

Programmeringsspraket C# (uttalat “’si sharp™) bygger pé allt som ar bra i C, C++
och Java och lagger till en hel del nytt. Tillagget ++ (6kning med 1) i C++ betyder
att man lagt till 1 utvecklingssteg till C, men behéllit den gamla kdrnan C. Tillagget
i C# daremot star for en ny- och vidareutveckling som inte langre bar pa ballas-
ten frdn C och bjuder pa en hogre programmeringsupplevelse. | musiken ar C#
(eng. C sharp, sv. Ciss) en halv ton hégre &n tonen C, vilket har inspirerat namn-
givningen av programmeringsspraket C#, dar man med tillagget # syftar pa att man
”hojt” spraket C till C#.

Koden &r enkelt att l&ra sig. Har man kommit éver en viss troskel — vilket denna
bok hjélper dig att géra — blir det roligt att skriva program som kan l6sa praktiska
problem och férenkla manniskans arbete — allt for att ha mer tid 6ver for annat i li-
vet. Det ar just det IT och programmering handlar om. Dessutom far man genom
att lara sig programmering, en battre forstaelse for hemligheterna bakom IT.

Andra programmeringsbocker publicerade i samma forlag:
e Programmering 2 med C# — En fortsattning pa denna bok.
e Programmering 3 med C# — En fortsattning pa Programmering 2 med C#.
e Programmering 1 med C# — En lightversion av denna bok.
e Programmering 1 med Java — En introd. till programmeringens grunder.
e Programmering for nybdrjare med C++ — Introd. till programmering.

e Koda matte med Python.

e Programmering i matematik — Tio lektioner (under bearbetning).
Alla bocker innehaller évningar, projektuppgifter och fullst. 16sningar till alla 6vn.
Tacksam for kritik, synpunkter, pdpekande av fel och forslag om korrektur eller

forbattringar av innehall eller form till info@techpages.se.

Printed in Sweden
Published by TechPages Forlag AB
ISBN 9789197420471

www . techpages. se

Programmering 1+

med C#

Tacker Skolverkets amnesplan for kursen Programmering 1

Med 6vningar,
fullstandiga I6sningar
&
projektuppgifter

www.techpages.se TechPages Forlag

Titel: Programmering 1+ med C#
ISBN 9789197420471

Forlag: TechPages Forlag AB
info@techpages. se

Copyright © 2022 TechPages Forlag AB, Danderyd.
All rights reserved.
www . techpages. se

Skrivet av TechPages Forlagets forfattarkollektiv.
Tryckeri: Eprint, Stockholm
Februari 2022

®

Kopieringsférbud!

Denna bok &r skyddad av Lagen om upphovsratt. Kopiering &r forbjuden. Forbudet inkluderar éversétt-
ning, tryckning, stencilering, kopiering, lagring i elektroniska och digitala media, visning pa bildskarm
eller via projektor, bandinspelning osv. Dessa forbud géller dven for koden i alla programexempel samt
évningarnas lésningar som finns i boken. Den som bryter mot lagen om upphovsritt kan atalas av all-
man aklagare och démas till boter eller fangelse i upp till tva ar samt bli skyldig att erlagga ersattning
till upphovsman/réttsinnehavare.

Vad boken handlar om

Valkommen till programmeringens spannande varld! Nar man trottnat pa att bara
anvéanda program som andra skrivit, &r det dags att bérja programmera sjélv. Visst
ar det roligare att kora en bil &n att bara aka med. Det ar kreativiteten och det fria
skapandet som lockar. Programmering kan vara en naturlig fortsattning for dig som
hittills endast har mailat, surfat eller lyssnat pa musik pa datorn och nu vill veta
mer om vad som hander bakom kulisserna i en dator. Man lar sig namligen pé ett
helt nytt plan hur datorer fungerar nar man programmerar sjalv. Dessutom kan man
testa sina egna, nya idéer.

Programmering &r ett av de mest spannande kapitlen i teknologihistorien. Inte bara
darfor att den har lagt grunden till den moderna IT-industrin. Den har ocksa bidra-
git till att forverkliga den urgamla manskliga drommen att férenkla médosamma
arbeten. Istallet for att plaga sig kodar man en maskin med idéer, for att ha mer tid
Over for annat i livet.

Meningen med boken &r att lra ut programmering. Detta kan dock praktiskt &stad-
kommas endast genom att skriva och testa program, dvs anvanda ett programme-
ringssprak. | denna bok anvands C# som medel, verktyg och medium for att pre-
sentera programmering. Men medlet ar av underordnad betydelse. Mélet ar att for-
medla tankesattet och tekniken att programmera, oberoende av sprak. Har man en
gang forstatt de grundlaggande principer som ar gemensamma for alla programme-
ringssprak, blir det narmast en teknikalitet att pa egen hand lara sig ett nytt sprak.
Denna bok &r en introduktion till programmering som inte bara tdcker Skolverkets
kursplan for Programmering 1 utan innehaller dven en hel del annat smatt och gott
fran datalogin for att gora pliktlektyren mer intressant, darfor 1+. Nagra forkunska-
per inom dmnet forutsatts dock inte.

Vi som skrivit boken har manga ars erfarenhet av undervisning i programmering,
databaser, matematik, numerisk analys och andra amnen béade pa skol- och hogsko-
leniva i olika lander. | vart material efterstravar vi enkelhet och klarhet som resul-
terar i strukturerade och logiska program sa att man latt kan se idén och forsta tan-
ken bakom koden.

I borjan av véara banor som pedagoger antog vi att vissa begrepp, sammanhang och
forutsattningar var sjélvklara, men den dagliga undervisningen i klassrum fick oss
snart pa andra tankar. Véra elevers fragor, kritik och kommentarer fick oss att for-
sta var de begreppsmassiga luckorna i vara resonemang fanns. De var véra elever i
programmering, matematik osv. men blev vara larare i pedagogik.

Rdoda tradens pedagogik
Bdcker i tekniska &mnen &r ofta rena faktasamlingar vilket kan vara en konsekvens
av amnenas komplexitet. Nar de &r skrivna for experter behdver det inte heller vara

5

av nackdel. Men nér nybdrjare ska introduceras till ett &mne blir det problem om
boken inte kombinerar kunskap med pedagogik. Da blir larobdcker ofta en ambiti-
0s samling fakta som inte framhaver det véasentliga. Oftast handlar det om elemen-
tar kunskap som experten tar for given, men blir den bristande lanken i forstaelse-
kedjan hos nybdrjaren. Bokens ambition ar att forverkliga den roda traddens peda-
gogik genom att stiga ned till nybdrjarens kunskapsniva och steg for steg bygga
upp kunskapens hus av sma losa, logiskt harledbara pusselbitar sa att till slut allt
faller pa plats.

Learning by doing — teaching by example

Programmering dr i allra hogsta grad ett praktiskt &mne. Dérfor &r Learning by do-
ing det enda sattet att lara sig det. | detta avseende liknar programmering bilkor-
ning. Du kommer aldrig att lara dig programmering enbart genom att lasa bocker.
Men att bara ”prova sig fram” racker inte heller. Amnet &r alltfor omfattande. En
handledning behdvs, inte minst i borjan, som kombinerar sakkunskap med pedago-
gik, belyser det vasentliga och tillampar ett helhetskoncept.

Boken haller inga abstrakta lektioner utan anvander teaching by example dvs
exempelorienterad teoriundervisning i kombination med praktiska 6vningar: All
teori, dven de mest abstrakta begreppen askadliggérs med enkla praktiska exempel.
Fullstandiga sma program med korexempel géas igenom i detalj for att formedla
viktiga koncept inom programmering. Annu mer material presenteras i Gvningarna
inkl. praktiska programmeringsprojekt. Fullstandiga l6sningar till alla 6ningsupp-
gifter finns i slutet av boken.

Gor sa har:

» Ladda ned och installera programvaran Visual Studio (sid 12-13).

> Géa igenom boken avsnitt for avsnitt, program for program. En full-
stdndig programforteckning finns i slutet av boken (sid 253).

» Gor ovningarna i slutet av varje kapitel. Kolla Iésningarna (sid 219).
» Genomfor programmeringsprojekt som finns bland 6vningarna.
> Prova dina idéer i egna program och atervand till teorin.

All form av kritik, korrekturanmarkningar savél som forslag till forbattringar av
béde form och innehall tas tacksamt emot pa adressen info@techpages . se.

Stockholm februari 2022 TechPages Forlag

Innehallsforteckning

Amne Sida Program
Kapitel 1 C# programmeringens miljo 11
1.1 Installation av Visual Studio 12
1.2 Konfiguration och anvandning av Visual Studio 13
- Tva olika typer av applikationer 13
- Projekt i Visual Studio 14
1.3 C# Console Applications 15 First
- ETT projekt for alla konsolapplikationer 20
1.4 C# Windows Forms Applications 22 Interaction
1.5 Utskrift till en grafisk miljé 28 MessageBox
Ovningar till kapitel 1 30
Kapitel 2 Programmeringsspraket C# 33
2.1 Integrated Development Environment (IDE) 34
- Visual Studio — en IDE 34
- Vad ar .NET? 34
2.2 VadéarC#? 35
2.3 Kompilering och exekvering 37
Kapitel 3 Att komma igdng med C# 41
3.1 Vart forsta C# program 42 First
- Metoden Main () 44
3.2 God programmeringsstil 47 First_bad
3.3 Radbyte och tabulator 49 LineBreak
- Metoden write () 50 Output
3.4 Konkatenering med + 51 Concat
Ovningar till kapitel 3 53
Kapitel 4 Grundbegrepp i programmering 55
4.1 Datatyper 56 Datatype
4.2 Deklaration och initiering av variabler 59 variable
- Deklaration vs. definition 64
- Vad hénder nér en variabel definieras? 65 DefInit
4.3 Inlasning av data 66 Input
4.4 Overskrivning eller kan x = x + 1 vara sant? 68 Overwrite
4.5 Operatorer och uttryck 71 Operator
- Inmatning — Bearbetning — Utmatning 72
4.6 Overlagring av operatorer 74 OverloadOp
4.7 Okningsoperatorn ++ 77 Increment
4.8 Sammansatta tilldelningar 80 CompAssign
Ovningar till kapitel 4 83

Amne Sida Program
Kapitel 5 Enkla datatyper 85
5.1 Kan datorn lagra hur stora tal som helst? 86 Primitives
- Overflow 89 Limits
5.2 Datatypen char 91 Char
5.3 ASClI-tabellen 93 Int2char
- Explicit typkonvertering 94 Char2int
5.4 Escapesekvenser 97 Escape
5.5 Unicode 99 Unicode. java
5.6 Decimaltalstyperna 101 Decimal
5.7 Automatisk typkonvertering 104 AutoConv
Sammanfattning av kapitel 4 och 5 108
Ovningar till kapitel 5 109
Kapitel 6 Kontrollstrukturer 111
6.1 Vad ar kontrollstrukturer? 112
6.2 Enkel selektion: if-satsen 113 SimpleIf
- Jamforelseoperatorer 115
- Algoritm for platsbyte 116 MiniSort
- Villkorlig initiering 118 (Un)CondInit
6.3 Tvdvégsval: if-else-satsen 121 1IfElse
6.4 Flervagsval: switch-satsen 123 Switch
6.5 Spelserien Gissa ta/ 128
- med nastlad if-else 128 GuessIfElse
- med kombination av switch och if-else 129 GuessSwitch
6.6 Efter-testad repetition: do-satsen 131 GuessDo
- Hantering av slumptal 134 DoRand
- Gissa tal med slumptal 135 GuessDoRand
- Evighetsloop 138
6.7 For-testad repetition: while-satsen 139
- ASCII-tabellen med while 140 Ascii
6.8 Bestamd repetition: for-satsen 142 ForRandom
- Rackvidden av for-satsens raknare 145
6.9 Nastlade for-satser 147 NestedFor
- Multiplikationstabellen 149 MultipTab
Ovningar till kap. 6 (Proj. Labyrinten, Lép. texten & Pyramiden)151
Kapitel 7 Metoder 157
7.1 Vad ar en metod? 158
- Modularisering eller Lego-principen 159
7.2 Metoder med returvarde 161 ReturnMethod
- Definition av metoder 162
- Anrop av metoder 164

Amne Sida Program
7.3 Externlagrade metoder 169 TotalTest
7.4 Metoder utan returvarde 171 VoidMethod
Ovningar till kapitel 7 (Projekten Collatz probl. & Kalkylatorn) 174
Kapitel 8 Klasser, objekt och referenser 179
8.1 Vad é&r en klass? 180 Password
- Testa losenord som klass 181 PasswordTest
8.2 Klass som egendefinierad datatyp 185
- Vad ar en referens? 186
8.3 Gissa tal som klass 188 GuessNo
Ovningar till kapitel 8 (Projekt Automaten) 191
Kapitel 9 Arrays 196
9.1 Vad ar en array? 197
- Deklaration och initiering av en array 199 Array
- foreach-satsen 201
- Hakparentesernas tre olika betydelser 202
9.1 Arrayens initieringslista 204 ArrayInit
9.2 Texthantering med array av char 206 ArrayChar
- Slumplésenord 207
Ovningar till kapitel 9 (Projekt Master Mind) 209
Appendix Vad ar objektorienterad programmering? 212
Fullstandiga I6sningar till alla 6vningar (Facit) 219
Projektuppgifter
e Labyrinten 152
e LOpande texten 154
e Pyramiden 155
e Collatz problemet 175
e Automaten 192
o Kalkylatorn 176
e Mater Mind 209
Programférteckning 253
Register 256

10

Kapitel 1

C# programmeringens

miljo

Amne Sida Program

1.1 Installation av Visual Studio 12
1.2 Konfiguration och anvandning av Visual Studio 13

- Tva olika typer av applikationer 13

- Projekt i Visual Studio 14
1.3 C# Console Applications 15 First

- ETT projekt for alla konsolapplikationer 20
1.4 C# Windows Forms Applications 22 Interaction
1.5 Utskrift till en grafisk miljé 28 MessageBox
Ovningar till kapitel 1 30

11

1)

2)

3)

4)

5)

6)

7

1.1 Installation av Visual Studio

Ga till webbadressen: https://visualstudio.microsoft.com/vs/

Webbsidan Visual Studio 2019 visas. Ga med musen 6ver den lila knappen:
Download Visual Studio Download Visual Studio

En dropplista dyker upp. Véalj Community 2019 .

Installationsfilen vs_community __12....exe laddas ner. Strunta i resten pa den
nya webbsidan. Dubbelklicka pa den just hamtade installationsfilen. Svara Ja
pa fragan om du ska tillata att den hér appen far géra andringar pa din dator.
Klicka p& Continue om det dyker upp rutan Visual Studio Installer.

Det tar ett tag tills Visual Studio Installer éppnar ett stort vitt fonster dyker upp
med den lilla rubriken Installing — Visual Studio Community 2019 ... och den bl&-
markerade fliken Workloads. | den finns till vanster ett antal rutor. Leta efter
foljande ruta:

Markera rutan med rUbrI- m .NET desktop development
Gill NET desktop deve- -J

Build WPF, Windows Forms, and console applications using
[eJelnglsleld genom att bocka C#, Visual Basic, and F.

den lilla bl& rutan i det 6vre
hégra hornet.

