datorer gör exakt som vi säger. Det har visat sig att det vanliga språket

inte lämpar sig för detta ändamål, för det är tolkbart. Skönlitteraturen är

ett praktexempel för olika tolkningar av språket. Det vore synd om det in-

te vore så. Därför har man i programmering hittat på andra, speciella pro-

grammeringsspråk vars vokabulär och syntax följer strikta regler som är

entydiga. Datorn kan tolka dessa regler endast mekaniskt.

4. I denna process uppstår situationer där vi måste träffa ett val – samma

sak som att besvara en fråga. Den första frågan i algoritmen "Att byta

lampa" är "Är lampan inkopplad?" (ovan). Valet mellan "Ja" och "Nej"

avgör hur algoritmen fortsätter. Ytterligare val följer.

 8

Det är avgörande att skilja mellan instruktion och val. En instruktion är ett kom-

mando som måste utföras medan ett val är en fråga som måste besvaras. I flödes-

planen till lampalgoritmen är instruktion (grön) och val (gul) markerade med olika

färger. Deras distinktion blir avgörande när man går över från flödesplan till kod.

Algoritmers byggstenar

Man delar in algoritmers viktigaste ingredienser i tre kategorier och kallar dem för

kontrollstrukturer, eftersom de är generella strukturer som styr och kontrollerar al-

goritmerna och ger dem den karakteristiska ordningen. Dessa grundläggande kon-

trollstrukturer är sekvens, selektion och repetition och kommer att tas upp i boken.

De anses vara algoritmers byggstenar. Alla algoritmer är uppbyggda av dem.

Avgörande för en algoritms funktionalitet är ingrediensernas inbördes ordning. Tar

man in i en kokande gryta potatisen först och köttet sedan – istället för tvärtom –

blir det mos istället för maträtt. I detta sammanhang hör även algoritmens korrekta

avslutning. Utan ett exakt formulerat avslutningskriterium som uppnås i ändlig tid

uppstår evighetsloopar. När sådant inträffar brukar vi ofta säga att datorn "hängt

sig". I själva verket är orsaken en algoritm med ett inkorrekt konstruerat avslut-

ningskriterium. Allt detta kommer att behandlas utförligt i boken.

Ytterligare en ingrediens av algoritmer är logik. Datorer kan ingen logik. Männi-

skan måste föra över logiken in i datorn. Det är det som kallas för artificiell intelli-

gens. Bl.a. formuleringen av korrekta avslutningskriterier i val och loopar, men

även modularisering och strukturering kräver logiskt tänkande.

Att upptäcka mönster är också en förmåga som ofta behövs i konstruktion av algo-

ritmer, vilket vi kommer att se i våra programexempel som följer i boken.

I valet av instruktioner som ska tas med i en algoritm är det en självklarhet att man

sorterar bort allt som är mindre relevant och tar in endast det som är relevant. Dvs

även att avgöra relevansen av saker och ting för att uppnå det definierade målet

(punkt 1) hör till programmerarens uppgifter.

Val av programmeringsspråk

I denna bok har vi bestämt oss för programmeringsspråket JavaScript för att intro-

ducera till programmering. Men språket är bara ett medel av underordnad betydel-

se. Målet är att lära sig tankesättet och tekniken att programmera, oberoende av

språk. Har man en gång förstått de grundläggande koncept som är gemensamma

för alla språk, blir det närmast en teknikalitet att på egen hand lära sig ett nytt

språk.

 9

1.2 Programmeringens miljöer

Man kan inte lära sig programmering genom att endast läsa böcker. För att lära sig

programmering måste man programmera, dvs koda och testa koden – precis som

bilkörning. Och för att programmera behöver man en miljö, där man kan skriva

och testa kod. Denna miljö är själv en programvara som måste laddas ned, om den

inte redan finns i datorn och installeras. Det finns en uppsjö av programmerings-

miljöer för de olika programmeringsspråken. Ofta kallas de för IDE, Integrated De-

velopment Environment. En enklare variant – ofta en del av en IDE – är en editor.

Editorer

En editor är ett skrivverktyg på datorn, dvs ett program som kan hantera text. Ord-

behandlingsprogram är en annan beteckning på editorer. På de flesta datorerna

finns minst en editor förinstallerad. För att skriva kod och spara den i en fil behövs

en editor. Men kod får innehålla endast sådana tecken som kan ’förstås’ av pro-

grammeringsspråket. Därför måste editorn spara filen som oformaterad textfil, dvs

utan styr- och kontrollkoder som i vissa ordbehandlingsprogram används för for-

matering (typsnitt, stil, sorlek osv.). Ett exempel på sådana program är Word som

formaterar texten och sparar sina filer som dokument av typ *.docx. Formatering

innebär att det läggs till osynliga tecken i texten som programmeringsspråket inte

känner till. Motsvarigheten på Mac-datorer är Pages. Sådana ordbehandlings-

program är inte lämpliga för att skriva kod. Däremot kan t.ex. Notepad (Antecknin-

gar), Notepad++ eller TextPad på Windwos-datorer och Textredigerare eller Text-

Edit på Mac-Datorer vara lämpliga texteditorer för programmering, eftersom de

sparar alla filer som rena textfiler utan formatering. För textfiler kan filändelser av

typ *.txt, men även andra väljas, beroende på operativsystemet resp. programva-

ran som filen ska användas i.

IDE står för Integrated Development Environment, är alltså en integrerad pro-

gramutvecklingsmiljö som inkluderar en editor, en interpretator resp. kompilator

och andra verktyg för programutveckling i en och samma samlad miljö. Visual Stu-

dio är ett exempel på en IDE som har utvecklingsverktyg för ett antal språk. Men

JavaScript behöver ingen IDE. Det räcker med en texteditor där koden skrivs och

sparas samt en webbläsare där koden exekveras. Vi kommer att använda oss av

denna möjlighet som är oberoende av tredje parts verktyg för att slippa installera

nya program. En editor och en webbläsare finns förinstallerade på alla datorer.

Interpretator vs. kompilator

En interpretator är ett program som tolkar källkod till maskinkod och skickar ma-

skinkoden till datorns processor utan att mellanlagra den på hårddisken. Processorn

Programmering är i allra högsta grad ett praktiskt ämne.

 10

exekverar maskinkoden. Källkod är kod som endast människan förstår, men inte

datorn. Maskinkod är kod som endast datorn förstår, men inte människan.

Till skillnad från en interpretator är en kompilator ett program som översätter käll-

kod till maskinkod och lagrar maskinkoden på hårddisken. Först när man exekverar

skickas den kompilerade maskinkoden till datorns processor och utförs där. Vissa

programmeringsspråk är kompilerande, andra är interpreterande. Det finns även

hybrider. JavaScript är interpreterande.

Om JavaScript

JavaScript är ett s.k. scriptspråk som ursprungligen skapades år 1995 av Netscape,

ett amerikanskt mjukvaruföretag som året innan hade lanserat den första populära

webbläsaren. Med scriptspråk menar man sådana språk som endast kan köras på

webben. En annan kategori är universella språk, som t.ex. C, C++, C#, Java, Py-

thon, ... som kan användas för att programmera vilken applikation som helst.

Hos scriptspråken nöjer man sig med de enklare elementen i programmering, för

att förse webbsidor med vissa funktionaliteter. Därför kallas koden även för script.

Scripten bakas in i HTML-kod, varför de enast kan exekveras på webben.

Utvecklingsmiljön däremot – dvs där man skriver koden – kan vara vilken editor

som helst.

JavaScript är ett interpreterande språk, dvs koden tolkas till maskinkod (datorns

språk) av en interpretator som är inbyggd i webbläsaren. Maskinkoden utförs direkt

av datorns processor utan att den mellanlagras. De mest använda webbläsarna är

Google Chrome på Windwos-datorer och Safari på Mac-datorer. I båda är en inter-

pretator för JavaScript inbyggd.

JavaScript får inte förväxlas med Java. Det handlar om två olika programmerings-

språk som dessutom tillhör två olika kategorier av programmeringsspråk: Medan

JavaScript är ett scriptspråk är Java ett universellt programmeringsspråk.

Som alla programmeringsspråk är även JavaScript definierat av ett antal nyckelord,

även kallade reserverade ord, på eng. keywords. De är reserverade av och för själ-

va språket, dvs bildar språkets ordförråd. De får inte användas som namn (identifi-

erare) för variabler eller programmets andra delar, t.ex. funktioner osv. Några av

dem är samlade i följande tabell:

Reserverade ord i JavaScript
break case continue delete do
else false for function if
in new null return switch
this true typeof var void
while with default class const

JavaScripts exekveringsmiljö är webbläsaren (web browser).

 11

Det finns fler reserverade ord än i tabellen ovan. Man ser att de skrivs alla med

små bokstäver. Generellt gäller följande regel för all JavaScript kod:

Dvs JavaScript skiljer på små och stora bokstäver. Det gör inte HTML.

Om HTML

HTML står för HyperText Markup Language och är webbens standardspråk för att

utforma presentabla dokument som kombinerar text, bild och andra element. Koden

genererar dokumentet som ska sedan visas upp dem på webben. Koden är skild

från dokumentet – till skillnad från andra formateringsverktyg som t.ex. Word som

är ett s.k. WYSIWYG-verktyg. Akronymen (förkortningen) står för What You See Is

What You Get. Men eftersom HTML är ett icke-WYSIWYG-verktyg måste koden

först tolkas av en interpretator, innan dokumentet kan visas. Webbläsare är sådana

interpretatorer, dvs program som kan tolka HTML-kod. Dessutom har HTML möj-

ligheten att bädda in andra scriptspråk i sin kod som t.ex. JavaScript. Därför är

webbläsaren den naturliga exekveringsmiljön för JavaScript. För att skriva Java-

Script kod behöver man en editor, och för att exekvera behöver man en webb-

läsare. Vi nöjer oss med denna minimalistiska miljö för att förenkla den tekniska

hanteringen och koncentrera oss på själva språket.

Regler för filändelsen

Skriver du din JavaScript kod i någon editor och sparar filen som *.txt, kommer

du inte kunna exekvera den i en webbläsare, när du (dubbel)klickar på den. Boven i

dramat är filändelsen: Operativsystemet identifierar de filer som innehåller kod via

filändelsen. All JavaScript kod är inbakad i HTML kod, webbläsarens språk. Ska

koden exekveras i en webbläsare måste filen som innehåller koden, ha ändelsen

html, för att kunna identifieras som en JavaScript källkodsfil. Därför måste du an-

tingen från början spara din källkodsfil med ändelsen html eller i efterhand ändra

filändelsen till html. I Windows kallas filändelser för Filnamnstillägg.

Att hantera filändelser

För att kunna följa reglerna för filändelsen som beskrevs ovan, förutsätts att man

kan se filändelserna när man öppnar en mapp. Men i praktiken är detta ofta inte

fallet. Orsaken år på operativsystemets inställningar. I Windows är default inställ-

ningen att man i regel inte kan se dem. Ta själv reda på hur det är på din dator. Så

här kan man göra för att synliggöra filändelserna i Windows:

 Öppna en mapp i Windows.

 Gå i mappens menyrad till Mappalternativ. Om du inte hittar denna meny klicka

på de tre små punkterna till höger (Visa mer) och välj Alternativ.

JavaScript är case sensitive (skiftlägeskänslig).

 12

 Du borde få upp dialogrutan

Mappalternativ. Välj fliken Vis-

ning. Bocka av rutan Dölj fil-

namnstillägg för ända filtyper.

Så här borde nu dialogrutan se

ut:

 Klicka på knappen Använd i

alla mappar, sedan på Ja och

OK.

Nu borde du kunna se dina filers

ändelser och kunna följa reglerna

på förra sidan. Generellt rekom-

menderas att ha synliga filändelser

på sin dator, när man program-

merar.

 13

1.3 Att komma igång med JavaScript

För att komma igång med JavaScript kan vi nu skriva våra koder i en valfri text-

editor och spara filen som ren, dvs oformaterad textfil med ändelsen html (OBS!

inte txt) på datorn. När vi sedan (dubbel)klickar på filen, kommer koden att exe-

kveras i webbläsaren. Anledningen till det är att webbläsaren är ett program som

kan tolka och exekvera html-kod: Webbläsaren är en html-interpretator. Så här

kommer vi att testa alla våra JavaScript koder i denna kurs. Även om man gör detta

i en annan miljö är det i grund och botten denna teknik som används i bakgrunden.

Vi sa i början att JavaScript var ett scriptspråk och att koden kallas för script. Men

i fortsättningen kommer vi kalla våra JavaScript koder även för program. +++

Programmet Welcome

Öppna en texteditor, t.ex. NotePad++, skriv följande kod (utan rad-

numren) med bibehållen layout:

1 <!-- Welcome.html
2 Skriver ut en rad text -->
3
4 <title>Vårt första program i JavaScript</title>
5 <script> <!-- Här börjar JavaScript -->
6 document.writeln('<h1>Välkommen till JavaScript!</h1>')
7 </script> <!-- Här slutar JavaScript -->

Spara den i filen Welcome.html. (Dubbel)klicka på filen på den plats du sparat

den. Din webbläsare kommer att visa körresultatet. Så här ser resultatet ut i min

webbläsare (Google Chrome):

Vi kommer i fortsättningen att referera till denna kod som programmet Welcome,

medan filen i vilken koden är sprarad heter Welcome.html.

Vi går nu i genom koden genom att referera till radnumren i programmet Welcome.

Huvudjobbet görs av rad 6 som skriver ut texten ovan. Men låt oss gå från början:

 14

Kommentarer

Raderna 1-2 i programmet Welcome är kommentar. Allt som skrivs mellan <!--

och --> betyder i HTML kommentar, dvs utförs inte, utan ska förklara koden.

Kommentar börjar med <!--, slutar med --> och kan sträcka sig över flera rader.

