Introduktion till

programmering

med JavaScript

Yrkeshogskolans preparandkurs

Behorighetsforberedande utbildning (BFU)

Med 6vningar och
projektupppgifter

Forlag: Lieta AB

Titel: Introduktion till programmering med JavaScript

Forfattare: Taifun Alishenas
info@taifun.se

Copyright © 2023 Lieta AB
All rights reserved
Tel: 073 - 757 70 69

Maj 2023

®

Kopieringsférbud!

Denna bok ar skyddad av Lagen om upphovsratt. Kopiering ar forbjuden. Foérbudet inkluderar
oversattning, tryckning, stencilering, kopiering, lagring i elektroniska och digitala media, visning
pa bildskdrm eller via projektor, bandinspelning osv. Dessa forbud géller aven for koden i alla
programexempel samt 6vningarnas l6sningar som finns i boken. Den som bryter mot lagen om
upphovsratt kan atalas av allmén dklagare och domas till boter eller fangelse i upp till tva ar samt
bli skyldig att erlagga ersattning till upphovsman/rattsinnehavare.

2

Innehall

Amne Sida Program

Programmeringens ABC 5

1.1 Om programmering 6
- Algoritmiskt ténkande 7
- Val av programmeringssprak 8
1.2 Programmeringens miljéer 9
- Editorer / IDE 9
- Interpretator vs. kompilator 9
- Om JavaScript 10
- Om HTML 11
- Att hantera filandelser 11
1.3 Att komma igdng med JavaScript 13
- Programmet Welcome 13 Welcome
- Kommentarer 14
- Satser i JavaScript 14
1.4 Konkatenering 16 concat
- Overlagring 17
1.5 Utskrift i flera rader 18 Break
- Radbrytning i utskriften med JavaScript 19 Escape
- Funktionen alert() 20
- Escapesekvenser 20
Frégor till kap 1 21
Ovningar till kap 1 22
Grundbegrepp i programmering 23
2.1 Variabler 24 Variable
- Vad ar en variabel? 24
- Tilldelningsoperatorn = 25
2.2 Overskrivning eller kan x = x + 1 vara sant? 27 Overwrite
- Prioritet av operatorer 28
- Tilldelning vs. likhet 28
2.3 Inldsning av data 29 Input
- Funkionerna prompt() och parseint() 30
2.4 Arrays 31 Arraydef
- Arrayens initieringslista 34 ArrayInit
2.5 Hantering av slumptal 36 Random
- Slumptal inom ett intervall 37
Ovningar till kap 2 38

Amne Sida Program
Inlamningsuppgift Gymnastiktavling 39
Kontrollstrukturer 40
3.1 Vad &r kontrollstrukturer? 41
3.2 Enkel selektion: if-satsen 42 SimpleIf
- Villkor 43
- Jamforelseoperatorer 44
- Bestamning av max/min 45 Max
- Modularisering 46
- Funktionen max() 47 MaxFct
- Om funktioner 47
3.3 Tvdvagsval: if-else-satsen 48 1fElse
- Modulooperatorn 50
- Tilldmpningar av modulo 50
3.4 Flervagsval 51
- if-else-stegen 52 GissaTal
- switch-satsen 51 switch
3.5 Efter-testad repetition: do-satsen 56 Collatz
3.6 For-testad repetition: while-satsen 60 Sum_while
- Evighetsloop 61
3.7 Bestamd repetition: for-satsen 62 Sum_for
- for-satsens struktur 62
- En tillampning av for-satsen 64 Borr
Ovningar till kap 3 66

Kapitel 1

Programmeringens

ABC

Amne Sida Program
1.1 Om programmering 6
- Algoritmiskt tankande 7
- Val av programmeringssprak 8
1.2 Programmeringens miljéer 9
- Editorer / IDE 9
- Interpretator vs. kompilator 9
- Om JavaScript 10
1.3 Att komma igdng med JavaScript 13
- Programmet Welcome 13 Welcome
- Kommentar 14
- Satser i JavaScript 14
1.4 Konkatenering 16 concat
- Overlagring 17
1.5 Utskrift i flera rader 18 Break
- Radbrytning i utskriften med JavaScript 19 Escape
- Funktionen alert() 20
- Escapesekvenser 20
Fragor till kap 1 21
Ovningar till kap 1 22

1.1 Om programmering

Varlden vi lever i ar full med prylar
som &r programmerade. De kallas for -
"intelligenta”. Man pratar om artificiell [

intelligens. Men prylarna kan inte tanka @
sjalva. Nagon har programmerat dem, F
nérmare bestdmt de elektroniska kom-
ponenterna i dem — sma datorer. Det &r
de som styr all funktionalitet.

Programmering &r ett av de mest spannande kapitlen i teknologihistorien. Inte bara
darfor att den har lagt grunden till den moderna IT-industrin och pa gott och ont
revolutionerat varlden. Den har ocksd bidragit till att forverkliga den urgamla
manskliga drommen att forenkla médosamma arbeten. Istéllet for att plaga sig in-
struerar man en maskin med idéer. Programmering realiserar onskemalet att Iata
datorn gora jobbet for att ha mer tid éver for annat i livet.

Nar man tréttnat pa att anvanda program som andra skrivit — maila, surfa eller
lyssna pa musik — ar det dags att bérja programmera sjalv. Det ar roligare att kora
en bil dn att bara dka med. Det ar kreativiteten och det fria skapandet som lockar.
Med programmering kan du testa helt nya egna idéer.

"Everyone in this country should
learn how to program a computer.
Because it teaches you how to think."

Er—

Steve Jobs

Men hur programmerar man?

Egentligen gor vi det varje dag utan
att vara medvetna om det. Ar t.ex. en
lampa trasig foljer vi ungefar det som
kan beskrivas med bilden till hoger,
ett s.k. flodesschema. | praktiken 16-
ser vi problemet att ersdtta en trasig
lampa genom att tdnka och gdra sa
utan att nagonsin rita ett flodessche-
ma. Flédesschemat illustrerar och do- i

kumenterar dock algoritmen, dvs tillvagagangssattet for problemets I6sning. Néar

6

den en géng ar ritad skulle den kunna anvéndas av vem som helst som vill byta en
trasig lampa. Den blir en slags allmangiltig manual for just detta problem. Men
annu viktigare ar att metodiken kan tas dver till svarare problem.

Ett annat vardagligt exempel ar matlagning. Vare sig vi anvander ett recept ur en
kokbok eller lagar efter kédnsla, foljer vi en algoritm som dessutom — till skillnad
frdn lampalgoritmen — aven har en input, ravaror och en output, matratten. Hard-
varan som hjalper oss dr koket med alla sina instrument. Matreceptet & mjukvaran
dvs programmet. Det ar precis samma struktur ndr vi kor ett program pa datorn,
matar in indata och far ut utdata som resultat. Programmet vi anvander &r avgoran-
de for resultatet, precis som matreceptet samt dess forverkligande dr avgorande for
om vi lyckas med matrétten.

Algoritmiskt tankande

Bada exemplen visar: Det ar algoritmer som medvetet eller omedvetet styr hur vi
gor — ett satt att tanka vars gemensamma drag kan generaliseras sa har:

1. Att formulera problemet och definiera malet. Hur nar vi malet — proble-
mets 16sning?

2. Genom att bryta ner problemet i mindre, 6verskadliga och enklare delar,
s.k. moduler. Varje modul ska i princip kunna utféras av vem som helst.
Detta kallas for modularisering som &r en allméan princip inte bara i pro-
grammering utan i all problemldsning.

3. Genom att ge instruktioner som leder till problemets I6sning. De maste
formuleras pé ett entydigt satt sa att de inte kan tolkas pé olika sétt. For
datorer gor exakt som vi sager. Det har visat sig att det vanliga spraket
inte lampar sig for detta andamal, for det ar tolkbart. Skonlitteraturen ar
ett praktexempel for olika tolkningar av spraket. Det vore synd om det in-
te vore sa. Darfor har man i programmering hittat pa andra, speciella pro-
grammeringssprak vars vokabular och syntax foljer strikta regler som ar
entydiga. Datorn kan tolka dessa regler endast mekaniskt.

4. | denna process uppstar situationer dar vi maste triffa ett val — samma
sak som att besvara en frga. Den forsta fragan i algoritmen "Att byta
lampa™ &r "Ar lampan inkopplad?" (ovan). Valet mellan "Ja" och "Nej"
avgor hur algoritmen fortsatter. Ytterligare val foljer.

Det ar avgorande att skilja mellan instruktion och val. En instruktion &r ett kom-
mando som maste utféras medan ett val ar en fraga som maste besvaras. | flodes-
planen till lampalgoritmen &r instruktion (grén) och val (gul) markerade med olika
farger. Deras distinktion blir avgérande nar man gér éver fran flodesplan till kod.

Algoritmers byggstenar

Man delar in algoritmers viktigaste ingredienser i tre kategorier och kallar dem for
kontrollstrukturer, eftersom de &r generella strukturer som styr och kontrollerar al-
goritmerna och ger dem den karakteristiska ordningen. Dessa grundlaggande kon-
trollstrukturer ar sekvens, selektion och repetition och kommer att tas upp i boken.
De anses vara algoritmers byggstenar. Alla algoritmer &r uppbyggda av dem.

Avgdrande for en algoritms funktionalitet &r ingrediensernas inbdrdes ordning. Tar
man in i en kokande gryta potatisen forst och kéttet sedan — istallet for tvartom —
blir det mos istéllet for matratt. | detta sammanhang hor aven algoritmens korrekta
avslutning. Utan ett exakt formulerat avslutningskriterium som uppnas i andlig tid
uppstar evighetsloopar. Nar sadant intraffar brukar vi ofta saga att datorn "hangt
sig”. | sjélva verket &r orsaken en algoritm med ett inkorrekt konstruerat avslut-
ningskriterium. Allt detta kommer att behandlas utforligt i boken.

Ytterligare en ingrediens av algoritmer dr logik. Datorer kan ingen logik. Manni-
skan maste fora dver logiken in i datorn. Det ar det som kallas for artificiell intelli-
gens. Bl.a. formuleringen av korrekta avslutningskriterier i val och loopar, men
aven modularisering och strukturering kraver logiskt tankande.

Att upptacka monster ar ocksa en formaga som ofta behdvs i konstruktion av algo-
ritmer, vilket vi kommer att se i vara programexempel som foljer i boken.

I valet av instruktioner som ska tas med i en algoritm &ar det en sjalvklarhet att man
sorterar bort allt som dar mindre relevant och tar in endast det som &r relevant. Dvs
dven att avgora relevansen av saker och ting for att uppna det definierade malet
(punkt 1) hor till programmerarens uppgifter.

Val av programmeringssprak

I denna bok har vi bestamt oss for programmeringsspraket JavaScript for att intro-
ducera till programmering. Men spraket &r bara ett medel av underordnad betydel-
se. Malet &r att ldra sig tankesattet och tekniken att programmera, oberoende av
sprak. Har man en gang forstatt de grundlaggande koncept som ar gemensamma
for alla sprak, blir det narmast en teknikalitet att pa egen hand lara sig ett nytt
sprak.

1.2 Programmeringens miljoer

[Programmering &r i allra hdgsta grad ett praktiskt amne.]

Man kan inte l&ra sig programmering genom att endast l&sa bocker. For att lara sig
programmering maste man programmera, dvs koda och testa koden — precis som
bilkérning. Och for att programmera behéver man en miljo, dar man kan skriva
och testa kod. Denna miljo &r sjalv en programvara som maste laddas ned, om den
inte redan finns i datorn och installeras. Det finns en uppsjé av programmerings-
milj6er for de olika programmeringsspraken. Ofta kallas de for IDE, Integrated De-
velopment Environment. En enklare variant — ofta en del av en IDE — &r en editor.

Editorer

En editor &r ett skrivverktyg pa datorn, dvs ett program som kan hantera text. Ord-
behandlingsprogram ar en annan beteckning pa editorer. Pa de flesta datorerna
finns minst en editor forinstallerad. For att skriva kod och spara den i en fil beh6vs
en editor. Men kod far innehélla endast sadana tecken som kan ’forstds’ av pro-
grammeringsspraket. Darfor maste editorn spara filen som oformaterad textfil, dvs
utan styr- och kontrollkoder som i vissa ordbehandlingsprogram anvénds for for-
matering (typsnitt, stil, sorlek osv.). Ett exempel pa sddana program &r Word som
formaterar texten och sparar sina filer som dokument av typ *.docx. Formatering
innebar att det laggs till osynliga tecken i texten som programmeringsspraket inte
kanner till. Motsvarigheten pa Mac-datorer &r Pages. Sadana ordbehandlings-
program &r inte lampliga for att skriva kod. Daremot kan t.ex. Notepad (Antecknin-
gar), Notepad++ eller TextPad pad Windwos-datorer och Textredigerare eller Text-
Edit pA Mac-Datorer vara lampliga texteditorer for programmering, eftersom de
sparar alla filer som rena textfiler utan formatering. For textfiler kan filandelser av
typ *.txt, men dven andra viljas, beroende pa operativsystemet resp. programva-
ran som filen ska anvandas i.

IDE stér for Integrated Development Environment, ar alltsd en integrerad pro-
gramutvecklingsmiljo som inkluderar en editor, en interpretator resp. kompilator
och andra verktyg for programutveckling i en och samma samlad miljé. Visual Stu-
dio ar ett exempel pé en IDE som har utvecklingsverktyg for ett antal sprak. Men
JavaScript behdver ingen IDE. Det racker med en texteditor dar koden skrivs och
sparas samt en webbldsare dar koden exekveras. Vi kommer att anvanda oss av
denna mojlighet som &r oberoende av tredje parts verktyg for att slippa installera
nya program. En editor och en webblasare finns forinstallerade pa alla datorer.

Interpretator vs. kompilator

En interpretator &r ett program som tolkar kéllkod till maskinkod och skickar ma-
skinkoden till datorns processor utan att mellanlagra den pa harddisken. Processorn

exekverar maskinkoden. Kallkod &r kod som endast manniskan forstar, men inte
datorn. Maskinkod &r kod som endast datorn forstar, men inte manniskan.

Till skillnad fran en interpretator ar en kompilator ett program som oversatter kall-
kod till maskinkod och lagrar maskinkoden pa harddisken. Forst nar man exekverar
skickas den kompilerade maskinkoden till datorns processor och utférs dér. Vissa
programmeringssprak ar kompilerande, andra &r interpreterande. Det finns &ven
hybrider. JavaScript &r interpreterande.

Om JavaScript

JavaScript ar ett s.k. scriptsprak som ursprungligen skapades ar 1995 av Netscape,
ett amerikanskt mjukvaruforetag som aret innan hade lanserat den forsta populara
webblasaren. Med scriptsprak menar man sadana sprak som endast kan koras pa
webben. En annan kategori ar universella sprdk, som t.ex. C, C++, C#, Java, Py-
thon, ... som kan anvéndas for att programmera vilken applikation som helst.

Hos scriptspraken néjer man sig med de enklare elementen i programmering, for
att forse webbsidor med vissa funktionaliteter. Darfor kallas koden &ven for script.
Scripten bakas in i HTML-kod, varfor de enast kan exekveras pa webben.

[JavaScripts exekveringsmiljé @r webbldsaren (web browser).]

Utvecklingsmiljon daremot — dvs dar man skriver koden — kan vara vilken editor
som helst.

JavaScript ar ett interpreterande sprak, dvs koden tolkas till maskinkod (datorns
sprak) av en interpretator som &r inbyggd i webblasaren. Maskinkoden utfors direkt
av datorns processor utan att den mellanlagras. De mest anvanda webblédsarna ar
Google Chrome pa Windwos-datorer och Safari pa Mac-datorer. | bada ar en inter-
pretator for JavaScript inbyggd.

JavaScript far inte forvixlas med Java. Det handlar om tvé olika programmerings-
sprak som dessutom tillhor tva olika kategorier av programmeringssprak: Medan
JavaScript &r ett scriptsprak ar Java ett universellt programmeringssprak.

Som alla programmeringssprak ar dven JavaScript definierat av ett antal nyckelord,
aven kallade reserverade ord, pa eng. keywords. De &r reserverade av och for sjal-
va spréket, dvs bildar sprakets ordforrad. De far inte anvandas som namn (identifi-
erare) for variabler eller programmets andra delar, t.ex. funktioner osv. Nagra av
dem ar samlade i féljande tabell:

Reserverade ord i JavaScript |

break case continue delete do
else false for function if

in new null return switch
this true typeof var void
while with default class const

10

Det finns fler reserverade ord an i tabellen ovan. Man ser att de skrivs alla med
sma bokstaver. Generellt galler féljande regel for all JavaScript kod:

[JavaScript ar case sensitive (skiftlageskanslig).]