Klicka sedan i det stora vita fonstret Installing — Visual Studio Community 2019 ...
pa knappen i det nedre hogra hornet. Detta kan ta ett tag, ev. ganska
linge — beroende pé din dators prestation. Du kan sjalv avgora om du under
tiden vill besvara nagra fragor av mindre intresse for installationen. Eller vilj
t.ex. Do'nt show ... resp. Not now. Starta om din dator om du uppmanas till det.

Nér du lyckats med installationen startas Visual Studio antingen automatiskt
eller du kan gora det sjalv frdn Start-knappen. Stang rutan Visual Studio
Installer. F6ljande eventualiteter kan dyka upp:

e Om du uppmanas att skapa ett Microsoft-konto (Sign in), gor det. Det &r
gratis, gar fort och ar inte problematiskt. Anteckna ditt lésenord for senare
uppdateringar.

e Om du far upp en ruta med bl.a. dropplistan Development Settings Vvélj
C#. Om alternativet inte finns lat General std dér. Klicka sedan pa knap-

pen BEURYEEUSIs]le].

Beroende pa vilken typ av applikation du vill skapa fortsatt enligt instruktio-
nerna pa sid 15 fér Console Application eller sid 23 for Windows Forms Appli-
cation.

12

1.2 Konfiguration och anvandning

av Visual Studio

Efter lyckad installation av Visual Studio enligt anvisningarna i forra avsnitt — eller
om du har tillgang till en redan fardiginstallerad version av Visual Studio — kan du i
detta avsnitt lasa hur man anvander programvaran. For att kunna gora det, ndrmare
bestamt kompilera och exekvera C#- program kravs namligen en korrekt konfigu-
ration av Visual Studio, vilket i bérjan kan verka lite invecklad. Anledningen till
det &r att Visual Studio ar en integrerad programutvecklingsmiljé (IDE) som ar
skapad for professionella utvecklare och darfor ar ganska stor och komplex. Déarfor
vill vi i denna beskrivning halla oss till det absolut minimala som &r nddvandigt for
att klara av miljon och kunna koncentrera oss pa sjélva spraket C#. De viktigaste
momenten &r féljande:

Att valja rétt typ av applikation

Att skapa ett projekt (helst endast ett till alla C# program)
Att 1agga till en C#-kallkodsfil till projektet

Att kompilera och exekvera C#-koden i projektet

Det finns olika typer av C# program, dven kallat applikation.

Tva olika typer av applikation

I Visual Studio finns det manga olika typer av applikation. Av dessa behandlas en-
dast tva har:

1. Console Application ar ett C# program vars korresultat &r en utskrift i textform
som hamnar i Windows Kommandotolk, den s.k. konsolen, ett svart fonster, ibland
aven kallat for DOS-fonstret. Ett sddant program har inga grafiska komponenter.
Programexemplen i denna bok domineras av Console Applications.

2. Windows Forms Application involverar bade text och grafik och producerar
fonster samt dialogrutor av olika slag. Med sadana program kan anvandaren kom-
municera via grafiska granssnitt. | denna bok introduceras de pa sid 23. Fler Pro-
gramexempel av typ Windows Forms Applications finns i boken Programmering 2
med C#.

Foljande tre steg maste alltid tas for att kunna kora ett program i Visual Studio —
vare sig det &r en Console Application eller en Windows Forms Application:

1. Att skapa eller 6ppna ett befintligt projekt
2. Att lagga till en C#-kallkodsfil till projektet
3. Att kompilera och exekvera

13

For program av typ Console Application gar vi igenom dessa tre steg pa nasta sida.
Men forst: Vad exakt ar ett projekt i Visual Studio och varfor behdver vi det?

Projekt i Visual Studio

For att kunna kora ett C# program i Visual Studio maste koden infogas i ett s.k.
projekt. Ett projekt & en samling filer — alltid sjalva C#-kallkoden, men ocksé
andra relaterade filer inkl. ev. bilder — som sammanlagt utgdr ett C# program.
Denna samling filer bildar bade en fysisk mapp pa harddisken och en virtuell ar-
betsplats i Visual Studio. De kommunicerar med varandra hela tiden nér vi utveck-
lar och testar vara program. Visual Studio kan endast kompilera och kora C# pro-
gram som &r inbdddade i projekt, &ven om det &r det enklast tdnkbara program som
bestar av endast en fil. Det ar inte mgjligt att kompilera C#-kallkod utanfor ett Vi-
sual Studio-projekt. S3, innan vi kan baérja skriva C#-kod maste vi antingen skapa
ett nytt eller 6ppna ett befintligt projekt.

Den overgripande termen till projekt i Visual Studio &r solution. Dvs flera projekt
kan samlas i en solution. Sjalvklart kan en solution dven besta av ett enda projekt.
Vi kommer till att borja med inte att anvénda flera projekt i en solution utan endast
ett projekt. And& kommer vart projekt att automatiskt vara paketerat i en solution.

14

1.3 C# Console Applications

Starta Visual Studio fran Windows Start-meny genom att klicka fram dig till:
Start - Visual Studio 2019

Ett vitt fonster 6ppnas med rubriken Visual Studio 2019. | kolumnen till hdger un-
der rubriken Get started finns ett antal rutor.

1. Att skapa eller 6ppna ett befintligt projekt: Beroende pa om vi vill skapa
ett nytt eller 6ppna ett befintligt projekt, tar vi ett av foljande alternativen a) el-
ler b):

a) Om vi vill skapa ett nytt projekt — och det vill vi nu — klickar vi i det vita
Visual Studio 2019-fonstret pé rutan

Create a new project

En ny dialogruta dyker upp med rubriken Create a new project. Scrolla
ned den hdgra kolumnen i dialogrutan Create a new project och leta efter
en ruta med rubriken Console App ((NET Framework) som ser ut s& har:

C¥ Console App (NET Framework)

A project for creating a command-line application

Cc# Windows Console

OBS! Det kan vara lite svart att hitta denna ruta, eftersom det finns manga
alternativ och ménga rutor som ser likadana ut. Det ar lattgjort att man
valjer fel ruta. Var extra noga med att du har C# ikonen och den exakta
rubriken:

Console App (.NET Framework)

Och inget annat! Annars kommer vara program inte kunna koras med de
instruktioner som ges i boken. Och da kommer hela installation av Visual
Studio att beh6va goras om.

Markera rutan ovan. Klicka sedan pa knappen Next.
En ny dialogruta dyker upp med rubriken Configure your new project.

Fyll i den uppgifterna enligt foljande:

15

Configure your new project

Console App (NET Framework) ¢ Windows console
Project name

MyConsoleProject
Location

CA\C# -
Solution name)
Place solution and project in the same directory

Framework

NET Framework 4.7.2 -

Dvs i den évre delen av dialogrutan déper vi vart projekt till MyConsole-
Project. | textrutan Location anger vi den fullstandiga sokvagen till den
mapp Vi vill placera vart projekt i. Lat oss saga vi vill samla vara C# pro-
gram i en mapp som vi kallar C# och placerar i enheten C:\ pa var dator. |
sa fall anger vi som Location C:\C#. | denna mapp kommer nu projekt-
mappen MyConsoleProject placeras. Visual Studio skapar automatiskt
bade den nya mappen och projektfilen. Bocka for den lilla rutan Place so-
lution and project in the same directory. Klicka pa knappen Create. Ga till
punkt 2.

b) Om vi vill 6ppna ett redan befintligt projekt — det gor vi kanske senare —
klickar vi i det vita Visual Studio 2019-fonstret pa rutan

Open a project or solution

Vi far upp dialogrutan Open Project/Solution. For att Gppna det projekt vi
vill jobba med, navigerar vi i datorns filsystem till projektmappen och
oppnar dar filen med andelsen . esproj. Ga till punkt 2.

2. Attlagga till en C#-kallkodsfil till projektet: Efter att ha lamnat dialogru-
tan Configure your new project med Create-knappen enligt 1. a) eller dialo-
grutan Open Project/Solution med Open-knappen enligt 1. b) 6ppnas projektet.
Ett grafiskt granssnitt kommer upp som liknar en webbsida bestdende av en
massa menyer, flikar, lankar och fonster som ser ut s& har:

16

pg Fe Edt Vew Popt Buid Dobug Tet Ambae [Scac.P | MyConsoleProjc ® - =¢C
Tools Extensions Window Help
R - T Debug - AnyCPU s sty BN _ I8 Live Share
¥
3 Programes ® x * Solution Explorer =
_;; [&5] MyConsoleProject - || "%, MyConsoleProject.Program ~ | ©g Main(string(] arg - AE- o-5&80
g Sust F
] 2 .Collections.Generic; « | | Search Solution Explorer (Ctrl+
_ 3 %] Solution "MyConsoleProject’ (1 of 1 project)
S 4 . 4 [cz] MyConsoleProject
¢ 5 .Threading.Tasks; L Properties
: iy ComsoleProdect b = References
-namespace onsoleProjec
: % P b J ¥ App.config
P ¢* Program.cs
9 = class Program
10 {
11 H static void Main(string[] args)
12 {
13 } Solution Explorer = Team Explorer
14 }
15 } Properties =
-
1A Program.cs File Properties
100% ~ @ Noissues found I 4 4 9 : ?
S5 | oy
|o=2| 2
Output MRS £ Advanced
Show output from: | IntelliCode - = Build Action Compile
[vSIX I] Trace log: C:\Users\taifun\AppData\Local\Temp\vsFeedbackIntelliCodelog Copy to Output Dire Do not copy
[vsIX I] version: 2.2.182.4985 Custom Tool
[CSharp.Package I] [C# IntellicCode] C# IntelliCode Completions package is stari— Custom Tool Names;
[csharp.Package I] [c# Intellicode] Obtained VS Workspace and TaskCenterService Advanced
[csharp.Package I] [C# IntelliCode] Running out-of-process. from RegisterIntell _
'l »

X

o]

P~

4 Add to Source Control =

Man ser ett antal fonster: till hoger ovan fonstret Solution Explorer dar projek-
tets innehall visas med ett antal automatiskt skapade filer, bl.a. filen Pro-
gram.cs som vi har markerat i bilden ovan. Till vanster ser man det stora kod-
fonstret som visar denna fils innehall som &r en mall for ett C# program. Den
ar lamplig for dem som vill anvédnda mallen for att snabbt kunna utveckla en
applikation. Vi ddaremot ska lara oss C# fran grunden och vill inte anvanda kod
som vi inte skrivit sjalva. Darfor: Markera Program.cs, hogerklicka och valj:

Exclude From Project

Darmed har vi avlagsnat denna fil frn projektet for att kunna infoga vart eget
C# program i projektet. Det finns tva alternativ att géra det: Antingen vill vi
skapa ett helt nytt program, skriva in koden, spara den i en fil och infoga den i
projektet eller vi vill lagga till en redan befintlig fil som innehaller ett C# pro-
gram, som vi kanske har skrivit tidigare. Vi ska behandla bada varianter och
borjar med den forsta:

a) Att skapa en ny fil och infoga det i projektet:

Markera i Solution Explorer projektnamnet MyConsoleProject, hogerklicka
pa det och valj:
Add > New ltem...

Dialogrutan Add New Item — MyConsoleProject dyker upp. Scrolla ner fon-
stret i mitten tills du ser filtypen Code File. Markera Code File i mittfonstret:

17

Add New Item - MyConsoleProject ? X

4 |nstalled Sort by: Default v Search (Ctrl+E) P~
« plalelen .’D Application Configuration... Visual C# Items Wirz Vil G liss
Code A blank C# code file
Data Application Manifest File Visual C# Items
General
=c+
Windows Forms BI Assembly Information File Visual C# Items
WPF
E Bitrmap File Visual C# Items
b Online

Name:

@ Code Analysis Rule Set Visual C# Items

[+
hWll| Code File Visual C# Items
I-F Cursor File Visual C# [tems
-
!D Custom Control Visual C# Items
ii DataSet Visual C# Items

ca

I Debugger Visualizer Visual C# [tems «

First.cs

Add Cancel

Ange i den undre delen av dialogrutan i textrutan Name: First.cs. Darmed
har du skapat en fil av typ Code File och dopt den till First.cs. Klicka pa
Add-knappen. Sa snart du gjort det ldggs den tomma filen First.cs till projek-
tet. Samtidigt skapas denna fil i projektmappen MyConsoleProject. Och nar
du i Solution Explorer markerar filen visas till vanster ett stort vitt fonster
som du kan anvénda som en editor for att skriva C#-kod i. Skriv in dar t.ex.
féljande kod:

using System;

class First

{

static void Main()

Console.WriteLine ("\n\tMitt férsta C#
program!\n") ;
}
}

Det rekommenderas att bibehalla kodens layout, for att félja God programme-
ringsstil, se sid 47. Visual Studio har stdd for detta. Koden kan sparas och lag-
ras t.ex. i filen First.cs sa snart du kompilerar projektet, se punkt 3. Vi kom-
mer att referera till den med programmet First som samtidigt &r klassnam-
net i koden, vilket dock inte &r obligatoriskt utan en konvention vi foljer.

b) Att Iagga till en befintlig fil till projektet:

Har du redan en C#-kéllkodsfil bland dina filer pd harddisken, markera i
Solution Explorer projekthamnet MyConsoleProject, hdgerklicka och valj:

18

Add -> Existing ltem...

Dialogrutan Add Existing ltem — MyConsoleProject dyker upp som tillater
dig att navigera genom datorns filsystem for att ladda en existerande C#-
kéllkodsfil. Ga till den fil du vill ladda, markera den och klicka pa knappen
Add i dialogrutan Add Existing Item — MyConsoleProject. | Solution Explorer
kan du konstatera att den fil du valde har kommit till projektet MyConso-
leProject. Markera den for att se innehallet i kodfonstret till vanster som nu
kan anvéndas som en editor.

3. Att kompilera och exekvera: Nu nar projektet dr skapat och innehéller en
C#-kallkodsfil kan man kompilera det vilket innebér att &ven kallkoden ovan
kompileras. Om det inte redan finns ett Output-fonster langst ned pa sidan un-
der kodfonstret, klicka i menyraden langst upp pa menyn:

View -> Output

Du far ett nytt Output-fonster for att kunna se resultatet av kompileringen och
aven se eventuella kompileringsfel. Akta p& vad som skrivs i det nar du kom-
pilerar koden frdn menyraden liangst upp med:

Build - Build Solution

Om du far foljande meddelande i Output-fonstret har kompileringen gatt bra:

1>------ Build started: Project: MyConsoleProject, Configuration: Debug
Any CPU ------
1> MyConsoleProject ->

C:\C#\MyConsoleProject\bin\Debug\MyConsoleProject.exe
======== Build: 1 succeeded, © failed, © up-to-date, @ skipped =========

Meddelandet ovan sager att koden inte innehaller nagra kompileringsfel. Har
du syntaxfel i koden kommer du att f& felmeddelanden i Output-fénstret. At-
gérda alltid endast det allra forsta kompileringsfelet och kompilera om med
kommandot ovan, eftersom de andra kan innehalla foljdfel. Ett majligt
kompileringsfel kan vara att du glomt att exkludera filen Program.cs fran pro-
jektet, se sid 17.

For att exekvera koden, klicka i menyraden langst upp pa menyn:
Debug - Start Without Debugging

Om allt har gétt bra bor det se ut s& har pa din skarm:

19

EX C\WINDOWS\system32\cmd.exe — O X

Mitt foérsta C#-program!