HTML-taggar

Raderna 4-7 består av tre s.k. HTML-taggar. All kod som skrivs inom < och > kal-

las för HTML-tagg. På rad 4 börjar en HTML-tagg med <title> och slutar med

</title>. All text som skrivs mellan är <title> och </title> kommer att synas

på rubriken av webbläsarens flik. I programmet Welcome är det texten Vårt första

program i JavaScript som man kan se i körresultatet längst upp till vänster.

På rad 5 börjar nästa tagg med <script> som slutar på rad 7 med </script>.

Denna tagg, script-taggen, betyder att här inbäddas JavaScript i HTML. Allt som

står mellan <script> och </script> utförs av JavaScript-interpretatorn som är

integrerad i webbläsaren. JavaScript är standarden bland de scriptspråk som finns i

webbläsaren.

Satser i JavaScript

I script-taggen (raderna 5-7) hittar vi följande JavaScript-sats:

document.writeln('<h1>Välkommen till JavaScript!</h1>')

Att vi kallar denna kod för sats, beror på att den inte längre är HTML- utan Java-

Script-kod, eftersom den står i script-taggen. I JavaScript är satser motsvarighe-

ten till taggar i HTML. Inte bara koden skiljer sig utan även terminologin. Vi har nu

på allvar kommit in i programmeringen. Det visas redan på punkten som står mel-

lan document och writeln(). Satsen ovan är ett anrop av funktionen writeln().

En funktion är kod som föreskriver vad som ska göras. Funktionen writeln() ska

skriva ut det som står i parentesen på webbläsarens yta och byta rad efteråt. Funk-

tionen är förprogrammerad och finns i document, ett s.k. objekt tillhörande webblä-

saren. För att kunna hitta funktionen writeln() måste vi först nämna dess behål-

lare, objektet document, sätta sedan en punkt och skriva sist funktionens namn – en

slags adressering. Därför blir det slutligen – bortsett från parentesens innehåll:

document.writeln()

Det här sättet att koda kallas punktnotation som vi kommer att använda ofta i fort-

sättningen. Punkten skiljer två olika kategorier av kod, i det här fallet objektet (före

punkten) från funktionen (efter punkten).

Funktioner är karaktäriserade genom parentesen (), oavsett parentesen är tom eller

inte. När de är definierade i ett objekt kallas de för metoder. Så, writeln() skulle

kunna även kallas för en metod. Alla dessa nya begrepp kommer att behandlas i

 15

I JavaScript omgärdas strängar av apostrofer ' ' eller citationstecken " ".

detalj senare. Vad gäller writeln()-funktionens parentes kan man konstatera att

följande regel gäller:

Sträng är den programmeringstekniska termen för text. Vi använder i våra exempel

apostrofer. Citationstecken går lika bra. I programmet Welcome (sid 13) står koden

<h1>Välkommen till JavaScript!</h1> inom apostrofer. Därför visar program-

mets körresultat själva texten i fet stil och i en viss storlek i webbläsaren, medan

HTMLs <h1>-tagg bestämmer textens storlek och stil.

Observera att <h1>-taggen dvs HTML-kod fungerar i JavaScript (inom <script>-

taggen), men JavaScript-kod inte i HTML (utanför <script>-taggen).

JavaScript-satser kan även avslutas med semikolon. Men alternativt kan man ute-

lämna semikolonet och skriva varje sats på en ny rad. Dvs det osynliga radavslut-

ningstecknet Enter kan ersätta semikolonet. Vi kommer att föredra detta alternativ

av minimalistiska skäl – för att minska kod. Däremot är det absolut nödvändigt att

avsluta script-taggen med </script> på rad 7, för att markera att det är slut på

JavaScript-kod och att det nu fortsätter igen HTML-kod.

 16

1.4 Konkatenering

1 <!-- Concat.html
2 Skriver ut flera rader text i olia storlekar
3 med konkateneringsoperatorn + -->
4
5 <title>Olika storlekar & konkatenering</title>
6 <script>
7 document.writeln('<h1> Välkommen till JS! (med h1) </h1>' +
8 '<h2> Välkommen till JS! (med h2) </h2>' +
9 '<h3> Välkommen till JS! (med h3) </h3>' +
10 '<h4> Välkommen till JS! (med h4) </h4>')
11 </script>

Öppna din favorit editor eller NotePad++, skriv koden ovan och spara den i filen

Concat.html. (Dubbel)klicka på filen när du sparat den. Webbläsaren visar:

Vi kommer att referera i fortsättningen till koden ovan som programmet Concat.

Här skrivs ut fyra rader text i olika storlekar, förorsakat av HTMLs <hi>-taggar (i

= 1, 2, 3, 4) som formaterar textens storlek.

Utskriften görs av ett enda anrop av funktionen writeln() i raderna 7-10. Dvs vi

skriver egentligen ut en enda text, även kallad sträng, bara att den är lång och inte

ryms på en rad. Därför bryter vi den i fyra delar, men slår ihop strängens delar med

tecknet + i raderna 7-9. Plustecknet betyder här inte addition, utan har en annan

betydelse som redovisas nedan.

 17

Konkateneringsoperatorn +

To (con)catenate betyder på engelska att slå ihop. Termen används inte bara i Java-

Script utan även i en rad olika sammanhang inom IT
*
. I programmet Concat kon-

katenerar vi strängar med + som därför kallas för konkateneringsoperatorn. Anled-

ningen till att vi använder konkateneringsoperatorn i programmet är följande regel:

Mitt i en sträng får man inte bryta rad i JavaScript koden.

Man kan i koden bryta rad på alla ställen där ett mellanslag förekommer. Detta gäl-

ler dock inte för mellanslag mitt i en sträng. T.ex. ger följande radbrytning i koden

fel, dvs inget resultat, därför att raden bryts mitt i en sträng:

document.writeln('<h1>Välkommen till
 JavaScript!</h1>')

Vill man ändå bryta rad måste man dela upp den i två strängar och skicka mellan

dem konkateneringsoperatorn:

document.writeln('<h1>Välkommen till ' +
 'JavaScript!</h1>')

Observera att mellanslaget i en sträng måste skickas med även i koden. Annars blir

det inget mellanskag i utskriften. Därför måste vi lägga till det efter till.

Konkateneringsoperatorn hjälper oss att undvika det fel som nämns i regeln ovan.

Överlagring

Att kod i olika sammanhang kan ha olika betydelser, kallas i programmeringster-

mer för överlagring, på eng. overloading. De multipla betydelserna överlagrar va-

randra. Den aktuella betydelsen träder fram i ett konkret sammanhang och avgörs

därmed av sammanhanget – både för oss och för JavaScript-interpretatorn: Står

t.ex. + mellan två tal betyder det addition. Står + mellan två strängar betyder det

konkatenering. Överlagring är ett generellt koncept inom programmering som an-

vänds i alla moderna programmeringsspråk.

* T.ex. i C/C++ finns funktionen strcat() som gör string catenation, dvs konkatenerar två

strängar. Samma sak gör metoden concat() i Java. I Unix, som är skrivet i C, finns kom-

mandot cat som konkatenerar data från olika filer och slår ihop dem till en fil. T.ex. kopie-

rar kommandot cat file1 file2 file3 > nyfil de tre filerna till nyfil.

 18

1.5 Utskrift i flera rader

1 <!-- Break.html
2 Radbrytning i utskriften med HTMLs break-tagg
 -->
3
4 <title>Utskrift i flera rader</title>
5 <script>
6 document.writeln('<h1> Välkommen till
 JavaScript-' +
7 '
 programmering! </h1>')
8 </script>

Observera att vi här pratar om radbrytning inte i koden utan i utskriften, dvs i kör-

resultatet, se nedan. Koden producerar tre utskriftsrader med hjälp av HTML-tag-

gen
, inbakad i utkriftssträngen. Körresultatet blir:

Programmet Break använder HTML-taggen
, även kallad break-taggen genom

att baka in den två gånger i strängen av document.writeln()-satsen (rad 6 & 7) för

att åstadkomma radbrytning i utskriften.

Konkateneringsoperatorn + används på rad 6, precis som i programmet Concat (sid

16), för att inte behöva bryta rad i koden mitt i en sträng, se regeln på förra sidan.

-taggen är HTML kod. Vi har använt den i document.writeln()-satsen som i

sin tur finns inom script-taggen, dvs där JavaScript kod gäller. Ändå kommer

radbrytning i utskriften inte fungera, om vi byter ut HTML koden
 mot Java-

Scripts motsvarighet till radbrytning, som är \n. Genomför gärna detta experiment.

Längre fram kommer vi att förklara \n närmare.

 19

Radbrytning i utskriften med JavaScript

1 <!-- Escape.html
2 Radbrytning i utskriften med JavaScripts escapesekvens \n
3 Använder JavaScript funktionen alert() -->
4
5 <title>Utskrift i flera rader med \n</title>
6 <script>
7 alert(' Välkommen till \n JavaScript- \n' +
8 ' programmering! \n\n Det här är ' +
9 ' en meddelanderuta (JavaScripts alert box).')
10 </script>
11
12

13 <h3>Ladda om sidan (Ctrl-R) för att köra om skriptet.</h3>

Körresultatet är:

Här ser man tydligt att alert boxen visas i en ruta skild från webbdokumentet. Alert

boxen är en JavaScript-konstrukt som består av en meddelanderuta och en OK-

knapp som stänger rutan när den klickas. Programflödet återgår sedan till webb-

läsaren som först gör radbyte med
 enligt rad 12 i programmet Escape och

sedan skriver ut följande instruktion till användaren:

 20

Programkörningen är inte avslutad förrän webbläsaren stängs.

Funktionen alert()

Programmet Escape använder en annan funktion än programmet Break för att skri-

va ut text, nämligen funktionen alert() på rad 7. Detta för att demonstrera rad-

brytning i utskrift med JavaScript-koden \n som inte fungerade i programmet

Break.

alert() är en JavaScript-funktion som genererar en meddelanderuta, en s.k. alert

box. För att åstadkomma radbyte i utskriften används JavaScript-koden \n som be-

tyder newline (rad 7 & 8), se Escapesekvenser nedan. Precis som \n inte fungerade i

programmet Break, för att åstadkomma radbrytning i utskriften, kommer
 inte

fungera i programmet Escape. Genomför gärna detta experiment genom att byta ut

alla \n på raderna 7 & 8 i programmet Escape mot
.

I programmet Escape blir inte bara skilnaden utan även samspelet mellan HTML

och JavaScript påtaglig.

Escapesekvenser

\n är ett exempel på en escapesekvens. På svenska betyder to escape att fly. Esca-

pesekvenser inleds med tecknet backslash \ åtföljt av endast ett tecken. Med \

vill man fly från tecknets vanliga betydelse och ge det en annan betydelse. Med \n

t.ex. vill man fly från bokstaven n och åstadkomma en newline. På samma sätt fun-

gerar andra escapesekvenser som t.ex. \t, \b , \' , \0, \f , \r , Escape-

sekvensen \' t.ex. kan användas för att skriva ut själva apostrofen.

Escapesekvenser är ett generellt koncept som används i alla moderna programme-

ringsspråk.

 21

 Frågor till

1.1 Vad menar Steve Jobs med sitt påstående att programmering lär oss att tänka?

1.2 Hur tolkar du termen artificiell intelligens (AI)? Tror du att maskiner kan lära

sig att ”tänka”? Eller är det bara något som människan kan göra?

1.3 Försök att med egna ord beskriva algoritmiskt tänkande.

1.4 Vad har algoritmiskt tänkande med programmering att göra?

1.5 Hur skulle du definiera begreppet algoritm?

1.6 Är datorprogram det enda sättet att beskriva en algoritm?

1.7 Använder du i vardagen algoritmer? Om ja, nämn några exempel.

1.8 Vad innebär modularisering och varför är den relevant för programmering?

1.9 Varför kan man inte lära sig programmering genom att endast läsa böcker?

1.10 Vad innebär kompilering och hur skiljer den sig från exekvering?

1.11 Skriver man källkod eller maskinkod när man programmerar?

1.12 Vilken egenskap borde editorn ha i vilken man skriver programkoden?

1.13 Är JavaScript ett universellt programmeringsspråk? Motivera!

1.14 Är JavaScript ett interpreterande eller ett kompilerande språk?

1.15 Är JavaScript källkod eller maskinkod?

1.16 I vilken miljö exekveras JavaScript kod?

1.17 Vad har JavaScript med HTML att göra?

1.18 Vilka verktyg behöver man för att kunna utveckla JavaScript program?

1.19 Vilka typer av ordbehandlingsprogram är olämpliga för programmering?

1.20 Varför är filändelser relevanta för en programmerare?

Kapitel 1

 22

 Övningar till

1.21 Har du en favorit editor (sid 9)? Om ja, öppna den. Om inte, ladda ned open-

source editorn Notepad++ och installera den. Undersök i editorn skillnader-

na – vad gäller formen och utseendet – mellan tecknen apostrof ('), cita-

tionstecken ("), accent (´) och backslash (\). Ta reda på och kom ihåg

deras tangenter på ditt tangentbord.

1.22 Visar din dator filändelserna när du öppnar en mapp? Om inte, genomför in-

struktionerna Att hantera filändelser på sid 11 för att synliggöra filändelserna.

1.23 Öppna din favorit editor eller Notepad++ och mata in koden till programmet

Welcome (sid 13). Bibehåll layouten. Spara koden i filen Welcome.html.

(Dubbel)klicka på filen, så att den körs i din webbläsare. Ersätt alla apostro-

fer i koden med citationstecken och kör om koden. Vilken slutsats drar du?

1.24 Modifiera programmet Welcome genom att ändra texten i <title>-taggen

till ditt namn och texten som skrivs ut i dokumentet, till: Det här program-

met har jag skrivit själv! Spara koden i filen Mitt.html och kör den.

1.25 Ersätt document.writeln()-satsen i programmet Concat (sid 16) med fyra

olika satser. De ska ge samma utskrift som det ursrungliga programmet. Än-

dra desutom koden, så att de fyra utkriftsraderna syns i växande textstorle-

kar istället för minskande.