Dvs JavaScript skiljer pa sma och stora bokstaver. Det gor inte HTML.

Om HTML

HTML star for HyperText Markup Language och &r webbens standardsprak for att
utforma presentabla dokument som kombinerar text, bild och andra element. Koden
genererar dokumentet som ska sedan visas upp dem pa webben. Koden &r skild
fran dokumentet — till skillnad fran andra formateringsverktyg som t.ex. Word som
ar ett s.k. WYSIWYG-verktyg. Akronymen (foérkortningen) star for What You See Is
What You Get. Men eftersom HTML ar ett icke-WYSIWYG-verktyg maéste koden
forst tolkas av en interpretator, innan dokumentet kan visas. Webblasare ar sadana
interpretatorer, dvs program som kan tolka HTML-kod. Dessutom har HTML mdgj-
ligheten att badda in andra scriptsprak i sin kod som t.ex. JavaScript. Darfor ar
webblasaren den naturliga exekveringsmiljon for JavaScript. For att skriva Java-
Script kod behdver man en editor, och for att exekvera behdver man en webb-
lasare. Vi ndjer oss med denna minimalistiska miljo for att forenkla den tekniska
hanteringen och koncentrera oss pa sjalva spraket.

Regler for filandelsen

Skriver du din JavaScript kod i ndgon editor och sparar filen som *.txt, kommer
du inte kunna exekvera den i en webblasare, nar du (dubbel)klickar pa den. Boven i
dramat ar filandelsen: Operativsystemet identifierar de filer som innehéller kod via
filandelsen. All JavaScript kod ar inbakad i HTML kod, webblasarens sprak. Ska
koden exekveras i en webblasare maste filen som innehaller koden, ha &ndelsen
html, for att kunna identifieras som en JavaScript kéllkodsfil. Darfor maste du an-
tingen fran borjan spara din kallkodsfil med 4ndelsen html eller i efterhand andra
filandelsen till html. | Windows kallas filandelser for Filnamnstillagg.

Att hantera filandelser

For att kunna félja reglerna for filindelsen som beskrevs ovan, forutsétts att man
kan se filandelserna nér man dppnar en mapp. Men i praktiken &r detta ofta inte
fallet. Orsaken &r pa operativsystemets installningar. 1 Windows ar default install-
ningen att man i regel inte kan se dem. Ta sjalv reda pa hur det ar pa din dator. S&
har kan man gora for att synliggora filandelserna i Windows:

e Oppna en mapp i Windows.

e Gai mappens menyrad till Mappalternativ. Om du inte hittar denna meny klicka
pa de tre sma punkterna till hdger (Visa mer) och vilj Alternativ.

11

e Du borde fa upp dialogrutan
Mappalternativ. Valj fliken Vis-
ning. Bocka av rutan Dolj fil-
namnstillagg fér anda filtyper.
S& hér borde nu dialogrutan se
ut:

e Kilicka pa knappen Anvand i
alla mappar, sedan pa Ja och
OK.

Nu borde du kunna se dina filers
andelser och kunna félja reglerna
pa forra sidan. Generellt rekom-
menderas att ha synliga filandelser
pa sin dator, nir man program-
merar.

Mappalternativ

Allmant Visning Sékning
Mappvyer
Du kan anvanda det aktuella visningslaget (tex.
;_iE‘ Detaljerad lista eller Ikaner) for alla mappar av den har

typen.

Anvand i alla mappar

Avancerade installningar:

Aterstall mappar

Filer och mappar
Anvand guiden Dela (rekommenderas)
Anvand kryssrutor for att markera objekt
Dolda filer och mappar
() Visa dolda filer. mappar och enheter
© Visa inte dolda filer, mappar och enheter
[[) Déljfinamnstillzgg fér kanda filtyper
Délj mappsammanslagningskonflikter
Délj skyddade operativsystemfiler (rekommenderas)
Délj tomma enheter
() Minska avstandet mellan objekt (kompakt vy)
Vid inmatning i listvyer

Aterstall standardvarden

oK Avbryt Verkstall

12

1.3 Att kommaigang med JavaScript

For att komma igang med JavaScript kan vi nu skriva vara koder i en valfri text-
editor och spara filen som ren, dvs oformaterad textfil med &ndelsen html (OBS!
inte txt) pa datorn. Nar vi sedan (dubbel)klickar pa filen, kommer koden att exe-
kveras i webblésaren. Anledningen till det &r att webbldsaren &r ett program som
kan tolka och exekvera html-kod: Webblasaren ar en html-interpretator. S& har
kommer vi att testa alla véra JavaScript koder i denna kurs. Aven om man gor detta
i en annan miljo &r det i grund och botten denna teknik som anvénds i bakgrunden.

Vi sa i borjan att JavaScript var ett scriptsprak och att koden kallas for script. Men
i fortsattningen kommer vi kalla vara JavaScript koder aven for program. +++

Programmet Welcome
Oppna en texteditor, t.ex. NotePad++, skriv foljande kod (utan rad-

numren) med bibehallen layout: JavaScript
1 <!-- Welcome.html

2 Skriver ut en rad text -->

3

4 <title>vVart férsta program i JavaScript</title>

5 <script> <!-- Har borjar JavaScript -->
6 document.writeln('<hi1>Valkommen till JavaScript!</h1>")
7 </script> <!-- Har slutar JavaScript -->

Spara den i filen Welcome.html. (Dubbel)klicka pa filen pa den plats du sparat
den. Din webbldsare kommer att visa korresultatet. S& har ser resultatet ut i min
webblésare (Google Chrome):

. ~ — O X
@ VArt forsta program i JavaScript X +

& C © Arkiv| G/_Taifun/Program... & Y O a@

Vilkommen till JavaScript!

Vi kommer i fortsattningen att referera till denna kod som programmet Welcome,
medan filen i vilken koden &r sprarad heter Wwelcome.html.

Vi gar nu i genom koden genom att referera till radnumren i programmet Welcome.
Huvudjobbet gors av rad 6 som skriver ut texten ovan. Men Iat oss ga fran bérjan:

13

Kommentarer

Raderna 1-2 i programmet Welcome ar kommentar. Allt som skrivs mellan <! --
och --> betyder i HTML kommentar, dvs utfors inte, utan ska forklara koden.
Kommentar borjar med <! - -, slutar med - -> och kan stracka sig dver flera rader.

HTML-taggar

Raderna 4-7 bestér av tre s.k. HTML-taggar. All kod som skrivs inom < och > kal-
las for HTML-tagg. Pa rad 4 borjar en HTML-tagg med <title> och slutar med
</title>. All text som skrivs mellan ar <title> och </title> kommer att synas
pa rubriken av webblasarens flik. | programmet Welcome ar det texten vart forsta
program i JavaScript som man kan se i korresultatet langst upp till vénster.

Pa rad 5 borjar nasta tagg med <script> som slutar pd rad 7 med </script>.
Denna tagg, script-taggen, betyder att har inbéddas JavaScript i HTML. Allt som
star mellan <script> och </script> utfors av JavaScript-interpretatorn som ar
integrerad i webblasaren. JavaScript ar standarden bland de scriptsprak som finns i
webblasaren.

Satser i JavaScript
| script-taggen (raderna 5-7) hittar vi foljande JavaScript-sats:

document.writeln('<h1>Valkommen till JavaScript!</hi1>")

Att vi kallar denna kod for sats, beror pa att den inte langre & HTML- utan Java-
Script-kod, eftersom den stdr i script-taggen. | JavaScript ar satser motsvarighe-
ten till taggar i HTML. Inte bara koden skiljer sig utan dven terminologin. Vi har nu
pa allvar kommit in i programmeringen. Det visas redan pa punkten som star mel-
lan document och writeln(). Satsen ovan &r ett anrop av funktionen writeln().
En funktion ar kod som foreskriver vad som ska gdéras. Funktionen writeln() ska
skriva ut det som star i parentesen pa webblasarens yta och byta rad efterat. Funk-
tionen &r forprogrammerad och finns i document, ett s.k. objekt tillhérande webbla-
saren. For att kunna hitta funktionen writeln() maste vi forst namna dess behal-
lare, objektet document, sétta sedan en punkt och skriva sist funktionens namn — en
slags adressering. Darfor blir det slutligen — bortsett fran parentesens innehall:

document.writeln()

Det hér sattet att koda kallas punktnotation som vi kommer att anvénda ofta i fort-
sattningen. Punkten skiljer tva olika kategorier av kod, i det har fallet objektet (fore
punkten) fran funktionen (efter punkten).

Funktioner &r karaktériserade genom parentesen (), oavsett parentesen ar tom eller
inte. Nér de ar definierade i ett objekt kallas de for metoder. S&, writeln() skulle
kunna dven kallas fér en metod. Alla dessa nya begrepp kommer att behandlas i

14

detalj senare. Vad géller writeln()-funktionens parentes kan man konstatera att
foljande regel galler:

[I JavaScript omgardas strangar av apostrofer ' ' eller citationstecken " ™.]

Strang dr den programmeringstekniska termen for text. Vi anvander i vara exempel
apostrofer. Citationstecken gér lika bra. | programmet Welcome (sid 13) star koden
<h1>Valkommen till JavaScript!</h1> inom apostrofer. D&rfor visar program-
mets korresultat sjalva texten i fet stil och i en viss storlek i webbl&saren, medan
HTMLs <h1>-tagg bestdmmer textens storlek och stil.

Observera att <h1>-taggen dvs HTML-kod fungerar i JavaScript (inom <script>-
taggen), men JavaScript-kod inte i HTML (utanfor <script>-taggen).

JavaScript-satser kan dven avslutas med semikolon. Men alternativt kan man ute-
lamna semikolonet och skriva varje sats pa en ny rad. Dvs det osynliga radavslut-
ningstecknet Enter kan ersatta semikolonet. Vi kommer att foredra detta alternativ
av minimalistiska sk&l — for att minska kod. D&remot ar det absolut nddvéndigt att
avsluta script-taggen med </script> pa rad 7, for att markera att det ar slut pa
JavaScript-kod och att det nu fortsatter igen HTML-kod.

15

1.4 Konkatenering

<!-- Concat.html
Skriver ut flera rader text i olia storlekar
med konkateneringsoperatorn + -->

<title>0lika storlekar & konkatenering</title>
<script>
document.writeln('<hl> Valkommen till JS! (med h1) </hi1>'
'<h2> Valkommen till JS! (med h2) </h2>"
'<h3> Valkommen till JS! (med h3) </h3>"
10 '<h4> Valkommen till JS! (med h4) </h4>’
11 </script>

WoONOTUVA,WNER

-+ + +

Oppna din favorit editor eller NotePad++, skriv koden ovan och spara den i filen
Concat.html. (Dubbel)klicka pa filen nar du sparat den. Webblasaren visar:

. v — (m] X
@ Olika storlekar & konkatenering X +

C O© Arkiv| C/_Taifun/Programmering/JavaScript/1%20intro/Conc... &2 Y [a :

Vilkommen till JS! (med h1)

Villkommen till JS! (med h2)
Vilkommen till JS! (med h3)

Viilkommen till JS! (med h4)

Vi kommer att referera i fortsattningen till koden ovan som programmet Concat.

Har skrivs ut fyra rader text i olika storlekar, fororsakat av HTMLS <hi>-taggar (i
= 1, 2, 3, 4) som formaterar textens storlek.

Utskriften gors av ett enda anrop av funktionen writeln() i raderna 7-10. Dvs vi
skriver egentligen ut en enda text, dven kallad strang, bara att den ar Iang och inte
ryms pa en rad. Darfor bryter vi den i fyra delar, men slar ihop strangens delar med
tecknet + i raderna 7-9. Plustecknet betyder hér inte addition, utan har en annan
betydelse som redovisas nedan.

16

Konkateneringsoperatorn +

To (con)catenate betyder péa engelska att sl& ihop. Termen anvénds inte bara i Java-
Script utan &ven i en rad olika sammanhang inom IT . | programmet Concat kon-

katenerar vi strangar med + som darfor kallas for konkateneringsoperatorn. Anled-
ningen till att vi anvander konkateneringsoperatorn i programmet ar féljande regel:

[Mitt i en strang far man inte bryta rad i JavaScript koden.]

Man kan i koden bryta rad pa alla stallen dar ett mellanslag férekommer. Detta gal-
ler dock inte for mellanslag mitt i en strang. T.ex. ger féljande radbrytning i koden
fel, dvs inget resultat, darfor att raden bryts mitt i en strang:

document.writeln('<h1>Vdalkommen till
JavaScript!</h1>")

Vill man &nda bryta rad méste man dela upp den i tva strangar och skicka mellan
dem konkateneringsoperatorn:

document.writeln('<h1>Vdalkommen till ' +
'JavaScript!</h1>")

Observera att mellanslaget i en strang méste skickas med 4ven i koden. Annars blir
det inget mellanskag i utskriften. Darfor méste vi lagga till det efter till.

Konkateneringsoperatorn hjalper oss att undvika det fel som ndmns i regeln ovan.

Overlagring

Att kod i olika sammanhang kan ha olika betydelser, kallas i programmeringster-
mer for overlagring, pa eng. overloading. De multipla betydelserna Gverlagrar va-
randra. Den aktuella betydelsen trader fram i ett konkret sammanhang och avgors
darmed av sammanhanget — bade for oss och for JavaScript-interpretatorn: Star
t.ex. + mellan tva tal betyder det addition. Star + mellan tva strangar betyder det
konkatenering. Overlagring ar ett generellt koncept inom programmering som an-
vands i alla moderna programmeringssprak.

" T.ex. i c/C++ finns funktionen strcat() som gor string catenation, dvs konkatenerar tva
strangar. Samma sak gér metoden concat() i Java. | Unix, som &r skrivet i C, finns kom-
mandot cat som konkatenerar data fran olika filer och slar ihop dem till en fil. T.ex. kopie-
rar kommandot cat filel file2 file3 > nyfil de tre filerna till nyfil.

17

1.5 Utskrifti flerarader

<!-- Break.html
Radbrytning i utskriften med HTMLs break-tagg
 -->

<title>Utskrift i flera rader</title>
<script>
document.writeln('<hl> Valkommen till
 JavaScript-' +
'
 programmering! </hi1>")

ONOUVA,WNER

</script>

Observera att vi hér pratar om radbrytning inte i koden utan i utskriften, dvs i kor-
resultatet, se nedan. Koden producerar tre utskriftsrader med hjalp av HTML-tag-
gen
, inbakad i utkriftsstrangen. Korresultatet blir:

~ — [m] X
@ Utskrifti flera rader X +

C' @ Arkiv| C/_Taifun/Programmering/lavaScript/1%2... 12 ¢ O a H

Vilkommen till
JavaScript-
programmering!

Programmet Break anvander HTML-taggen
, &ven kallad break-taggen genom
att baka in den tva ganger i strangen av document .writeln()-satsen (rad 6 & 7) for
att stadkomma radbrytning i utskriften.

Konkateneringsoperatorn + anvands pa rad 6, precis som i programmet Concat (sid
16), for att inte beh6va bryta rad i koden mitt i en string, se regeln pa forra sidan.

-taggen &r HTML kod. Vi har anvént den i document.writeln()-satsen som i
sin tur finns inom script-taggen, dvs dar JavaScript kod galler. Andd kommer
radbrytning i utskriften inte fungera, om vi byter ut HTML koden
 mot Java-
Scripts motsvarighet till radbrytning, som &r \n. Genomfor gérna detta experiment.
Langre fram kommer vi att forklara \n narmare.

18

Radbrytning i utskriften med JavaScript

<!-- Escape.html
Radbrytning i utskriften med JavaScripts escapesekvens \n
Anvander JavaScript funktionen alert() -->

<script>
alert(' Valkommen till \n JavaScript- \n' +
' programmering! \n\n Det har ar ' +

1
2
3
4
5 <title>Utskrift i flera rader med \n</title>
6
7
8
9

en meddelanderuta (JavaScripts alert box).')
10 </script>

12

13 <h3>Ladda om sidan (Ctrl-R) for att kora om skriptet.</h3>

Korresultatet ar:

D) Utskiift i flera rader med \n x +

X @ localhost:49765/Esape.html = % 0O e H

Fran localhost:49765:

Valkommen till
JavaScript-

programmering!

Det hér 4r en meddelanderuta (JavaScripts alert box).