Press any key to continue . . .

Far du detta pa skarmen har du lyckats med att kompilera och exekvera den kod du
matade in pa sid 18 och skapa en C# Console Application: Programmet First
finns nu lagrad i filen First.cs och i projektet MyConsoleProject. cspro3.

Grattis/

Vill du skapa nya konsolapplikationer behéver du inte géra om hela proceduren.
Du behover bara ladda projektet MyConsoleProject i Visual Studio, exkludera filen
First.cs fran det och infoga nya filer resp. skriva ny kod, spara och kora enligt in-
struktioner pa sid 17-18. Ett projekt racker for alla konsolapplikationer. Sa det var
vért modan.

ETT projekt for alla konsolapplikationer

Det &r jobbigt att beh6va skapa ett separat projekt varje gang man vill testa ett litet
program. Och vi kommer att hela tiden skriva och testa sma program. Av dessa
kommer manga — speciellt i borjan — besté av endast en fil dar skapandet av ett nytt
projekt varje gang kan uppfattas som overkill. Det finns foljande maojlighet att slip-
pa detta och and& uppfylla Visual Studios krav pa att utveckla program endast
inom ett projekt:

For att underlatta arbetet och inte behtva skapa for varje program ett nytt projekt,
kommer vi att skapa ett enda projekt dvs ta steg 1 (sid 15) bara en gang i borjan och
i fortsdttningen endast upprepa stegen 2a (sid 17) och 3 (sid 19). Dvs vi kommer att
skapa ett projekt i vilket vi sedan lagger en aktuell C#-kéallkodsfil, jobbar med den
och avlagsnar den fran projektet nar vi ar klara. N&sta gang Gppnar vi samma
projekt, lagger till en annan kallkodsfil i det, jobbar och tar bort filen fran projektet
osv. For alla C# program anvénds ett och samma projekt.

Sa& har kan man realisera detta forfarande:

| fortséttningen, nér du vill testa ett annat C# program, laddar du det redan skapade
projektet MyProject, markerar forst den gamla kallkodsfil som finns i projektet fran
tidigare, exkluderar den fran projektet genom att hogerklicka pé filnamnet i Solu-
tion Explorer och vélja:

Exclude From Project

20

Filen tas bort och ar inte langre med i Visual Studio-projektet, men finns kvar pa
hérddisken i projektmappen.

Sedan fortsétter du sa har: For att ladda och testa nasta program markerar du i So-
lution Explorer projektnamnet MyProject, hdgerklicker och véljer:

- Add -> New ltem...

Har foljer du instruktionerna i stegen 2a (sid 17) och 3 (sid 19). Sa kan du hela
tiden anvanda samma projekt for att kompilera alla dina C# program, s& lange de
ar av typ Console Application. Pa sa satt slipper vi att skapa ett separat projekt for
varje C# program.

Detta forfarande rekommenderar vi dock endast sd lange som vi arbetar med
konsolapplikationer (kap. 3, avsn. 3.1 - 3.3 & kap. 4-11).

Organisera dina C#-kodsfiler

Det &r upp till dig hur du organiserar dina filer. Men for att underlétta arbetet
rekommenderas féljande forfarande:

Du kan samla och spara alla dina C# program tillhérande kapitel 3 Att komma
igdng med C# genom att skapa en undermapp som heter 03 Komigéng i en valfri
mapp, t.ex. i C:\C# och spara filen First.cs i mappen C:\C#\03 Komlgang. Detta kan
goras fran Visual Studios FILE-huvudmeny med:

- FILE -> Save First.cs As...

Anledningen till denna rekommendation ar féljande: Har du fatt korresultatet pa
forra sidan efter flera forsok dér du rattat till kompileringsfel och kompilerat om
och dérmed &ndrat C#-kodsfilen, har alla dina &ndringar sparats i filen First.cs som
tillndr projektet MyProject. Men eftersom vi enligt instruktioner nedan kommer att
exkludera filen First.cs fran projektet for att sedan kunna infoga och kora nésta
program i samma projekt ar det bra for sékerhets skull att ha alla sina testade pro-
gram samlade i en egen mapp som ligger utanfor projektmappen. Pa liknande satt
kan du spara dina efterféljande C#-kodsfiler i mappar du skapar under C:\C# och
betecknar enligt bokens kapitelindelning.

Sjalvklart fungerar bokens alla programexempel dven i alla tidigare versioner av
Visual Studio &n 2019 vars installation beskrevs pa sid 12.

21

1.4 C# Windows Forms Application

Ett grafiskt anvandargréanssnitt, pa eng. Graphical User Interface (GUI), ar en yta
som kan anvéandas for att kommunicera med programmet nér det kors. Och detta i
bada riktningar, dvs fran anvandaren till programmet och tvartom. Det ar ett slags
anvandarvénligt mellanskikt (gréans) mellan anvéndaren och den icke-anvandar-
vanliga koden. For att kunna kommunicera maste vi vacka de grafiska komponen-
terna till liv och interagera med dem, nér applikationen kors, vilket kréver att vi
forser dem med egenskriven kod och/eller med komponenter som ar forprogram-
merade i Visual Studio. | regel ingar i sddana program mer grafik an kod. En kon-
sekvens av denna nya form av program blir att korningen till skillnad fran konsol-
applikationer inte langre till 100% ar forbestdmd av utvecklarens kod utan kan dven
styras — atminstone delvis — av anvandaren under programkérningen genom mus-
klickningar och tangenttryckningar, s.k. handelser. Exekveringen startar i ett fon-
ster med grafiska komponenter, som visas nér programmet kors. Efter en héndelse
atergar kontrollen till operativsystemet, vilket dock inte betyder att kérningen ar
avslutad, utan att programmet ar redo att ta emot nasta héndelse osv. — dérfor: hén-
delsestyrd programmering.

I detta avsnitt vill vi bygga en Windows Forms Application som genererar nedan-
stdende tva fonster. Till vanster har vi det s.k. formfonstret, kort kallat formen, som
i sin tur innehaller en knapp (Button). Forst nar man klickar pa knappen (handelse)
far man en meddeladeruta (MessageBox), avbildad till hoger:

uy Interaction - [} X

I Detta dr en Button. Klicka pa den! |

Det har &r en egenvald rubrik till MessageBox X

Texten till en MessageBox som visas varje gang man klickar pa Button i formen.

Controls

Knappen i formfonstret ar en s.k. Control i Visual Studio. Den ingér i en stor grupp
av ateranvandbara grafiska komponenter i verktygsladdan Toolbox. Ett exempel pa
en sddan Control &r Button — en klickbar knapp som finns i Toolbox och som man
med musen kan placera i formfénstret. For att fa fram rutan till hoger maste vi skri-
va kod “bakom” Button och l&gga den i applikationen. Vilken kod och framfér hur

22

denna kombination av grafik och kod &r organiserad i Visual Studio, ska vi nu ga
igenom. Om projekt i Visual Studio las pa sid 14.

C# Windows Forms Application

Starta Visual Studio fran Windows Start-meny: Start > Visual Studio 2019. Ett vitt
fonster 6ppnas med rubriken Visual Studio 2019. | kolumnen till héger under rubri-
ken Get started finns ett antal rutor. Klicka pa rutan Create a new project .

En ny dialogruta dyker upp med rubriken Create a new project. Markera i den ru-
tan med rubriken Windows Forms App (.NET Framework) som ser ut sa har:

€8 Windows Forms App (NET Framework)

A project for creating an application with a Windows Forms (WinForms) user interface

C# Windows Desktop

Klicka pa knappen Next. Dialogrutan Configure your new project dyker upp:

Configure your new project

Windows Forms App (NET Framework) ¢ Windows Desktop
Project name

Interaction
Location

CA\C# -

Solution name €

Place solution and project in the same directory

Framework

NET Framework 4.7.2 v

Fyll i den uppgifterna enligt ovan. Dvs i den &évre delen av dialogrutan doper vi
vart projekt till Interaction. | textrutan Location anger vi den fullstandiga sokvégen
till den mapp vi vill placera vart projekt i. L&t oss sdga vi vill samla véra C# pro-
gram i en mapp som vi kallar C# och placerar i enheten C:\. | sa fall anger vi som
Location C:\C#. | denna mapp kommer nu projektmappen Interaction placeras.

23

Visual Studio skapar automatiskt bade den nya mappen och projektfilen. Bocka for
den lilla rutan Place solution and project in the same directory. Klicka pa Create.

Ett grafiskt granssnitt kommer upp som liknar en webbsida bestdende av en massa
menyer, flikar, lankar och fonster som ser ut sa har:

M File Edit View Project Build Debug Format Searc...2 Interaction @ - m} X
Test Analyze Tools Extensions Window Help

fi R T Debug ~ | AnyCPU ~ P Start v | BY _ 7 |& Live Share &

Forml.cs [Design] + X ~ | Solution Explorer v X

-

@El- o-s ¢ ad

Search Solution Explorer (Ctrl+7) P

& Form1 E

& Solution ‘Interaction’ (1 of 1 project)
4 Interaction
b M Properties
b =B References
¥ App.config
> B Forml.cs
P ¢* Program.cs

s80IN0G ele] xoq|oo] Iaiojdxg Janias

Solution Explorer | Team Explorer

Properties v B Xx

Form1 System.Windows.Forms.Form -

- EE (2] 4

4 > Text Form1 =
UseWaitCursor False

iz ¥ ¥ X5 Behavior

Show output from: | IntelliCode M " AllowDrop False -

[vSIX I] Trace log: C:\Users\taifun\AppData\Local\Temp\VSFeedbackIntelliCode & | Text

[VSIX I] Version: 2.2.182.4985 ¥ The text assodiated with the control.

4 »

A Add to Source Control ~ &4

Huvudingrediensen i denna samling av komponenter ar fliken Forml.cs [Design]
som i sin tur visar ett fonster med rubriken Form1. Detta fonster dr en s.k. Windows
Form, kort kallad for form — ett grafiskt anvandargrénssnitt som kommer att utgora
den visuella delen av var grafiska applikation. Denna form — ibland &ven kallad
formfonstret — &r huvudfénstret (en slags Container) till alla grafiska applikationer
som vi kommer att placera i den och som visas ndr programmet kors.

Markera formfonstret, g& med musen till Properties-fonstret i formfonstrets nedre
hdgra horn, markera egenskapen Text och andra dess vérde fran Form1 till Interac-
tion. Observera att formfonstrets rubrik nu &ndrats till Interaction. Scrolla ner Pro-
perties-fonstret till egenskapen Size och sétt dess varde till 930; 660. Darmed har
vi gett vart formfonster en ny rubrik och en ny storlek.

G4 till menyraden langst upp och valj menyn: View - Toolbox

Expandera Common Controls och dubbelklicka pd kontrollen Button, s& att den
hamnar i formfonstret. Nar du flyttar markdéren till formen stdngs Toolbox-fonstret.
Markera den nya kontrollen button1 pa din form for att fi fram dess egenskaper i
Properties-fonstret.

24

Egenskaperna i Properties-fonstret ar by default grupperade i kategorier (Catego-
rized). Andra detta genom att i Properties-fonstrets lilla menyrad strax under but-
ton1 klicka pa ikonen (Alphabetical) for att lattare kunna hitta de egenskaper angiv-
na i tabellen nedan. Andra button1-egenskapernas vérden enligt foljande:

button1:
Egenskap Varde
AutoSize True
Font Tahoma,; 12pt; style=Bold
Location 110; 100
Text Detta &r en Button. Klicka pa den!

Markera knappen med texten Detta &r en Button. Klicka pd den! och dubbelklicka
pa den. En ny flik Form1.cs uppstar till véanster om den gamla fliken Form1.cs [De-
sign]. Den nya fliken visar kod som lagras i filen Form1.cs. Impandera den forsta
raden som inleds med using. Skriv pa det stéllet dar markoren star och blinkar, de
tre rader kod som &r markerade pa denna bild (raderna 20-22):

- Ble Edit View Project Buld Debug Test Analwe 0 ; @ - o
Jools Extensions ~ Window Help
o - - R 9 Debug ~| AnyCPU b St B =] |8 Live Share &7
Form1.cs [Design]* ¥ Solution Explorer ¥ R X
Interaction ~ *3 Interaction.Form1 ~ @5 Button1_Click{object sender, Events ~ I~ B - "
1 Husing + .
10 ~Inamespace Interaction « | | Search Solution Explc £ ~
1 { %] Solution Interaction’ ('

4 Interaction

S30IN0S BJB(] X000 Ja10|dx] JBAISG

12 = ublic partial class Forml : Form
13 ? P b M Properties
D =B References
14 = public Formi() ¢ App.config
15 { 1 b [= Formi.cs
16 InitializeComponent(); D c* Program.cs
17 }
18 - private void Buttonl_Click(object sender, EventArgs e)
19 {
20 MessageBox.Show("Texten till en MessageBox som visas " +
21 "varje gang man klickar pa Button i formen.", < »
22 Det har ar en egenvald rubrik till MessageBox);\ Solution E... | Team Expl..
23 }
24 ¥ Properties v B X
25 } - -
100% - @ No issues found g~ 4 »
Qutput v B X
Show output from: | IntelliCode M = fa

[vsIx I] Trace log: C:\Users\taifun\AppData\Local\Temp\vsFeedbackIntellicodeLogs\20190630_1140"
FvsIX I1 Version: 2.2.182.4985
4 »

=
-

| Ln22 Col 75 A Add to Source Control « &,

Kompilera med Build - Build Solution och kér med Debug - Start Without Debug-
ging applikationen Interaction. Klicka pa knappen for att fi fram detta:

25

Det hér &r en egenvald rubrik till MessageBox X

Texten till en MessageBox som visas varje gang man klickar pa Button i formen.

Nedan foljer den fullstandiga koden i filen Form1.cs samt kodens forklaring:

using System;
using System.Windows.Forms;

namespace Interaction // Namnutrymme
{
public partial class Forml : Form // Forml &rver Form
public Forml () // Klassens konstruktor
{
InitializeComponent() ;
}
private void buttonl_Click(object sender, EventArgs e)
{
MessageBox.Show ("Texten till en MessageBox som " +
"visas varje gang man klickar pa Button i formen.",
"Det hdr &4r en egenvald rubrik till MessageBox") ;
}

| C# &r namespace ett reserverat ord som skapar ett namnutrymme, en slags be-
hallare for klasser. C#:s programbibliotek ar organiserat i sddana namnutrymmen
som innehaller fordefinierade klasser. Dessa placeras i namnutrymmen som far
samma namn som projektet. T.ex. kan man komma &t klassen Forml med Inter-
action.Forml 0sV. De using-direktiven i borjan inkluderar tvd namnutrymmen
ur C#:s programbibliotek som behdvs for att kompilera denna enkla grafiska appli-
kation. Ursprungligen genererar Visual Studio ngra onddiga using-direktiv till
som vi tagit bort.

Klasshuvudet public partial class Forml : Form Sdger for det forsta att ko-
den &r en del av klassdeklarationen (partial). FOr det andra séger det att klassen
Forml som vi skapar, arver biblioteksklassen Form. | C# &r : koden for arv’. Klas-
sen Form i sin tur ar deklarerad i namnutrymmet System.Windows.Forms. Dér

* L&s om metoder pd sid 61 och om arv och konstruktorn pa sid 63.