1.26 Utskrift i flera rader kan kodas på två olika sätt: antingen med HTMLs
-

tagg eller med JavaScripts escapesekven \n. Ersätt i programmet Break (sid

18)
 med \n. Ersätt i programmet Escape (sid 18) \n med
. Beakta

funktionerna i vilka dessa koder fungerar. Vilka slutsatser drar du?

1.27 Skriv ett JavaScript program som *

åstadkommer följande utskrift: **

1.28 Sätt in följande kod i ett JS program och testa vad den ger för utskrift:

 document.writeln('****
' +
 '*****
' +
 '******
' +
 '*******
' +
 '********
' +
 '*******
' +
 '******
' +
 '*****
' +
 '****
')

Kapitel 1

 23

Kapitel 2

Grundbegrepp

i

programmering

 Ämne Sida Program

2.1 Variabler 24 Variable

­ Vad är en variabel? 24

­ Tilldelningsoperatorn = 25

2.2 Överskrivning eller kan x = x + 1 vara sant? 27 Overwrite

­ Prioritet av operatorer 28

­ Tilldelning vs. likhet 28

2.3 Inläsning av data 29 Input

­ Funkionerna prompt() och parseInt() 30

2.4 Arrays 31 Arraydef

­ Arrayens initieringslista 34 ArrayInit

2.5 Hantering av slumptal 36 Random

­ Slumptan inom ett intervall 37

Övningar till kap 2 38

 Inlämningsuppgift 39

 24

En variabel är en platshållare (minnescell) för ett värde (data).

I koden får variabeln ett namn som används för att komma åt värdet.

I ett program kan variabelns värde ändras, men inte namnet.

2.1 Variabler

1 <!-- Variable.html
2 Adderar två tal med variabler -->
3
4 <title>Addition med variabler</title>
5
6 <script> // Radkommentar i JavaScript
7 no1 = 2 // Initiering av variablerna
8 no2 = 3 // no1, no2 och sum
9 sum = no1 + no2
10
11 document.writeln('<h2> Summan av ' + no1 + ' och '
12 + no2 + ' är ' + sum + '. </h2>')
13 </script>

Här förekommer två lika koder för kommentar: Raderna 1-2 är kommentar som är

HTML-kod. Den börjar med <!-- och slutar med -->, kan sträcka sig över flera

rader och därför kallas för blockkommentar. I raderna 6-8 inleds kommentar mitt

på en rad med JavaScript-koden // som slutar när raden slutar och därför kallas för

radkommentar. Att vi kan använda den här, beror på att vi gör det efter <script>-

taggen, där JavaScript-kod gäller. I körresultatet syns förstås inte kommentarerna:

I programmet Variable skapas på raderna 7-9 tre variabler no1, no2 och sum.

Vad är en variabel?

Ex.: På rad 7 skapas variabeln no1 och initieras till värdet 2.

 25

När vi kör programmet Variable reserveras en minnescell i datorns RAM (Ran-

dom Access Memory) vars namn är no1 och vars innehåll är 2:

no1 2

Det är jämförbart med en låda vars etikett är variabelns namn och vars innehåll är

variabelns värde. Värde är data i största allmänhet, dvs tal, tecken, men även ett

sanningsvärde, en sträng, längre text, en fil, ja t.o.m. en bild. Vi kan i programmet

komma åt värdet 2 genom att i koden referera till variabeln no1. Detta görs t.ex. på

rad 9, för att addera variablerna no1:s och no2:s värden och initiera därmed varia-

beln sum.

Motsatsen till variabel är begreppet konstant, t.ex. 2, som inte kan ändra sitt värde

under en programkörning. Det kan däremot en variabel göra. Hos en variabel måste

man alltid skilja mellan namnet och värdet, medan konstanter är i regeln namnlösa.

Tilldelningsoperatorn =

I programmet Variable kodas initieringen av variabeln no1 med satsen:

 no1 = 2 // Initiering av variabeln no1

Här får variabeln no1 värdet 2. Man skulle kunna beskriva bilden så här:

Variabel Värde

Dvs likhetstecknet kan snarare jämföras med en pil som pekar från höger till vän-

ster. I RAM-minnet ser bilden ut så som det visades ovan. Variabelns namn är i

koden den mjukvarumässiga motsvarigheten till minnescellens fysiska adress.

Vi kan i fortsättningen komma åt värdet 2 genom att referera till no1. T.ex. om vi

nu skriver document.writeln(no1) får vi värdet 2 utskrivet.

Symbolen = betyder i matematiken likhet. Men i programmering betyder = inte

likhet utan tilldelning och symbolen kallas för tilldelningsoperatorn. Den visar

ingen likhet utan uttför tilldelning vilket betyder att en variabel får ett värde. Det är

skillnaden mellan att vara och att bli. Likhet har i JavaScript symbolen == som

används i villkor för att testa två värden på likhet.

Samma sak är det förstås med variabeln no2 som i programmet Variable får vär-

det 3. Sedan utförs additionen no1 + no2. Här adderas värdena lagrade i variabler-

na no1 och no2. Resultatet tilldelas variabeln sum. Vi refererar till värdena med

hjälp av variablerna. Att additionen + görs först och tilldelningen = sedan beror på

att + binder starkare än = .

 26

Utskriftssatsen

Intressant i programmet Variable är hur koden i utskriftssatsen måste skrivas för

att med hjälp av variablerna åstadkomma körresultatet Summan av 2 och 3 är 5. Det

är en kombination av variabler, strängkonstanter (inom apostrofer) och konkatene-

ringsoperatorn + som måste skrivas i parentesen till funktionen writeln():

 document.writeln('<h2> Summan av ' + no1 + ' och '
 + no2 + ' är ' + sum + '. </h2>')

<h2>-taggen som styr utskriftstextens storlek samt all text måste bakas in i apostro-

fer (strängkonstanter), medan variablerna måste stå utanför apostroferna. När de

kopplas ihop med + är det variablernas aktuella värden som skrivs ut.

 27

2.2 Överskrivning eller kan x = x + 1 vara sant ?

1 <!-- Overwrite.html
2 = betyder i programmering inte likhet utan tilldelning -->
3
4 <title>Överskrivning</title>
5
6 <script>
7 x = 5 // Initiering av variabeln x
8 document.writeln('
Variabeln x har initierats till ' + x)
9
10 x = x + 1 // Överskrivning av variabeln x
11
12 document.writeln(', sedan ökats med 1 och är nu ' + x + '.')
13 </script>

” I ett program kan variabelns värde ändras, men inte namnet. ”

Vad är en variabel? (sid 24)

En

körning

ger:

För tilldelning använder JavaScript samma symbol = som för likheten i matematik,

vilket kan ge upphov till missförstånd eftersom det handlar om två olika typer av

operationer. Tilldelning är en instruktion som skall utföras, medan likhet är en jäm-

förelse som endast kan testas om den är sann eller falsk. Vid enkel tilldelning, t.ex.

på rad 7, har vi x = 5, dvs variabeln x förekommer endast på vänster sidan:

Variabeln x Värdet 5

Men vid en annan tilldelning, t.ex. på rad 10, finns samma variabel x på båda sidor:

x = x + 1
Dvs:

x x + 1

Om t.ex. x har värdet 5 före denna sats, innebär satsen ovan att 5 ska adderas med

1 och att det nybildade värdet 6 ska tilldelas variabeln x:

x 5 + 1

 28

Efter satsen har x värdet 6. Det nya värdet 6 skriver över det gamla värdet 5:

x 5 6

Detta kallas för överskrivning av variabeln x. Variabeln x är en platshållare vars

värde kan ändras medan namnet bibehålls (sid 24). Initialvärdet 5 tilldelas variabeln

x. Satsen x = x + 1 ökar värdet till 6 och överskriver det gamla värdet 5 med det

nya värdet 6. Men varför ökas värdet först, innan det överskrivs? Det beror på:

Prioritet av operatorer

Två operatorer är inblandade i satsen x = x + 1, additionen + och tilldelningen = .

Att JavaScript-interpretatorn utför additionen först och tilldelnigen sedan beror på

att operatorn + har högre prioritet, dvs binder starkare, än tilldelningsoperatorn = .

Operatorernas prioriteter är definierade i alla programmeringsspråk. Därför slipper

vi att skriva: x = (x + 1), vilket vi hade varit tvungna att göra om = hade samma

prioritet som eller högre än + . Parentesen bryter prioritetsreglerna. Det är inte fel

att skriva x = (x + 1) istället för rad 10, men i det här fallet onödigt.

Tilldelning vs. likhet

Vi har i satsen x = x + 1 med två olika värden till en och samma variabel x att göra,

men vid två olika tidpunkter. Det gamla värdet 5 finns i variabeln x före satsen och

det nya värdet 6 finns i variabeln x efter satsen.

I matematiken betyder tecknet = likhet. Därför är det fel att skriva 1x x  ef-

tersom detta är en ekvation som saknar lösning. Man kan också säga att det är ett

falskt påstående som leder till motsägelsen 0 1 . Vill man vara matematiskt kor-

rekt måste man använda två variabler och skriva så här:

I programmeringen däremot betyder tecknet = inte likhet utan tilldelning. Därför

är det helt OK att skriva x = x + 1 eftersom det inte handlar om ett påstående som

kan vara sant eller falskt utan snarare om en instruktion som ska utföras. Samma

variabel x används på båda sidor av tilldelningstecknet. x är en platshållare (min-

nescell) vars innehåll (värde) skall överskrivas med satsen x = x + 1 Instruktionen

lyder att tilldela variabeln x ett nytt värde, att öka det gamla värdet med 1. För

likhet har an i JavaScript koden == som kallas för jämförelseoperator, se sid 44.

Filosofiskt handlar det om den klassiska skillnaden mellan att vara och att bli,

mellan tillstånd och handling, mellan den statiska likheten och den dynamiska till-

delningen. Vid tilldelning relateras sanningen till tiden, dvs frågan är inte om utan

när x = 5. Jo, precis när variabeln x tilldelas värdet 5. Inte innan och ev. inte heller

efteråt, för redan i nästa programsats kan ju variabeln x tilldelas ett annat värde.

Med andra ord: Tilldelning är likhet relaterad till tiden dvs vid ett visst ögonblick,

medan likheten är tidlös.

nytt gammalt
1x x 

 29

2.3 Inläsning av data

Hittills hade alla våra programexempel handlat om att skriva ut till skärmen. De

hade endast utdata och ingen indata. Vill man även läsa in data till programmet,

kan man använda sig av JavaScript-funktionen prompt().

1 <!-- Input.html
2 Läser in två tal och skriver ut dem samt deras produkt
3 Funktionen prompt() skriver ut en ledtext och läser in
4 Funktionen parseInt() omvandlar inmatningen till heltal -->
5 <title>Inläsning av data</title>
6
7 <script>
8 no1 = prompt('Mata in ett heltal') // Inläsning
9 no2 = prompt('Mata in ett heltal till')
10 prod = no1 * no2
11
12 document.writeln('<h2>' + no1 + ' gånger ' + no2 +
13 ' är ' + prod + '. </h2>')
14 </script>
15
16 Ladda om sidan (Ctrl-R) för att köra om skriptet.

I programmet Input anropas funktionen prompt() två gånger (rad 8 & 9). Båda an-

ropen stoppar körningen i väntan på inmatning. En ledtext skrivs ut som instruktion

till användaren. Följande meddelanderutor genereras:

Först när man matat in och klickat på OK fortsätter programkörningen och vi fär:

 30

Programmet Input arbetar med tre variabler: no1, no2 och prod. Detta kan anses

som en vidareutveckling (generalisering) av programmet Variable (sid 24). Va-

riablerna no1 och no2:s värden är inte längre hårdkodade utan läses in med god-

tycklig data. Variablernas initiering sker genom inläsning.

Funktionen prompt()

Det som åstadkommer inläsningen är anropet av funktionetnt prompt() på rad 8 i

satsen:

no1 = prompt('Mata in ett heltal')

Denna sats gör många saker:

1. Stoppar programkörningen i väntan på inmatning.

2. Genererar en meddelanderuta.

3. Skriver ut en ledtext som instruerar programmets användare.

4. Skapar variabeln no1 och initierar den med heltalet från punkt 4.

5. Fortsätter programkörningen, när användaren klickat på OK.

Inmatningen returneras av funktionen prompt(). Men eftersom prompt() är en

fördefinierad funktion i JavaScript som returnerar en sträng, måste returväret om-

vandlas till heltal och tilldelas variabeln no1, för att kunna multipliceras på rad 10.

Det är även möjligt att anropa funktionen prompt() utan ledtext. Men det tillhör

god programmeringsstil att inte göra det, utan att skicka en ledtext, för att underlät-

ta för användaren, när markören står och blinkar. Annars kan situationen tolkas

som om programmmet har ”hängt sig”. Kommunikation och tydlighet är uppskatta-

de egenskaper även hos nördiga programmerare.

 31

En array är en ordnad mängd av variabler grupperade under ETT namn.

Arrayens delar kallas för element. Elementens position kallas för index.

2.4 Arrays

Datorn har några egenskaper som är helt överlägsna motsvarande egenskaper hos

människan: snabbheten, noggrannheten och förmågan att effektivt lagra och hante-

ra stora datamängder samt förmågan att aldrig bli trött.

Vi ska i detta avsnitt introducera ett verktyg som utnyttjar en av dessa överlägsna

egenskaper, nämligen att kunna effektivt lagra och hantera stora datamängder.

Detta verktyg heter array och betyder ordnad uppställning (battle array = strids-

ordning), en ordnad skara av data. Ibland används i litteraturen begreppet fält som

är identiskt med array.