Har ser man tydligt att alert boxen visas i en ruta skild fran webbdokumentet. Alert
boxen &r en JavaScript-konstrukt som bestdr av en meddelanderuta och en OK-
knapp som stanger rutan nar den klickas. Programflodet atergar sedan till webb-
lasaren som forst gor radbyte med
 enligt rad 12 i programmet Escape och
sedan skriver ut féljande instruktion till anvandaren:

v - O X
6 Utskrift i flera rader med \n X +

C @ localhost52110/Esape.html 1= Y O e H

<) Loopia Webmail M TAgmail Chas m(o) Qlok »

Ladda om sidan (Ctrl-R) for att kéra om skriptet.

19

Programkdérningen &r inte avslutad forran webblasaren stangs.

Funktionen alert()

Programmet Escape anvander en annan funktion an programmet Break for att skri-
va ut text, namligen funktionen alert() pa rad 7. Detta for att demonstrera rad-
brytning i utskrift med JavaScript-koden \n som inte fungerade i programmet
Break.

alert() &r en JavaScript-funktion som genererar en meddelanderuta, en s.k. alert
box. For att astadkomma radbyte i utskriften anvands JavaScript-koden \n som be-
tyder newline (rad 7 & 8), se Escapesekvenser nedan. Precis som \n inte fungerade i
programmet Break, for att astadkomma radbrytning i utskriften, kommer
 inte
fungera i programmet Escape. Genomfor gdrna detta experiment genom att byta ut
alla \n pé raderna 7 & 8 i programmet Escape mot
.

| programmet Escape blir inte bara skilnaden utan &ven samspelet mellan HTML
och JavaScript pataglig.

Escapesekvenser

\n ar ett exempel pa en escapesekvens. P& svenska betyder to escape att fly. Esca-
pesekvenser inleds med tecknet backslash \ &tfoljt av endast ett tecken. Med \
vill man fly fran tecknets vanliga betydelse och ge det en annan betydelse. Med \n
t.ex. vill man fly frén bokstaven n och dstadkomma en newline. P& samma sétt fun-
gerar andra escapesekvenser som t.ex. \t, \b , \' , \o, \f , \r, Escape-
sekvensen \' t.ex. kan anvéndas for att skriva ut sjalva apostrofen.

Escapesekvenser &r ett generellt koncept som anvands i alla moderna programme-
ringssprak.

20

11

1.2

13

14

15

1.6

1.7

1.8

1.9

1.10

111

1.12

1.13

1.14

1.15

1.16

1.17

1.18

1.19

1.20

Fragor till

Vad menar Steve Jobs med sitt pastaende att programmering lar oss att tanka?

Hur tolkar du termen artificiell intelligens (Al)? Tror du att maskiner kan lara
sig att “tanka”? Eller &r det bara nagot som manniskan kan gora?

Forsok att med egna ord beskriva algoritmiskt tdnkande.

Vad har algoritmiskt tinkande med programmering att géra?

Hur skulle du definiera begreppet algoritm?

Ar datorprogram det enda séttet att beskriva en algoritm?

Anvander du i vardagen algoritmer? Om ja, namn nagra exempel.

Vad innebér modularisering och varfor &r den relevant for programmering?
Varfor kan man inte lara sig programmering genom att endast l&sa bocker?
Vad innebar kompilering och hur skiljer den sig fran exekvering?

Skriver man kallkod eller maskinkod nar man programmerar?

Vilken egenskap borde editorn ha i vilken man skriver programkoden?
Ar JavaScript ett universellt programmeringssprak? Motivera!

Ar JavaScript ett interpreterande eller ett kompilerande sprak?

Ar JavaScript kéllkod eller maskinkod?

I vilken miljo exekveras JavaScript kod?

Vad har JavaScript med HTML att gora?

Vilka verktyg behdver man for att kunna utveckla JavaScript program?
Vilka typer av ordbehandlingsprogram ar oldmpliga fér programmering?

Varfor &r filandelser relevanta for en programmerare?

21

121

1.22

1.23

1.24

1.25

1.26

1.27

1.28

Ovningar till

Har du en favorit editor (sid 9)? Om ja, 6ppna den. Om inte, ladda ned open-
source editorn Notepad++ och installera den. Undersok i editorn skillnader-
na — vad géller formen och utseendet — mellan tecknen apostrof ('), cita-
tionstecken ("), accent (~) och backslash (\). Ta reda pa och kom ihag
deras tangenter pd ditt tangentbord.

Visar din dator filandelserna nér du éppnar en mapp? Om inte, genomfor in-
struktionerna Att hantera filandelser pa sid 11 for att synliggora filandelserna.

Oppna din favorit editor eller Notepad++ och mata in koden till programmet
Welcome (sid 13). Bibehall layouten. Spara koden i filen welcome.html.
(Dubbel)klicka pa filen, sa att den kors i din webblasare. Ersatt alla apostro-
fer i koden med citationstecken och kér om koden. Vilken slutsats drar du?

Modifiera programmet Welcome genom att dndra texten i <titles>-taggen
till ditt namn och texten som skrivs ut i dokumentet, till: Det hir program-
met har jag skrivit sjalv! Spara koden i filen Mitt.html och kor den.

Ersdtt document.writeln()-satsen i programmet Concat (sid 16) med fyra
olika satser. De ska ge samma utskrift som det ursrungliga programmet. An-
dra desutom koden, sa att de fyra utkriftsraderna syns i vaxande textstorle-
kar istéllet for minskande.

Utskrift i flera rader kan kodas pa tva olika satt: antingen med HTMLS
-
tagg eller med JavaScripts escapesekven \n. Ersétt i programmet Break (sid
18)
 med \n. Ersatt i programmet Escape (sid 18) \n med
. Beakta
funktionerna i vilka dessa koder fungerar. Vilka slutsatser drar du?

Skriv ett JavaScript program som *
astadkommer foljande utskrift: * ok
* % %
* % k%
* %k %k k%
* %k kkk

Sétt in foljande kod i ett JS program och testa vad den ger for utskrift:

document.writeln('****<ppr>"*
TkEkkEkk oy

Vhkskkkkk o !
viokskokkkk s !
Viokskokkkkk s !
viokskokkkk s !
viokkkkk o !
vikkkkkopps !

Tkkkkoehpy !

— 4+ 4+ 4+ +++++

22

Kapitel 2

Grundbegrepp

programmering

Amne Sida Program
2.1 Variabler 24 Variable
- Vad ar en variabel? 24
- Tilldelningsoperatorn = 25
2.2 Overskrivning eller kan x = x + 1 vara sant? 27 Overwrite
- Prioritet av operatorer 28
- Tilldelning vs. likhet 28
2.3 Inldsning av data 29 Input
- Funkionerna prompt() och parseInt() 30
2.4 Arrays 31 Arraydef
- Arrayens initieringslista 34 ArrayInit
2.5 Hantering av slumptal 36 Random
- Slumptan inom ett intervall 37
Ovningar till kap 2 38
Inlamningsuppgift 39

23

2.1 Variabler

1 <!-- variable.html

2 Adderar tva tal med variabler -->

3

4 <title>Addition med variabler</title>

5

6 <script> // Radkommentar i JavaScript
7 nol = 2 // Initiering av variablerna
8 no2 = 3 // nol, no2 och sum

9 sum = nol + no2

10

11 document.writeln('<h2> Summan av ' + nol + ' och '
12 + no2 + ' ar " + sum + '. </h2>")

13 </script>

Har forekommer tva lika koder for kommentar: Raderna 1-2 4r kommentar som ar
HTML-kod. Den borjar med <!-- och slutar med -->, kan stracka sig ¢ver flera
rader och darfor kallas for blockkommentar. | raderna 6-8 inleds kommentar mitt
pé en rad med JavaScript-koden // som slutar nar raden slutar och darfor kallas for
radkommentar. Att vi kan anvanda den hir, beror pd att vi gor det efter <script>-
taggen, dar JavaScript-kod géller. | korresultatet syns forstas inte kommentarerna:

e — 0O X
@ Addition med variabler X +

C © Arkiv| C/_Taifun/Program... = vr O e :

Summan av 2 och 3 ar 5.

| programmet variable skapas pa raderna 7-9 tre variabler no1, no2 och sum.

Vad ar en variabel?

En variabel &r en platshéllare (minnescell) for ett vérde (data).
I koden f3r variabeln ett namn som anvands for att komma 8t vardet.

I ett program kan variabelns varde andras, men inte namnet.

Ex.: P4 rad 7 skapas variabeln no1 och initieras till vardet 2.

24

Né&r vi kdr programmet variable reserveras en minnescell i datorns RAM (Ran-
dom Access Memory) vars namn &r no1 och vars innehall ar 2:

nol | 2 |

Det ar jamforbart med en lada vars etikett &r variabelns namn och vars innehall ar
variabelns vérde. Vérde &r data i storsta allménhet, dvs tal, tecken, men &ven ett
sanningsvarde, en strang, langre text, en fil, ja t.o.m. en bild. Vi kan i programmet
komma at vardet 2 genom att i koden referera till variabeln no1. Detta gors t.ex. pa
rad 9, for att addera variablerna no1:s och no2:s vérden och initiera darmed varia-
beln sum.

Motsatsen till variabel ar begreppet konstant, t.ex. 2, som inte kan andra sitt varde
under en programkorning. Det kan daremot en variabel gora. Hos en variabel maste
man alltid skilja mellan namnet och vérdet, medan konstanter &r i regeln namnlgsa.

Tilldelningsoperatorn =
| programmet Variable kodas initieringen av variabeln no1 med satsen:

nol = 2 // Initiering av variabeln nol

Har far variabeln no1 vérdet 2. Man skulle kunna beskriva bilden sa har:
Variabel s E— Varde

Dvs likhetstecknet kan snarare jamforas med en pil som pekar fran hoger till van-
ster. | RAM-minnet ser bilden ut s& som det visades ovan. Variabelns namn é&r i
koden den mjukvaruméssiga motsvarigheten till minnescellens fysiska adress.

Vi kan i fortsattningen komma &t vardet 2 genom att referera till no1. T.ex. om vi
nu skriver document.writeln(no1) far vi vardet 2 utskrivet.

Symbolen = betyder i matematiken likhet. Men i programmering betyder = inte
likhet utan tilldelning och symbolen kallas for tilldelningsoperatorn. Den visar
ingen likhet utan uttfor tilldelning vilket betyder att en variabel far ett vérde. Det ar
skillnaden mellan att vara och att bli. Likhet har i JavaScript symbolen == som
anvands i villkor for att testa tva varden pa likhet.

Samma sak ar det forstds med variabeln no2 som i programmet variable far var-
det 3. Sedan utfors additionen nol + no2. Har adderas vérdena lagrade i variabler-
na nol och no2. Resultatet tilldelas variabeln sum. Vi refererar till vardena med
hjélp av variablerna. Att additionen + gérs forst och tilldelningen = sedan beror pa
att + binder starkare &n = .

25

Utskriftssatsen

Intressant i programmet variable ar hur koden i utskriftssatsen méste skrivas for
att med hjalp av variablerna dstadkomma korresultatet Summan av 2 och 3 &r 5. Det
ar en kombination av variabler, strangkonstanter (inom apostrofer) och konkatene-
ringsoperatorn + som maste skrivas i parentesen till funktionen writeln():

document.writeln('<h2> Summan av ' + nol + ' och '
+no2 + ' ar '+ sum+ ', </h2>")

<h2>-taggen som styr utskriftstextens storlek samt all text maste bakas in i apostro-
fer (strangkonstanter), medan variablerna maste sta utanfor apostroferna. Nar de
kopplas ihop med + &r det variablernas aktuella varden som skrivs ut.

26

2.2 Overskrivning eller kan x = x + 1 vara sant ?

1 <!-- Overwrite.html

2 = betyder i programmering inte likhet utan tilldelning -->
8

4 <title>Overskrivning</title>

5

6 <script>

7 X =5 // Initiering av variabeln x

8 document.writeln('
Variabeln x har initierats till ' + x)
9

10 X =Xx+1 // Overskrivning av variabeln x

11

12 document.writeln(', sedan okats med 1 och ar nu " + x + ".")

13 </script>

” | ett program kan variabelns varde andras, men inte namnet. ”

Vad &r en variabel? (sid 24)

E.n . @ Overskrivning X + he - O X
kdrning
ger: C @ localhost51451/Overwrite... 1@ ¥ O @

Variabeln x har initierats till 5 . sedan ékats med 1 och 4r nu 6.

For tilldelning anvéander JavaScript samma symbol = som for likheten i matematik,
vilket kan ge upphov till missforstand eftersom det handlar om tva olika typer av
operationer. Tilldelning ar en instruktion som skall utféras, medan likhet ar en jam-
forelse som endast kan testas om den &r sann eller falsk. Vid enkel tilldelning, t.ex.
pa rad 7, har vi x = 5, dvs variabeln x férekommer endast pa vénster sidan:

Variabeln x —=—— Virdet 5
Men vid en annan tilldelning, t.ex. pa rad 10, finns samma variabel x pa bada sidor:

X =X+1
Dvs:
X —=-—— X +1

Om t.ex. x har vardet 5 fore denna sats, innebar satsen ovan att 5 ska adderas med
1 och att det nybildade vardet 6 ska tilldelas variabeln x:

X —=——— 5 +1

27

Efter satsen har x vérdet 6. Det nya vardet 6 skriver éver det gamla vérdet 5:
x | 56 |

Detta kallas for dverskrivning av variabeln x. Variabeln x &r en platshéllare vars
varde kan andras medan namnet bibehalls (sid 24). Initialvardet 5 tilldelas variabeln
x. Satsen x = x + 1 Okar vérdet till 6 och dverskriver det gamla vardet 5 med det
nya vardet 6. Men varfor okas vardet forst, innan det dverskrivs? Det beror pa:

Prioritet av operatorer

Tva operatorer ar inblandade i satsen x = x + 1, additionen + och tilldelningen = .
Att JavaScript-interpretatorn utfor additionen forst och tilldelnigen sedan beror pa
att operatorn + har hégre prioritet, dvs binder starkare, an tilldelningsoperatorn = .
Operatorernas prioriteter ar definierade i alla programmeringssprak. Darfor slipper
vi att skriva: x = (x + 1), vilket vi hade varit tvungna att géra om = hade samma
prioritet som eller hdgre &n + . Parentesen bryter prioritetsreglerna. Det &r inte fel
att skriva x = (x + 1) istéllet for rad 10, men i det hér fallet onddigt.

Tilldelning vs. likhet

Vi har i satsen x = x + 1 med tva olika varden till en och samma variabel x att gora,
men vid tva olika tidpunkter. Det gamla vérdet 5 finns i variabeln x fére satsen och
det nya vérdet 6 finns i variabeln x efter satsen.

I matematiken betyder tecknet = likhet. Darfor ar det fel att skriva X = x +1 ef-
tersom detta ar en ekvation som saknar 16sning. Man kan ocksa saga att det &r ett
falskt pastdende som leder till motsdgelsen 0 =1. Vill man vara matematiskt kor-
rekt maste man anvanda tva variabler och skriva s har:
X =X
nytt gammalt

I programmeringen déremot betyder tecknet = inte likhet utan tilldelning. Darfor
ar det helt oK att skriva x = x + 1 eftersom det inte handlar om ett pastdende som
kan vara sant eller falskt utan snarare om en instruktion som ska utféras. Samma
variabel x anvands pa bada sidor av tilldelningstecknet. x ar en platshallare (min-
nescell) vars innehall (vérde) skall dverskrivas med satsen x = x + 1 Instruktionen
lyder att tilldela variabeln x ett nytt vérde, att 6ka det gamla vardet med 1. For
likhet har an i JavaScript koden == som kallas for jamforelseoperator, se sid 44.

Filosofiskt handlar det om den klassiska skillnaden mellan att vara och att bli,
mellan tillstand och handling, mellan den statiska likheten och den dynamiska till-
delningen. Vid tilldelning relateras sanningen till tiden, dvs fragan &r inte om utan
nar x = 5. Jo, precis nar variabeln x tilldelas vérdet 5. Inte innan och ev. inte heller
efterat, for redan i nasta programsats kan ju variabeln x tilldelas ett annat vérde.
Med andra ord: Tilldelning &r likhet relaterad till tiden dvs vid ett visst 6gonblick,
medan likheten &r tidlos.

28

2.3 Inlasning av data

Hittills hade alla vara programexempel handlat om att skriva ut till skarmen. De
hade endast utdata och ingen indata. Vill man dven lasa in data till programmet,
kan man anvénda sig av JavaScript-funktionen prompt().