26

finns en hel del fordefinierad kod som behdvs for att skapa formfénstret. Alla klas-
ser som skapar formfonstret maste drva denna fordefinierade kod. Den del av klas-
sen Forml som deklareras har, innehéller endast tva metoder. Den forsta ar klas-
sens konstruktor Forml (). Den andra metod i vilken vi lade tre rader egen kod,
heter buttonl click (). Denna kod gor att MessageBoxen visas vid musklick-
ning ndr man kor programmet. Medan konstruktorn Forml () &r en automatisk
metod for att initiera klassen Form1:s egenskaper, &r buttonl_Click () en helt
ny typ av metod som kallas fér handelsemetod. Den férekommer inte i konsol-
applikationer utan &r ett verktyg for handelsestyrd programmering och darfor ty-
pisk for interaktiva grafiska applikationer.

Handelsemetoder

Vanliga metoder definieras forst och anropas sedan. Bade definitionen och anropet
sker med kod. En handelsemetod (eng.: event handler) definieras ocksa precis som
en vanlig metod, men anropas inte explicit med en vanlig anropskod utan genom
en s.k. handelse. En handelse &r en aktion som utférs antingen av anvéandaren eller
av ett program, vare sig en applikation eller datorns operativsytem. Exempel pé
héndelser ar musklickning, musdragning eller tangenttryckning. Men &ven en kod
kan utlésa en handelse. Nar handelsen intraffar, anropas metoden som &r associe-
rad med handelsen. Metoden buttonl_cClick () &r associerad med musklickning
pa button1, en kontroll av typ Button. Sé& snart vi skapar en sadan kontroll i formen,
t.ex. buttonl (sid 24), genereras kod: Huvudet till metoden buttonl Click() i
klassen Form1 (filen Form1.cs). Med dubbelklick p& den nya kontrollen (i design-
lage) far vi fram denna kod i editfénstret och kan skriva kroppen till metoden. Vi ar
fria att skriva dar vilken kod som helst, for att fa den exekverad nir man i korlage
klickar pa knappen button1. Eftersom vi vill f& ut ett meddelande i ett fonster,
skriver vi ett anrop av metoden MessageBox.Show () som vi stiftade bekantskap
med tidigare. Handelsemetoden buttonl_click() har tvd parametrar som vi
dock inte anvander i kroppen i just denna applikation. Anda maste vi ha dem med i
metodens huvud, for huvudet ar fordefinierat i superklassen Form.

Metoden MessageBox.Show ()

Till skillnad frdn buttonl_click () ar metoden Show () ingen handelsemetod,
utan en vanlig metod, fordefinierad i klassen MessageBox. Darfor anropas den
med kod, inte med en handelse (musklickning). Den anropande koden star i han-
delsemetoden buttonl_click (). Musklick pa knappen med texten Detta &r en
Button. Klicka p& den! (i korldge) anropar handelsemetoden och den i sin tur meto-
den show (). | den version som anvands har har metoden MessageBox . Show ()
tva parametrar: Den forsta star for sjdlva meddelandet som ska visas i den lilla ru-
tan, den andra for rubriken som ska sta pa rutans ram. Att vi i koden med + konka-
tenerar tva strangar pa den 1:a parameterplatsen, beror pé att meddelandet vi vill
skriva ut, inte ryms pa en rad i editfonstret resp. pa sidan i boken. | koden &r det
som vanligt kommat som skiljer & metodens tva parametrar.

27

1.5 Utskrift till en grafisk milj6

Alla véara program hittills har varit C# Console Applications (sid 15). De skriver ut
sina korresultat till konsolen. Det dr det svarta fonstret som i Windows kallas for
Kommandotolken. Konsolen &r en ren textmiljo som &r uppbyggd av sma rutor. |
varje ruta hamnar ett tecken, antingen bokstav, siffra eller specialtecken. Till
skillnad fran en textmiljé &r en grafisk miljo uppbyggd av sma pixlar, dar en pixel
(picture element) ar bildskarmens minsta ljuspunkt — mycket mindre &n en textruta.
I en grafisk miljo “ritas” t.o.m. bokstéver och siffror med pixlar.

I avsnitt 1.4 C# Windows Forms Application hade vi behandlat ett exempel pd in-
teraktion (sid 22). Har ska vi med enkla medel skriva ut till en grafisk miljo, en
meddelanderuta som heter MessageBox. Till skillnad fran konsolen 4r Message-
Box en grafisk miljo, dock utan méjligheten till interaktion. Gor sa har:

Skapa enligt instruktionerna pa sid 23 en Windows Forms Application och dop pro-
jektet till Messagebox. Beakta att du stavar ratt, speciellt det lilla b. Vi &ter-
kommer till det pa nasta sida. Ett nytt fonster liknande pa sid 24 dyker upp med en
ny flik: Form1.cs [Design] som i sin tur visar det lilla formfonstret.

Markera formfonstret och dubbelklicka pa det. En ny flik Form1.cs innnehallande
kod uppstar som lagras i filen Form1.cs. Skriv pa det stéllet dar markéren star och
blinkar, de tva rader kod som ar markerade pa denna bild:

Pﬂ Messagebox - Microsoft Visual Studio _' ij Quick Launch (Ctrl+Q) P - =] X
File Edit View Project Build Debug Team Tools Test Analyze Window Help Sign in H

Bl < B-2 Wu* Q- - Debug - AnyCPU - P ostart v 50 o_ Sl il

il
i
?
4

2ol A WL Il Form1.cs [Design]* Form1.Designer.cs X

o
S
3
& Messagebox v ‘:Messagebox‘FormW - Oi Form1_Load(object sender, Ev = Gﬁ EI« - Y@ -5 o
= 1 Fusing |... +
=] s € =8 search Solution Explorer (Ctrl+) £ ~
3 3
o —namespace Messagebox 31 solution ‘Messagebox' (1 project)
g 5 { 4 [c5] Messagebox
8 5 - public partial class Forml : Form b & Properties
- 7 {) b =8 References
S 8 = public Forml() o App.config
¢ ? { 4 B Formn
o PP — orm1.cs
g 18 InitializeComponent(); > .
3 o b T3 Form1.Designer.cs
@ 11 } >

.) Form1.resx

13 = private void Forml_Load(object sender, EventArgs e) b C* Program.cs

14 {

15 MessageBox.Show("Halsningar fran Windows MessageBox " +

"som visas nar formen laddas.");)
Solution Explorer REETRESTLI=Tg

Properties

Output

Show output from:

Error List Test Results Test Runs

Ln 16 Col 58 A Add to Source Control ~

Ta koden frdn nedan om den markerade koden pa bilden ovan inte &r tydlig nog.

28

Kompilera pro-
jektet Message- X
box. Exekverin-
gen ger medde- Hsten e S
landerutan il dlsningar fran Windows MessageBox som visas nar formen laddas.
hoger. Ett klick
pd OK stanger -
rutan, och pro-
gramflodet gar
tillbaka till det tomma formfonstret. Den fullstdndiga koden i filen Formi.cs som
utgor koddelen av programmet Messagebox ser Ut s& har:

using System;
using System.Windows.Forms;

namespace Messagebox

{
public partial class Forml : Form
public Forml ()
{
InitializeComponent () ;
}
private void Forml_Load(object sender, EventArgs e)
{
MessageBox.Show ("Hdlsningar fran Windows MessageBox " +
"som visas nadr formen laddas.");
}
}
}

Anledningen till att vi dopte vart projekt till Messagebox och stavade det med ett
litet b &r att MessageBox med stort B ar en klass i biblioteket System.Win-
dows . Forms som dr fordefinierad dér och som vi anvander for att kunna anropa
metoden Show (). Klassen MessageBox har ddrmed samma status som ett reserve-
rat ord som vi inte far anvanda som namn fér vara egna variabler, klasser, projekt
osv., se namngivningsreglerna pa sid 59. Hade vi dopt projektet till MessageBox
med stort B hade vi fatt kompileringsfel.

For alla andra fragor angéende koden ovan och projektets egenskaper hanvisas till
forklaringarna i nésta avsnitt som behandlar en Windows Forms Application med
interaktion (sid 26). Dar tas bl.a. upp metoden MessageBox.Show () samt hur en
ny typ av metoder kallade handelsemetoder fungerar. Metoden Forml_Load() i
koden ovan &r en sadan hadelsemetod som automatiskt anropas nar formen laddas
vid exekvering, vilket i sin tur gor att MessageBox Visar sin text.

29

11

1.2

Ovningar till kapitel 1

Modifiera programmet MessageBox (sid 29) s& att meddelanderutan far
rubriken ”Ovning 1.1”. Hur man skriver ut en MessageBox med en egen-
vald rubrik har vi l&rt oss i programmet Interaction (sid 26).

Skapa en Windows Forms Application (sid 23) och dop den till Wwindows-
Form. Utveckla den med forprogrammerade grafiska komponenter i Vi-
sual Studio (Controls, sid 22) till ett grafiskt program utan att skriva na-
gon kod. N&r man exekverar programmet ska féljande bild genereras:

o WindowsForm =NACN X

Detta &r en Label.
Under den ser du en PictureBox
som innehaller en importerad bild.

Véidlkommen till
Windowsprogrammering!

]

1.3

For att fa tag i den fargglada bilden ovan med texten véLkommen till Win-
dows programmering! ladda ner bildfilen s& har:

a) G4 till webbsidan www.taifun.se, klicka
pa bokomslaget Programmering 2 med C# .
Scrolla ner och klicka pa lanken valkomst.gif. Extrahera gif-filen fran
zip-filen.

Ladda ner filen Valkomst.gif

b) L&gg gif-bilden i en Control som heter PictureBox som du kan hdmta
frén Toolbox. Sétt vérdet Strechimage till PictureBoxens egenskap Si-
zeMode, for att fa in gif-bilden i PictureBoxen.

Férse din applikation med en Label med den text du ser 6ver bilden.

Modifiera programmet WindowsForm fran 6vn 1.2 sa har: Rita i nagot av
dina favoritritprogram en bild efter egen smak och spara den i en bild-

30

14

format. Alternativt kan du med din mobilkamera ta ditt portratt och éver-
fora det till datorn i gif- eller jpg-format. Skapa sedan en Windowsappli-
kation i Visual Studio, infoga din bild i den och férse den med en forkla-
rande text med en Label under bilden. Se till att layouten blir sd snygg
som mojligt.

Modifiera din lésning frén 6vn 1.3 genom att andra formens storlek och
bakgrundsfirg. Dessutom ska Labeln fa en annan bakgrundsfarg an for-
men.

31

32

Kapitel 2

Programmeringsspraket C#

Amne Sida

2.1 Integrated Development Environment (IDE) 34
- Visual Studio — en IDE 34

- Vad ar .NET? 34

2.2 VadarC#? 35
2.3 Kompilering och exekvering 37

33

2.1 Integrated Development Environment (IDE)

Visserligen &r ”Programmering dr i allra hogsta grad ett praktiskt dmne.” (sid 6).
Dvs du kommer aldrig lara dig programmering genom att endast lasa bocker. Men
lika sant &r att du inte kan fortsatta programmera utan att k&nna till de mest grund-
laggande begreppen. Utan denna kunskap blir det inte sérskilt roligt att koda. Det
roliga ar just att forsta vad man gor nar man skriver och testar sina program.

I detta kapitel tar vi upp nagra begrepp om bade programmeringsmiljon och -spra-
ket C#. Ett av dem ar kompilering. En kompilator &r en programvara som over-
satter kallkod (som vi forstar) till maskinkod (som endast datorn forstar). For att
kora C# kod maste en C# kompilator vara installerad pa datorn. Har du redan till-
gang till en sddan programvara kan du ga vidare till nasta kap 3, mata in vart forsta
C# program First (sid 42) och fortsatta. Annars borde du installera och konfigure-
ra C# kompilatorn, som ingdr i Visual Studio, enligt anvisningarna i forra kap 1.
Mer om detta kommer vi att ta upp i avsn. 2.3 Kompilering och exekvering (sid 37).

Visual Studio — en IDE

For att underlétta utvecklingsarbetet har Microsoft integrerat C#-kompilatorn i sin
programvara Microsoft Visual Studio, en s.k. Integrated Development Environment
(IDE), en integrerad programutvecklingsmiljd. En IDE ar ett grafiskt gréanssnitt som
inkluderar en editor, en kompilator och andra verktyg for programutveckling i en
samlad miljo. Fordelen med en IDE &r att man slipper byta miljo mellan editering
och kom-pilering, ndr man utvecklar kod. Man behover inte bry sig om sokvagar i
systemet. Dessutom har IDEn stodverktyg for spraket osv. Vi kommer att anvanda
Visual Studio for att skriva, kompilera och exekvera alla vara programexempel i
C#. Programvaran som aven har kompilatorer for ytterligare sprak som Python, Vi-
sual Basic, C++, F# och andra verktyg, ar véldigt stor och komplex — ett verktyg
for professionella utvecklare. Den ar inte gjord for nybdrjare. For att kunna kon-
centrera oss pa sjalva spraket C#, som &r vart egentliga mal, kommer vi att endast
ta upp den delen av miljon som just behdvs for att kunna testa vara C# program.

Vad ar .NET?

For att integrera de fyra programmeringsspraken C#, Python, Visual Basic, C++
och F# i en enda milj6, namligen i IDEn Visual Studio, sa att deras koder enkelt kan
bytas ut mot varandra och bli portabla pa olika plattformar, har Microsoft utvecklat
ett speciellt sprak som kallas Common Intermediate Language (CIL). Vid kompile-
ringen 6versatts alla koder i Visual Studio forst till CIL. CIL-koden tolkas sedan till
maskinkod — kallad bytecode eller object code — nédr programmet exekveras.
Kombinationen av datortypen (hérdvara) och operativsystemet (mjukvara) kallas
plattform. Medan CIL ar plattformsoberoende och kan fortfarande l4sas och forstas
av ménniskan, ar object code plattformsberoende och kan endast tolkas av datorns
CPU. For att realisera CIL-konceptet behtver Windows ett tilldgg till operativsy-
stemet som heter Microsoft .NET Framework, &ven kallat .NET-plattform.

34

2.2 Vad ar C#?

C# dr ett modernt universellt programmeringssprak som anvands for att skriva pro-
gram for datorer. Modernt dérfor att man — lite férenklat — kan séga att Pascal och
C var 70-talets, C++ 80-talets, Java och Python 90-talets och C# 2000-talets pro-
grammeringssprak. Universellt darfor att C# har obegransade tillampningsmojlig-
heter, fran spel till webbapplikationer, fran text- eller databasrelaterade program till
interaktiva grafiska granssnitt. Det finns inga applikationer pd datorn som inte
skulle kunna skrivas i C#. Den allra forsta versionen av C# slapptes ar 2000.

C# har sina rétter i programmeringsspraken C, C++ och Java. Man har byggt pa
det gamla, beprovade och valkinda, tagit over allt som var bra i de aldre spraken
och samtidigt tagit bort allt som var lite krdngligt, ibland t.0.m. instabilt. Samtidigt
har man forsett det hela med en ny 6verordnad struktur vars objektorientering re-
dan var renodlad hos C++. P& sé satt behdvde man inte ta hansyn till rétterna fran
C. Men det mest intressanta i C# ar att det &r utvecklat for en plattform dar man
bjuder pa en programutvecklingsmodell som tillater olika sprak att kommunicera
med varandra — den s.k. .NET-plattformen (sid 34). Tillagget # till C har tagits fran
musikvarlden dar tonen C# (eng. C sharp, sv. Ciss) ar en halv ton hogre an C, vil-
ket syftar pa att man "hojt” spraket C till C# (uttalat ”’si sharp”).