Vi kan gruppera t.ex. 20 variabler i en array med 20 element:

 Hittills: 20 enkla variabler: Nu: EN array:

 no1
 no2
 . no = new Array(20)
 .
 .

 no20

Hittills behövde vi skriva 20 satser för att skapa 20 variabler. Men nu har vi möjlig-

heten att göra samma sak med endast en sats, genom att skapa en enda variabel –

visserligen inte längre en vanlig variabel utan en arrayvariabel – och lägga till

informationen om antalet element i den. På så sätt har vi skapat en arrayvariabel

no.

Arrayvariabeln no ersätter de 20 vanliga variablerna no1, no2, …, no20 och består

nu i sin tur av 20 element. Varje element är en variabel som kan lagra ett värde.

Enda skillnaden är sättet dvs koden att komma åt dessa värden. Indexet är ett num-

mer som specificerar varje elements position i arrayen. Varje element i en array

kan betraktas som en indexerad dvs numrerad variabel.

En array är inte längre en enkel utan en s.k. sammansatt datatyp. En enkel datatyp

representerar ETT värde åt gången, t.ex. ett heltal, ett deci-maltal, ett tecken, ett

sanningsvärde osv. En sammansatt datatyp representerar fler än ett värde åt gån-

gen, t.ex. flera heltal, flera flyttal, flera tecken, flera sanningsvärden osv. Man kan

gruppera enkla datatyper till den sammansatta datatypen array.

 32

Indexregeln: I arrays börjar numreringen av index alltid med 0.

 Därför gäller: elementets position = index + 1

Åtkomst till arrayens element

Följande sats definierar arrayen no: no = new Array(20)

Den allokerar (reserverar) 20 minnesceller för lagring av 20 värden. Låt oss anta att

t.ex. vissa värden tilldelats arrayen no:s element, som man ser på bilden nedan.

Eftersom elementen i en array alltid lagras i ett sammanhängande minnesområde,

uppstår följande minnesbild:

 Minnesbild av arrayen no:

25 1257 -10 . . . 358 65 219

 no[0] no[1] no[2] . . . no[17] no[18] no[19]

Bilden visar hur indexeringen av element i en array organiseras. I raden under min-

nescellerna står hur JavaScript-kod kommer åt varje element i en array. Det är an-

märkningsvärt är att indexnumreringen börjar med 0, medan vi människor är vana

vid att påbörja numreringen av ett antal objekt med 1. Följande indexregel gäller:

Med position menas numret som människan använder för att räkna elementen, me-

dan kodens numrering – det som står inom hakparenteserna [] – kallas för index.

Det 1:a elementet i arrayen no ovan har index 0 och värdet 25, medan positionen är

1. JavaScript kodar elementet med no[0]. Det 2:a elementet har index 1 och värdet

1257 medan koden är no[1]. Det 3:e elementet: index 2, värdet –10 och koden

no[2] osv. Det n:e elementet har alltid index n-1. Därför har också det 20:e ele-

mentet index 19 och värdet 219. Det gäller att hålla isär det mänskliga sättet att

numrera som börjar med 1 från JavaScript-kodens sätt att indesera som börjar med

0. Vi har definierat 20 variabler no[0], ..., no[19]. Antalet element är 20. In-

dexen går från 0 till 19.

Av indexregeln följer dessutom att negativa index generellt inte är tillåtna.

 33

Definition och initiering av en array

Följande program demonstrerar allt vi sagt om arrays speciellt indexregeln. Dessu-

tom kan vi se, hur JavaScript hanterar överskridningen av de definierade index-

gränserna.

1 <!-- ArrayDef.html
2 Definierar en array, initierar & skriver ut den elementvis
3 JavaScript tar hand om överskridning av indexgränsen -->
4 <title>Arrays</title>
5 <script>
6 no = new Array(3) // Definition av en array
7 // med 3 element
8 no[0] = 64 // 1:a element initieras
9 no[1] = 86 // 2:a element initieras
10 no[2] = 34 // 3:e element initieras
11
12 document.writeln('<h3>Arrayens första element no[0]' +
13 ' har värdet ' + no[0] + '.

' +
14 'Arrayens andra element no[1]' +
15 ' har värdet ' + no[1] + '.

' +
16 'Arrayens tredje element no[2]' +
17 ' har värdet ' + no[2] + '.

' +
18 'Arrayens fjärde element no[3]' +
19 ' har värdet ' + no[3] + '.</h3>')
20 </script>

Vi tittar på en körning:

Körningen visar att icke-definierade arrayelement inte leder till något fel. Index 3

överskrider de definierade indexgränserna 0 och 2. Arrayelementet no[3] är var-

ken definierat eller tilldelat något värde. Ändå kan man skriva det i koden och köra

 34

I en array kontrollerar JavaScript endast arraynamnet, inte indexen.

Arrayelement som överskrider indexgränserna blir ”undefined”.

programmet. Inte ens en varning påpekar att man använt kod som är odefinierad.

Anledningen är följande:

Ett annat namn än det definierade arraynamnet no leder till fel. Om vi däremot an-

vänder ett index som överskrider de definierade gränserna, kan vi fotfarande exe-

kvera koden. Ansvaret för kontroll av indexgränserna ligger helt och hållet hos

programmeraren. Skälet för denna liberala attityd är bl.a. strävan efter snabbhet,

vilket förstås är på bekostnad av säkerheten.

Arrayens initieringslista

Precis som det finns skillnader i definitionen av arrayvariabler jämfört med vanliga

variabler, finns även skillnader vid initieringen dvs första tilldelningen. T.ex. är

initieringen av arrayen no i programexemplet ArrayDef – en sats för varje element

– inte särskilt lämplig för arrays, speciellt om man skulle tillämpa samma teknik på

större arrays. Men just hanteringen av stora datamängder var ju motiveringen för

att syssla med array. Kan man inte effektivisera initieringen? Jo, till en viss gräns.

Det finns i huvudsak två möjligheter: antingen att använda for-satser eller att slå

ihop definitionen med tilldelningen till en kortform som använder sig av en s.k. ini-

tieringslista. Båda har vi använt i följande program:

1 <!-- ArrayInit.html
2 Kortform för definition och initiering av en array med
3 en initieringslista. Direkt tilldelning till en kopia -->
4 <title>Initieringslista</title>
5 <script>
6 no = [64, 86, 34] // Kortform på definition och
7 // initiering med initieringslistan
8 copy = no // Tilldelning med arraynamnet
9 // Elementvis utskrift av kopian:
10 document.writeln('<h3>Kopians första element copy[0]' +
11 ' har värdet ' + copy[0] + '.

' +
12 'Kopians andra element no[1]' +
13 ' har värdet ' + copy[1] + '.

' +
14 'Kopians tredje element copy[2]' +
15 ' har värdet ' + copy[2] + '.

' +
16 'Kopians fjärde element copy[3]' +
17 ' har värdet ' + copy[3] + '.</h3>')
18 // Utskrift av kopian med arraynamnet:
19 document.writeln('<h3>Utskrift med arraynamnet: ' +
20 'copy = ' + copy + '</h3>')
21 </script>

 35

En körning av programexemplet ArrayInit visar att värdena från arrayen no verk-

ligen kopierats över till arrayen copy:

Både definitionssatsen och initieringssatserna i ArrayDef – det är de 4 första sat-

serna – kan slås ihop till den enda satsen:

 no = [64, 86, 34] // Kortform för definition och
 // initiering med initieringslistan

Satsen gör två saker: Först, fram till tilldelningstecknet definieras arrayen no utan

någon uppgift om arrayens storlek. Sedan, från och med tilldelningstecknet tillde-

las arrayen no:s element fyra värden som står i en kommaseparerad lista grupperad

inom hakparenteserna [] som kallas arrayens initieringslista. Satsen ovan är

endast en kortform för de fyra första satserna i <script>-taggen till ArrayDef och

gör precis samma sak som de. JavaScript-interpretatorn får informationen om arra-

yens storlek i initieringslistan, dvs räknar antalet kommaseparerade element inom

hakparenteserna []. Observera att man får använda kortformen ovan endast i

samma sats som definitionen.

 36

2.5 Hantering av slumptal

1 <!-- Random.html
2 Slumpar tal mellan 0 och 1 med funktionen Math.random()
3 parseInt(1+Math.random()*6) slumpar heltal mellan 1 & 6 -->
4 <title>Random</title>
5
6 <script>
7 document.writeln('<h3>Math.random() ger' +
8 ' slumptal mellan 0 och 1:

' +
9 Math.random() + '
' + Math.random() +
10 '
' + Math.random() + '</h3>')
11
12 document.writeln('<h3>parseInt(1 + Math.random() * 6) ' +
13 ' slumpar heltal
mellan 1 och 6 (Tärningskast): ' +
14 '

' + parseInt(1 + Math.random() * 6) + '
' +
15 parseInt(1 + Math.random() * 6) + '
' +
16 parseInt(1 + Math.random() * 6) + '</h3>')
17 </script>
18
19 Ladda om sidan(Ctrl-R) för att köra om skriptet.

En körning ger:

JavaScript-funktionen Math.random() slumpar decimaltal mellan 0 och 1 (rad 9 &

10). Mer exakt inom intervallet [0, 1), dvs från och med 0 till, men inte med, 1.

Matematiskt uttryckt:

0 ≤ Math.random() < 1

 37

Egentligen kan datorn som en deterministisk maskin inte producera slumptal, Man

kan endast simulera slumptal genom att beräkna tal, vilket sker enligt en viss algo-

rtim. Resulatet är förstås inte ”äkta” slumptal. I praktiken måste vi nöja oss med

simulerade slumptal, s.k. pseudoslumptal.

Programmet Random:s utskrift visar tre slumptal mellan 0 och 1, dessutom decimal-

tal. Ur användningssynpunkt är det inte särskilt intressant att hantera slumptal med

16 decimaler mellan 0 och 1. Ofta vill man inte ha decimal- utan heltal och dessu-

tom kunna själv bestämma inom vilket intervall heltalen ska vara.

Slumptal inom ett intervall

Här vill vi konstruera en formel som slumpar heltal inom ett önskat intervall. Låt

oss för enkelhetens skull börja med intervallet [1, 6], t.ex. för simulation av tär-

ningskast. Sedan kan man generalisera formeln till ett godtyckligt intervall [a, b].

För att skräddarsy JavaScript funktionen Math.random() för vårt ändamål, nämli-

gen att få heltal mellan 1 och 6, utför vi först en skalning med 6 och sedan en skift-

ning med 1. Slutligen görs en omvandling till heltal. Följande formel fås:

parseInt(1 + Math.random() * 6)

Med skalning menas multiplikation med 6, dvs en förstoring av intervallet [0, 1)

till [0, 6), dvs från och med 0 till, men inte med, 6. Om vi endast tar heltalsdelen

ger detta slumptal mellan 0 och 5.

Med skiftning menas en förskjutning av intervallet [0, 5] med + 1 som ger

slumptal mellan 1 och 6.

Slutligen omvandlas hela uttrycket till heltal med hjälp av JavaScript-funktionen

parseInt(). Vi får formeln ovan som har använts i programmet Random på rader-

na 14-16.

Formeln kan generaliseras: Vill man ha slumptal mellan a och b och a < b, kan

man transformera talen mellan 0 och 1 till tal mellan a och b, genom att skriva:

parseInt(a + Math.random() * (b – a + 1))

För att få intervallet [a, b]:s längd måste man bilda uttrycket b – a + 1.

Är a > b måste formeln ovan ersättas med:

parseInt(b + Math.random() * (a - b + 1))

Dessa formler skulle kunna användas i program som ska slumpa heltal i intervallet

[a, b].

 38

 Övningar till

2.1 Komplettera programmet Variable (sid 24) genom att skapa ytterligare va-

riabler, säg diff, prod, div. Tilldela till dem uttryck bildade med de andra

räknesätten -, * och /. Skriv ut resultaten med meningsfulla utskrifter, ge-

nom att använda varablernas namn.

2.2 Varför fungerar inte följande kod i JavaScript?

1 <!— Ovn_2_2.html
2 Adderar två tal med variabler -->
3 <title>Funkar inte!</title>
4 <script>
5 a = 1
6 sum = sum + a
7 document.writeln('<h2> sum = ' + sum + '. </h2>')
8 </script>

Hitta felets orsak och åtgärda felet.

2.3 Ersätt i programmet OverWrite (sid 27) satsen x = x + 1 med x++. Blir det

samma resultat när du kör? Dra slutsats för betydelsen av satsen x++. Gör

samma sak med x-- istället? Förklara skillnaden till förra körningen. Med

vilken sats är x-- identisk?

2.4 Vidareutveckla din lösning till övn 2.1 genom att ersätta den hårdkodade

tilldelningen av variablerna no1 och no2 med inläsning. Använd för inläs-

ningen funktionen prompt() med ledtext, se programmet Input (sid 29).

2.5 Skriv ett JavaScript program som skriver ut fem slumptal

a) mellan 0 och 1.

b) mellan 10 och 30.

c) som heltal mellan 25 och 50.

2.6 Skriv ett JavaScript program som läser in tre siffror (0-9) och skriver ut dem

i omvänd ordning.

2.7 Skriv ett JavaScript program som läser in tre tecken och skriver ut dem i

omvänd ordning.

Kapitel 2

 39

Inlämningsuppgift

Gymnastiktävling Skriv ett JavaScript program som avgör en tävling i gym-

nastik. Tre tävlande deltar i tävlingen. De får sina poäng av 3 olika domare. Poän-

gen ska ligga mellan 0 och 10. Poängen ska summeras till en totalpoäng för varje

tävlande. Programmet ska skriva ut både varje tävlandes totalpoäng och utropa

tävlingens vinnare.

Använd tre arrays. Varje array ska lagra poängen för varje tävlande. Varje element

i arrayen ska tilldelas en domares poäng. Simulera domarnas poänggivning med

slumptal inom intervallet [0, 10]. Slumpvärdena kan vara decimaltal.

Ledning:

Steg 1 Läs i kursboken, avsn. 2.4 Arrays (sid 31).

Steg 2 Skapa tre arrays, en till varje tävlandes poäng.