1 <!-- Input.html

2 Laser in tva tal och skriver ut dem samt deras produkt

3 Funktionen prompt() skriver ut en ledtext och ldser in

4 Funktionen parseInt() omvandlar inmatningen till heltal -->
5 <title>Inlasning av data</title>
6

7

8

9

<script>
nol = prompt('Mata in ett heltal') // Inldsning
no2 = prompt('Mata in ett heltal till')
10 prod = nol * no2

11

12 document.writeln('<h2>' + nol + ' ganger ' + no2 +
13 ‘‘ar ' + prod + '. </h2>")

14 </script>

15

16 Ladda om sidan (Ctrl-R) for att kéra om skriptet.

| programmet Input anropas funktionen prompt() tva ganger (rad 8 & 9). Bada an-
ropen stoppar kérningen i vantan pa inmatning. En ledtext skrivs ut som instruktion
till anvéndaren. Féljande meddelanderutor genereras:
[(U Inldsning av data x o+ r Inlsning av data x +

X @ localhost52706/Prompthtml & % O e g X @ localhost52706/Prompthiml ¥ +# O e t

Fran localhost:52706: Fran localhost:52706:

Mata in ett heltal Mata in ett heltal till

B l E l

| \
Forst nar man matat in och klickat pa ok fortsatter programkérningen och vi far:

Y% —] X
@ Inlasning av data X +

C © Arkiv| C/_Taifun/Progra.. & % O e :
&) Loopia Webmail M TAgmail Chas m(o) Qlaok »
5 ganger 6 ir 30.

Ladda om sidan (Ctrl-R) for att kéra om skriptet.

29

Programmet Input arbetar med tre variabler: no1, no2 och prod. Detta kan anses
som en vidareutveckling (generalisering) av programmet variable (sid 24). Va-
riablerna no1 och no2:s varden &r inte langre hardkodade utan ldses in med god-
tycklig data. Variablernas initiering sker genom inldsning.

Funktionen prompt()

Det som astadkommer inlasningen &r anropet av funktionetnt prompt() parad 8 i
satsen:

nol = prompt(‘'Mata in ett heltal')
Denna sats gér manga saker:

Stoppar programkorningen i vantan pa inmatning.

Genererar en meddelanderuta.

Skriver ut en ledtext som instruerar programmets anvéandare.
Skapar variabeln no1 och initierar den med heltalet fran punkt 4.
Fortsatter programkdrningen, nar anvandaren klickat pa OK.

arwbdE

Inmatningen returneras av funktionen prompt(). Men eftersom prompt() ar en
fordefinierad funktion i JavaScript som returnerar en strang, maste returvaret om-
vandlas till heltal och tilldelas variabeln no1, for att kunna multipliceras pa rad 1e.

Det ar dven mojligt att anropa funktionen prompt() utan ledtext. Men det tillhor
god programmeringsstil att inte gora det, utan att skicka en ledtext, for att underlat-
ta for anvandaren, nar markéren stdr och blinkar. Annars kan situationen tolkas
som om programmmet har “héngt sig”. Kommunikation och tydlighet &r uppskatta-
de egenskaper &ven hos nordiga programmerare.

30

2.4 Arrays

Datorn har nagra egenskaper som &r helt 6verlagsna motsvarande egenskaper hos
manniskan: snabbheten, noggrannheten och formagan att effektivt lagra och hante-
ra stora datamangder samt formagan att aldrig bli trott.

Vi ska i detta avsnitt introducera ett verktyg som utnyttjar en av dessa dverlagsna
egenskaper, namligen att kunna effektivt lagra och hantera stora dataméngder.
Detta verktyg heter array och betyder ordnad uppstallning (battle array = strids-
ordning), en ordnad skara av data. Ibland anvénds i litteraturen begreppet falt som
ar identiskt med array.

En array ér en ordnad mangd av variabler grupperade under ETT namn.

Arrayens delar kallas fér element. Elementens position kallas for /ndex.

Vi kan gruppera t.ex. 20 variabler i en array med 20 element:

Hittills: 20 enkla variabler: Nu: EN array:

nol

no2 \

Hittills behdvde vi skriva 20 satser for att skapa 20 variabler. Men nu har vi mojlig-
heten att géra samma sak med endast en sats, genom att skapa en enda variabel —
visserligen inte langre en vanlig variabel utan en arrayvariabel — och l&gga till
informationen om antalet element i den. P& s& satt har vi skapat en arrayvariabel
no.

no20

Arrayvariabeln no ersatter de 20 vanliga variablerna no1, no2, ..., no2e och bestar
nu i sin tur av 20 element. Varje element dr en variabel som kan lagra ett varde.
Enda skillnaden &r sattet dvs koden att komma &t dessa vérden. Indexet &r ett num-
mer som specificerar varje elements position i arrayen. Varje element i en array
kan betraktas som en indexerad dvs numrerad variabel.

En array ar inte langre en enkel utan en s.k. sammansatt datatyp. En enkel datatyp
representerar ETT varde &t gangen, t.ex. ett heltal, ett deci-maltal, ett tecken, ett
sanningsvarde osv. En sammansatt datatyp representerar fler an ett véarde at gan-
gen, t.ex. flera heltal, flera flyttal, flera tecken, flera sanningsvérden osv. Man kan
gruppera enkla datatyper till den sammansatta datatypen array.

31

Atkomst till arrayens element

Féljande sats definierar arrayen no: no = new Array(20)

Den allokerar (reserverar) 20 minnesceller for lagring av 20 varden. Lat oss anta att
t.ex. vissa varden tilldelats arrayen no:s element, som man ser pa bilden nedan.
Eftersom elementen i en array alltid lagras i ett sasmmanhangande minnesomrade,
uppstar féljande minneshild:

Minnesbild av arrayen no:

| 25 | 157 | 10 | . . .| 38 | 6 | 219 |

no[0] no[1] no[2] e e e no[17] no[18] no[19]

Bilden visar hur indexeringen av element i en array organiseras. | raden under min-
nescellerna star hur JavaScript-kod kommer &t varje element i en array. Det &r an-
markningsvart r att indexnumreringen boérjar med @, medan vi ménniskor &r vana
vid att paborja numreringen av ett antal objekt med 1. F6ljande indexregel galler:

Indexregeln: I arrays bérjar numreringen av index alltid med 0.

Darfor gadller: elementets position = index + 1

Med position menas numret som ménniskan anvéander for att rdkna elementen, me-
dan kodens numrering — det som star inom hakparenteserna [] — Kallas for index.

Det 1:a elementet i arrayen no ovan har index @ och vardet 25, medan positionen &ar
1. JavaScript kodar elementet med no[@]. Det 2:a elementet har index 1 och vardet
1257 medan koden &r no[1]. Det 3:e elementet: index 2, vérdet —10 och koden
no[2] osv. Det n:e elementet har alltid index n-1. Darfor har ocksé det 20:e ele-
mentet index 19 och vardet 219. Det galler att hélla isar det manskliga sattet att
numrera som bérjar med 1 frdn JavaScript-kodens sétt att indesera som bérjar med
0. Vi har definierat 20 variabler no[@], ..., no[19]. Antalet element &r 20. In-
dexen gar fran o till 19.

Av indexregeln foljer dessutom att negativa index generellt inte &r tillatna.

32

Definition och initiering av en array

Féljande program demonstrerar allt vi sagt om arrays speciellt indexregeln. Dessu-
tom kan vi se, hur JavaScript hanterar dverskridningen av de definierade index-
granserna.

1 <!-- ArrayDef.html
2 Definierar en array, initierar & skriver ut den elementvis
3 JavaScript tar hand om 6verskridning av indexgransen -->
4 <title>Arrays</title>
5 <script>
6 no = new Array(3) // Definition av en array
7 // med 3 element
8 no[@] = 64 // 1:a element initieras
9 no[1] = 86 // 2:a element initieras
10 no[2] = 34 // 3:e element initieras
11
12 document.writeln('<h3>Arrayens forsta element no[0]' +
13 ' har vardet ' + no[@] + '.

' +
14 'Arrayens andra element no[1]' +
15 ' har vardet ' + no[1] + '.

' +
16 'Arrayens tredje element no[2]' +
17 ' har vardet ' + no[2] + '.

' +
18 'Arrayens fjarde element no[3]' +
19 ' har vardet ' + no[3] + '.</h3>")
20 </script>
Vi tittar pa en korning:

@ Arrays X + ¥ a o >

C @ localhost:49834/ArrayDefhtml = w O e :
<) Loopia Webmail M TAgmail Qlok STI mia) »

Arrayens forsta element no[0] har viirdet 64.
Arrayens andra element no[1] har viirdet 86.
Arrayens tredje element no[2] har viirdet 34.

Arrayens fjirde element no[3] har viirdet undefined.

Korningen visar att icke-definierade arrayelement inte leder till nagot fel. Index 3
overskrider de definierade indexgranserna @ och 2. Arrayelementet no[3] ar var-
ken definierat eller tilldelat ndgot varde. Anda kan man skriva det i koden och kora

33

programmet. Inte ens en varning papekar att man anvant kod som ar odefinierad.
Anledningen &r foljande:

I en array kontrollerar JavaScript endast arraynamnet, inte indexen.

Arrayelement som Overskrider indexgranserna blir “undefined”.

Ett annat namn &n det definierade arraynamnet no leder till fel. Om vi ddremot an-
vander ett index som overskrider de definierade grénserna, kan vi fotfarande exe-
kvera koden. Ansvaret for kontroll av indexgranserna ligger helt och hallet hos
programmeraren. Skalet for denna liberala attityd ar bl.a. strdvan efter snabbhet,
vilket forstas ar pa bekostnad av sakerheten.

Arrayens initieringslista

Precis som det finns skillnader i definitionen av arrayvariabler jamfért med vanliga
variabler, finns &ven skillnader vid initieringen dvs forsta tilldelningen. T.ex. &r
initieringen av arrayen no i programexemplet ArrayDef — en sats for varje element
— inte sérskilt lamplig for arrays, speciellt om man skulle tillampa samma teknik pa
stdrre arrays. Men just hanteringen av stora dataméngder var ju motiveringen for
att syssla med array. Kan man inte effektivisera initieringen? Jo, till en viss grans.
Det finns i huvudsak tvd mojligheter: antingen att anvanda for-satser eller att sla
ihop definitionen med tilldelningen till en kortform som anvénder sig av en s.k. ini-
tieringslista. Bada har vi anvant i foljande program:

1 <!-- ArrayInit.html

2 Kortform for definition och initiering av en array med

3 en initieringslista. Direkt tilldelning till en kopia -->
4 <title>Initieringslista</title>

5 <script>

6 no = [64, 86, 34] // Kortform pa definition och

7 // initiering med initieringslistan
8 copy = nho // Tilldelning med arraynamnet

9 // Elementvis utskrift av kopian:
10 document.writeln('<h3>Kopians forsta element copy[0]' +
11 ' har vardet ' + copy[@] + '.

' +
12 'Kopians andra element no[1]' +
13 ' har vardet ' + copy[1] + '.

' +
14 'Kopians tredje element copy[2]’ +
15 ' har vardet ' + copy[2] + '.

' +
16 'Kopians fjarde element copy[3]' +
17 ' har vardet ' + copy[3] + '.</h3>")
18 // Utskrift av kopian med arraynamnet:

19 document.writeln('<h3>Utskrift med arraynamnet: ' +
20 ‘copy = ' + copy + '</h3>")

21 </script>

34

En kérning av programexemplet ArrayInit visar att vardena frén arrayen no verk-
ligen kopierats 6ver till arrayen copy:

— (] pd

@ nitieringslistan X + e
C © localhost:49834/Arraylnithtml = v O e :
) Loopia Webmail M TAgmail Qlok STI mi(o) »

Kopians forsta element copy[0] har viirdet 64.
Kopians andra element copy[1] har virdet 86.
Kopians tredje element copy[2] har virdet 34.
Kopians fjirde element copy[3] har virdet undefined.

Utskrift med arraynamnet: copy = 64,86,34

Béde definitionssatsen och initieringssatserna i ArrayDef — det ar de 4 forsta sat-
serna — kan slas ihop till den enda satsen:

no = [64, 86, 34] // Kortform fér definition och
// initiering med initieringslistan

Satsen gor tva saker: Forst, fram till tilldelningstecknet definieras arrayen no utan
nagon uppgift om arrayens storlek. Sedan, fran och med tilldelningstecknet tillde-
las arrayen no:s element fyra varden som star i en kommaseparerad lista grupperad
inom hakparenteserna [] som kallas arrayens initieringslista. Satsen ovan ar
endast en kortform for de fyra forsta satserna i <script>-taggen till ArrayDef och
gor precis samma sak som de. JavaScript-interpretatorn far informationen om arra-
yens storlek i initieringslistan, dvs réknar antalet kommaseparerade element inom
hakparenteserna []. Observera att man far anvanda kortformen ovan endast i
samma sats som definitionen.

35

2.5 Hantering av slumptal

1 <!-- Random.html

2 Slumpar tal mellan © och 1 med funktionen Math.random()

3 parseInt(1+Math.random()*6) slumpar heltal mellan 1 & 6 -->
4 <title>Random</title>

5

6 <script>

7 document.writeln('<h3>Math.random() ger' +

8 ' slumptal mellan @ och 1:

" +

9 Math.random() + '
' + Math.random() +

10 '
' + Math.random() + '</h3>")

11

12 document.writeln('<h3>parseInt(1 + Math.random() * 6) ' +
13 ' slumpar heltal
mellan 1 och 6 (Tarningskast): ' +
14 '

"' + parseInt(l1 + Math.random() * 6) + '
' +
15 parseInt(1 + Math.random() * 6) + '
"' +
16 parseInt(1 + Math.random() * 6) + '</h3>")
17 </script>

18

19 Ladda om sidan(Ctrl-R) fér att kéra om skriptet.

En korning ger: v - 0O x

@ Random X 4
C @ Arkiv| C/_Taifun/Progra.. & v O e :
<) Loopia Webmail M TAgmail Chas m{o) Qlok »

Math.random() ger slumptal mellan 0 och 1:

0.9339709732969381
0.08554860403602405
0.5692527793667779

parselnt(l + Math.random() * 6) slumpar heltal
mellan 1 och 6 (Tirningskast):

[I)

Ladda om sidan(Ctrl-R) for att kéra om skriptet.

JavaScript-funktionen Math.random() slumpar decimaltal mellan @ och 1 (rad 9 &
10). Mer exakt inom intervallet [@, 1), dvs fran och med o till, men inte med, 1.
Matematiskt uttryckt:

0 < Math.random() <1

36

Egentligen kan datorn som en deterministisk maskin inte producera slumptal, Man
kan endast simulera slumptal genom att berdkna tal, vilket sker enligt en viss algo-
rtim. Resulatet ar forstas inte “akta” slumptal. | praktiken maste vi ndja oss med
simulerade slumptal, s.k. pseudoslumptal.

Programmet Random:s utskrift visar tre slumptal mellan e och 1, dessutom decimal-
tal. Ur anvéndningssynpunkt ar det inte sarskilt intressant att hantera slumptal med
16 decimaler mellan @ och 1. Ofta vill man inte ha decimal- utan heltal och dessu-
tom kunna sjélv bestdmma inom vilket intervall heltalen ska vara.

Slumptal inom ett intervall

Har vill vi konstruera en formel som slumpar heltal inom ett 6nskat intervall. Lat
oss for enkelhetens skull borja med intervallet [1, 6], t.ex. for simulation av tér-
ningskast. Sedan kan man generalisera formeln till ett godtyckligt intervall [a, b].

For att skraddarsy JavaScript funktionen Math.random() for vart andamal, namli-
gen att fa heltal mellan 1 och 6, utfor vi forst en skalning med 6 och sedan en skift-
ning med 1. Slutligen gérs en omvandling till heltal. Féljande formel fas:

parseInt(1 + Math.random() * 6)

Med skalning menas multiplikation med 6, dvs en forstoring av intervallet [0, 1)
till [@, 6), dvs fran och med o till, men inte med, 6. Om vi endast tar heltalsdelen
ger detta slumptal mellan @ och 5.

Med skiftning menas en forskjutning av intervallet [@, 5] med + 1 som ger
slumptal mellan 1 och 6.

Slutligen omvandlas hela uttrycket till heltal med hjalp av JavaScript-funktionen
parseInt(). Vi far formeln ovan som har anvants i programmet Random pa rader-
na 14-1e.