C# ar objektorienterat

C#:s viktigaste programmeringstekniska egenskap &r att det fran borjan ar konstru-
erat som ett renodlat objektorienterat sprak. Allt i C# ar objekt. Ett C# program,
dven det minsta, dr inget annat 4n en samling av objekt som “pratar” med varandra
nér programmet kors. Man kan éven sdga att de skickar meddelanden (messages)
till varandra. | sjalva verket anropar de varandras metoder. Hela programbibliote-
ket ar skrivet p& objektorienterat satt. S& det bestar i stort sett av tusentals klasser
som &r organiserade i ett antal namnutrymmen (namespaces). Vill man anvénda
dem inkluderar man dem i sitt program och skapar objekt av dem. Sjalvklart kan
man dven skriva egna klasser. Minst en sddan maste man t.0.m. skriva for att dari-
fran starta programkdérningen. Man lagrar i regel varje klass i en separat fil for att
kunna anvanda den &ven i andra program. Sa ett C# program bestar ofta av ett antal
filer. Varje fil innehaller en modul som &teranvands i olika sammanhang, se Ap-
pendix Vad ar objektorienterad programmering.

Reserverade ord

Dagens version av C# som denna bok bygger pa, ar i skrivande stund Visual C#
som ingdr i Visual Studio 2019. Denna programvara behovs for att kunna utveckla
och testa C#-kod. Som alla programmeringssprak ar d&ven C# definierat av ett antal
nyckelord, dven kallade reserverade ord, eftersom de inte fir anvandas som namn
for programmets andra komponenter. De ar reserverade av och for sjalva spraket
och bildar sprakets ordforrad. Denna karna i C# bestar av 78 reserverade nyckelord
och &r samlade i foljande tabell som vi kommer ofta att referera till:

35

Reserverade ord i C# (Sok kolumnvis!)

abstract do in protected true

as double int public try

base else interface readonly typeof
bool enum internal ref uint
break event is return ulong
byte explicit lock sbyte unchecked
case extern long sealed unsafe
catch false namespace short ushort
char finally new sizeof using
checked fixed null stackalloc using static
class float object static virtual
const for operator string void
continue foreach out struct volatile
decimal goto override switch

default if params this

delegate implicit private throw

Observera foljande allméan regel som galler for all C#-kod:

[C# ar case sensitive (skiftldgeskanslig).]

Dvs C# skiljer pa gemener och versaler. Om vi t.ex. skriver det reserverade ordet
new som New, kommer C#-kompilatorn generera ett felmeddelande. Den skiljer pa
new 0ch New men kanner bara till new. Alla reserverade ord &r giltiga endast med
sma bokstaver. Denna regel far beaktas ndr man ar van vid Windows som inte &r
case sensitive.

C# har ett stort programbibliotek

Om man nu tittar pa ett C# program, kommer man att uppticka flera ord som inte
finns i ovanstédende tabell. T.ex. WriteLine () r ett sdant i vart forsta program
First (sid 42). Detta beror pé att C# dessutom har ett s.k. bibliotek av fordefiniera-
de program (klasser) som man anvénder i sina egna program for att utféra rutin-
massiga uppgifter som t.ex. in- och utmatning. C#:s kdrna innehaller inga instruk-
tioner for t.ex. att skriva ut data till bildskarmen eller lasa in data fran tangentbor-
det. Man maste anvinda biblioteksprogram for det. WriteLine () 4r en metod for
utskrift till konsolen som &r definierad i klassen Console som i sin tur finns forde-
finierad i biblioteket system. Men dven andra instruktioner for vissa ofta anvanda
standardrutiner ar redan kodade i biblioteksprogram: T.ex. att rita geometriska fi-
gurer, att bestamma langden pa en text eller generera slumptal osv. ar rutiner som
man inte ska behdva skriva kod for nar man behéver dem. C#:s programbibliotek
ligger som ett skal kring den inre kdrnan av reserverade ord. Om vi vill anvanda
dem i véra egna program, maste vi anropa dem med deras namn. Vi méaste darfor
tala om for kompilatorn vilka fordefinierade program vi tanker att anvénda och i
vilka bibliotek de ligger, t.ex. genom att inleda med using System; .

36

2.3 Kompilering och exekvering

Innan vi ger oss i kast med sjalva C#-kodningen ska vi pa ett mera detaljerat sétt ga
igenom hur programkoden hamnar i datorn och hur den kors dar. | de forsta
datorerna var den enda mojligheten att skapa ett program”, att ldgga in instruk-
tionerna i hardvaran — ett valdigt osmidigt forfarande. Forst 1944 lyckades John
von Neumann att konstruera en dator som kunde lagra bade indata och program-
instruktionerna i minnet:

Dator

indata | = Utdata

K ravmme

Program

Arbetssittet anvands dn idag: Programmet laddas fran harddisken till datorns pri-
mérminne, dven kallat RAM-minne (Random Access Memory) nér ett program kors.
P& harddisken finns bara filer och mappar. Vi maste alltsa se till att vart program
hamnar i en fil som vi placerar i en mapp pé& harddisken. En sédan fil heter kall-
kodsfil eftersom den innehdller kallkoden till det korbara programmet. Foljande
steg maste tas for att fa in kéllkoden i och kora programmet pa datorn:

e Editering
e Kompilering
o Exekvering

Editering

Eftersom programmet ska dverséttas av en kompilator till maskinkod, maste vi vid
skapandet av kallkodsfilen se till att den endast innehaller tecken resp. teckenkom-
binationer som kompilatorn forstar. Om det ska bli ett C# program far kallkods-
filen endast innehdlla de reserverade ord som definierar spraket (sid 36) samt bib-
lioteksnamn men inget annat. Darfor maste vi skriva programkoden i en texteditor,
ordbehandlare eller annat skrivverktyg som sparar kéllkodsfilen som oformaterad
textfil. | praktiken maste man ha tillgéng till Visual Studio som &r en integrerad pro-
gramutvecklingsmiljo (IDE, se sid 34) for att utveckla och testa C# kod. Med integ-
rerad menar man att flera verktyg &r samlade i Visual Studio, bl.a. en texteditor.
Fordelen med en IDE &r att man inte behdver bry sig om sokvégen till C#-installa-
tionen i systemet, att den har olika stodverktyg for spraket och att man slipper byta
miljo mellan editering och kompilering. Langre fram i boken ges anvisningar om
hur man laddar ner och installerar Visual Studio (sid 12) samt hur man konfigurerar
och anvénder denna miljo for att testa sina C# program (sid 13).

37

Regeln for filandelsen

Har du skrivit din programkod t.ex. i Notepad eller en annan editor och sparat filen
som * . txt eller med en annan andelse, kommer du att fa kompileringsfel aven om
din kod é&r felfri. Boven i dramat ar filandelsen: kompilatorn accepterar den inte.
Kompilatorn méste namligen kunna identifiera de filer som innehéller C#-kod via
filandelsen. Darfor kraver C#-kompilatorn filandelsen cs pé kallkodsfilen. Antin-
gen maste du spara din kallkodsfil med korrekt filandelse eller ge den korrekt &n-
delse i efterhand. Denna enhetliga regel for filandelsen galler sjalvklart &ven om du
arbetar i Visual Studio dar den valjs automatiskt.

Kompilering av C#-kéallkod

Kompilering innebér dversattning av kallkod till maskinkod. Har du skrivit din
programkod i en texteditor och sparat den som ren textfil med filandelsen cs,
maste du kompilera din kallkod innan du kan kora programmet. Anledningen &r att
datorns processor inte forstar kallkod, endast maskinkod. For att kunna kompilera
maste C#-kompilatorn vara installerad pa din dator. C#-kompilatorn ar sjalv ett
program som lagras i filen csc.exe dar det andra c star for compile och exe Vi-
sar att det ar en exekverbar dvs korbar fil. Denna fil ingdr i Visual C# 2019. Kom-
pilering innebdr att kdra programmet csc.exe som oversatter C#-kod till .NET-
plattformens ”mellan”sprak Common Intermediate Language (CIL) (sid 34):

Ct-killkod — | kompilator ——= CIL
(*.cs)

Néar du har installerat Visual Studio (sid 12) kan du hitta filen csc.exe i mappen
C:\Windows\Microsoft.NET\Framework\v2.0.50727. Du kan, om du vill,
t.0.m. kéra fran Kommandotolken kommandot ese First.es, dvs kompilera in-
nehéllet i filen First.cs, om du staller dig i mappen ovan och om &aven filen
First.cs finns dar. D& kompileras vart forsta C# program (sid 42) som lagras i
filen First.cs. Kompilatorn skapar da den exekverbara filen First.exe. Sam-
ma kompilator ingdr i Visual Studio och kors nar man kor Build Solution (sid 19).

Hur C#-kompilatorn astadkommer denna Gversittning vet vi inte och behéver vi
inte heller veta nér vi programmerar. Det enda vi behdver veta ar hur man anvan-
der kompilatorn och hur man skriver C#-kod sa att kompilatorn accepterar den.
C#-kompilatorn producerar samma CIL-kod fran en kallkod oavsett datortyp. Om
vi alltsa preciserar C#:s plattformsoberoende maste vi sdga: Kompileringen av C#-
kallkod ar plattformsoberoende. Daremot ar CIL fortfarande i textform. Koden
Oversatts i en ytterligare process till en slags maskinkod som kallas Byte Code.

Exekvering av Byte Code

Det som “forstar” CIL &r ett program som kallas Virtual Machine (VM). Detta pro-
gram ingér i Visual Studio. Vad det gor ar ocksa en slags oversattning, fast man
kallar det snarare for en interpretering dvs en tolkning. Skillnaden i begreppen &r
att en 6versittning (kompilering) lamnar ifran sig ett nytt dokument medan en si-

38

multan tolkning inte gor det. C#-interpretatorn tolkar Byte Code och omvandlar
denna speciella typ av maskininstruktioner till ettor och nollor som datorns proces-
sor forstar och kan utfora. Detta kallas exekvering. Till skillnad fran C#-kompila-
torn finns for varje plattform en speciell C#-interpretator som exekverar Byte Co-
de. Detta sista extrasteg som maste tas for att kora ett C# program ar alltsa beroen-
de av datortyp och operativsystem. For att precisera C#:s plattformsoberoende
maste man lagga till: C#-interpretatorn (VM) &r plattformsberoende.

C#-interpretatorn méste alltsa vara kompatibel med datortypen och inga i operativ-
systemet for att kunna kdéras. Det racker att den kompilerade filen lagras. Kallko-
den behover inte lagras alls.

Fel
kan uppstd i alla ovan beskrivna steg. Darfor skiljer vi mellan olika typer av fel:

e Kompileringsfel som kan uppsta pga att vi har brutit mot sprakets regler. Dvs
i kod som vi sjélva skrivit finns “ortografiska” fel, nagot felstavat nyckelord
eller ett uteldmnat semikolon osv. Det kan &ven handla om ”grammatiska” fel,
aven kallade syntaxfel som t.ex. en felanvand kod eller fel struktur i koden.
Kompileringsfel innebar tvarstopp dvs man kan inte ga vidare till nésta steg
utan maste forst hitta och korrigera felet samt kompilera om.

e Exekveringsfel uppstar endast om processorn inte kan utféra dina
instruktioner. Ett typiskt exempel pa exekveringsfel i program som involverar
berékningar ar division med 0. Ett annat exempel &r anvéandningen av minnes-
utrymme som &r redan upptaget av ett annat program i datorn. Ett tredje
exempel &r skadade eller obefintliga filer som det hanvisas till i den egna pro-
gramkoden.

Vid felsokning &r det avgdrande att man forst identifierar typen av fel innan man
vidtar nagon atgard.

Observera dven att man som nybdrjare ofta far inte ett — utan en hel samling av
felmeddelanden. Bli inte desperat! Det &r helt normalt. GIom alla felmeddelanden
utom det allra férsta. De kan namligen vara foljdfel orsakade av forsta felet. Atgér-
da endast det forsta och kompilera om. Om nagra fel &r kvar, upprepa forfarandet.
Du kommer att se: efter tva tre gangar har du blivit av med alla fel.

39

40

Kapitel 3

Att komma igang

med C#

Amne Sida Program

3.1 Vart forsta C# program 42 First

- Metoden Main () 44
3.2 God programmeringsstil 47
3.3 Radbyte och tabulator 49 LineBreak

- Metoden write () 50 Output
3.4 Konkatenering med + 51 Concat
Ovningar till kapitel 3 53

41

3.1 Vart forsta C# program

Efter de inledande kapitlen om programmeringsmiljon och -spraket ar det dags for
praktik — att skriva och testa vart forsta C# program. For att gora det behéver du ha
installerat Visual Studio enligt instruktionerna pa sid 12. Sa, lat oss satta igang!

// i IHamAeE

// Skriver ut text till konsolen (svarta foénstret)

// Metoden Main () anropas automatiskt ndr programmet kd&rs

// Den 1 sin tur anropar metoden WriteLine() i klassen
Console

// Klassen Console finns férprogrammerad i biblioteket System

using System; // Krdvs fér klassen Console
class // Klassnamnet
{

static void Main() // Metoden Main ()

{

Console.WriteLine ("\n\tMitt férsta C# program!\n") ;

}
}

En kdrning visar foljande utskrift i konsolen (Windows Kommandotolk-fonstret):

Mitt férsta C# program!

I sjalva verket ser utskriften ut sd som ar avbildad pé sid 19. Dvs konsolen visar
dessutom meddelandet press any key to continue ... SOm dock inte producerats
av C#-koden utan av Kommandotolken, for att halla kvar fonstret. Darfor visar vi i
fortséttningen inte detta meddelande ndr vi avbildar programmens koérresultat. Vi
kommer i fortsattningen att referera till programmet ovan med klassnamnet First.
Liknande konvention anvander vi i bokens alla program: Ett program abc skrivs i
klassen abc och lagras i filen abc. cs.