Steg 3 Läs i kursboken, avsn. 2.5 Hantering av slumptal (sid 36), speciellt

om Slumptal inom ett intervall (sid 37).

Steg 4 Fyll varje array från Steg 2 med slumpvärden i intervallet mellan 0

och 10 (domarnas poänggivning).

Steg 5 Skapa tre variabler, en för varje tävlandes totalpoäng, och initiera

dem med summan av varje tävlandes poäng (från Steg 4).

Steg 6 Bestäm den största bland de tre tävlandes totalpoäng. Använd funk-

tionen max() som behandlas i kursboken (sid 47) resp. på lektion 5.

Steg 7 Skriv ut både de tävlandes totalpoäng och vilken av dem som vun-

nit gymnastiktävlingen.

http://www.mathonline.se/Boken%20Progr_1_JavaScript.pdf
http://www.mathonline.se/Boken%20Progr_1_JavaScript.pdf
http://www.mathonline.se/Boken%20Progr_1_JavaScript.pdf
http://34.248.89.132:1808/index.php?title=Lektion_5_(JS)

 40

Kapitel 3

Kontrollstrukturer

 Ämne Sida Program

3.1 Vad är kontrollstrukturer? 41
3.2 Enkel selektion: if-satsen 42 SimpleIf

­ Villkor 43

­ Jämförelseoperatorer 44

­ Bestämning av max/min 45 Max

­ Modularisering 46

­ Funktionen max() 47 MaxFct

­ Om funktioner 47
3.3 Tvåvägsval: if-else-satsen 48 IfElse

­ Modulooperatorn 50

­ Tillämpningar av modulo 50
3.4 Flervägsval 51

­ if-else-stegen 52 GissaTal

­ switch-satsen 51 Switch

3.5 Efter-testad repetition: do-satsen 56 Collatz

3.6 För-testad repetition: while-satsen 60 Sum_while

­ Evighetsloop 61
3.7 Bestämd repetition: for-satsen 62 Sum_for

­ for-satsens struktur 62

­ En tillämpning av for-satsen 64 Borr

Övningar till kap 3 66

 41

3.1 Vad är kontrollstrukturer?

Kontrollstrukturer är algoritmers byggstenar och programmeringens mest grund-

läggande verktyg. Det finns generella strukturer i alla algoritmer som är oberoende

av det aktuella problemet. Därför kan de användas som byggstenar vid beskrivning

av alla algoritmer som i sin tur ligger till grund för alla datorprogram, oberoende

av programmeringsspråk.

Kontrollstrukturer består av tre grundläggande typer:

 Sekvens (följd)

 Selektion (val)

- Enkel selektion

- Tvåvägsval

- Flervägsval

 Repetition (upprepning)

- Förtestad repetition

- Eftertestad repetition

- Bestämd repetition

Alla datorprogram är kombinationer av dessa tre typer av kontrollstrukturer. I detta

kapitel ska vi gå igenom alla tre och lära oss hur de kodas i JavaScript. Kontroll-

strukturer används och är i princip uppbyggda enligt samma logik i alla programme-

ringsspråk. Både C/C++:s, Javas och C#:s kontrollstrukturer har – när det gäller syn-

taxen – tagits över från och är i princip identiska med Algol/Pascal bortsett från

några detaljer. Ännu längre tillbaka i historien kan man hitta deras spår i de första

strukturerade språken.

Sekvens (följd)

En sekvens är en följd av instruktioner (bilden till höger) – den

enklast möjliga strukturen som tänkas kan. Alla våra program

hittills består endast av sekvenser. Varje instruktion kan i sin

tur innehålla andra kontrollstrukturer. Så även om sekvensen

är en enkel struktur, kan nästlade sammansättningar av den

med sig själv (underinstruktioner) och andra kontrollstruktu-

rer ändå ge en ganska invecklad bild.

Selektion (val)

Kontrollstrukturen selektion är mer komplex än sekvens. Beroende på antalet alter-

nativ man kan välja mellan tre olika varianter: Enkel selektion, två- eller flervägsval.

Vi börjar med den första.

Instruktion 1

Instruktion 2

 42

3.2 Enkel selektion: if-satsen

Enkel selektion är ett val utan alternativ. Ett villkor avgör valet. Är villkoret sant, ut-

förs en eller flera instruktioner. Är villkoret falskt, görs ingenting.

 Pseudokod Flödesschema

 OM villkor uppfyllt sant

 instruktion(er)

 falskt

I JavaScript kallas den enkla selektionen för if-sats och kodas generellt på följan-

de sätt:

if (villkor)

{
 sats(er)

}

Första raden är if-satsens huvud. Resten är if-satsens kropp som omsluts av

klammerparenteserna { och } som vi i fortsättningen kommer att kalla kort klam-

rar, ibland måsvingar. Om kroppen består endast av en sats kan klamrarna ute-

lämnas vilket vi utnyttjar i följande program:

1 <!-- SimpleIf.html
2 Dividerar endast om det som ska divideras med, inte är 0
3 Enkel selektion: if-satsen med EN sats: utan klamrar -->
4 <title>Safe division</title>
5 <script>
6 no1 = parseInt(prompt('Mata in ett tal')) // Inläsning
7 no2 = parseInt(prompt('Mata in ett tal till'))
8
9 if (no2 != 0)
10 document.writeln('<h2>' + no1 + ' dividerad med ' + no2 +
11 ' är ' + no1 / no2 + '</h2>')
12 if (no2 == 0)
13 document.writeln('<h2>OBS! Du har matat in 0 för det' +
14 ' andra talet.
Det går inte att ' +
15 ' dividera med 0.</h2>')
16 </script>
17 Ladda om sidan (Ctrl-R) för att köra om skriptet.

Villkor Instruktion(er)

 43

Programmet läser in två tal och dividerar dem med varandra. if-satserna gör att

division endast sker om det andra talet no2 (det som ska divideras med) inte är 0,

för att förhindra den matematiskt odefinierade divisionen med 0. Följande resultat

får man när man matar in ett värde skilt ifrån 0 till det andra talet:

Matas in däremot 0 till det andra talet uppstår följande:

Inmatning av 0 till det andra talet genererar ett egendefinierat ”felmeddelande”. Låt

oss titta närmare på den första if-satsens huvud i programmet SimpleIf (rad 9):

 if (no2 != 0)

betyder i termer av pseudokod: OM no2 är skilt ifrån 0

Satsen inleds med det reserverade ordet if följt av ett villkor (condition) inom pa-

rentes. Observera att parenteserna tillhör syntaxen och inte får inte utelämnas.

Villkor

if-satsens huvudingrediens är alltid ett villkor, t.ex. no2 != 0. Dubbeltecknet !=

betyder icke lika med och måste skrivas utan mellanslag: Är no2 skilt ifrån 0, ja

eller nej? Man kan alltså uppfatta ett villkor som en fråga som endast kan besvaras

med ja eller nej. En annan aspekt är att uppfatta ett villkor som en utsaga som

endast kan vara sann eller falsk. Till skillnad från en sats som är en instruktion

som ska utföras, kan ett villkor inte utföras, utan endast testas, för att få ut svaret

sant eller falskt. T.ex. testar villkoret no2 != 0 om no2 är skilt ifrån 0. Variabeln

no2:s värde jämförs med 0. Finns det icke-likhet mellan dem är villkoret sant, an-

nars falskt. Därför kallas != för en jämförelseoperator. Det finns fler sådana:

 44

Jämförelseoperatorer

Jämförelseoperatorer sätts mellan två variabler för att jämföra deras värden. De

används endast i villkor, inte i instruktioner. Det är avgörande att skilja mellan be-

greppen villkor och instruktion. Här är de vanligaste jämförelseoperatorerna:

 < mindre än

 <= mindre än eller lika med

 > större än

 >= större än eller lika med

 == lika med

 != icke lika med

De jämför två talvärden med varandra och returnerar jämförelsens resultat som ett
s.k. sanningsvärde dvs sant eller falskt, true eller false som är reserverade ord.

 2 talvärden 1 sanningsvärde: true eller false

Sanningsvärdena true och false är de enda värden som villkor kan anta varför

jämförelseoperatorer används för att skriva villkor. Exempel på villkor formulera-

de med jämförelseoperatorer är:
 number == 0
 number != 0
 7 > 5
 guessedNo <= 17

Observera att de jämförelseoperatorer som är dubbeltecken, inte får innehålla mel-

lanslag, annars tolkas de som respektive tecken och inte som jämförelseoperatorer.

T.ex. är == symbolen för lika med. Redan på sid 28 pratade vi om skillnaden mel-

lan likhet och tilldelning och poängterade att = i JavaScript inte betyder likhet utan

tilldelning. Här har vi symbolen == för likhet. Medan tilldelningsoperatorn = före-

kommer i instruktioner (satser), används jämförelseoperatorn == i villkor, t.ex. i

villkoret till if-satsen i programmet SimpleIf, rad 12 (sid 42).

Så långt om if-satsens huvud. Sedan kommer if-satsens kropp som i programmet

SimpleIf består av en enda utskriftssats. Därför kan klamrarna { } kring kroppen

utelämnas. Men det vore inte heller fel att skriva dem. Villkorets sanningsvärde

avgör nu om kroppen dvs utskriftssatsen utförs eller ej. Är variabeln no2:s värde

icke lika med 0, utförs kroppen. Observera också att hela utskriftssatsen är indra-

gen för att markera att denna tillhör if-satsen och att den bildar if-satsens kropp –

en kodstil som hör till god programmeringssed och höjer kodens läslighet.

Den andra if-satsens huvud i programmet SimpleIf:

if (no2 == 0)

betyder i termer av pseudokod: OM no2 är lika med 0

Jämförelse-

operator

operator

 45

Precis som != är även dubbeltecknet == (utan mellanslag) en jämförelseoperator,

men står för lika med. Observera skillnaden mellan likhet som kodas med två lik-

hetstecken == och tilldelning vars kod är ett likhetstecken =. Även den andra if-

satsens kropp är en utskriftssats som skriver ut ett felmeddelande om värdet 0 ma-

tas in som andra tal. På så sätt utförs inte division med 0, för divisionen förekom-

mer endast i den första if-sats som inte utförs eftersom dess villkor blir falskt, när

man matar in 0 som andra tal.

Bestämning av max/min

I programmet SimpleIf (sid 42) användes två if-satser, för att avgöra om ett tal

var jämnt eller udda. Nu ska vi skriva ett nyttigt program som bestämmer det

största (minsta) värdet bland 3 inmatade tal. Nyttigt, därför att vi kommer att ha

användning av det bl.a. i inlämningsuppgiften (sid 39). Sedan ska vi använda detta

exempel för att precisera vår kunskap om modularisering som nämndes inled-

ningsvis i boken (sid 7), och lära oss att själva definiera funktioner i JavaSript.

1 <!-- Max.html
2 Läser in 3 tal och bestämmer det största bland dem
3 Två enkla if-satser löser problemet -->
4 <title>Bestämning av max</title>
5 <script>
6 no1 = parseInt(prompt('Mata in ett tal')) // Inläsning
7 no2 = parseInt(prompt('Mata in ett tal till'))
8 no3 = parseInt(prompt('Mata in ett tredje tal'))
9
10 max = no1 // Vi antar att no1 är störst
11 if (no2 > max)
12 max = no2 // Byter till no2 om no2 är större
13
14 if (no3 > max)
15 max = no3 // Byter till no3 om no3 är större
16
17 document.writeln('<h2>' + max + ' är det största talet ' +
18 'bland ' + no1 + ', ' + no2 + ' och ' + no3 + '.</h2>')
19 </script>
20
21 Ladda om sidan (Ctrl-R) för att köra om skriptet.

Själva algoritmen att hitta det största bland tre tal, är kodad på raderna 10-15 med

två enkla if-satser: Först antar vi att no1 är det största talet och tilldelar det varia-

beln max. Det behöver inte stämma. Den första if-satsen (rad 11-12) testar detta

antagande genom att kolla om no2 är större än max och därmed även större än no1.

Om det är fallet byts max-”rollen” från no1 till no2. Samma sak gör den andra if-

satsen med no3 (rad 14-15). Slutligen kommer max-”rollen” ges till det tal som är

störst av alla tre. Resten är inläsning och utskrift:

 46

För att hitta det minsta talet bland tre inmatade behöver man i if-satsernas villkor

(rad 11 & 14) bara byta ut jämförelseoperatorn > mot < . Självklart borde man, för

att följa god programmeringsstil, även byta ut variabelnamnet max mot min och

ändra texten i utskriftssatsen.

Modularisering

Modularisering innebär att bryta ner ett problem i mindre,

återanvändbara delar, s.k. moduler, jämförbart med Legobi-

tar. I JavaScript kallas de för funktioner.

Programmet Max (sid 45) löser problemet att bestämma det

största talet bland tre givna tal. Men detta problem kan även

förekomma i andra sammanhang. Och då vill man helst an-

vända den redan befintliga algoritmen som är kodad på ra-

derna 10-15, utan att behöva återuppfinna hjulet.

Ett exempel på ett sådant behov är vår inlämningsuppgift (sid 39). Där ska man be-

stämma den största bland tre tävlandes totalpoäng. Som ledning anges i uppgiften

att man ska använda funktionen max(). Denna funktion ska vi skriva nu genom att

ta raderna 10-15 från programmet Max, definiera dem som en funktion, binda in

funktionen i ett program och anropa den därifrån. Det nya programmet MaxFct ska

åstadkomma samma sak som programmet Max. På så sätt modulariserar vi pro-

grammet Max. Samtidigt blir funktionen max() vår första egendefinierade funktion

i JavaScript. Hittills hade vi endast anropat redan fördefinierade funktioner.