Formeln kan generaliseras: Vill man ha slumptal mellan a och b och a < b, kan
man transformera talen mellan @ och 1 till tal mellan a och b, genom att skriva:

parseInt(a + Math.random() * (b - a + 1))
For att fa intervallet [a, b]:s langd maste man bilda uttrycket b - a + 1.
Ar a > b maste formeln ovan ersittas med:

parseInt(b + Math.random() * (a - b + 1))

Dessa formler skulle kunna anvéndas i program som ska slumpa heltal i intervallet
[a, b].

37

2.1

2.2

2.3

24

25

2.6

2.7

Ovningar till

Komplettera programmet variable (sid 24) genom att skapa ytterligare va-
riabler, sdg diff, prod, div. Tilldela till dem uttryck bildade med de andra
raknesétten -, * och /. Skriv ut resultaten med meningsfulla utskrifter, ge-
nom att anvénda varablernas namn.

Varfor fungerar inte foljande kod i JavaScript?

<!=0vn_2_2.html
Adderar tva tal med variabler -->
<title>Funkar inte!</title>
<script>
a=1
sum = sum + a
document.writeln('<h2> sum = ' + sum + '. </h2>")
</script>

ONOUVHA, WNER

Hitta felets orsak och atgarda felet.

Ersatt i programmet OoverWrite (sid 27) satsen x = x + 1 med x++. Blir det
samma resultat ndr du koér? Dra slutsats for betydelsen av satsen x++. Gor
samma sak med x-- istéllet? Forklara skillnaden till férra kérningen. Med
vilken sats &r x-- identisk?

Vidareutveckla din 16sning till 6vn 2.1 genom att ersétta den héardkodade
tilldelningen av variablerna no1 och no2 med inl&sning. Anvand for inlés-
ningen funktionen prompt () med ledtext, se programmet Input (sid 29).

Skriv ett JavaScript program som skriver ut fem slumptal

a) mellan 0 och 1.
b) mellan 10 och 30.
¢) som heltal mellan 25 och 50.

Skriv ett JavaScript program som laser in tre siffror (0-9) och skriver ut dem
i omvénd ordning.

Skriv ett JavaScript program som l&ser in tre tecken och skriver ut dem i
omvénd ordning.

38

Inlamningsuppgift

Gymnastiktavling Skriv ett JavaScript program som avgor en tavling i gym-
nastik. Tre tavlande deltar i tavlingen. De far sina poang av 3 olika domare. Poén-
gen ska ligga mellan 0 och 10. Podngen ska summeras till en totalpoang for varje
tavlande. Programmet ska skriva ut bade varje tavlandes totalpoang och utropa
tavlingens vinnare.

Anvand tre arrays. Varje array ska lagra poangen for varje tavlande. Varje element
i arrayen ska tilldelas en domares poang. Simulera domarnas podnggivning med
slumptal inom intervallet [0, 10]. Slumpvardena kan vara decimaltal.

Ledning:

Steg 1 L4&s i kursboken, avsn. 2.4 Arrays (sid 31).

Steg 2 Skapa tre arrays, en till varje tavlandes poéng.

Steg 3 La&s i kursboken, avsn. 2.5 Hantering av slumptal (sid 36), speciellt
om Slumptal inom ett intervall (sid 37).

Steg 4 Fyll varje array fran steg 2 med slumpvarden i intervallet mellan 0
och 10 (domarnas podnggivning).

Steg 5 Skapa tre variabler, en for varje tavlandes totalpoéng, och initiera
dem med summan av varje tavlandes poiang (fran Steg 4).

Steg 6 Bestdm den stdrsta bland de tre tdvlandes totalpodng. Anvénd funk-
tionen max () som behandlas i kursboken (sid 47) resp. pa lektion 5.

Steg 7 Skriv ut bade de tavlandes totalpodng och vilken av dem som vun-

nit gymnastiktavlingen.

39

http://www.mathonline.se/Boken%20Progr_1_JavaScript.pdf
http://www.mathonline.se/Boken%20Progr_1_JavaScript.pdf
http://www.mathonline.se/Boken%20Progr_1_JavaScript.pdf
http://34.248.89.132:1808/index.php?title=Lektion_5_(JS)

Kapitel 3

Kontrollstrukturer

Amne Sida Program
3.1 Vad ar kontrollstrukturer? 41
3.2 Enkel selektion: if-satsen 42 SsimpleIf
- Villkor 43
- Jamforelseoperatorer 44
- Bestamning av max/min 45 Max
- Modularisering 46
- Funktionen max() 47 MaxFct
- Om funktioner 47
3.3 Tvavdgsval: if-else-satsen 48 IfElse
- Modulooperatorn 50
- Tilldmpningar av modulo 50
3.4 Flervagsval 51
- if-else-stegen 52 GissaTal
- switch-satsen 51 Switch
3.5 Efter-testad repetition: do-satsen 56 Collatz
3.6 For-testad repetition: while-satsen 60 Sum_while
- Evighetsloop 61
3.7 Bestamd repetition: for-satsen 62 Sum_for
- for-satsens struktur 62
- En tillampning av for-satsen 64 Borr
Ovningar till kap 3 66

40

3.1 Vad ar kontrollstrukturer?

Kontrollstrukturer &r algoritmers byggstenar och programmeringens mest grund-
laggande verktyg. Det finns generella strukturer i alla algoritmer som ar oberoende
av det aktuella problemet. Darfor kan de anvandas som byggstenar vid beskrivning
av alla algoritmer som i sin tur ligger till grund for alla datorprogram, oberoende
av programmeringssprak.

Kontrollstrukturer bestar av tre grundlaggande typer:

e Sekvens (foljd)

e Selektion (val)
- Enkel selektion
- Tvavagsval
- Flervagsval

e Repetition (upprepning)
- Fortestad repetition
- Eftertestad repetition
- Bestdmd repetition

Alla datorprogram &r kombinationer av dessa tre typer av kontrollstrukturer. | detta
kapitel ska vi ga igenom alla tre och ldra oss hur de kodas i JavaScript. Kontroll-
strukturer anvands och ar i princip uppbyggda enligt samma logik i alla programme-
ringssprak. Bade C/C++:s, Javas och C#:s kontrollstrukturer har — nar det galler syn-
taxen — tagits 6ver frdn och &r i princip identiska med Algol/Pascal bortsett fran
nagra detaljer. Annu langre tillbaka i historien kan man hitta deras spar i de forsta
strukturerade spraken.

Sekvens (f6ljd)

Instruktion 1

En sekvens &ar en foljd av instruktioner (bilden till hdger) — den

enklast méjliga strukturen som ténkas kan. Alla vara program
hittills bestar endast av sekvenser. Varje instruktion kan i sin
tur innehalla andra kontrollstrukturer. S& dven om sekvensen

Y

ar en enkel struktur, kan ndstlade sammanséttningar av den Instruktion 2
med sig sjalv (underinstruktioner) och andra kontrollstruktu-
rer &nda ge en ganska invecklad bild.

Selektion (val)

Kontrollstrukturen selektion & mer komplex an sekvens. Beroende pd antalet alter-
nativ man kan vélja mellan tre olika varianter: Enkel selektion, tva- eller flervagsval.
Vi borjar med den forsta.

41

3.2 Enkel selektion: if-satsen

Enkel selektion ar ett val utan alternativ. Ett villkor avgor valet. Ar villkoret sant, ut-
fors en eller flera instruktioner. Ar villkoret falskt, gors ingenting.

Pseudokod Flédesschema
oM villkor uppfyllt sant
instruktion(er) Instruktion(er)
falskt

—

-

I JavaScript kallas den enkla selektionen for if-sats och kodas generellt pé féljan-
de satt:

if (villkor)
{

sats(er)
}

Forsta raden dr if-satsens huvud. Resten &r if-satsens kropp som omsluts av
klammerparenteserna { och } som vi i fortsattningen kommer att kalla kort klam-
rar, ibland masvingar. Om kroppen bestar endast av en sats kan klamrarna ute-
lamnas vilket vi utnyttjar i foljande program:

VWOoONOUTA, WNER

15
16
17

<!-- SimpleIf.html
Dividerar endast om det som ska divideras med, inte ar o
Enkel selektion: if-satsen med EN sats: utan klamrar -->
<title>Safe division</title>
<script>
nol
no2

= parseInt(prompt('Mata in ett tal')) // Inldsning
= parseInt(prompt('Mata in ett tal till'))
if (no2 != 0)
document.writeln('<h2>' + nol + ' dividerad med ' + no2 +
'ar ' + nol / no2 + '</h2>")
if (no2 == 0)
document.writeln('<h2>0BS! Du har matat in @ for det' +
' andra talet.
Det gar inte att ' +
' dividera med 0.</h2>")
</script>
Ladda om sidan (Ctrl-R) for att kora om skriptet.

42

Programmet laser in tva tal och dividerar dem med varandra. i£-satserna gor att
division endast sker om det andra talet no2 (det som ska divideras med) inte &r e,
for att forhindra den matematiskt odefinierade divisionen med e. Foljande resultat
far man nar man matar in ett varde skilt ifran o till det andra talet:

@ safe division X + v - = .

C @ localhost:53810/Simplelfhtml 1= ¥ O e :

9 dividerad med 2 ir 4.5

Ladda om sidan (Ctrl-R) for att kéra om skriptet.

Matas in daremot o till det andra talet uppstar foljande:

@ safe division X + e - O =

C © localhost:53810/Simplelfhtml 2 Y+ [e :

OBS! Du har matat in 0 for det andra talet.
Det gar inte att dividera med 0.

Ladda om sidan (Ctrl-R) for att kéra om skriptet.

Inmatning av e till det andra talet genererar ett egendefinierat ”felmeddelande”. Lét
oss titta narmare pa den forsta i £-satsens huvud i programmet simpleIf (rad 9):

if (no2 != @)
betyder i termer av pseudokod: oM no2 &r skilt ifran e

Satsen inleds med det reserverade ordet if foljt av ett villkor (condition) inom pa-
rentes. Observera att parenteserna tillhor syntaxen och inte far inte uteldmnas.

Villkor

if-satsens huvudingrediens &r alltid ett villkor, t.ex. no2 1= @. Dubbeltecknet '=
betyder icke lika med och méaste skrivas utan mellanslag: Ar no2 skilt ifrén o, ja
eller nej? Man kan alltsd uppfatta ett villkor som en frdga som endast kan besvaras
med ja eller nej. En annan aspekt &r att uppfatta ett villkor som en utsaga som
endast kan vara sann eller falsk. Till skillnad frn en sats som ar en instruktion
som ska utfdras, kan ett villkor inte utforas, utan endast testas, for att fa ut svaret
sant eller falskt. T.ex. testar villkoret no2 != @ om no2 ar skilt ifran e. Variabeln
no2:s varde jamfors med @. Finns det icke-likhet mellan dem é&r villkoret sant, an-
nars falskt. Darfor kallas '= for en jamforelseoperator. Det finns fler sddana:

43

Jamforelseoperatorer

Jamforelseoperatorer satts mellan tva variabler for att jamfora deras varden. De
anvands endast i villkor, inte i instruktioner. Det &r avgorande att skilja mellan be-
greppen villkor och instruktion. Har &r de vanligaste jamforelseoperatorerna:

< mindre an

<= mindre an eller lika med
> storre an

>= storre an eller lika med
= lika med

I= icke lika med

De jamfor tva talvarden med varandra och returnerar jamforelsens resultat som ett
s.k. sanningsvarde dvs sant eller falskt, true eller false som dar reserverade ord.

Jamforelse-

2 talvarden
operator

—=1 sanningsvarde: true eller false

Sanningsvérdena true och false ar de enda varden som villkor kan anta varfor
jamforelseoperatorer anvands for att skriva villkor. Exempel pa villkor formulera-
de med jamforelseoperatorer &r:

number == 0
number != 0@
7 >5

guessedNo <= 17

Observera att de jamforelseoperatorer som ar dubbeltecken, inte far innehalla mel-
lanslag, annars tolkas de som respektive tecken och inte som jamforelseoperatorer.
T.ex. ar == symbolen for lika med. Redan pé sid 28 pratade vi om skillnaden mel-
lan likhet och tilldelning och poéngterade att = i JavaScript inte betyder likhet utan
tilldelning. Har har vi symbolen == for likhet. Medan tilldelningsoperatorn = fore-
kommer i instruktioner (satser), anvands jamforelseoperatorn == i villkor, t.ex. i
villkoret till if-satsen i programmet SimpleIf, rad 12 (sid 42).

Sa langt om if-satsens huvud. Sedan kommer if-satsens kropp som i programmet
simpleIf bestdr av en enda utskriftssats. Darfor kan klamrarna { } kring kroppen
uteldmnas. Men det vore inte heller fel att skriva dem. Villkorets sanningsvérde
avgor nu om kroppen dvs utskriftssatsen utfors eller ej. Ar variabeln no2:s varde
icke lika med @, utfors kroppen. Observera ocksa att hela utskriftssatsen ar indra-
gen for att markera att denna tillhér if-satsen och att den bildar if-satsens kropp —
en kodstil som hor till god programmeringssed och héjer kodens laslighet.

Den andra if-satsens huvud i programmet SimpleIf:
if (no2 == Q)

betyder i termer av pseudokod: oM no2 &r lika med e

44

Precis som !'= &r &ven dubbeltecknet == (utan mellanslag) en jamforelseoperator,
men stér for lika med. Observera skillnaden mellan likhet som kodas med tvé lik-
hetstecken == och tilldelning vars kod ar ett likhetstecken =. Aven den andra if-
satsens kropp &r en utskriftssats som skriver ut ett felmeddelande om véardet @ ma-
tas in som andra tal. P& sd satt utfors inte division med e, for divisionen forekom-
mer endast i den forsta if-sats som inte utfors eftersom dess villkor blir falskt, nar
man matar in @ som andra tal.

Bestamning av max/min

| programmet SimpleIf (sid 42) anvéandes tva if-satser, for att avgGra om ett tal
var jamnt eller udda. Nu ska vi skriva ett nyttigt program som bestammer det
storsta (minsta) vardet bland 3 inmatade tal. Nyttigt, darfor att vi kommer att ha
anvandning av det bl.a. i inlamningsuppgiften (sid 39). Sedan ska vi anvanda detta
exempel for att precisera var kunskap om modularisering som namndes inled-
ningsvis i boken (sid 7), och l&ra oss att sjélva definiera funktioner i JavaSript.

1 <!-- Max.html

2 Laser in 3 tal och bestammer det storsta bland dem

3 Tva enkla if-satser 1l6ser problemet -->

4 <title>Bestamning av max</title>

5 <script>

6 nol = parseInt(prompt('Mata in ett tal')) // Inldsning
7 no2 = parseInt(prompt('Mata in ett tal till'))

8 no3 = parseInt(prompt('Mata in ett tredje tal'))

9

16 max = nol // Vi antar att nol ar storst

11 if (no2 > max)

12 max = no2 // Byter till no2 om no2 ar storre

13

14 if (no3 > max)

15 max = no3 // Byter till no3 om no3 ar storre

16

17 document.writeln('<h2>"' + max + ' ar det storsta talet ' +
18 ‘bland ' + nol + ', ' + no2 + ' och ' + no3 + '.</h2>")
19 </script>

20

21 Ladda om sidan (Ctrl-R) for att koéra om skriptet.

Sjalva algoritmen att hitta det storsta bland tre tal, ar kodad pé raderna 10-15 med
tva enkla if-satser: FoOrst antar vi att no1 &r det storsta talet och tilldelar det varia-
beln max. Det behdver inte stdmma. Den forsta if-satsen (rad 11-12) testar detta
antagande genom att kolla om no2 &r strre &n max och dérmed dven storre dn nol.
Om det &r fallet byts max-"rollen” frén no1 till no2. Samma sak gor den andra if-
satsen med no3 (rad 14-15). Slutligen kommer max-"rollen” ges till det tal som é&r
storst av alla tre. Resten &r inlasning och utskrift;

45

N - [m] x | v - (m] x

_ Bestdmning av max x 4+) Bestamning av max X+
X @ localhost56385/Maxhtml 12 % O @ | X O localhost56385/Maxhtml 1@ % O @
o L 4 ,
Fran localhost:56385: | Fran localhost:56385:
Mata in ett tal | Mata in ett tal il
[3 | | 4 l
" Bestamning av max x + o= B -|eleeeadeed x + 2 = g &
X O localhostse3ssMaxhtml 12 % O @ C O Akiv| C/_TfunProgra.. 1 % O @
N p Loopia Webmai TAgmail Chas m{o) Qlok
' Fran localhost:56385: = el e "
Mata in ett tredje tal 5 iir det storsta talet bland 3, 4 och 5.
|
. l Ladda om sidan (Ctrl-R) for att kéira om skriptet

For att hitta det minsta talet bland tre inmatade behdver man i if-satsernas villkor
(rad 11 & 14) bara byta ut jamforelseoperatorn > mot < . Sjélvklart borde man, for
att folja god programmeringsstil, dven byta ut variabelnamnet max mot min och
andra texten i utskriftssatsen.