Kommentar i C#

De forsta raderna borjar med tva snedstreck (eng. slash) //. Detta teckenpar bety-
der kommentar, ndrmare bestdmt radkommentar. En radkommentars giltighet bor-
jar med // och stracker sig till slutet av raden. // kan sta i borjan av en rad, men
ocksd nagonstans mitt pa raden. En blockkommentar kan ga 6ver flera rader och
ska inledas med /* och avslutas med */. Alla kommentarer kommer att ignore-
ras av kompilatorn. De &r endast till for att forklara koden. | den forsta kommentar-
raden star alltid i vilken fil koden lagras, har First.cs. | den andra raden brukar
std vad programmet gor. Sedan foljer kommentar om de olika programmerings-
tekniska koncept som behandlas i programmet. | féljande ska vi reda ut nagra be-
grepp:
42

Sats

Termen instruktion kommer i fortsattningen att ersattas av programmeringstermen
sats (eng. statement). Innehallet &r samma sak: ett kommando till datorn att utfora
nagot. En sats i C# maste avslutas med semikolon. Det lilla tecknet ; ar ett av de
vanligast forekommande tecknen i C#-kod och samtidigt det oftast gldmda tecknet
vid kodningen. Semikolonet &r en obligatorisk del av en C#-sats, det allra sista
tecknet i satsen. Semikolonet ar C#-sprakets satsavslutningstecken vars utelamnan-
de leder till kompileringsfel. | First avslutas alla satser — det finns endast tva —
med semikolon, dven satsen strax fére klammern } . Klammern ersatter inte semi-
kolonet utan avslutar Main () -metodens kropp.

using-direktivet
Programmet First:s forsta sats efter kommentarerna &r ett s.k. using-direktiv:
using System;

System 4r ett s.k. namnutrymme (eng. namespace), en slags behéllare for klasser.
C#:s programbibliotek ar organiserat i sddana namespaces som innehaller fordefi-
nierade Klasser, paketerade i namnutrymmen. Har ges kompilatorn direktivet att
ladda namnutrymmet System till vart program s att vi kan anvinda klasser som
finns dar och anropa metoder som &r definierade i dem, hér klassen console och
metoden WwriteLine (). Alternativt skulle man kunna slippa using-direktivet och
istéllet anropa metoden WriteLine () med System.Console.WriteLine(...)
vilket man dock i regel inte gor eftersom det gér koden onddigt tung. Speciellt nar
man anropar metoder flera ganger ur samma klass eller anvander flera klasser i
samma namnutrymme, ar det béattre att skriva using-direktivet en gang for alla i
borjan. Men det galler att placera det ratt: using-direktiv maste alltid skrivas utan-
for klassen, narmare bestdmt fore klassen eftersom informationen behdvs i klassen.
Att placera ett using-direktiv i en klass ger kompileringsfel. Man kan inte inklu-
dera flera namnutrymmen med ett using-direktiv. FOr varje hamnutrymme krévs
ett separat using-direktiv. Dessa sérregler gor att using-satsen kallas for direktiv.

Vad ar ett C# program?

Ett C# program ar en samling av klasser, av vilka en
och endast en méste innehdlla metoden Main ().

Nar programmet kors startar exekveringen i Main ().

Alla C# program maste innehalla metoden Main () for att kunna exekveras, annars
har exekveringen ingen startpunkt. For att exekveringen ska automatiskt kunna
borja i Main () maste namnet vara kant for C#-interpretatorn och dirmed obligato-
riskt. Det &r ndmligen C#-interpretatorn (Virtual Machine, sid 38), som automatiskt
anropar metoden Main () ndr vi exekverar programmet. First dr det enklast

43

tankbara C# program darfor att det bestar av en klass som innehdller Main (). Men
Main () kan aldrig skrivas fristaende dvs utanfor en klass utan maste alltid inbad-
das i en klass. Det beror pa att klasser ar C# programmens primara byggstenar,
medan metoder inkl. Main () &r delar av dessa Kklasser. | andra programmerings-
sprak som C++ finns dven funktioner som &r fristdende. En metod gor samma sak
som en funktion, men &r placerad i en klass. Darfor finns det i C# inga funktioner
utan endast metoder: | vart forsta C# program ar Main () en metod i klassen First
vars huvud ar foreskriven for att kunna kéannas igen av C#, men vars innehall vi
kan bestdmma sjalva. Mer om Main () foljer l&ngre fram.

Klassen First
Efter kommentarerna och using-direktivet foljer i programmet First (sid 42):
class First

som &r rubriken — man sager ocksa huvudet — till en klass. En klass i C# ar en kod-
modul som man bygger programmet med, jamférbar med en Legobit eller en tegel-
sten som man bygger ett hus med. Klasser & C# programmens minsta bestands-
delar. Den allmanna strukturen hos en klass i C# ser ut sa har:

class className

{

}

Forsta raden ar klassens huvud och resten &r klassens kropp. Det avgorande nyckel-
ord som gor den har biten kod till en klass r class som vi kan hitta bland C#:s
reserverade ord i tabellen pa sid 36. Sedan star First i klassens huvud. Till skill-
nad frn class 4r First inget reserverat ord utan ett namn som vi sjélva hittat pa.
Dock har namngivningen vissa enkla regler som vi sd sméaningom kommer att ta
upp. En av dem kanner vi redan till: Det valda namnet far inte vara ett reserverat
ord. Namnet maste direkt folja nyckelordet class. | vart program ar First nam-
net p& klassen som vi ocksd anvander som programnamn. Men klassnamnet
className behover inte vara relaterat till filnamnet. Klassens kropp bestar av kod
inom klammerparet { } dar den inledande klammern { markerar bérjan och den av-
slutande klammern } slutet pa klassen. Klamrarnas uppgift ar att avgransa klassen
frén andra delar av programmet. Vi kommer att anvinda ordet klammer som be-
teckning for tecknen { eller } pd engelska curly brackets till skillnad fran []
som kallas hakparenteser, pa eng. brackets.

Metoden Main ()
Efter den inledande klammern { som dppnar klassen First:s kropp (sid 42) star:

static void Main()

44

Det ar huvudet till en metod vars namn ar Main (). Vi kommer att dgna ett helt
kapitel t metoder. Just nu racker det att kanna till att en metod ar kod som skrivs
inuti kroppen av en klass. Metoden Main () har féljande allménna struktur:

static void Main()

{

}

Forsta raden &r metodens huvud och resten ar metodens kropp. | kroppen skrivs en
eller flera satser som gér nagonting, i vart exempel skriver ut text till konsolen pa
skarmen. Alla metoder i C# innehaller satser som utfor vissa instruktioner.

statement(s) ;

Metodens huvud bestdr av de reserverade orden static och void, metodens
namn Main och parentesen () som &r tom. Allmént kan en metod ha ingen, en
eller flera s.k. parametrar. Darfor kallas parentesen parameterlistan. | vért exem-
pel har Main () ingen parameter. Vi far inte andra Main () -metodens huvud darfor
att den inte &r en egendefinierad metod. Vi har ju inte ens fétt vélja namnet, till
skillnad fran klassen First. Narmare bestamt &r det huvudet till metoden Main ()
som vi inte har nagon frihet att bestamma 6ver. Huvudet ar fordefinierat av syste-
met och maste skrivas som ovan, fast det finns lite andra varianter ocksa. | kroppen
daremot kan vi skriva vilken kod som helst.

En detaljerad forklaring till de reserverade orden static och void skjuter vi upp
till senare. Hér ska det récka att bara kort ndmna féljande:

static innebdr att den kan anropas utan att skapa objekt av klassen
First,
void innebar att metoden Main () inte returnerar nagot varde.

Det 4r Virtual Machine (VM) som exekverar vart program First genom att anropa
metoden Main (). For att detta anrop ska kunna utféras behdévs modifieraren sta-
tic i metodens huvud. Aven om det kanns lite trakigt att inte kunna séga mycket
mer maste vi, for att inte tappa den roda tradden, rekommendera att du i alla dina
egna program helt enkelt skriver av huvudet till metoden Main () precis som det
stér ovan. Medan static ar en modifierare som reglerar reserveringen av minnes-
utrymme, dr void en s.k. returtyp dvs en datatyp till metodens returvérde. void
betyder “inget returvirde” dvs metoden Main () returnerar inget varde nar den an-
ropas. Vad den gor &r att den utfor koden som star i dess kropp.

Liknande klassens kropp bestar dven en metods kropp av ett antal satser inom
klammerparet { } dar den inledande klammern { markerar bérjan och den avslu-
tande klammern } slutet pd metoden. Klamrarnas uppgift ar att gruppera satserna
och avgransa dem fran andra delar av programmet. | kroppen till Main () -metoden
kan vilka satser som helst std. Satserna innehéller instruktioner till datorn. I
programexemplet First star endast en sats som skickar text till konsolen.

45

Metoden WriteLine ()

Korresultatet av programmet First dvs utskriften Mitt £6rsta C# program!
har producerats av féljande sats som star i klassen First:s Main () -metod:

Console.WriteLine ("\n\tMitt férsta C# program!\n") ;

Detta dr ett anrop av metoden writeLine () som &r fordefinierad i C#:s klasshib-
liotek, narmare bestdmt i klassen Console som i sin tur finns i biblioteket system.
For att kompilatorn ska kunna hitta metoden WriteLine () maste vi ange dess
klass med sedvanlig punktnotation: Console.WriteLine (). Vad den gor &r att
skriva till konsolen och darefter byta rad pga tilligget Line. Det finns dven meto-
den write () som skriver ut text utan radbyte, vilket kommer att visas i program-
met output i nasta avsnitt (sid 49). Koderna \n och \ t behandlas i nasta avsnitt.

Texten Mitt férsta C# program! som ska ska skickas till konsolen skrivs inom
citationstecken — dven kallade ”dubbelfnuttar” i populér svenska — eftersom all text
i C#-kod maste sattas inom citationstecken. | utskriften kommer texten sjalvfallet
att visas utan citationstecken. Citationstecknet &r koden for stréngar:

[Strangar omgardas i C#-kod av citationstecken " " .]

En strang som &r datatermen for text bestar av ett antal tecken dér antal kan vara 0,
1, 2, Ett vanligt exempel pé strang ar text som bestér av ett antal bokstaver.
Allmint kan dock vilka specialtecken som helst ingd i en strang. Nar antalet tecken
ar 0 talar man om en tom stréang som i kod skulle kunna skrivas som ", medan
koden ™ ™ dr en strang som inte &r tom utan bestar av ett tecken, namligen mellan-
slaget. Det &r onddigt att skriva endast ett tecken som strédng eftersom det i C#
finns ett annat, enklare sétt att lagra enstaka tecken. Med onddigt menas inte bara
att det ar sléseri med minnet utan att det d&ven programmeringstekniskt sett, ar dalig
stil och délig vana att blanda ihop dessa tvé olika typer av data. Vi kommer att for-
std det battre nar vi tar upp datatyper (sid 56). Medan strangar maste specificeras
med citationstecken " ... " anvands apostrofer '..' for att markera tecken:

[Enstaka tecken omgardas i C#-kod av apostrofer ' ', t.ex. 'a’'.]

Apostroferna kring a — dven kallade “enkla fnuttar” i populér svenska — innebér att
a ar ett tecken, i detta fall en bokstav. Observera att det verkligen handlar om apo-
strofer kring a och inte om accent “ eller * som anvénds i vissa bokstdver som é el-
ler . S&, i regel bor det enstaka mellanslaget skrivas som ' ' och inte som " .
Att " " kompileringsmassigt kan skrivas for mellanslaget beror pa att ett tecken
ocksa ar en strang (OBS! Beakta dock var programmeringstekniska anmarkning i
slutet av forra sidan). Men det géller inte det omvénda: en strang &r inte alltid ett
tecken, t.ex. nar den bestar av flera tecken. Darfor far apostrofer endast sta kring
enstaka tecken, inte kring strangar som innehéller fler &n 1 tecken.

46

3.2 God programmeringsstil

Hur gick det nér du kompilerade ditt forsta C#-program? Om du hade fel mérkte du
kanske att felsokning kunde vara jobbigt. Det &r den ocksa, speciellt nar program-
volymen véxer. Innan vi gar vidare och utokar vara koder ska vi ldra oss en teknik
som gor felsokning enklare. Men vi gor det inte bara for att underlétta felsokning.
Fragan ar mer av generell karaktar: Hur skriver man bra strukturerade program och
hur véanjer man sig vid att gora det fran borjan? Att gora det fran det allra forsta
programmet ar ndmligen avgérande for att utveckla en god programmeringsstil nér
man fortsatter skriva kod. Titta pa foljande kod skriven i filen First bad.cs.
Kénner du igen den?

using System; class First {static void Main() {Console.Write-
Line ("\n\tMitt férsta C# program!\n"); } }

Det ar vart forsta program First bortsett fran kommentarerna. Koden ovan “fun-
gerar”, dvs den kan bade kompileras och exekveras och producerar exakt samma
utskrift som programmet First (sid 42). Kompilatorn struntar ndmligen fullstén-
digt i layouten. Den kontrollerar endast kodens syntax. Men det gor inte en ménni-
ska som ska lasa din kod. Skulle du Iamna in den till mig som din 16sning pa en 6v-
ningsuppgift skulle du inte bli godkand. Sa har borde koden ovan istallet se ut lay-
outmassigt och med kommentarer:

/7 R

// Skriver ut text till konsolen (svarta fénstret)

// Metoden Main() anropas automatiskt ndr programmet kd&rs

// Den 1 sin tur anropar metoden WriteLine () i klassen Console
// Klassen Console finns férprogrammerad i biblioteket System

using System; // Krdvs fér klassen Console
class // Klassnamnet
{

static void Main() // Metoden Main ()

{

Console.WriteLine ("\n\tMitt férsta C# program!\n") ;

}
}

Forutom de krav som kompilatorn staller for att éverhuvudtaget kunna fa program-
met i exekverbar form, finns andra krav pa vart satt att skriva kod. Det handlar om
krav pd god programmeringsstil. Dessa krav & minst lika viktiga som kompile-
ringskraven.

God programmeringsstil innebar att man skriver kod s att andra kan anvanda och
underhalla den. Alla professionella program som du anvénder pa din dator, opera-
tivsystemet, editorer, skriv-, rit-, kalkyl-, spel- och andra applikationer har skrivits

47

med detta i atanke. Program maste vara anvandarvanliga. God programmeringsstil
innebar att vi lamnar ifrdn oss kod som andra kan modifiera och vidareutveckla.
Program maste vara latt andringsbara. Vi kommer sjalva att ha gladje av det, om vi
vid ett senare tillfille vill forbattra vara program. Darfor stélls foljande krav pa god
programmeringsstil:

Forstaelighet

Anvéndarvénlighet

Strukturering

Andringsharhet

Och det ar darfor vi har skrivit vart forsta, och kommer att skriva alla vara pro-
gramexempel, med foljande stilelement:

1. Indragningar &r ett stilelement som anvénds for att uppfylla de ovanndmnda
kraven pa god programmeringsstil. | programmet First ser man att vissa ra-
der &r indragna, ndrmare bestdmt de rader som utgér Main () -metoden. Dessa
indragningar ska markera att raderna tillnér Main (). Ett exempel pa dalig
programmeringsstil ser vi pa forra sidan dar koden komprimerats till tre rader.
Genom att lata koden ta mer plats blir den mer lattlast. Den allmanna regeln &r
att indrag ska aterspegla programmets logiska struktur. Rekommendationen &r
att gora tydliga indragningar dvs inte alltfér sma. Tumregeln ar: mellan tre och
fem mellanslag.

2. Separata rader tillampas for att 6ka kodens laslighet. Varje sats ska som re-
gel std pa en separat rad. Men dven klamrarna { och } star pa egna rader.
Detta markerar klamrarnas utomordentligt stora betydelse for att gruppera vis-
sa satser och avgransa dem fran andra delar av programmet. Klamrarna utgor
allts& granser som ska vara mycket tydliga. Dessutom star klass- och metod-
huvuden alltid pa separat rad, i vart fall klasshuvudet class First och me-
todhuvudet static void Main ().