 47

Funktionen max()

1 <!-- MaxFct.html
2 Definierar och anropar funktionen max() som bestämmer
3 det största bland tre tal -->
4 <title>Max med funktion</title>
5 <script>
6
7 function max(a, b, c) // Definierar funktionen max()
8 {
9 tmp = a // Antar att a är störst
10 if (b > tmp)
11 tmp = b // Byter till b om b är större
12 if (c > tmp)
13 tmp = c // Byter till c om c är större
14 return tmp // Returnerar tmp till max()
15 }
16
17 no1 = parseInt(prompt('Mata in ett tal')) // Inläsning
18 no2 = parseInt(prompt('Mata in ett tal till'))
19 no3 = parseInt(prompt('Mata in ett tredje tal'))
20 noMax = max(no1, no2, no3) // Anropar funktionen max()
21 document.writeln('<h2>' + noMax + ' är det största talet ' +
22 'bland ' + no1 + ', ' + no2 + ' och ' + no3 + '.</h2>')
23 </script>
24
25 Ladda om sidan (Ctrl-R) för att köra om skriptet.

Om funktioner

Rad 7 kallas för funktionens huvud och inleds med det reserverade ordet function

(sid 10). Funktionens namn är max(). Parentesen (a, b, c) kallas för parameter-

listan. a, b och c är funktionens formella parametrar, medan no1, no2 och no3

som står i funktionsanropet (rad 20), kallas för aktuella parametrar. Vid anropet

kopieras de inlästa värdena från de aktuella till de formella parametrarna. På så

sätt hamnar de i funktionen, där deras största värde bestäms.

Efter huvudet står funktionens kropp inom måsvingar (rad 8-15). Kroppen avslu-

tas med en s.k. return-sats som med hjälp av variabeln tmp returnerar det största

värdet till namnet max(). På så sätt hamnar funktionens returvärde i programmet,

när funktionen anropas på rad 20. Eftersom namnet max() bär returvärdet måste

anropet inbakas i en tilldelningssats, så att variabeln noMax kan ta emot detta värde

som slutligen skrivs ut (rad 21). Att funktionen max() innehåller en return-sats

ger upphov till att kalla max() för en funktion med returvärde. Det finns i Java-

Script även funktioner utan returvärde. Dessa saknar return-sats.

Prorammet MaxFct producerar samma utskrift som programmet Max (sid 45).

 48

3.3 Tvåvägsval: if-else-satsen

Tvåvägsval är ett val mellan två alternativ. Valet görs med ett enda villkor. Är vill-

koret sant, utförs en eller flera instruktioner som vi kallar för alternativ 1. Är vill-

koret falskt, utförs – till skillnad från if-satsen – en annan uppsättning instruktio-

ner som vi kallar för alternativ 2. Så här kan tvåvägsvalet beskrivas:

 Pseudokod Flödesschema

 OM villkor uppfyllt sant

 alternativ 1

 ANNARS

 alternativ 2 falskt

Alternativ 1 och

Alternativ 2 är två olika instruktioner.

Endast ett av de två alternativen kommer att utföras, beroende på villkorets san-

ningsvärde. Sanningsvärdena sant och falskt utesluter varandra – och därmed även

de båda alternativen. Därför går flödet i flödesschemat, som visas med pilarna,

efter alternativ 1 inte till eller före utan efter alternativ 2. Det vore logiskt fel att

leda pilen till ett ställe före alternativ 2.

I JavaScript kallas tvåvägsvalet för if-else-sats och kodas på följande sätt:

if (villkor)

{
 sats(er)1

}
else
{
 sats(er)2

}

Om if- eller else-blocket består endast av en sats kan klamrarna { och } uteläm-

nas. Anta att båda block består bara av en sats, då förenklas formen:

if (villkor)

 sats1

else
 sats2

Följande exempel behandlar if-else-satsen med endast en sats i resp. del:

Villkor Alternativ 1

Alternativ 2

 49

1 <!-- IfElse.html
2 Läser in ett heltal och avgör om det är jämnt eller udda
3 Tvåvägsval: if-else-satsen med EN sats i if-else-delen -->
4
5 <title>Tvåvägsval</title>
6
7 <script>
8 no = parseInt(prompt('Mata in ett heltal')) // Inläsning
9
10 if (no % 2 == 0)
11 document.writeln('<h2>Det inmatade talet är jämnt.</h2>')
12 else
13 document.writeln('<h2>Det inmatade talet är udda.</h2>')
14
15 </script>
16 Ladda om sidan (Ctrl-R) för att köra om skriptet.

Körexempel av programmet IfElse med ett udda tal som inmatning ger:

Med ett jämnt tal som inmatning får vi:

Det egentliga jobbet – nämligen att avgöra mellan jämnt och udda – har gjorts med

hjälp av en operator som kallas för modulooperatorn:

 50

Idag är fredag och du vill träffa din kompis om 11 dagar.

Vilken veckodag blir det?

Modulooperatorn %

Symbolen % har i JavaScript ingenting med procenträkning att göra utan står för

ett nytt räknesätt som kallas för modulo. Modulo är en heltalsoperation. Man divi-

derar två heltal, tar resten och ignorerar resultatet: 9 dividerat med 2 ger 4, rest 1.

Därför: 9 modulo 2 ger 1. Med symboler: 9 % 2 = 1. Modulooperationen ignorerar

4 och tar resten 1. En användning av modulo är: P.g.a. 9 % 2 = 1 är 9 udda. Däre-

mot är 8 % 2 = 0, eftersom 8 dividerat med 2 ger resultatet 4 och resten 0. Därför är

8 ett jämnt tal. Alla jämna tal ger rest 0 vid heltalsdivision med 2. Alla udda tal ger

rest 1 vid heltalsdivision med 2. Modulo ger resten vid heltalsdivision. Man kan

uppfatta modulo även som en upprepad subtraktion: Man drar av 2 från 9 så många

gånger det bara går och tar det som blir kvar. Fyra gånger går det att ta bort 2 från

9, kvar blir 1. Därför är 9 % 2 = 1. Generellt innebär att räkna modulo a att man

drar av alla multipler av a och behåller resten: 33 modulo 6 ger 3, därför att man

får 3, när man drar av 5 gånger 6, dvs 30, från 33.

Tillämpningar av modulo

Det finns många tillämpningar av modulooperatorn:

1. I progammet IfElse (rad 10) tillämpas modulo i if-satsens villkor:

no % 2 == 0

för att avgöra att talet no är jämnt: Delar man no med 2 och resten är 0, så är no

jämnt delbart med 2 och därmed jämnt.

2. En rolig och enkel användning av modulooperatorn är följande exempel:

Vi numrerar veckodagarna stigande från 1 med början på måndag, så att fredag

blir den 5:e veckodagen. Man får svaret på frågan ovan genom att räkna modu-

lo 7:
(5 + 11) % 7 = 2

Dvs veckodagen i frågan är 2:a veckodagen, nämligen tisdag. Med andra ord

man lägger till aktuell veckodag, antalet dagar och räknar modulo 7. I själva

verket handlar det om en omvandling av det decimala talsystemet med basen 10

och siffrorna 0-9 – det system vi är vana vid att räkna med – till veckodagarnas

system dvs till talsystemet med basen 7 som använder sig av siffrorna 0-6.

3. En annan tillämpning av modulo är omvandling mellan olika talsystem, t.ex.

mellan det decimala och binära talsystemet. Generellt är modulo nyckelopera-

tionen vid omvandling mellan olika system.

4. I matematiken används modulo bl.a. för att bestämma den största gemensamma

delaren av två heltal (Euklides algoritm).

 51

3.4 Flervägsval

Flervägsval är ett val mellan fler än två alternativ. Strukturen och logiken kan be-

skrivas så här:

 Pseudokod Flödesschema

 ja

 VÄLJ fall ur nej

 fall 1: alternativ 1

 fall 2: alternativ 2 ja

 .
 .
 . nej

 Annars: alternativ x .
 .
 .

Alternativ 1, 2, … innebär olika instruktioner eller olika uppsättningar instruktio-

ner och Fall 1, 2, … motsvarar olika villkor.

Observera att det logiska flödet – symboliserat med pilarna – går efter varje fall till

ett alternativ, för att därefter lämna hela flödesschemat. Dvs flödet går efter varje

fall inte till nästa fall. I slutet, när alla fall är avklarade, behöver inget nytt villkor

formuleras, därför att Alternativ x utförs när Fall 1, Fall 2, … inte föreligger.

Det finns olika sätt att implementera flödesschemat ovan i kod. I praktiken har det

visat sig att följande två koncept är mest effektiva och användbara i programmerin-

gen oavsett programmeringsspråk:

 if-else-stegen

 switch-satsen

if-else-stegen

Låt oss titta på följande exempel av ett trevägsval som använder den s.k. if-else-

stegen. Användaren ska gissa fram programmets hemliga tal 17. Man gissar inom

intervallet [1, 20], får sedan hjälp om det gissade talet var mindre än, större än el-

ler lika med det hemliga talet. Just nu måste vi nöja oss med en spelomgång, därför

att vi inte lärt oss ån att koda loopar.

Alternativ 1 Fall 1

Alternativ 2 Fall 2

Alternativ x

 52

Här kommer Gissa tal-spelet i en första version, som innehåller ett val mellan tre

alternativ, fall 1: det gissade talet är lika med, fall 2: mindre än, fall 3: större än

programmets hemliga tal 17:

1 <!-- GissaTal.html
2 Låter användaren gissa programmets hemliga tal secret
3 Trevägsval med en if-else stege -->
4 <title>GissaTal</title>
5 <meta charset="UTF-8"> <!-- För de svenska tecknen -->
6 <script>
7 secret = 17 // Programmets hemliga tal
8 // Inläsning av en gissning:
9 guess = parseInt(prompt('Gissa ett heltal mellan 1 och 20:'))
10
11 if (guess == secret)
12 document.writeln('<h2>Grattis, du har gissat rätt!</h2>')
13 else if (guess < secret) // Ger hjälp för nästa körning:
14 document.writeln('<h2>Fel: ' + guess + ' < hemliga ' +
15 ' talet
Gissa högre nästa gång.</h2> ')
16 else
17 document.writeln('<h2>Fel: ' + guess + ' > hemliga ' +
18 ' talet
Gissa lägre nästa gång.</h2> ')
19 </script>
20
21 Ladda om sidan (Ctrl-R) för att köra om skriptet.

De tre relevanta testen av programmet GissaTal med gissningar mindre än, större

än och lika med 17 ger:

 53

switch-satsen

Flervägsvalets flödesschema som visades på sid 51 kan kodas på olika sätt. Ett sätt

var if-else-stegen som demonstrerades i programmet GissaTal på förra sidan.

Ett annat sätt är switch-satsen vars generella struktur kan beskrivas så här:

switch (uttryck)

{
 case konstant1 :

 sats(er)1

 break

 case konstant2 :

 sats(er)2

 break
 .

 .

 .

 default:
 sats(er)x

}

Första raden är switch-satsens huvud. Resten är switch-satsens kropp som består

av ett block. All kod som skrivs mellan måsvingarna { } kallas för block.

Med uttryck i huvudet menas ett aritmetiskt uttryck vars värde får bara vara av typ

tal eller tecken.. När switch-satsen exekveras, jämförs detta uttryck en i taget med

de konstanter som står efter case. Jämförelsen görs på likhet och innebär följande

när man översätter alla case till if:

if (uttryck == konstant1)

if (uttryck == konstant2)
 .

 .

 .

Så blir villkoren som är dolda i switch-satsen avslöjade: Man ser att de är hård-

kodade med operatorn == och inte kan ersättas med andra jämförelseoperatorer.

Uttryckets och konstanternas värden jämförs med varandra enbart på likhet. Om

likhet föreligger, kommer man in i switch-satsens kropp. Alla satser fr.o.m. case

utförs, tills break kommer eller kroppen slutar.

 54

Följande programexempel demonstrerar switch-satsen: Vi läser in begynnelse-

bokstaven till en veckodag och det fullständiga veckodagsnamnet skrivs ut. I

switch-satsen väljs ett alternativ av sex. Tisdag och torsdag behandlas i ett fall.

1 <!-- Switch.html
2 Demonstrerar flervägsval med switch-satsen
3 Kompletterar veckodagen efter inmatning av första bokstaven
4 För t(isdag/torsdag) krävs den 2:a bokstaven -->
5 <title>Switch-satsen</title>
6 <script>
7 letter1 = prompt('Mata in begynnelsebokstaven ' +
8 'till en veckodag:')
9 switch (letter1)
10 {
11 case 's':
12 weekday = 'söndag'
13 break
14 case 'm':
15 weekday = 'måndag'
16 break
17 case 't':
18 letter2 = prompt('Mata in andra bokstaven: ')
19 if (letter2 == 'i')
20 weekday = 'tisdag'
21 else
22 weekday = 'torsdag'
23 break
24 case 'o':
25 weekday = 'onsdag'
26 break
27 case 'f':
28 weekday = 'fredag'
29 break
30 case 'l':
31 weekday = 'lördag'
32 break
33 default:
34 weekday = 'ingen veckodag'
35 }
36 document.writeln('<h2>' + letter1 + ' är första ' +
37 'bokstaven till ' + weekday + '. </h2>')
38 </script>
39 Ladda om sidan (Ctrl-R) för att köra om skript

Programmet utför inte bara de satser som omedelbart följer det case där likheten

inträffar, utan alla satser som följer, ända tills en break-sats kommer eller switch-

satsen avslutas. Har man en gång kommit in i switch-satsen via något case, stan-

 55

nar man i den utan att likhet mellan uttrycket och konstanten som finns i de efter-

följande case-satserna testas. Om switch-satsen ska välja endast ett enskilt värde

bland flera, borde varje case avslutas med break.

Här ett körresultat för inmatningen av t som första bokstav, där en andra inmatning

p.g.a. konflikten tisdag/torsdag krävs. Testa gärna alla andra alternativ också:

break-satsen

break är både ett reserverat ord i Java-

Script och en sats i prgrammet Switch.

break bryter programflödet, dvs i det här

fallet lämnar switch-satsen. Alla satser

mellan break och blockets avslutande

klammer } hoppas över. Detta garanterar ett entydigt val mellan flera alternativ.