Modularisering
Modularisering innebér att bryta ner ett problem i mindre,

ateranvandbara delar, s.k. moduler, jamférbart med Legobi- S
tar. 1 JavaScript kallas de for funktioner.
-

Programmet Max (sid 45) l6ser problemet att bestdmma det

storsta talet bland tre givna tal. Men detta problem kan dven - -
férekomma i andra sammanhang. Och da vill man helst an- -
vanda den redan befintliga algoritmen som &r kodad pa ra-

derna 1e-15, utan att behdva ateruppfinna hjulet.

Ett exempel pa ett sédant behov ar var inlamningsuppgift (sid 39). Dar ska man be-
stdmma den stdrsta bland tre tdvlandes totalpodng. Som ledning anges i uppgiften
att man ska anvénda funktionen max(). Denna funktion ska vi skriva nu genom att
ta raderna 10-15 fran programmet Max, definiera dem som en funktion, binda in
funktionen i ett program och anropa den darifran. Det nya programmet MaxFct ska
astadkomma samma sak som programmet Max. P& sa satt modulariserar vi pro-
grammet Max. Samtidigt blir funktionen max() var forsta egendefinierade funktion
i JavaScript. Hittills hade vi endast anropat redan férdefinierade funktioner.

46

Funktionen max()

1 <!-- MaxFct.html

2 Definierar och anropar funktionen max() som bestdmmer
3 det storsta bland tre tal -->

4 <title>Max med funktion</title>

5 <script>

6

7 function max(a, b, ¢) // Definierar funktionen max()
8 {

9 tmp = a // Antar att a ar storst

10 if (b > tmp)

11 tmp = b // Byter till b om b ar stérre
12 if (c > tmp)

13 tmp = ¢ // Byter till c om c ar stérre
14 return tmp // Returnerar tmp till max()

15 }

16

17 nol = parseInt(prompt('Mata in ett tal')) // Inldsning

18 no2 = parseInt(prompt('Mata in ett tal till'))

19 no3 = parseInt(prompt('Mata in ett tredje tal'))

20 noMax = max(nol, no2, no3) // Anropar funktionen max()
21 document.writeln('<h2>' + noMax + ' ar det storsta talet ' +
22 '‘bland ' + nol + ', ' + no2 + ' och ' + no3 + '.</h2>")
23 </script>

24

25 Ladda om sidan (Ctrl-R) for att kéra om skriptet.

Om funktioner

Rad 7 kallas for funktionens huvud och inleds med det reserverade ordet function
(sid 10). Funktionens namn &r max (). Parentesen (a, b, c) kallas for parameter-
listan. a, b och c &r funktionens formella parametrar, medan no1, no2 och no3
som star i funktionsanropet (rad 20), kallas for aktuella parametrar. Vid anropet
kopieras de inlasta vardena fran de aktuella till de formella parametrarna. P& sa
satt hamnar de i funktionen, dar deras storsta varde bestams.

Efter huvudet star funktionens kropp inom masvingar (rad 8-15). Kroppen avslu-
tas med en s.k. return-sats som med hjalp av variabeln tmp returnerar det storsta
vardet till namnet max(). P& sa satt hamnar funktionens returvérde i programmet,
nar funktionen anropas pa rad 2. Eftersom namnet max() bar returvardet méste
anropet inbakas i en tilldelningssats, sa att variabeln noMax kan ta emot detta varde
som slutligen skrivs ut (rad 21). Att funktionen max() innehéller en return-sats
ger upphov till att kalla max() for en funktion med returvarde. Det finns i Java-
Script &ven funktioner utan returvérde. Dessa saknar return-sats.

Prorammet MaxFct producerar samma utskrift som programmet Max (sid 45).
47

3.3 Tvavagsval: if-else-satsen

Tvévagsval &r ett val mellan tva alternativ. Valet gors med ett enda villkor. Ar vill-
koret sant, utfors en eller flera instruktioner som vi kallar for alternativ 1. Ar vill-
koret falskt, utfors — till skillnad fran if-satsen — en annan uppsattning instruktio-
ner som vi kallar for alternativ 2. S har kan tvavagsvalet beskrivas:

Pseudokod Flédesschema
oM villkor uppfyllt sant
alternativ 1 Alternativ 1
ANNARS
alternativ 2 falskt
Alternativ 2

Alternativ 1 och ‘
Alternativ 2 ar tva olika instruktioner. Y

Endast ett av de tva alternativen kommer att utforas, beroende pa villkorets san-
ningsvarde. Sanningsvérdena sant och falskt utesluter varandra — och darmed &ven
de bada alternativen. Darfor gar flodet i flodesschemat, som visas med pilarna,
efter alternativ 1 inte till eller fore utan efter alternativ 2. Det vore logiskt fel att
leda pilen till ett stalle fore alternativ 2.

| JavaScript kallas tvavagsvalet for if-else-sats och kodas pa féljande satt:

if (villkor)
{

sats(er)1
}
else
{

sats(er)2
}

Om if- eller else-blocket bestar endast av en sats kan klamrarna { och } utelam-
nas. Anta att bada block bestar bara av en sats, da forenklas formen:

if (villkor)
satsl
else
sats2

Féljande exempel behandlar if-else-satsen med endast en sats i resp. del:
48

1 <!-- IfElse.html

2 Laser in ett heltal och avgor om det ar jamnt eller udda

3 Tvavagsval: if-else-satsen med EN sats i if-else-delen -->
4

5 <title>Tvavagsval</title>

6

7 <script>

8 no = parseInt(prompt('Mata in ett heltal')) // Inldsning
9

10 if (no % 2 == @)

11 document.writeln('<h2>Det inmatade talet ar jamnt.</h2>')
12 else

13 document.writeln('<h2>Det inmatade talet ar udda.</h2>")
14

15 </script>
16 Ladda om sidan (Ctrl-R) for att kéra om skriptet.

Kdrexempel av programmet IfElse med ett udda tal som inmatning ger:

C Tavagsial x (+ Vo= B @ Taigsal x 4+ vo= &8 =
| X @ localhost51578/IfElse.htm = w 0O e : C @ localhost51578/IfElse.htm e % 0 e H
|
Fran localhost:51578: ' @ looplatebmal M Thgral [Qok @ ST W mlo) *
Mata In ett heltal Det inmatade talet éir udda.
| ! | Ladda om sidan (Ctrl-R) for att kora om skriptet

Med ett jamnt tal som inmatning far vi:

r r
@ Tvivagsval x + ¥ o = DX b maagel x 4+ v - o x
C O locahost51578/fElsehtml 12 % O @ X @ localhost51578/fElsehtml 1 % O @
<@ LoopiaWebmall P TAgmad ok e * = Frén localhast:51578
Det inmatade talet ir jimnt. Mata in it helia

Ladda om sidan (Ctrl-R) fér att kéra om skriptet.

L — S

Det egentliga jobbet — ndmligen att avgdra mellan jamnt och udda — har gjorts med
hjalp av en operator som kallas fér modulooperatorn:

49

Modulooperatorn %

Symbolen % har i JavaScript ingenting med procentrakning att gora utan star for
ett nytt réknesatt som kallas for modulo. Modulo &r en heltalsoperation. Man divi-
derar tva heltal, tar resten och ignorerar resultatet: 9 dividerat med 2 ger 4, rest 1.
Darfor: 9 modulo 2 ger 1. Med symboler: 9 % 2 = 1. Modulooperationen ignorerar
4 och tar resten 1. En anvandning av modulo &r: P.g.a. 9 % 2 = 1 &r 9 udda. Dére-
mot ar 8 % 2 = @, eftersom 8 dividerat med 2 ger resultatet 4 och resten @. Darfor ar
8 ett jamnt tal. Alla jamna tal ger rest @ vid heltalsdivision med 2. Alla udda tal ger
rest 1 vid heltalsdivision med 2. Modulo ger resten vid heltalsdivision. Man kan
uppfatta modulo &ven som en upprepad subtraktion: Man drar av 2 frdn 9 s& manga
ganger det bara gér och tar det som blir kvar. Fyra ganger gar det att ta bort 2 fran
9, kvar blir 1. Darfor ar 9 % 2 = 1. Generellt innebér att rékna modulo a att man
drar av alla multipler av a och behaller resten: 33 modulo 6 ger 3, darfor att man
far 3, nar man drar av 5 génger 6, dvs 3e, frdn 33.

Tillampningar av modulo
Det finns ménga tillampningar av modulooperatorn:

1. | progammet IfElse (rad 10) tilldmpas modulo i if-satsens villkor:
no % 2 == 0

for att avgora att talet no ar jamnt: Delar man no med 2 och resten ar @, s& ar no
jamnt delbart med 2 och darmed jamnt.

2. Enrolig och enkel anvandning av modulooperatorn &r féljande exempel:

Idag ar fredag och du vill tréffa din kompis om 11 dagar.
Vilken veckodag blir det?

Vi numrerar veckodagarna stigande fran 1 med borjan pd mandag, sa att fredag
blir den 5:e veckodagen. Man far svaret pa fragan ovan genom att rakna modu-
lo7:

(5 +11) %7 =2

Dvs veckodagen i fragan ar 2:a veckodagen, namligen tisdag. Med andra ord
man lagger till aktuell veckodag, antalet dagar och raknar modulo 7. | sjalva
verket handlar det om en omvandling av det decimala talsystemet med basen 10
och siffrorna @-9 — det system vi ar vana vid att rakna med — till veckodagarnas
system dvs till talsystemet med basen 7 som anvander sig av siffrorna e-6.

3. En annan tillampning av modulo ar omvandling mellan olika talsystem, t.ex.
mellan det decimala och binéra talsystemet. Generellt & modulo nyckelopera-
tionen vid omvandling mellan olika system.

4. | matematiken anvands modulo bl.a. for att bestdmma den stérsta gemensamma
delaren av tva heltal (Euklides algoritm).

50

3.4 Flervagsval

Flervéagsval ar ett val mellan fler an tva alternativ. Strukturen och logiken kan be-
skrivas sa har:

Pseudokod Flodesschema
Alternativ 1 >
vAL] fall ur
fall 1: alternativ 1
fall 2: alternativ 2
Alternativ 2 >

nej

\—> Alternativ x >

\/
Alternativ 1, 2, ... innebdr olika instruktioner eller olika uppsattningar instruktio-
ner och Fall 1, 2, ... motsvarar olika villkor.

Annars: alternativ x

Observera att det logiska flodet — symboliserat med pilarna — gar efter varje fall till
ett alternativ, for att darefter Iamna hela flodesschemat. Dvs flodet gar efter varje
fall inte till nasta fall. | slutet, nar alla fall &r avklarade, behéver inget nytt villkor
formuleras, darfor att Alternativ x utfors nér Fall 1, Fall 2, ... inte foreligger.

Det finns olika satt att implementera flédesschemat ovan i kod. | praktiken har det
visat sig att foljande tva koncept ar mest effektiva och anvandbara i programmerin-
gen oavsett programmeringssprak:

e if-else-stegen
e switch-satsen

if-else-stegen

Lat oss titta pa foljande exempel av ett trevagsval som anvander den s.k. if-else-
stegen. Anvandaren ska gissa fram programmets hemliga tal 17. Man gissar inom
intervallet [1, 2@], far sedan hjalp om det gissade talet var mindre &n, storre an el-
ler lika med det hemliga talet. Just nu maste vi néja oss med en spelomgang, darfor
att vi inte lart oss an att koda loopar.

51

Har kommer Gissa tal-spelet i en forsta version, som innehaller ett val mellan tre
alternativ, fall 1: det gissade talet ar lika med, fall 2: mindre &n, fall 3: storre an
programmets hemliga tal 17:

1 <!-- GissaTal.html

2 Later anvandaren gissa programmets hemliga tal secret

3 Trevagsval med en if-else stege -->

4 <title>GissaTal</title>

5 <meta charset="UTF-8"> <!-- For de svenska tecknen -->
6 <script>

7 secret = 17 // Programmets hemliga tal

8 // Inldsning av en gissning:

9 guess = parseInt(prompt('Gissa ett heltal mellan 1 och 20:'))
10

11 if (guess == secret)

12 document.writeln('<h2>Grattis, du har gissat ratt!</h2>")
13 else if (guess < secret) // Ger hjalp for nasta koérning:
14 document.writeln('<h2>Fel: ' + guess + ' < hemliga ' +

15 ' talet
Gissa hogre nasta gang.</h2> ')

16 else

17 document.writeln('<h2>Fel: ' + guess + ' > hemliga ' +

18 ' talet
Gissa lagre nasta gang.</h2> ')

19 </script>

20

21 Ladda om sidan (Ctrl-R) for att kéra om skriptet.

De tre relevanta testen av programmet GissaTal med gissningar mindre &n, storre
an och lika med 17 ger:

x 4+

X @ Akiv| C/_Tafun/Programme.. 2 % O @ i | c G e s % 0@ : |
Arkiv | C/_Taifun/Progra. 18 :

™ Gissa al_1 x + - . 2 * (@ GissaTal_1 & - 2 &

Gissa ett heltal mellan 1 och 20:

P4 den har sidan star det ‘ | «® Loopia Webmail ™M TAgm " Qlok »

l ‘ Fel: 12 < hemliga talet

Gissa hogre nista gang.
“ Avloryt ‘ Ladda om sidan (Ctrl-R) for att kéra om skriptet.
S
1 - 5
¢ Gissalal_1 x + v B @ GissaTal x + v - B X
X @ Akiv| C/_Taifur/Programme... 12 % O @ C O Akiv| C/_Taifun/Programme.. 12 % O @ i
» b Loopia Webmail M TAgmail Chas mic) Qlok »

Pa den har sidan star det

Gissa ett heltal mellan 1 och 20; | F(\l: 19 > hnmliga tale. |
Gissa liigre niista gang. |

19

Ladda om sidan (Ctrl-R) for att kéra om skriptet

52

hd - =] x v - (m] x

. GissaTal_1 x + @ GissaTal 1 x +
X @ Akiv| C/_Taifun/Programme... 12 % [e : C @ Akiv| G/_Taifun/Progremme... ¥ % O e H
0 den hr sidan star det Loopia Webmail M TAgmail e m(o) Qlok
Gissa ett heltal mellan 1 och 20. | Grattis, du har gissat ritt! |

| | Ladda om sidan (Ctrl-R) for att kéra om skriptet |

switch-satsen

Flervagsvalets flodesschema som visades pa sid 51 kan kodas pa olika satt. Ett satt
var if-else-stegen som demonstrerades i programmet GissaTal pa forra sidan.
Ett annat satt ar switch-satsen vars generella struktur kan beskrivas sa har:

switch (uttryck)
{

case konstantl :
sats(er)1
break

case konstant2 :
sats(er)2
break

default:
sats(er)x

Forsta raden ar switch-satsens huvud. Resten ar switch-satsens kropp som bestar
av ett block. All kod som skrivs mellan masvingarna { } kallas for block.

Med uttryck i huvudet menas ett aritmetiskt uttryck vars varde far bara vara av typ
tal eller tecken.. Nar switch-satsen exekveras, jamfors detta uttryck en i taget med
de konstanter som star efter case. Jamférelsen gors pa likhet och innebar féljande
nar man Oversatter alla case till if:

if (uttryck == konstantl)
if (uttryck == konstant2)

Sa blir villkoren som &r dolda i switch-satsen avsldjade: Man ser att de ar hard-
kodade med operatorn == och inte kan ersattas med andra jamforelseoperatorer.

Uttryckets och konstanternas varden jamfors med varandra enbart pa likhet. Om
likhet féreligger, kommer man in i switch-satsens kropp. Alla satser fr.o.m. case
utfors, tills break kommer eller kroppen slutar.

53

Féljande programexempel demonstrerar switch-satsen: Vi l&ser in begynnelse-
bokstaven till en veckodag och det fullstdndiga veckodagsnamnet skrivs ut. |
switch-satsen valjs ett alternativ av sex. Tisdag och torsdag behandlas i ett fall.