3. Kommentarer ska forklara koden. Hur mycket och pé vilket satt ska man
skriva dem? Rekommendationen &r att kommentarerna ska vara korta och inte
blandas med koden. Detta galler speciellt radkommentarerna som annars skul-
le gora koden mindre lattlast. Vill man skriva la&ngre kommentarer ska man
helst skriva en dokumentation till programmet. Denna kan antingen ligga helt
separat fran koden, t.ex. i en textfil, eller skrivas som blockkommentar i borjan
eller p& andra stallen av programmet. En blockkommentar i C# kan bestd av
flera rader och ska inledas med /* och avslutas med */.

Slutligen ska an en gang papekas att programfel ur stilsynpunkt inte far bedomas
som mindre allvarliga dan kompileringsfel. Attityden “forst ska jag ldra mig koda,
god programmeringsstil kan jag lara mig senare” ar ett allvarligt misstag som nybor-
jare gor pga oerfarenhet, vilket kan leda till sldseri med tid och energi vid felsékning
och till déligt strukturerade program i langre perspektiv. Man kan tréttna pa pro-
grammering — speciellt vid felsékning — om man inte fran bérjan lagger stor vikt vid
god programmeringsstil.

48

3.3 Radbyte och tabulator

I programexemplet First fanns bara en sats i koden. Den resulterade ocksa i en
rad pé& skarmen. Men en sats i koden kan producera flera rader i utskriften med en
speciell kodsymbol som éastadkommer radbyte i utskriften: \n ar en sadan dar n
star for newline och \ &r ett speciellt styrtecken som kallas escapetecknet och gor
att n tolkas som newline och inte som bokstaven n. Bada tillsammans, \n, ar en
escapesekvens. P& svenska betyder to escape att fly. Escapesekvenser inleds med
tecknet backslash \ &tfoljt av ett tecken. Med \ vill man fly fran tecknets vanliga
betydelse och ge det en annan innebérd. Skriver man i koden \n inom en stréng
blir det radbyte i utskriften.

En annan escapesekvens ar \t dar t star for tabulator dar \ gor att t inte tolkas
som bokstaven t utan astadkommer en horisontell indragning med atta mellanslag.
Bada escapesekvenserna \n och \ t kan bakas in i stranger, men skulle kunna &dven
kodas som enskilda tecken och skickas separat till utskrift. Samma sak &r det med
mellanslag. Skriver man ett mellanslag inom en stréang skickas den med till utskrift,
annars inte. Féljande program anvander radbyte for att skriva ut pa flera rader:

// LineBreak.cs

// Skriver ut text med radbyte och indragning

// FLERA rader utskrift producerad av EN sats 1 koden
// Radbyte med \n och tabulator med \t

using System;

class LineBreak

{
static void Main()
{
Console.WriteLine ("\n\tC#\n\tar\n\tkul '\n");
}
}

Precis som i programmet First anropas &ven hdr metoden WriteLine () endast
en gang. Men i strangen som ska skrivas ut forekommer \n fyra ganger pa fyra
stéllen: Den forsta ger en tom rad, den andra radbyte efter c#, den tredje efter ar
och den fjarde efter ! vilket man ser ndr man kor programmet LineBreak:

C#
ar
kul !

Den sista tomma raden produceras av WriteLine () som byter rad efter utskrift
pga 1n som star for Line. Dessutom ingar ett mellanslag i strangen som skickas
till utskrift. Det star inom WriteLine-metodens parentes och kommer i utskriften

49

att hamna pa samma stalle som i koden, innan ordet ar. Utskriften visar ocksa att
\n astadkommer samma sak som en tryckning pd Enter-tangenten. \n ar kod-
symbolen for Enter.

Metoden Write ()

Medan programmet LineBreak producerar flera rader utskrift med en sats i ko-
den, skriver foljande program ut en enda sammanhéngande rad med flera satser i
koden. P4 sa satt visar programmet dven skillnaden mellan WriteLine () och
Write().

// Output.cs

// Tva utskriftssatser, men endast EN rad utskrift

// Metoden Wrtite () skriver ut text utan radbyte efterat
using System;

class Output

{
static void Main()
{
Console.Write ("\n\tDetta &r EN rad text produc") ;
Console.WriteLine ("erad av tva utskriftssatser.\n");
}
}

Har finns 2 satser som skriver ut till konsolen. Men de producerar en rad utskrift,
vilket beror pa att det inte finns ndgot \n i slutet av den forsta utskriftssatsen. Det
ser man ndr man kor programmet ovan:

Detta &r EN rad text producerad av tva utskriftssatser.

Observera ocksé att utskriften blir ... producerad ... och inte ... produc
erad . .. vilket beror pa att inget mellanslag skrivs i kodens forsta utskriftssats ef-
ter produc och inte heller i andra fore erad. Man far intrycket att det endast 4r en
utskrift pa skdarmen. Och intrycket &r ratt: Hur manga utskriftssatser man an skri-
ver, det handlar om en enda utskrift som initieras av metoden write () som skri-
ver ut utan att gora radbyte eftert. Metoden WriteLine () fortsitter sedan exakt
dar write () slutat, men gor radbyte efterat.

Men vad gor man om en strang ar for lang och inte ryms pa en rad i koden. L6snin-
gen ar att dela upp strangen i tva eller flera delstrangar, bryta rad pa ett lampligt
stalle och anvanda symbolen + for att sld ihop delstrangarna. Sjéalvklart kommer
tecknet + i detta sammanhang inte langre att ha betydelsen som addition utan en
annan, vilket tas upp i nasta avsnitt.

50

3.4 Konkatenering med +

// Concat.cs

// Ritar en hjdrtlig hdlsning

// Anropar metoden Write () utan radbyte

// Slér ihop strdngar med konkateneringsoperatorn +
using System;

class Concat

{

static void Main()

Console.Write ("\n\t * * m
" \n\t * * * * "
1] \n\t * * * 1]
"\n\t* * "
n \n\t* * n
"\n\t* Grattis * o
n \n\t * * n
"\n\t * "
n \n\t * * n
"\n\t x o "
n \n\t * n
"\n\n") ;

+ A+ A+

}

Hér finns endast en utskriftssats med write () -metoden och vi anvénder oss av +
for att bryta rad i koden. Operatorn + betyder hér inte addition av tal utan samman-
slagning av strangar. Konceptet kallas dverlagring av operatorer och férekommer
ofta i programmering: Symbolen + har flera olika betydelser. Vilken betydelse som
galler aktuellt beror p& sammanhanget. Finns det tal pa bada sidor av operatorn +
tolkas den som vanlig addition. Star det daremot en strang pa nagon sida av opera-
torn tolkas + som sammanslagning av strdngar. Concat ger foljande utskrift:

* Grattis *

51

Concatenation

betyder samrnanslagning och férekommer i olika sammanhang inom datalogin, in-
te bara i C# . Néar tecknet + sétts mellan stréangar eller dar bara en sida &r en stréng,
tolkas det som konkateneringsoperator. T.ex.: Console.Write (25 + " kat-
ter") ; ger utskriften 25 katter. Det ricker att nagon sida av + &r en strang.
Konkateneringsoperatorn + omvandlar dven automatiskt den andra operanden till
en strdng om endast en operand en strdng. Dvs i satsen ovan omvandlas talet 25 till
strangen "25" och slas ihop med strangen " katter". Daremot ger Console. -
Write (25 + 5) ; utskriften 30 eftersom béda operander tolkas som tal och + som
additionsoperatorn. Mer om skillnaderna mellan tal, tecken och strang kommer att
behandlas senare nar vi lar oss datatyper (sid 56).

I programmet Concat slas ihop flera strangar till en och skrivs som en enda lang
strang. Metoden write () anropas endast en gang, istallet upprepas konkatene-
ringsoperatorn + mellan de olika delar som ska skrivas ut. Den allménna struktur-
en kan se ut sa har:

Console.Write(... + "..." + ... + "...");

dar ... str for de delar — text eller tal — som ska skrivas ut. Koden ovan kan
stracka sig Gver flera rader men maste avslutas med ett enda semikolon da det ar en
enda sats. GlIom inte heller att stanga parentesen. Radbrytningar i koden far inte
gdras mitt i en strang eller i mitt i ett ord. Det géller regeln:

[Mitt i en strang eller ett ord far man inte bryta raden i C#-kod.]

T.ex. ger foljande radbrytning i koden kompileringsfel:
Console.Write ("Detta &r en
utskriftsrad.");
Aven detta ger kompileringsfel:
Console.Write ("Detta &r en"
"utskriftsrad.");
Ldsningen ar konkatenering med + :

Console.Write("Detta &r en " +
"utskriftsrad.");

* T.ex. i Java finns metoden concat () som konkatenerar strangar. 1 C++ finns metoden
strcat () som star for string catenation och gér samma sak. | Unix, finns kommandot
cat som konkatenerar data fran olika filer och slar ihop dem till en fil. T.ex. kopierar

kommandot
cat filel file2 file3 > nyfil

de tre filerna till filen ny£il.

52

3.1

3.2

3.3

3.4

3.5

Ovningar till kapitel 3

Mata in koden till programmet First (sid 42), kompilera och kor.

a) Skriv om programmet First genom att ta bort using-direktivet och
modifiera istallet utskriftssatsen sa att den kan kompileras och ger
samma resultat som programmet First.

b) Undersok skillnaderna mellan apostrof, citationstecken och accent.

Satt in foljande kod i ett C# program for att testa vad den ger for utskrift:

Console.Write ("**\n");
Console.WriteLine ("***") ;
Console.WriteLine ("****") ;
Console.Write ("***xx\n");
Console.WriteLine ("*****x'") ;
Console.WriteLine ("****x*x") »
Console.Write ("****\n");
Console.WriteLine ("***") ;
Console.WriteLine ("**\n") ;

a) Ersétt alla anrop av Console.Write() med Console.Write-
Line () och &ndra lite i koden utan att utskriften &ndras.

b) Légg till lite kod i varje sats sa att hela den utskrivna figuren hamnar
lite langre bort fran konsolfénstrets vanstra och 6vre rand.

Skriv ett program och testa vilken utskrift foljande utskriftssatser ger:

Console.Write ("Jag") ;
Console.Write ("heter") ;
Console.WriteLine ("K.\n Vad heter du?\n");

Lagg till resp. ta bort mellanslag, radbyte och tabulator pa lampliga stal-
len for att fa en snygg utskrift, utan att sl ihop de tre satserna till en.

Skriv ett C# program som en gang skickar till writeLine () koden:
"Resultatet ar " + 8 + 3

ochenannangdng: "Resultatet &r " + (8 + 3)
Forklara skillnaden i utskrifterna. Hur maste + tolkas pé de olika stallena?
Vilka utskrifter ger foljande satser? Satt in dem i ett program och testa.

Console.WriteLine ("*\n**\n***\n**xk\nkxkx*xxm) .
Console.WriteLine ("****x*\n*x*x*x\nk*xx\nkx*x\n*x") ;

Skriv om koden s& att du far samma utskrift med en enda utskriftssats i
koden.

53

3.6

3.7

3.8

Skriv in koden till programmet Concat (sid 51), kompilera och kér det.
Modifiera det till att skriva ut en oval byggd av stjarnor (*).

Skriv ett program som skri-
ver ut en triangel byggd av
stjarnor (*).

Rita figuren till hoger i kon-
solen med en enda utskrifts-
sats genom konkatenering:

Se upp for skillnaden mel-
lan slash / och backslash \.
Anvand tva backslash \\ i
koden — som en escapese-
kvens inbakad i den konka-
tenerade strangen — for att
astadkomma en backslash \
i utskriften (L&s om escape-
sekvenser pa sid 97).

54

/S SN S
J A
N NN

N SN

N
N NN

NN
a4

NN/

Kapitel 4

Grundbegrepp

programmering

Amne Sida Program

4.1 Datatyper 56 Datatype
4.2 Deklaration och initiering av variabler 59 Variable

- Deklaration vs. definition 64

- Vad hander nér en variabel definieras? 65 DefInit
4.3 Inldsning av data 66 Input
4.4 Qverskrivning eller kan x = x + 1 vara sant? 68 Overwrite
4.5 Operatorer och uttryck 71 Operator

- Inmatning — Bearbetning — Utmatning 72

- Nastlat anrop av metoder 73
4.6 Overlagring av operatorer 74 OverloadOp
4.7 Okningsoperatorn ++ 77 Increment
4.8 Sammansatta tilldelningar 80 CompAssign
Ovningar till kapitel 4 83

55

4.1 Datatyper

Hittills har vi i vara program skrivit ut endast text eller tecken. Datatermen for text
ar stréng, ett antal tecken. Det vanligaste exemplet &r ett antal bokstéver. Men &ven
alla mojliga specialtecken kan ingd i en strang. | koden har vi avgrénsat tecken
med apostrofer ' ' och strdngar med citationstecken " " (sid 46). Mer exakt
handlar det om tecken- och stréngkonstanter. Data som inte kan &ndras kallas kon-
stanter. De skickas som de ar, fran programkod till bildskarm. T.ex. 'a" &r en tec-
kenkonstant. Apostroferna kring a talar om att a ska tolkas som tecken. Men hur &r
det med siffror? De kan vara tal, tecken eller strdng. T.ex. 9 &r en talkonstant. | kod
maste den skrivas utan apostrofer for att tolkas som tal. Utan apostrofer tolkar
kompilatorn 9 som tal. Med apostrofer '9' tolkas '9' som ett tecken. Ytterligare
en tolkning ar "9" som strang. P& skarmen ser man ingen skillnad. Alla dessa tre
koder 9, '9' och "9 skriver ut en 9 pa skarmen.

Meningen med att skilja at dem &r att kan man rakna med tal, inte med tecken eller
strangar. Strangar kan man konkatenera , vilket resulterar i text. Konkatenering av
siffror daremot ger tal som av manniskan tolkas enligt det decimala talsystemet, men
av datorn som en strang bestaende av siffror. Apostrofer, citationstecken eller ingen-
ting kring 9 leder till att datorn tolkar data pa det satt som vi menar.

Féljande program demonstrerar skillnaderna mellan olika typer av data, narmare be-
stdmt mellan tal, tecken och stréng for att introducera begreppet datatyp:

// Datatype.cs
// Utskrift av olika typer av data: tal, tecken och text

// I kod skrivs talkonstanter sa hé&r: 9
// teckenkonstanter inom apostrofer: "9’
// strdngkonstanter inom citationstecken: "9"

using System;

class Datatype

{
static void Main ()
{
Console.WriteLine (
"Detta dr talet " + 9 + '\n' +
"Talet 9 + talet 9 ger " + (9 + 9) + "\n\n" +
"Detta &r tecknet " + '9' + '\n' +
"Tecknet 9 + tecknet 9 ger " + ('9' + '9') + "\n\n" +
"Detta ar stangen " + "9" + '\n' +
"Strangen 9 + tecknet 9" +
LS talet 9 ger " + (ng + lgl + 9) + l\nl);
}
}

En kérning av programmet Datatype ger foljande utskrift:

56

Detta ar talet 9
Talet 9 + talet 9 ger 18

Detta &ar tecknet 9
Tecknet 9 + tecknet 9 ger 114

Detta &ar stdngen 9
Strangen 9 + tecknet 9 + talet 9 ger 999

Koden 9 + 9 ger utskriften 18. Det &r sjalvklart: Talet 9 adderas med talet 9 och
resultatet 18 skrivs ut. Men koden ('9'+'9") ger utskriften 114, vilket beror pa
att *9" inte ar tal utan tecken. Hur lagras tecken i datorn? Nar vi trycker pa en tan-
gent dverfors en kod i form av ett bindrt heltal — en sekvens av ettor och nollor —
till datorn. Varje tecken har sin speciella kod, s.k. ASCII-kod. ASCII &r en standard
for omvandling mellan tecken och heltalskoder. Vi kommer att ta upp detta mer de-
taljerat senare (sid 93). Tecknet '9' har ASClI-koden 57 som adderas med 57, sé att
('9'+'9") blir 114. Hér tolkas ndmligen plustecknet som vanlig addition. Saker
och ting sker i foljande ordning: Forst tolkas '9' som ASCII-koden 57, sedan ad-
deras bada tecknens ASClI-koder vilket resulterar i 114, sist skrivs ut resultatet. Fa-
cit: Det &r en vasentlig skillnad mellan talet 9 och tecknet '9'.