Användningen av break i switch-satsen är, vad gäller den formella syntaxen, fri-

villig dvs man begår inget syntaxfel om man utelämnar break. Men om det blir så

som man tänkt sig är en helt annan historia, dvs det kan bli logiskt fel. Utelämnan-

det av break leder i alla fall att programflödet ”faller ned” till nästa case, utan att

testa den nya case-satsens villkor. I vissa fall kan det dock finnas även logiska skäl

att utelämna break, där ett entydigt val mellan enstaka värden inte är önskvärt,

t.ex. när valet står mellan olika intervall och man vill använda ”tomma” case-sat-

ser.

default på rad 33 är motsvarigheten till else. Om ingen likhet påträffats i någon

case-sats, utförs istället de satser som följer efter default. På så sätt har man

möjligheten att skriva kod som dokumenterar det just inträffade. Ofta väljer man

att skriva ut någon form av felmeddelande. Användningen av default-satsen är

frivillig. Den kan utelämnas i switch-satsen, men rekommendationen är att utnyt-

tja möjligheten till ett alternativ till alla case-satser. Även användningen av break

som sista sats i default-blocket, är frivillig. Den avslutande klammer } i switch-

satsen ersätter break, vilket vi har unyttjat i programmet Switch.

 56

3.5 Efter-testad repetition: do-satsen

Datorn har några egenskaper som är helt överlägsna motsvarande egenskaper hos

människan: snabbheten, noggrannheten och förmågan att effektivt lagra och hante-

ra stora datamängder samt förmågan att inte bli trött. Datorn kan upprepa en sak

miljardtals gånger utan att tappa i noggrannhet. Denna förmåga utnyttjas i stor

skala av alla möjliga datorprogram. Och därför har man en speciell kontrollstruk-

tur i algoritmer som beskriver den: repetitionen
 *, även kallad loop. ”Att låta da-

torn göra jobbet” innebär som regel att datorn utför en repetition. Beroende på hur

repetitionen, speciellt hur avslutningsvillkoret, kort kallat villkoret, formuleras och

var det placeras i loopen skiljer man mellan tre typer av repetition:

 Efter-testad repetition

 För-testad repetition

 Bestämd repetition

Efter-testad repetition

Det är en loop (upprepningsslinga) där avslutningsvillkoret testas efter slingans in-

struktioner dvs efter det som egentligen ska upprepas. Så här kan den formuleras i

pseudokod och som flödesschema:

 Pseudokod Flödesschema

 REPETERA

 instruktion(er)

 SÅ LÄNGE villkor uppfyllt

 sant

 falskt

I JavaScript inleds den efter-testade repetitionen med det reserverade ordet do:

do

{

 sats(er)

} while (villkor)

do-satsen är en loop där villkoret testas efter loopens instruktioner, därför efter-

testad. Första raden är do-satsens huvud. Resten är do-satsens kropp som omsluts

av måsvingar { }. Dessa kan utelämnas när kroppen består endast av en sats.

* I några böcker kallas repetitionen även för iteration. Vi undviker denna term eftersom den

används som fackterm i andra sammanhang, t.ex. i numerisk analys.

Villkor

Instruktion(er)

Loop

 57

För att motivera nödvändigheten av loopar tar vi här upp följande känd algoritm

som ett exempel på hur do-satsen kan komma till användning när man implemente-

rar (skriver koden för) algoritmen:

Collatz algoritmen

Lothar Collatz (1910-1990) var professor för tillämpad matematik vid Hamburgs

Universitet på 60-talet. Som ung student ställde han upp följande uppgift:

Tänk dig ett positivt heltal (startvärde).

Är talet udda multiplicera det med 3 och addera 1.

Är talet jämnt dividera det med 2.

Gör samma sak med resultatet. Fortsätt tills du fått 1.

Det visar sig att talföljderna i denna algoritm, även känd som Collatz-förmodan all-

tid slutar med 1 oavsett startvärde. Förmodan heter det eftersom påståendet är ma-

tematiskt hittills obevisat. Så här kan flödesschemat för denna algoritm se ut:

Flödesschema

 nej ja

 nej

 ja

Heltal * 3 + 1
Heltal

udda?

Ta ett pos. heltal

Start

Slut

Heltal / 2

Heltal

= 1?

 Loop

 58

Flödesschemat visualiserar algoritmens logiska struktur som är grundläggande för

en korrekt implementering. Men för att slutligen koda kan det vara fördelaktigt att

formulera algoritmen även som pseudokod som ligger närmare programkoden än

flödesschemat.

Pseudokoden till Collatz algoritmen 

 Läs in ett positivt heltal
 REPETERA
 OM talet är udda
 multiplicera med 3, addera 1
 ANNARS
 dividera talet med 2
 Skriv ut talet
 SÅ LÄNGE talet ≠ 1

Som man ser har vi redan anpassat pseudokoden till programmering, t.ex. med for-

muleringar som Läs in..., REPETERA och Skriv ut.... I följande program imple-

menteras Collatz algoritmen i JavaScript. För REPETERA väljer vi do-satsen:

1 <!-- Collatz.html
2 Läser in ett pos. heltal, tar det gånger 3 och adderar 1,
3 om det är udda. Delar det med 2 om talet är jämnt.
4 Upprepar samma sak med resultatet, tills det blir 1.
5 Använder do-sats för repetitionen -->
6 <title>Loop med do-satsen</title>
7 <script>
8 no = parseInt(prompt('Mata in ett pos.heltal')) // Startvärde
9 document.write('<h2>' + no + '</h2>')
10 do // do loop börjar
11 {
12 if (no % 2 == 1) // Om no är udda
13 no = 3 * no + 1
14 else
15 no = no / 2
16 document.write('<h2>' + no + '</h2>')
17 } while (no != 1) // do loop slutar
18 </script>
19
20 Ladda om sidan (Ctrl-R) för att köra om skriptet.

 Man kan testa Collatz algoritmen i appen Mattekollen där den är kodad i Python. Ladda

ned appen eller kör den som Webbapp: app.mattekollen.se  En mobil pythonmiljö. El-

ler kör den direkt som webbapp: beta.mattekollen.se/#/app/coding. Prova koden med olika

startvärden för att kolla om algoritmens talföljder alltid slutar med 1.

http://beta.mattekollen.se/#/app/coding

 59

do-satsen är framhävt med vit bak-

grund. Talföljden som produceras här,

kommer att alltid avslutas med 1, vil-

ket är ett rent empiriskt påstående,

som dock varken har motbevisats hit-

tills eller bevisats teoretiskt. Att den

avslutas med 1 är oberoende av start-

värdet. Här har vi ett körresultat med

startvärdet 13:

do-satsens arbetssätt, dvs repetitionen

skiljer sig grundläggande från kon-

trollstrukturen selektion (val) som vi

lärde känna tidigare. Medan en selek-

tions alltid går framåt, efter den har

avgjort valet p.g.a. det styrande vill-

koret, återvänder en repetition alltid

till kontrollstrukturens början, dvs går

tillbaka och utför koden som står i

kroppen en gång till, även detta p.g.a.

sitt avslutningsvillkor. Tydligast ser man detta i flödesschemat på sid 57 där pro-

gramflödet (pilen) går från avslutningsvillkoret tillbaka, för att utföra det hela en

gång till.

 60

3.6 För-testad repetition: while-satsen

while-satsen är en upprepningsslinga där avslutningsvillkoret testas före slingans

instruktioner dvs innan det som ska upprepas. Enda skillnaden gentemot den efter-

testade repetitionen med do-satsen är ordningen mellan villkor och instruktioner.

Denna ordning blir nu omvänd:

 Pseudokod och ritas som Flödesschema

 SÅ LÄNGE villkor uppfyllt

 instruktion(er) sant

 falskt

I JavaScript inleds den för-testade repetitionen med det reserverade ordet while

och skrivs generellt på följande sätt:

while (villkor)

{

 sats(er);

}

Första raden är while-satsens huvud. Resten är while-satsens kropp som omsluts

av måsvingar { }. Om kroppen består endast av en sats kan måsvingarna uteläm-

nas. Här följer ett exempel med två satser i kroppen och därför med måsvingar:

1 <!-- Sum_while.html
2 Beräknar och skriver ut summan 1 + 2 + ... + 100
3 För-testad repetition: while-satsen -->
4 <title>Summering med while</title>
5 <script>
6 sum = 0
7 term = 1
8 while (term <= 100) // while loop börjar
9 {
10 sum = sum + term
11 term++ // term ökar med 1
12 } // while loop slutar
13 document.write('<h2>Summan 1 + 2 + ... + ' + (term - 1) +
14 ' är ' + sum + '.</h2>')
15 </script>
16 Ladda om sidan (Ctrl-R) för att köra om skriptet.

Villkor Instruktion(er)

 Loop

 61

Hela while-loopen är fram-

hävt med vit bakgrund i pro-

grammet Sum_while.

Här ett körexempel:

Det är enkelt att ändra slut-

termen 100 till lägre eller

högre. Ännu bättre vore det

förstås att låta sluttermen vara en variabel som läses in, så att man kan beräkna

vilka summor som helst, se övn 3.13 (sid 67).

Raden 11 innehåller koden term++ sm betyder amma sak som term = term + 1, dvs

ökning av variabeln term:s värde med 1. Koden ++ kallas för ökningsoperatorn och

kan sättas före eller efter ett variabelnamn. Att vi i utskriftssatsen på rad 13 använt

uttrycket term - 1, för att skriva ut sluttermen 100, beror på att variabeln term har

värdet 101 när koden har lämnat while-loopen på rad 12. Det är just därför att 101

inte längre är <= 100 stoppas loopen. Därför måste vi, för att skriva ut 100, skicka

uttrycket term - 1 till utskrift.

while-satsen är den enklaste varianten av loop i JavaScript. Vi vill använda den för

att illustrera en företeelse som man brukar råka ut för när man jobbar med loopar:

Evighetsloop

I programmet Sum_while är while-satsens avsutningsvillkor term <= 100. Om

detta villkor vore sant från början och förblev sant hela tiden, skulle satserna på

raderna 10-11 att utföras i all evighet, vilket kallas för evighetsloop.

För att undvika en evighetsloop, måste villkoret och satserna formuleras på ett sätt

att villkorets sanningsvärde ändras i loopens kropp. Villkoret måste bli falskt efter

några varv. I programmet Sum_while har vi åstadkommit detta genom att ha

term++ på rad 11. Samtidigt är villkoret formulerat som term <= 100. Dvs, har

man med en lämplig initiering av term kommit in i while-loopen, kommer term

att öka med 1 i varje varv, så att den någon gång blir > 100. Då stoppas loopen.

Glömmer man ökningen ++ och initierar man term med ett värde mindre än 100

blir while-loopen en evighetsloop.

Omvänt: Är while-villkoret falskt från början, görs ingenting. Initieras term till ett

värde större än 100, blir villkoret falskt från början och man kommer aldrig in i

kroppen (”aldrigslinga”). Programflödet fortsätter vid första satsen efter while-

loopen.

 62

3.7 Bestämd repetition: for-satsen

För att snabbt visa for-satsens arbetssätt vill vi börja med en ren översättning av

programmet Sum_while (sid 60) till en for-variant. Båda summerar alla heltal från

1 till 100 och ger samma utskrift som på förra sidan.

1 <!-- Sum_for.html
2 Beräknar och skriver ut summan 1 + 2 + ... + 100
3 Bestämd repetition: for-loop (översätting av Sum_while) -->
4 <title>Summering med for</title>
5 <script>
6 sum = 0
7 for (term = 1; term <= 100; term++) // for-loop börjar
8 sum = sum + term // slutar
9 document.write('<h2>Summan 1 + 2 + ... + ' + (term - 1) +
10 ' är ' + sum + '.</h2>')
11 </script>
12 Ladda om sidan (Ctrl-R) för att köra om skriptet.

for-satsen har endast en sats i sin kropp, rad 8. Huvudet, rad 7, är mera invecklat:

Initieringen term = 1 och uppdateringen term++ av variabeln term har flyttats i

for-satsens huvud. Avslutningsvillkoret term <= 100 däremot är kvar på plats: det

fanns även i huvudet på while-loopen, se rad 8 i programmet Sum_while (sid 60).

Eftersom parentesen i for-satsens huvud (rad 7) nu består av tre delar – initierin-

gen, villkoret och uppdateringen av variabeln term – måste dessa delar skiljas från

varandra med semikolon ; som i JavaScript är skiljetecknet mellan satser. Att vi

kan utelämna det i våra andra program beror på att vi skriver våra satser på sepa-

rata rader. Radslutstecknet kan ersätta semikolonet. Men i for-satsens huvud är

det inte möjligt att bryta rad mellan dessa tre delar. Därför måste vi sätta ;

for-satsens struktur

for-satsens struktur skiljer sig markant från de hittills behandlade repetitionerna

do och while. Hos dessa styr endast villkoret antalet repetitioner och man kan få

reda på antalet repetitioner endast i efterhand, dvs efter att ha kört programmet.

for-satsen kallas för den bestämda repetitionen därför att programmeraren redan

vid kodningen bestämmer antalet repetitioner. for-satsen används helst som en

loop vars antal repetitioner är känt i förväg. Det kan vara användbart i de fall där

man vet hur många gånger en sak ska upprepas. Visserligen finns även i den

bestämda repetitionen ett villkor som testas i varje varv, men det finns även en in-

byggd möjlighet att styra villkoret och därmed antalet repetitioner med hjälp av en

räknare, även kallad styrvariabel.

 63

Flödeschemat

 sant

 falskt

Flödesschemat åskådliggör den logiska strukturen av for-satsen, medan pseudo-

koden ligger närmare programkoden.