WoONGOTUVA_,WNER

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

SHEE

letterl = prompt('Mata in begynnelsebokstaven

Switch.html
Demonstrerar flervdgsval med switch-satsen

Kompletterar veckodagen efter inmatning av forsta bokstaven
For t(isdag/torsdag) krdvs den 2:a bokstaven -->
<title>Switch-satsen</title>
<script>

'till en veckodag:"')

switch (letterl)

{

}

document.writeln('<h2>' + letterl +

case 's':
weekday = 'sondag'’
break

case 'm':
weekday = 'mandag'’
break

case 't':

letter2 = prompt('Mata in andra bokstaven:

if (letter2 == 'i')
weekday = 'tisdag’
else
weekday = 'torsdag’
break
case 'o':
weekday = 'onsdag'
break
case 'f':
weekday = 'fredag’
break
case '1':
weekday = 'lordag’
break
default:
weekday = 'ingen veckodag'’

ar forsta

+

")

+

'bokstaven till ' + weekday + '. </h2>")

38 </script>
39 Ladda om sidan (Ctrl-R) for att kéra om skript

Programmet utfor inte bara de satser som omedelbart foljer det case dér likheten
intr&ffar, utan alla satser som féljer, d&nda tills en break-sats kommer eller switch-
satsen avslutas. Har man en gang kommit in i switch-satsen via nagot case, stan-

54

nar man i den utan att likhet mellan uttrycket och konstanten som finns i de efter-
foljande case-satserna testas. Om switch-satsen ska vélja endast ett enskilt varde
bland flera, borde varje case avslutas med break.

Har ett korresultat for inmatningen av t som forsta bokstav, dar en andra inmatning
p.g.a. konflikten tisdag/torsdag kravs. Testa gdrna alla andra alternativ ocksa:

) Switch-satsen x 4+ v - (= £ . Switch-satsen x + v - = s
X @ localhost51235/Switchhtml 2 ¥ 0O e : X @ localhost51235/Switchhtml 12 ¥ O e H
! Fran localhost:51235: [' Fran localhost:51235:
Mata in begynnelsebokstaven till en veckodag Mata in andra bokstaven:
| i |
break-satsen @ swichsaen x [+ B
. o . C @ localhost51235/Switchhtml 1@ % O @
break &r bade ett reserverat ord i Java- | _o
SCflpt och en sats i pr.grammet _swj'tc,h' t iir forsta bokstaven till tisdag.
break bryter programflddet, dvs i det har
" . Click Refresh (or Reload) to run the script again
fallet lamnar switch-satsen. Alla satser : :
mellan break och blockets avslutande

klammer } hoppas Over. Detta garanterar ett entydigt val mellan flera alternativ.
Anvandningen av break i switch-satsen dr, vad galler den formella syntaxen, fri-
villig dvs man begar inget syntaxfel om man utelamnar break. Men om det blir sa
som man ténkt sig ar en helt annan historia, dvs det kan bli logiskt fel. Uteldamnan-
det av break leder i alla fall att programflodet ”faller ned” till ndsta case, utan att
testa den nya case-satsens villkor. | vissa fall kan det dock finnas dven logiska skl
att uteldmna break, dar ett entydigt val mellan enstaka varden inte &r 6nskvart,
t.ex. nar valet star mellan olika intervall och man vill anvanda “tomma” case-sat-
sefr.

default pé rad 33 ar motsvarigheten till else. Om ingen likhet pétraffats i ndgon
case-sats, utfors istallet de satser som foljer efter default. P s& sitt har man
mojligheten att skriva kod som dokumenterar det just intrdffade. Ofta véljer man
att skriva ut ndgon form av felmeddelande. Anvéandningen av default-satsen ar
frivillig. Den kan utelamnas i switch-satsen, men rekommendationen &r att utnyt-
tja mojligheten till ett alternativ till alla case-satser. Aven anvandningen av break
som sista sats i default-blocket, &r frivillig. Den avslutande klammer } i switch-
satsen ersatter break, vilket vi har unyttjat i programmet switch.

55

3.5 Efter-testad repetition: do-satsen

Datorn har nagra egenskaper som ar helt dverlagsna motsvarande egenskaper hos
manniskan: snabbheten, noggrannheten och férmagan att effektivt lagra och hante-
ra stora dataméangder samt férmagan att inte bli trott. Datorn kan upprepa en sak
miljardtals ganger utan att tappa i noggrannhet. Denna formaga utnyttjas i stor
skala av alla mdjliga datorprogram. Och déarfor har man en speciell kontrollstruk-
tur i algoritmer som beskriver den: repetitionen *, &ven kallad loop. "Att lita da-
torn gora jobbet” innebir som regel att datorn utfor en repetition. Beroende pa hur
repetitionen, speciellt hur avslutningsvillkoret, kort kallat villkoret, formuleras och
var det placeras i loopen skiljer man mellan tre typer av repetition:

e Efter-testad repetition
e FoOr-testad repetition
e Bestamd repetition

Efter-testad repetition

Det &r en loop (upprepningsslinga) dér avslutningsvillkoret testas efter slingans in-
struktioner dvs efter det som egentligen ska upprepas. Sa har kan den formuleras i
pseudokod och som flédesschema:

Pseudokod Fl6desschema

l

REPETERA Instruktion(er)
instruktion(er)
SA LANGE villkor uppfyllt Loop

sant

falskt

I JavaScript inleds den efter-testade repetitionen med det reserverade ordet do:
do
{
sats(er)
} while (villkor)

do-satsen ar en loop dar villkoret testas efter loopens instruktioner, darfor efter-
testad. Forsta raden ar do-satsens huvud. Resten &r do-satsens kropp som omsluts
av masvingar { }. Dessa kan utelamnas nar kroppen bestér endast av en sats.

“ I négra bocker kallas repetitionen aven for iteration. Vi undviker denna term eftersom den
anvands som fackterm i andra sammanhang, t.ex. i numerisk analys.
56

For att motivera nédvandigheten av loopar tar vi hédr upp féljande kénd algoritm
som ett exempel pa hur do-satsen kan komma till anvandning nar man implemente-
rar (skriver koden for) algoritmen:

Collatz algoritmen

Lothar Collatz (1910-1990) var professor for tillampad matematik vid Hamburgs
Universitet pa 60-talet. Som ung student stallde han upp foljande uppgift:

Ténk dig ett positivt heltal (startvérde).

Ar talet udda multiplicera det med 3 och addera 1.
Atr talet jamnt dividera det med 2.

Gor samma sak med resultatet. Fortsatt tills du fatt 1.

Det visar sig att talféljderna i denna algoritm, aven kénd som Collatz-férmodan all-
tid slutar med 1 oavsett startvarde. Formodan heter det eftersom pastaendet &r ma-
tematiskt hittills obevisat. S har kan flodesschemat for denna algoritm se ut:

| Ta ett pos. heltal

Flodesschema

< Loop
4

Heltal
udda?

Heltal / 2

Heltal * 3+ 1

nej

57

Flédesschemat visualiserar algoritmens logiska struktur som &r grundlaggande for
en korrekt implementering. Men for att slutligen koda kan det vara fordelaktigt att
formulera algoritmen &ven som pseudokod som ligger ndrmare programkoden &n
flédesschemat.

Pseudokoden till Collatz algoritmen *

Las in ett positivt heltal
REPETERA
OM talet ar udda
multiplicera med 3, addera 1
ANNARS
dividera talet med 2
Skriv ut talet
SA LANGE talet # 1

Som man ser har vi redan anpassat pseudokoden till programmering, t.ex. med for-
muleringar som L&s in. .., REPETERA och Skriv ut.... | féljande program imple-
menteras Collatz algoritmen i JavaScript. FOr REPETERA valjer vi do-satsen:

1 <!-- Collatz.html

2 Laser in ett pos. heltal, tar det ganger 3 och adderar 1,
3 om det ar udda. Delar det med 2 om talet ar jamnt.

4 Upprepar samma sak med resultatet, tills det blir 1.

5 Anvander do-sats for repetitionen -->

6 <title>Loop med do-satsen</title>

7 <script>

8 no = parseInt(prompt('Mata in ett pos.heltal')) // Startvarde
9 document.write('<h2>' + no + "</h2>")

10 do // do loop bérjar

11 {

12 if (no % 2 == 1) // Om no dr udda

13 no=3%*no+1

14 else

15 no = no / 2

16 document.write('<h2>" + no + '</h2>")

17 } while (no != 1) // do loop slutar

18 </script>

19

20 Ladda om sidan (Ctrl-R) for att kéra om skriptet.

* Man kan testa Collatz algoritmen i appen Mattekollen dér den &r kodad i Python. Ladda
ned appen eller kér den som Wehbapp: app.mattekollen.se = En mobil pythonmiljé. EI-
ler kor den direkt som webbapp: beta.mattekollen.se/#/app/coding. Prova koden med olika
startvarden for att kolla om algoritmens talfoljder alltid slutar med 1.

58

http://beta.mattekollen.se/#/app/coding

do-satsen ar framhavt med vit bak-
grund. Talféljden som produceras har,
kommer att alltid avslutas med 1, vil-
ket ar ett rent empiriskt péstaende,
som dock varken har motbevisats hit-
tills eller bevisats teoretiskt. Att den
avslutas med 1 ar oberoende av start-
vardet. Har har vi ett korresultat med
startvardet 13:

do-satsens arbetssétt, dvs repetitionen
skiljer sig grundldggande fran kon-
trollstrukturen selektion (val) som vi
larde kénna tidigare. Medan en selek-
tions alltid gar framat, efter den har
avgjort valet p.g.a. det styrande vill-
koret, atervander en repetition alltid
till kontrollstrukturens bérjan, dvs gar
tillbaka och utfor koden som star i
kroppen en gang till, d&ven detta p.g.a.

v

@ Loop med while x 4+
C @ localhost:53685/Collatzhtml |2

@b Loopia Webmail M TAgmail

|16

‘8
4
2

1

Ladda om sidan (Ctr]-R) for att kora om skriptet.

- (m] X

« 0@ :

Qlok

sitt avslutningsvillkor. Tydligast ser man detta i flodesschemat pa sid 57 dér pro-
gramflodet (pilen) gar fran avslutningsvillkoret tillbaka, for att utféra det hela en

gang till.

59

3.6 For-testad repetition: while-satsen

while-satsen dr en upprepningsslinga dar avslutningsvillkoret testas fore slingans
instruktioner dvs innan det som ska upprepas. Enda skillnaden gentemot den efter-
testade repetitionen med do-satsen ar ordningen mellan villkor och instruktioner.
Denna ordning blir nu omvand:

Pseudokod och ritas som Flédesschema
Loop
SA LANGE villkor uppfyllt _‘
instruktion(er) sant

Instruktion(er)

falskt

I JavaScript inleds den for-testade repetitionen med det reserverade ordet while
och skrivs generellt pa foljande sétt:
while (villkor)

{
}

Forsta raden ar while-satsens huvud. Resten &r while-satsens kropp som omsluts
av masvingar { }. Om kroppen bestar endast av en sats kan masvingarna utelam-
nas. Har foljer ett exempel med tva satser i kroppen och darfér med masvingar:

sats(er) ;

1 <!-- Sum_while.html

2 Beraknar och skriver ut summan 1 + 2 + ... + 100

3 For-testad repetition: while-satsen -->

4 <title>Summering med while</title>

5 <script>

6 sum = @

7 term = 1

8 while (term <= 100) // while loop boérjar

9 {

10 sum = sum + term

11 term++ // term okar med 1

12 } // while loop slutar

13 document.write('<h2>Summan 1 + 2 + ... + ' + (term - 1) +
14 ar '+ sum + '.</h2>")

15 </script>
16 Ladda om sidan (Ctrl-R) for att kéra om skriptet.

60

Hela while-loopen &r fram- v — @

havt med vit bakgrund i pro- @ srmeremee
grammet Sum_while. | C ® localhost:56200/Sum while... & ¥ O e :
@) Loopia Webmail M TAgmail Chas m(o) Qlok »

Har ett korexempel: Summan 1+ 2 + ... + 100 ir 5050,

DEt ar enkelt att andra SIUt' Ladda om sidan (Ctrl-R) fér att kéra om skriptet.

termen 1ee till lagre eller

hogre. Annu béttre vore det —
forstas att 1ata sluttermen vara en variabel som lases in, s& att man kan berdkna
vilka summor som helst, se évn 3.13 (sid 67).

Raden 11 innehaller koden term++ sm betyder amma sak som term = term + 1, dvs
6kning av variabeln term:s varde med 1. Koden ++ kallas for 6kningsoperatorn och
kan séattas fore eller efter ett variabelnamn. Att vi i utskriftssatsen pa rad 13 anvant
uttrycket term - 1, for att skriva ut sluttermen 1ee, beror pa att variabeln term har
vardet 101 nar koden har lamnat while-loopen pa rad 12. Det &r just darfor att 101
inte langre ar <= 1@ stoppas loopen. Darfor maste vi, for att skriva ut 10e, skicka
uttrycket term - 1 till utskrift.

while-satsen dr den enklaste varianten av loop i JavaScript. Vi vill anvénda den for
att illustrera en foreteelse som man brukar raka ut for nar man jobbar med loopar:

Evighetsloop

I programmet Sum_while &r while-satsens avsutningsvillkor term <= 100. Om
detta villkor vore sant fran borjan och forblev sant hela tiden, skulle satserna pa
raderna 1e-11 att utforas i all evighet, vilket kallas for evighetsloop.

For att undvika en evighetsloop, maste villkoret och satserna formuleras pa ett satt
att villkorets sanningsvarde andras i loopens kropp. Villkoret méste bli falskt efter
nagra varv. | programmet Sum_while har vi astadkommit detta genom att ha
term++ pa rad 11. Samtidigt ar villkoret formulerat som term <= 100. Dvs, har
man med en ldmplig initiering av term kommit in i while-loopen, kommer term
att oka med 1 i varje varv, sa att den nagon gang blir > 1ee. Da stoppas loopen.
Glémmer man 6kningen ++ och initierar man term med ett varde mindre &n 1ee
blir while-loopen en evighetsloop.

Omvant: Ar while-villkoret falskt fran bérjan, gérs ingenting. Initieras term till ett
varde storre an 1@e, blir villkoret falskt fran borjan och man kommer aldrig in i
kroppen (“aldrigslinga”). Programflodet fortsatter vid forsta satsen efter while-
loopen.

61

3.7 Bestamd repetition: for-satsen

For att snabbt visa for-satsens arbetssétt vill vi bdrja med en ren 6verséttning av
programmet Sum_while (sid 60) till en for-variant. Bada summerar alla heltal fran
1 till 200 och ger samma utskrift som pé forra sidan.

1 <!-- Sum_for.html

2 Beraknar och skriver ut summan 1 + 2 + ... + 100

3 Bestamd repetition: for-loop (Oversatting av Sum_while) -->
4 <title>Summering med for</title>

5 <script>

6 sum = @

7 for (term = 1; term <= 100; term++) // for-loop borjar

8 sum = sum + term // slutar

9 document.write('<h2>Summan 1 + 2 + ... + ' + (term - 1) +

10 ar ' + sum + '.</h2>")

11 </script>
12 Ladda om sidan (Ctrl-R) for att kora om skriptet.

for-satsen har endast en sats i sin kropp, rad 8. Huvudet, rad 7, & mera invecklat:
Initieringen term = 1 och uppdateringen term++ av variabeln term har flyttats i
for-satsens huvud. Avslutningsvillkoret term <= 100 daremot 4r kvar pa plats: det
fanns aven i huvudet pa while-loopen, se rad 8 i programmet Sum_while (sid 60).

Eftersom parentesen i for-satsens huvud (rad 7) nu bestar av tre delar — initierin-
gen, villkoret och uppdateringen av variabeln term — maste dessa delar skiljas fran
varandra med semikolon ; som i JavaScript ar skiljetecknet mellan satser. Att vi
kan uteldmna det i vara andra program beror pa att vi skriver vara satser pa sepa-
rata rader. Radslutstecknet kan ersatta semikolonet. Men i for-satsens huvud &r
det inte mojligt att bryta rad mellan dessa tre delar. Darfér maste vi satta ;

for-satsens struktur

for-satsens struktur skiljer sig markant fran de hittills behandlade repetitionerna
do och while. Hos dessa styr endast villkoret antalet repetitioner och man kan fa
reda pé antalet repetitioner endast i efterhand, dvs efter att ha kort programmet.
for-satsen kallas for den bestdémda repetitionen darfor att programmeraren redan
vid kodningen bestdmmer antalet repetitioner. for-satsen anvénds helst som en
loop vars antal repetitioner dr kéant i forvag. Det kan vara anvandbart i de fall dar
man vet hur ménga génger en sak ska upprepas. Visserligen finns dven i den
bestdmda repetitionen ett villkor som testas i varje varv, men det finns dven en in-
byggd mdjlighet att styra villkoret och ddrmed antalet repetitioner med hjalp av en
raknare, dven kallad styrvariabel.