Pseudokoden

 Initiera räknaren

 SÅ LÄNGE villkor är uppfyllt

 utför instruktion(er)

 uppdatera räknaren

Nyckelordet SÅ LÄNGE i denna pseudokod visar att den bestämda repetitionen alltid

kan översättas till en while-sats om man själv tar hand om räknaren. Precis som i

while-satsen har man i princip friheten att formulera villkoret hur som helst. Men

eftersom räknaren är inbyggd i strukture, kan man i villkoret jämföra räknaren

med slutvärdet, t.ex. så här: ”räknare är mindre än eller lika med slutvärde”.

Programkoden

for-satsen inleds med det reserverade ordet for och skrivs generellt så här:

for (initiering; villkor; uppdatering)

{

 sats(er);

}

De rödmarkerade ringarna och pilarna samt numreringen ska visa i vilken ordning

de respektive delarna utförs. Denna ordning är nämligen inte identisk med

kodbitarnas ordning. Pilarna markerar loopens förlopp. Initieringen görs endast en

gång och ingår ej i loopen.

Första raden är for-satsens huvud. Resten är for-satsens kropp som omsluts av

klamrarna { och }. Om kroppen endast består av en sats kan klamrarna utelämnas.

Villkor Instruktion(er) Uppdatera räknaren

Initiera räknaren

Loop

 1 2 4

3

 64

En borrutrustning för bergvärme kan borra 25 m i en viss tomtmark

under den 1:a timmen.

Under de följande timmarna minskar borrens prestation med upp-

skattningsvis 10-20% per timme. Den exakta minskningen är inte

känd. Borren går oavbrutet i 8 timmar.

Skriv ett program som simulerar minskningen av borrens prestation

efter den1:a timmen med slumptal mellan 10 och 20 och beräknar ett

närmevärde till det totala borrdjupet.

Uppskatta borrhålets totala djup efter 8 timmar.

Skriv ut även borrprestationens procentuella minskning vid aktuell

körning.

Räknaren sätts före repetitionen till ett önskat startvärde, för det mesta något hel-

tal, ofta 1. Detta kallas initiering av räknaren dvs den allra första tilldelningen av

ett värde till räknaren. Sedan testas ett villkor där man brukar lägga in ett önskat

slutvärde på räknaren. Därmed är antalet repetitionerna fastlagt, t.ex. till slutvärde

minus startvärde om räknaren ökats med 1. Om villkoret är uppfyllt, t.ex. om räk-

naren är mindre än slutvärdet, utförs ett antal instruktioner. Sedan görs en uppda-

tering av räknaren, oftast en ökning med 1, men det är även möjligt att räkna nedåt

eller välja ett annat steg än 1. Allt detta händer i varje varv.

En tillämpning av for-satsen

Följande problem ska lösas:

Lösningen:

1 <!-- Borr.html
2 Uppskattar det totala borrdjupet för en borrutrustning som
3 går i 8 timmar. Simulerar minskningen av borrens prestation
4 med slumptal inom ett intervall -->
5
6 <title>Uppskattning av borrhål</title>
7
8 <script>
9 totalDepth = 0
10 hDepth = 25 // 1:a timmens borrdjup
11 a = 10 // Intervall för pro-
12 b = 20 // centuell minskning
13 procent = a + parseInt(Math.random()*(b-a+1)) // 10-20%
14 FF = 1 - procent / 100 // Förändringfaktorn
15

 65

16 for (h = 1; h <= 8; h++) // 8 timmar
17 {
18 totalDepth = totalDepth + hDepth // Varje timmes totaldjup
19 hDepth = FF * hDepth // Varje timmes borrdjup
20 } // efter 1:a timmen
21
22 document.writeln('<h2>Hålet för bergvärmen är ca. ' +
23 parseInt(totalDepth) + ' meter djupt.</h2>')
24 document.writeln('Denna uppskattning baseras på ' + procent +
25 '% minskning av borrprestationen per timme.

')
26 </script>
27
28 Ladda om sidan (Ctrl-R) för att köra om skriptet.

En körning ger följande reultat:

 66

Övningar till kapitel 3

3.1 Marcus som är 1,75 m stor och väger 76 kg vill veta om han är överviktig.

Enligt Body Mass Index (BMI) anses man vara överviktig om BMI > 25. BMI

beräknas med formeln:

 
2

Vikt i kg
BMI

Längd i m



Skriv ett program – en BMI Calculator – som läser in vikten i kg och läng-

den i cm som heltal och skriver ut Överviktig om BMI > 25, annars OK.

Som kontroll skriv även ut BMI-värdet.

3.2 Skriv ett program som läser in två hetal och skriver ut Rätt ordning om det

första är mindre än det andra. Skriv ut Lika stora om de är lika stora och

Fel ordning om det första är större än det andra.

3.3 Vidareutveckla programmet Max (sid 45) så att det läser in fyra tal, hittar och

skriver ut det största. Vilken ändring i koden leder till det minsta talet?

3.4 Modularisera din lösning från övn 3.3 genom att definiera den delen av kod

som hittar det största talet, som en funktion. Anropa sedan funktionen från

ett program. Låt dig inspireras av programmet MaxFct (sid 47).

3.5 Modularisera din lösning från övn 3.1 genom att definiera BMIs beräknings-

formel som en funktion. Anropa funktionen från ett program.

3.6 Ersätt i programmet SimpleIf (sid 42) de två enkla if-satserna med en enda

if-else-sats. I övrigt ska programmet göra samma sak som tidigare, näm-

ligen att förhindra division med 0, när man matar in 0 för det andra talet.

3.7 Skriv ett JavaScript program som läser in två heltal till variablerna a och b

och med hjälp av en if-else-sats avgör om a är jämnt delbart med b. Glöm

inte att skicka ledtext vid inmatningar. Skriv ut användarvänligt. Testa pro-

grammet och visa att 4592 är jämnt delbart med 7.

3.8 Idag är det onsdag. Julia vill träffa sin kompis om 13 dagar och vill veta vil-

ken veckodag det blir. Lös problemet generellt:

Skriv ett program som frågar efter aktuell veckodag. Mata in en siffra för

veckodagen. Anta att veckans dagar är numrerade från 1-7 med början på

måndag. Sedan ska programmet fråga när användaren vill träffa sin kompis

och få som svar ett antal dagar. Beräkna och skriv ut den planerade träffens

veckodag som nummer. Kör programmet för att lösa Julias problem.

Tips: Läs lösningen till Tillämpningar av modulo, ex. 2 (sid 50).

 67

3.9 Följande pseudokod beskriver hur man tar på sig sjal, mössa och handskar

beroende på hur kallt det är ute:

 Start Vinterklädsel

 Läs av temperaturen

 OM temperatur < 0

 ta sjal, mössa och handskar

 ANNARS OM temperatur < 5

 ta sjal och mössa

 ANNARS OM temperatur < 10

 ta sjal
 ANNARS

 slipper du vinterklädsel

 Slut Vinterklädsel

Översätt pseudokoden Vinterklädsel till ett JavaScript program med hjälp av

en if-else-stege. Låt programmet läsa in ett värde för temperatur och av-

göra val av klädsel genom att skriva ut ”Ta …”.

3.10 Modifiera programmet Collatz (sid 58) genom att ersätta do-loopen med en

while-loop. Modifiera även algoritmens pseudokod och flödesschema, så

att de återpeglar algoritmens implementering med while-loopen.

3.11 Ändra koden i programmet Collatz (sid 58) så att körningen genererar en

evighetsloop.

3.12 Modifiera programmet Sum_while (sid 60) genom att ersätta while-loopen

med en do-loop.

3.13 Generalisera programmet Sum_while (sid 60) genom att ersätta den hård-

kodade sluttermen 100 med en variabel last_term som läses in, så att man

kan beräkna vilka summor som helst. Testa programmet med olika inläs-

ningar för last_term, bl.a. med 10, 1 000 och 10 000.

3.14 Ändra koden i programmet Sum_while (sid 60) så att körningen genererar en

evighetsloop.

3.15 a) Använd en while-loop för att skriva ut de första 10 positiva heltalen.

b) Vilken ändring ändring i koden till a) måste göras för att få fram de för-

 sta 20 positiva heltalen?

3.16 a) Använd en for-loop för att skriva ut 10 slumptal mellan 0 och 1.

b) Skräddarsy JavaScripts funktion Math.random() för att slumpa 20 heltal

 mellan 1 och 50.

 68

3.17 Vi vill simulera tärningskast. Generera i en for-loop 10 slumptal mellan 1

och 6 och skriv ut dem. Fortsätt med att skriva ut 50 tärningskast.

3.18 a) Skriv ett program som skriver ut de första 10 jämna talen.

b) Modifiera a) så att endast de första 10 udda talen skrivs ut.

3.19 a) Skriv ett program som summerar de första 10 positiva heltalen.

b) Generalisera a) så att programmet beräknar summan av de första n po-

 sitiva heltalen där n kan matas in. Testa för n = 100 och 1 000.

c) Skriv ett program som summerar de första n pos. heltalen med formeln:

Testa om du får samma svar i b) och c) för n = 1 000, 5 000 och 1 000 000.

3.20 Skriv ett program som läser in ett heltal som stegvariabel för att skriva ut tal

från 1 till 5 000. Om steget är t.ex. 5 skrivs var femte tal ut.

3.21 Skriv ett program som omvandlar tiden i antal år, månader och veckor till

antal dagar. Läs in tre heltal till antal år, månader och veckor. Beräkna och

skriv ut sedan användarvänligt hur många dagar det blir totalt.

3.22 Vänd på problemet från övn 3.21: Skriv ett program som läser in ett antal

dagar, omvandlar det till antal år, månader, veckor samt resterande dagar

och skriver ut resultatet. Använd för denna omvandling följande algoritm

och pseudokod.

Algoritmen:

1. Kalla den givna tiden i dagar för totaldagar.

2. Dividera totaldagar med 365 och strunta i resten, så får du det sökta

antalet år.

3. Ta resten vid divisionen ovan. Dividera denna rest med 30 och strunta i

resten så får du det sökta antalet månader.

4. Ta resten vid divisionen i punkt 3. Dividera denna rest med 7 och strun-

ta i resten så får du det sökta antalet veckor.

5. Resten vid divisionen i punkt 4 är det sökta antalet resterande dagar.

Operationen ”Dividera och strunta i resten” är heltalsdivision och operatio-

nen ”Ta resten vid heltalsdivision” är modulo..

Pseudokoden:

år = totaldagar heltalsdividerad med 365

månader = (totaldagar modulo 365) heltalsdividerad med 30

veckor = ((totaldagar modulo 365) modulo 30) heltalsdividerad 7

Resterande dagar = ((totaldagar modulo 365) modulo 30) modulo 7

(1) / 2summa n n 

 69

3.23 Tillämpa den logiska strukturen i algoritmen och pseudokoden till övn 3.22

för att lösa följande uppgift:

Efter inköp av en vara i en automat ska växeln ges tillbaka i form av ett an-

tal föreskrivna myntslag: 10-kronor, 5-kronor, 1-kronor, 50-öringar 1 och en

rest i ören < 50. Skriv ett program som läser in ett växelbelopp i ören, om-

vandlar det till ett antal 10-kronor, 5-kronor, 1-kronor och 50-öringar samt

skriver ut resultatet. Resten i ören < 50 kan vi försumma (resp. avrunda).

 50-öringen finns inte längre i det svenska myntsystemet. Att vi ändå inkluderar den i upp-

giften beror inte på nostalgi utan på internationalisering. Vi vill hålla öppen möjligheten för

en övergång till andra valutor, t.ex. Euro. Behandlingen av en halv enhet vid omvandling av

växelbeloppet till automatens tillåtna mynt inkluderar en programmeringsteknisk finess som

kan vara värd att lära sig. Så kan våra program även användas t.ex. för Euron där 50 Cent

ersätter 50-öringen.

 70

Programmering 1 med C#

Ur innehållet:

Grundbegrepp i programmering
Datatyper, variabler & tilldelning
Utskrift till grafisk miljö
Windowsprogrammering
C# Console & Windows Applications
Interaktiva grafiska gränssnitt
Kontrollstrukturer
Klasser, objekt och referenser
Metoder
Rekursiva metoder
Sammansatta datatyper: Arrays
Dynamiska arrays: Listor
Sökning & sortering
Kryptering av text
Hantering av slumptal
Undantagshantering
Vad är objektorienterad programmering?
Installation av Visual Studio.NET
Konfiguration av Visual Studio.NET
Projekt i Visual Studio.NET
Övningar & projektuppgifter
Fullständiga lösningar till övningar

www.taifun.se Ladda ned gratis smakprov.

Koda matte med
Python

Programmering i matematik

En enkel, pedagogisk lärobok som kom-
pletterar matematikundervisningen med
inslag av programmering. Den vägleder
både lärare och elever genom att kombi-
nera teori med praktiska övningar och
fullständiga lösningar. Boken presente-
rar ett pedagogiskt koncept om hur pro-
grammering kan integreras i kurserna
Matematik 1 (a,b,c) och Matematik åk 7-9.

www.kodamatte.se

 71

Programmering 2 med C#

Ur innehållet:

Windowsprogrammering
Grafiskt gränssnitt mot Internet (webbläsare)
Grafiskt gränssnitt med menyval
Multiple Document Interface
Objektorienterad programmering
Objektorient. modellering & implementation
Metoder i OOP / Generics
LINQ / Lambdauttryck
Delegater / Metodgrupper
Arv och polymorfism
Abstrakta klasser & metoder
Virtuella metoder
Filhantering / Slumplösenord
Kryptering av filer / Tabellhantering i filer
Databaser / Relationsdatabasmodellen
Introduktion till SQL databaser
Visual Studios SQL-Server
Grafiskt gränssnitt mot databasen
En SQL-klient i C#
Att skapa och designa en databas
Databas med egna funktionaliteter
Projektuppgifter & övningar
Fullständiga lösningar till alla övningar

Utveckla en egen webbläsare (ex. ur boken ovan):

 72