62

Flodeschemat

¢

Initiera raknaren

~ Loop

sant

Villkor

Instruktion(er) = Uppdatera réknaren

Flodesschemat askadliggor den logiska strukturen av for-satsen, medan pseudo-
koden ligger ndrmare programkoden.

Pseudokoden

Initiera rdknaren

SA LANGE villkor ar uppfyllt
utfor instruktion(er)
uppdatera réknaren

Nyckelordet SA LANGE i denna pseudokod visar att den bestamda repetitionen alltid
kan Overséttas till en while-sats om man sjélv tar hand om réknaren. Precis som i
while-satsen har man i princip friheten att formulera villkoret hur som helst. Men
eftersom réknaren &r inbyggd i strukture, kan man i villkoret jamfora réknaren
med slutvardet, t.ex. sd har: “réknare cir mindre din eller lika med slutvarde .

Programkoden
for-satsen inleds med det reserverade ordet for och skrivs generellt s har:

O OQ—0O

for (initiering; villkor; uppdatering)
sats(er);@

De rédmarkerade ringarna och pilarna samt numreringen ska visa i vilken ordning
de respektive delarna utfors. Denna ordning ar namligen inte identisk med
kodbitarnas ordning. Pilarna markerar loopens forlopp. Initieringen gors endast en
gang och ingar ej i loopen.

Forsta raden &r for-satsens huvud. Resten &r for-satsens kropp som omsluts av
klamrarna { och }. Om kroppen endast bestar av en sats kan klamrarna utelamnas.

63

Raknaren satts fore repetitionen till ett dnskat startvéarde, for det mesta nagot hel-
tal, ofta 1. Detta kallas initiering av raknaren dvs den allra férsta tilldelningen av
ett varde till raknaren. Sedan testas ett villkor dar man brukar lagga in ett énskat
slutvarde pa raknaren. Darmed &r antalet repetitionerna fastlagt, t.ex. till slutvérde
minus startvarde om réknaren 6kats med 1. Om villkoret &r uppfylit, t.ex. om rak-
naren & mindre &n slutvardet, utfors ett antal instruktioner. Sedan gors en uppda-
tering av raknaren, oftast en 6kning med 1, men det ar dven majligt att rakna nedat
eller vélja ett annat steg an 1. Allt detta hander i varje varv.

En tillAmpning av for-satsen
Féljande problem ska l6sas:

En borrutrustning for bergvérme kan borra 25 m i en viss tomtmark
under den 1:a timmen.

Under de féljande timmarna minskar borrens prestation med upp-
skattningsvis 10-20% per timme. Den exakta minskningen ar inte
kand. Borren gar oavbrutet i 8 timmar.

Skriv ett program som simulerar minskningen av borrens prestation
efter denl:a timmen med slumptal mellan 10 och 20 och beréknar ett
nérmevarde till det totala borrdjupet.

Uppskatta borrhalets totala djup efter 8 timmar.

Skriv ut &ven borrprestationens procentuella minskning vid aktuell
kdrning.

1 <!-- Borr.html

2 Uppskattar det totala borrdjupet for en borrutrustning som
3 gar i 8 timmar. Simulerar minskningen av borrens prestation
4 med slumptal inom ett intervall -->

5

6 <title>Uppskattning av borrhal</title>

7

8 <script>

9 totalDepth = 0

10 hDepth = 25 // 1:a timmens borrdjup
11 a =10 // Intervall for pro-

12 b = 20 // centuell minskning

13 procent = a + parseInt(Math.random()*(b-a+1)) // 10-20%

14 FF = 1 - procent / 100 // Forandringfaktorn

15

64

16
17
18
19
20
21
22
23
24
25
26
27

for (h = 1; h <= 8; h++) // 8 timmar
{
totalDepth = totalDepth + hDepth // Varje timmes totaldjup
hDepth = FF * hDepth // Varje timmes borrdjup
} // efter 1:a timmen
document.writeln('<h2>H3let for bergvdrmen ar ca. ' +
parseInt(totalDepth) + ' meter djupt.</h2>")
document.writeln('Denna uppskattning baseras pa ' + procent +
'% minskning av borrprestationen per timme.

")

</script>

28 Ladda om sidan (Ctrl-R) for att kéra om skriptet.

En korning ger foljande reultat:

v - O X

@ Uppskattning av borrhal X -+
C @ localhost:58330/Borr.html e v O e d
@) Loopia Webmail M TAgmail Chas m(o) Qlok Programmering »

Halet for bergviirmen ir ca. 125 meter djupt.

Denna uppskattning baseras pa 14% minskning av borrprestationen per timme.

Ladda om sidan (Ctrl-R) for att kéra om skriptet.

65

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

Ovningar till kapitel 3

Marcus som &r 1,75 m stor och véger 76 kg vill veta om han ar dverviktig.
Enligt Body Mass Index (BMI) anses man vara 6verviktig om BMI > 25. BMI
beréknas med formeln:
Vikt i kg
BMI = P EE—
(Langd i m)

Skriv ett program — en BMI Calculator — som I&ser in vikten i kg och lang-
den i cm som heltal och skriver ut dverviktig om BMI > 25, annars OK.
Som kontroll skriv dven ut BMI-vérdet.

Skriv ett program som laser in tva hetal och skriver ut R&tt ordning om det
forsta & mindre &n det andra. Skriv ut Lika stora om de &r lika stora och
Fel ordning om det forsta ar storre an det andra.

Vidareutveckla programmet Max (sid 45) s att det laser in fyra tal, hittar och
skriver ut det storsta. Vilken andring i koden leder till det minsta talet?

Modularisera din 16sning fran 6vn 3.3 genom att definiera den delen av kod
som hittar det storsta talet, som en funktion. Anropa sedan funktionen fran
ett program. L&t dig inspireras av programmet MaxFct (sid 47).

Modularisera din 16sning fran 6vn 3.1 genom att definiera BMIs beraknings-
formel som en funktion. Anropa funktionen fran ett program.

Ersatt i programmet SimpleIf (sid 42) de tva enkla if-satserna med en enda
if-else-sats. | Ovrigt ska programmet géra samma sak som tidigare, ndm-
ligen att forhindra division med @, ndr man matar in @ for det andra talet.

Skriv ett JavaScript program som laser in tva heltal till variablerna a och b
och med hjélp av en if-else-sats avgor om a &r jamnt delbart med b. GI6m
inte att skicka ledtext vid inmatningar. Skriv ut anvéndarvénligt. Testa pro-
grammet och visa att 4592 &r jamnt delbart med 7.

Idag ar det onsdag. Julia vill traffa sin kompis om 13 dagar och vill veta vil-
ken veckodag det blir. L&s problemet generellt:

Skriv ett program som fragar efter aktuell veckodag. Mata in en siffra for
veckodagen. Anta att veckans dagar ar numrerade fran 1-7 med bdorjan pa
mandag. Sedan ska programmet fraga nar anvandaren vill traffa sin kompis
och fa som svar ett antal dagar. Berakna och skriv ut den planerade traffens
veckodag som nummer. K&r programmet for att 16sa Julias problem.

Tips: Las l6sningen till Tillampningar av modulo, ex. 2 (sid 50).

66

3.9

3.10

3.11

3.12

3.13

3.14

3.15

3.16

Féljande pseudokod beskriver hur man tar pa sig sjal, mossa och handskar
beroende pa hur kallt det ar ute:

Start Vinterkl&adsel
L&s av temperaturen
oM temperatur< 0
ta sjal, mossa och handskar
ANNARS OM temperatur < 5
ta sjal och mossa
ANNARS OM temperatur < 10
ta sjal
ANNARS
slipper du vinterkladsel
Slut Vinterkladsel

Oversatt pseudokoden Vinterkladsel till ett JavaScript program med hjélp av
en if-else-stege. Lt programmet ldsa in ett varde for temperatur och av-
gora val av klddsel genom att skriva ut ”Ta ...”.

Modifiera programmet Collatz (sid 58) genom att ersétta do-loopen med en
while-loop. Modifiera dven algoritmens pseudokod och flodesschema, sa
att de aterpeglar algoritmens implementering med while-loopen.

Andra koden i programmet Collatz (sid 58) sa att kérningen genererar en
evighetsloop.

Modifiera programmet Sum_while (sid 60) genom att ersitta while-loopen
med en do-loop.

Generalisera programmet Sum_while (sid 60) genom att ersitta den hard-
kodade sluttermen 100 med en variabel 1ast_term som léses in, sa att man
kan berékna vilka summor som helst. Testa programmet med olika inl&s-
ningar for last_term, bl.a. med 10, 1 @00 och 10 eee.

Andra koden i programmet Sum_while (sid 60) sa att kdrningen genererar en
evighetsloop.

a) Anvand en while-loop for att skriva ut de forsta 10 positiva heltalen.

b) Vilken andring andring i koden till a) maste goras for att fa fram de for-
sta 20 positiva heltalen?

a) Anvénd en for-loop for att skriva ut 10 slumptal mellan 0 och 1.

b) Skraddarsy JavaScripts funktion Math.random() for att slumpa 20 heltal
mellan 1 och 50.

67

3.17

3.18

3.19

3.20

3.21

3.22

Vi vill simulera térningskast. Generera i en for-loop 10 slumptal mellan 1
och 6 och skriv ut dem. Fortsatt med att skriva ut 50 tarningskast.

a) Skriv ett program som skriver ut de forsta 10 jamna talen.

b) Modifiera a) s att endast de forsta 10 udda talen skrivs ut.
a) Skriv ett program som summerar de forsta 10 positiva heltalen.

b) Generalisera a) s att programmet beraknar summan av de férsta n po-
sitiva heltalen dér n kan matas in. Testa for n = 100 och 1 000.

c) Skriv ett program som summerar de forsta n pos. heltalen med formeln:
summa = n(n+1)/2

Testa om du far samma svar i b) och ¢) for n = 1 000, 5 000 och 1 000 000.

Skriv ett program som laser in ett heltal som stegvariabel for att skriva ut tal
fran 1 till 5000. Om steget &r t.ex. 5 skrivs var femte tal ut.

Skriv ett program som omvandlar tiden i antal &r, manader och veckor till
antal dagar. Lé&s in tre heltal till antal ar, manader och veckor. Berakna och
skriv ut sedan anvandarvanligt hur manga dagar det blir totalt.

Vand pd problemet fran 6vn 3.21: Skriv ett program som laser in ett antal
dagar, omvandlar det till antal ar, manader, veckor samt resterande dagar
och skriver ut resultatet. Anvand for denna omvandling féljande algoritm
och pseudokod.

Algoritmen:

1. Kalla den givna tiden i dagar for totaldagar.

2. Dividera totaldagar med 365 och strunta i resten, sa far du det sokta
antalet &r.

3. Taresten vid divisionen ovan. Dividera denna rest med 30 och strunta i
resten sa far du det sokta antalet manader.

4. Taresten vid divisionen i punkt 3. Dividera denna rest med 7 och strun-
ta i resten sa far du det sokta antalet veckor.

5. Resten vid divisionen i punkt 4 ar det sokta antalet resterande dagar.

Operationen ”Dividera och strunta i resten” ér heltalsdivision och operatio-
nen “Ta resten vid heltalsdivision” dr modulo..

Pseudokoden:

ar = totaldagar heltalsdividerad med 365

manader = (totaldagar modulo 365) heltalsdividerad med 30
veckor = ((totaldagar modulo 365) modulo 30) heltalsdividerad 7

Resterande dagar = ((totaldagar modulo 365) modulo 30) modulo 7

68

3.23 Tillampa den logiska strukturen i algoritmen och pseudokoden till évn 3.22
for att 16sa foljande uppgift:

Efter inkOp av en vara i en automat ska véxeln ges tillbaka i form av ett an-
tal foreskrivna myntslag: 10-kronor, 5-kronor, 1-kronor, 50-6ringar * och en
rest i 6ren < 50. Skriv ett program som l&ser in ett véxelbelopp i 6ren, om-
vandlar det till ett antal 10-kronor, 5-kronor, 1-kronor och 50-6ringar samt
skriver ut resultatet. Resten i 6ren < 50 kan vi férsumma (resp. avrunda).

* 50-6ringen finns inte langre i det svenska myntsystemet. Att vi andé inkluderar den i upp-
giften beror inte pa nostalgi utan pa internationalisering. Vi vill halla 6ppen méjligheten for
en overgang till andra valutor, t.ex. Euro. Behandlingen av en halv enhet vid omvandling av
vaxelbeloppet till automatens tillatna mynt inkluderar en programmeringsteknisk finess som
kan vara vard att lara sig. Sa kan vara program &ven anvandas t.ex. for Euron dar 50 Cent
ersétter 50-0ringen.

69

Programmering 1 med C#

Ur innehdllet:

Grundbegrepp i programmering

MED C#

TAIFUN ALISHENAS

Datatyper, variabler & tilldelning
Utskrift till grafisk miljo
Windowsprogrammering

C# Console & Windows Applications
Interaktiva grafiska granssnitt

Kontrollstrukturer

Klasser, objekt och referenser
Metoder

Rekursiva metoder
Sammansatta datatyper: Arrays
Dynamiska arrays: Listor
Sokning & sortering

Kryptering av text

Hantering av slumptal
Undantagshantering

vy ¥

Vad &r objektorienterad programmering?
Installation av Visual Studio.NET
Konfiguration av Visual Studio.NET

\ Projekt i Visual Studio.NET

FORAG
TAFUN EDUCATION

www.taifun.se

Koda matte med
Python

Programmering i matematik

En enkel, pedagogisk larobok som kom-
pletterar matematikundervisningen med
inslag av programmering. Den vagleder
bade larare och elever genom att kombi-
nera teori med praktiska dvningar och
fullstandiga l6sningar. Boken presente-
rar ett pedagogiskt koncept om hur pro-
grammering kan integreras i kurserna
Matematik 1 (a,b,c) och Matematik &k 7-9.

www.kodamatte.se

70

Ovningar & projektuppgifter
Fullstéandiga I6sningar till dvningar

Ladda ned gratis smakprov.

MATTE
PYTHON

TECH

Programmering 2

Programmering 2

med C#

Foljer Skolverkets kursplan GY 2011

)

av Forlag
Taifun Alishenas Taifun Education

med C#

Ur innehallet:

Windowsprogrammering

Grafiskt granssnitt mot Internet (webblasare)
Grafiskt granssnitt med menyval
Multiple Document Interface
Objektorienterad programmering
Objektorient. modellering & implementation
Metoder i OOP / Generics

LINQ / Lambdauttryck

Delegater / Metodgrupper

Arv och polymorfism

Abstrakta klasser & metoder

Virtuella metoder

Filhantering / Slumplésenord

Kryptering av filer / Tabellhantering i filer
Databaser / Relationsdatabasmodellen
Introduktion till SQL databaser

Visual Studios SQL-Server

Grafiskt granssnitt mot databasen

En SQL-klient i C#

Att skapa och designa en databas
Databas med egna funktionaliteter
Projektuppgifter & évningar

Fullstédndiga l6sningar till alla 6vningar

Utveckla en egen webblasare (ex. ur boken ovan):

Navigate

[0} Mattekollen

Help

Fa koll pa gymnasiematten

Mattekollen gor gymnasiematten roligare, snabbare och

lattare att lara sig.

Lar dig i din egen takt med:

+ Genomgangar med pedagogiska bilder och losta

exempel.
+ Quiz som hjalper dig att snabbt komma igang.

+ Qvningsuppgifter som forbereder dig infor proven

Da Mattekollen foljer Skolverkets kursplaner sa ar appen

Potens - upprepac multiplikation
@ 2 mec sig siate. § ghager,

Poters mec "egsbv exonent
1
g
Invertera potonien Mmad pasty
experent.

perfekt for egenstudier, repetition, om du har missat vad
som gicks igenom pa lektionen, for att fa ett forspang eller
for att plugga infor nationella proven och hogskoleprovet.

Mattekollen (Beta) finns nu i som webbapp samt till Android

och iOS.
GETTON £
> Google Play | @ App Store

& <OF 50m

¥ Webbapp

24 “inverters® Lex 10 ger .L .
Wl

Tio lektioner

Vartér ér sépbubblor runda?

Eftersom de foljer naturens lag och antar den minst
majliga ytan vid samma volym. Detta kan uppnés
endast som klot (sfér), en geometrisk figur som saknar
horn och ar dessutom vacker.

Naturen minimerar energin. Effektiviteten méter
estetiken.

Genom att kombinera programmering med matem-
atik kan du lyfta hemligheterna bakom samma
naturlag som gér sdpbubblorna runda.