Varfor géller inte samma resonemang i koden "Detta &r tecknet " + '9' dvs
varfor resulterar utskriften av ' 9" inte i 57 sa att det skrivs Ut Detta &r tecknet
57? Har tolkas plustecknet inte som vanlig addition utan som konkatenering (sid
52). Anledningen &r att fore + star strdngen "Detta &r tecknet " dvs operationen
ar initierad av en strang. Darfé omvandlas dven '9' till en striang. Alltsa skrivs ut
hela den konkatenerade strdngen Detta &r tecknet 9. Nar det géller ('9'+'9")
star béde till vanster och hoger om plustecknet ASClI-koderna till tecknen '9r.
Alltsa bildas summan av dem som é&r ett tal. D4 summan bildas fore utskriften, star
i parentesen redan talet 114 innan det skrivs ut.

Aven plustecknet i "9" + "9 &r till skillnad frén 9 + 9 och '9'+'9" inte vanlig
addition utan konkatenering av strangarna 9 och 9. Darfor sétts dessa strangar me-
kaniskt ihop till strdngen 99 innan den skrivs ut. Har &r det citationstecknen som
talar om vilken typ av data det &r, ndmligen stréng.

Anledningen till skillnaden mellan talet 9 och tecknet '9' &r att de lagras i datorn
pa olika satt och har olika stora minnesutrymmen. Tal lagras direkt medan tecken
maste kodas forst. Tal omvandlas till ettor och nollor med hjalp av olika algoritmer
beroende pd om det ar heltal eller decimaltal. Datorn maste ha informationen om
vilken typ av data det handlar om, for att kunna vélja rétt algoritm. Allt som kan
goéras med tal kan inte géras med tecken och omvant: T.ex. kan tal adderas medan
tecken inte kan det. Samma sak &r det med strangar som inte heller kan adderas, de
kan daremot konkateneras. De tillhér en tredje typ av data som varken &r tal eller
tecken, fast de & sammansatta av tecken. Det finns &nnu fler typer av data som vi
inte 1art k&nna annu.

57

For att internt kunna skilja mellan olika typer av data, digitalisera dem och ater
presentera dem i ursprungligt skick har man i programmering begreppet datatyp.

Vad &ar en datatyp?

-

~

En datatyp ar en foreskrift om

1. hur en viss typ av data ska lagras i datorn,

2. hur mycket minne denna typ av data tar och dar-
med hur stora varden den kan lagra (det tilldtna
vardeomrdadet),

K 3. vilka operationer man fér utféra med denna typ av data. /

Olika programmeringssprak behandlar sina datatyper pa lite olika satt. C# &r ett
strikt typbestamt sprak (eng. strongly typed language) vilket innebér att kontrollen
dver datatyper ar valdigt hard. All data som behandlas i ett C# program maste utan
undantag vara typbestamd. Man maste explicit ange datatypen till alla varden man
arbetar med. Data utan uppgift om datatypen kan inte bearbetas.

Redan vara C# program i forra kapitel innehdll symboler som gav information om
datatypen: Tecken avgransas med apostrofer ' ' och strdngar avgransas med cita-
tionstecken " . Dvs ' ' &r symbolen for datatypen tecken och " " symbolen for
datatypen strdng. T.o.m. avsaknaden av dessa symboler &r sjilv en symbol:
Forekommer varken apostrofer eller citationstecken, t.ex. hos 9, anses 9 vara av
datatypen tal. Denna symbolik anvénds sa lange vi har att géra med konstanter,
narmare bestdmt med tal-, tecken- eller strangkonstanter.

Skriver vi daremot en bokstav utan apostrofer i koden, t.ex. a blir det kompi-
leringsfel. Orsaken &r att C#-kompilatorn inte kan bearbeta a da den inte kan iden-
tifiera a:s datatyp. Satsen Console.Write('a'); kan kompileras och ger
utskriften a eftersom 'a' tolkas som tecken. T.0.m. Console.Write ("a") ; kan
kompileras och ger samma utskrift eftersom "a" tolkas som striang. Aven en bok-
stav eller ett tecken kan anses som strang, den minsta méjliga. Men a utan apostro-
fer eller citationstecken &r i C# varken en tecken- eller en strangkonstant. Talkon-
stant kan det inte heller vara. Ja, a &r ingen konstant alls. Vad &r a i sa fall? Satsen
Console.Write (a) ; kan inte kompileras och ger kompileringsfelet The name 'a’
does not exist in the current context, dvs a ar ett okdnt namn. Oként darfor att det
inte har definierats ett sddant namn med hjalp av datatypen. Namn darfor att kom-
pilatorn i det enklaste fallet forvantar sig har namnet pa en variabel. Det som
fororsakar kompileringsfelet &r att datatypen saknas: a tolkas som en variabel vars
datatyp inte ar specificerad. Darfor anses den som odefinierad. Men varfor maste
en variabels datatyp vara specificerad? Vad exakt &r en variabel och hur definieras
en sadan i C# dvs hur specificeras dess datatyp? Kort sagt, en variabel behovs for
att lagra data i datorns RAM-minne som ska sedan anvandas i programmet. Nésta
avsnitt berattar i detalj hur man gor det.

58

4.2 Deklaration och initiering av variabler

C# ar ett s.k. strikt typbestamt programmeringssprak, vilket innebar att alla varia-
blers datatyp maste explicit anges i programmet fére anvandningen. Kod som inne-
haller variabler utan uppgift om datatypen kan inte kompileras. Det finns flera
goda skal for det har kravet. Det viktigaste ar att kompilatorn maste reservera plats
for variabelns varde. En variabel ar en platshallare for ett varde. For att kunna lagra
detta véarde behovs information om platsens storlek, om séttet att omvandla vardet
till ettor och nollor och om vilka operationer man far utféra med vérdet. All denna
information finns samlad i datatypen. Forst ska vi precisera begreppet variabel.

Vad &ar en variabel?

En variabel ar en platshdllare (minnescell) for ett varde (data).
I koden far variabeln ett namn som anvands for att komma &t vardet.

I ett program kan variabelns varde éndras, men inte namnet.

Man kan jamféra en variabel med en lada och variabelns varde med ladans
innehall. Variabelns namn ar da ladans etikett. Varde ar data i storsta allméanhet,
dvs kan vara — beroende pé datatypen (sid 58) — tal, tecken, men &ven ett sannings-
virde, en striing, lingre text, en fil, ja t.o.m. en bild, Till skillnad fran en kon-
stant som inte kan &ndra sitt varde (sid 56) kan en variabels vérde andras under en
programkdérning. For att kunna géra det maste variabeln ha ett namn i programmet.
Hos en variabel maste man alltid skilja mellan namnet och vardet. Men vilka namn
far vi ge till vara variabler? Vi har en ganska stor frihet for detta val. Dock ar som
vanligt frineten relativ och vi maéste folja vissa enkla regler som galler for all
namngivning i C# och som vi tar upp har.

Regler fér namngivning:

Ett namn, aven kallat identifierare, kan besta av ett eller flera tecken och
far endast innehalla
1. Alla bokstéver (inkl. svenska specialtecken)

2. Allasiffror
3. Understreck (underscore)
4. Tecknet @
Men: Namnets forsta tecken far inte vara en siffra.

C#:s reserverade ord (sid 36) far inte anvandas.

Exempel pa identifierare & namn pa variabler, konstanter, metoder, klasser, objekt
osv. Bland alla specialtecken far endast understreck (underscore _) och tecknet @
anvandas. Sjalvklart far en identifierare inte innehalla mellanslag for da tolkas de
inte som en utan flera identifierare. Mellanslag ar avskiljare mellan tva ord. T.ex.

59

ar numberl och numberOne giltiga variabelnamn, men inte lnumber eller num-
ber one. Ddremot gdr det bra med number_one eller number 1, jat.0.m. num-
ber. Svenska specialtecken ar inte forbjudna. Foljer man inte reglerna ovan far
man kompileringsfel. Men for att gora program lattare att lasa och forstd, finns det
ocksa anledning att folja foljande

Rekommendation fér namngivning:

Valj namn som &ar beskrivande dvs beskriver identifierarens roll i pro-
grammet. Bibliotekens klassnamn bor inte anvandas som identifierare.

Denna rekommendation baseras pa de krav som god programmeringsstil staller (sid
48). For att gora vara program lattare att lasa, forstd och gora andringar i, maste
namnen vara beskrivande. | programet variable nedan har vi valt numberl och
number2 som namn for programmets variabler. Namnen kan i princip véljas god-
tyckliga, dvs skulle lika bra kunna vara t.ex. a, b, x, no, account eller vad som
helst — upp till reglerna fér namngivning. Men vart val grundas dven pa rekommen-
dationen ovan: Vi ska lagra tal i variablerna number1 och number2.

Att definiera eller skapa en variabel innebér att reservera plats i datorns RAM-
minne &t dess varde. Det gor man i koden genom att ange variabelns datatyp. Att
endast ange datatypen kallas &ven deklaration, man det &r definitionen som reser-
verar minne. Med tilldelning menar man att ge en variabel ett varde. Initiering ar
den allra forsta tilldelningen dvs att ge variabeln ett startvarde som sedan kan &n-
dras. Foljande program demonstrerar deklaration och initiering samt tilldelning
(eng. assignment) av variabler. Aven tilldelningsoperatorn (=) introduceras:

// Variable.cs

// Operationerna + och - som dr definierade fér tal. Defini-
// tion och initiering av variabler med datatypen int. Varia-
// namn stdr fér vdrdet variabeln har vid aktuell tid

using System;

class Variable

{
static void Main ()
{
int numberl, number2, sum, diff; // Deklaration och
numberl = 9; // initiering av variabler
number2 = 3;
sum = numberl + number2;
Console.WriteLine ("\n\tAddition definierad fér int:\t" +
numberl + " + " + number2 + " ger " + sum);
numberl = 11; // Andring av variabelns véirde
diff = numberl - number2;
Console.WriteLine ("\tSubtraktion definierad £6r int:\t" +
numberl + " - " + number2 + " ger " + diff + '\n');
}
}

60

| programmet Variable anropas metoden WriteLine () tva ganger. Vid forsta
anropet har variabeln number1 vdrdet 9 medan variabeln number2 har vdrdet 3.
Vid andra anropet har numberl:s vdrde dndrats till 11 medan number2:s védrde
fortfarande ar 3. Det &r darfor vi har 9 och 3 inblandade i additionen medan 11 och
3 ingar i subtraktionen vilket bekraftas av korresultatet:

Addition definierad fo6r int: 9 + 3 ger 12
Subtraktion definierad for int: 11 - 3 ger 8

Men lat oss félja koden fran borjan. | programmet variable forekommer fyra
variabler numberl, number2, sum och diff. De behdvs for att kunna lagra fyra
varden. Namnen har vi hittat pd, men enligt rekommendationen for namngivning
(sid 59) ska man for laslighetens skull vélja beskrivande namn. | Main () definieras
variablerna genom att inleda med datatypen int foljd av en kommaseparerad lista:

int numberl, number2, sum, diff;

En sadan konstruktion &r endast tillaten om alla variabler ar av samma datatyp. int
ar ett reserverat ord som star for integer number, heltal pé engelska och symbolise-
rar den i C# fordefinierade datatyp som kan lagra heltal. Man skulle kunna &aven
dela upp satsen ovan i fyra separata satser som ar helt likvardiga med den:

int numberl;
int number2;
int sum;
int diff;

Generellt kan deklaration av en variabel i C# beskrivas s har:

[datatyp variabel;]

Tilldelningsoperatorn

Tilldelning betyder att ge variabeln ett varde. | programmet variable tilldelas va-
riabler varden med en symbol som till synes &r likhetstecknet vilket & missledande
da symbolen = i C# inte betyder likhetstecknet. | sjalva verket representerar = i C#
en operator som utfor tilldelning och darfor heter tilldelningsoperator. Den forsta
sats i programmet variable dér tilldelningsoperatorn anvénds ar

numberl = 9;
vars innebdrd man skulle kunna beskriva med féljande pseudokod:

Variabel -=—— Viarde

Variabeln number1 far virdet 9 dvs minnescellen numberl far innehallet 9. Till-
delning med = kan snarare jamforas med en pil —=—— som gar fran hoger till
vanster. Vi maste darfor fortsattningsvis vara vaksamma pa att vi inte av. gammal

61

vana tolkar likhetstecknet som likhet utan som tilldelning. 1 C# finns en annan
symbol for likhet (==) som anvénds i villkor for att jamfora tva varden med avse-
ende pa likhet. Efter tilldelningen av variabeln number1 ser RAM-minnet ut sa har:

numberl 9

4 bytes

I minnescellen hamnar véardet 9 — omvandlat till ettor och nollor forstds — och vi
kan sedan komma at detta varde genom att referera till number1 eftersom variabel-
namnet &r for oss den logiska (mjukvarumassiga) adressen till den fysiska minnes-
cellen. Om vi nu efter tilldelnigen skriver satsen Console.WriteLine (num-
berl) ; far vi variabelns varde 9 utskrivet i konsolen.

Samma sak &r det forstds med variabeln number2 som i programmet Variable
far vardet 3. Efter tilldelningen av variablerna number1 och number2 utférs addi-
tionen numberl + number2. Har adderas vardena (innehallet) lagrade i variabler-
na numberl Och number2. Resultatet tilldelas variabeln sum. Vi refererar till var-
dena med hjélp av variablerna. Att additionen + gors forst och tilldelningen = se-
dan beror pa parenteserna i satsen sum = (numberl + number2) ; Men dven utan
parenteser hade vi fatt samma resultat da + binder starkare &n = . Slutligen skrivs i
utskriftssatsen alla tre variablers véarden ut, konkatenerade med lite text for att gora
utskriften anvandarvanlig.

Initiering av variabler

Den allra forsta tilldelningen av en variabel efter definitionen kallas initiering. Det
kan ske pa olika sétt. | programmet variable har vi gjort det med tilldelnings-
operatorn.

Vad hénder om man definierar en variabel men glémmer initieringen? Vad hander
t.ex. om vi forsoker att skriva ut eller pd nagot annat satt komma at vérdet pa en
oinitierad variabel genom att referera till den? Man skulle kunna ténka sig att det
gar bra — i alla fall kompileringsmassigt — da vi atminstone definierat variabeln och
pa sa sitt skapat minnesutrymme for den. Sa ar det namligen i andra sprak, t.ex. i
C++. Men C# sitter stopp for detta och bannlyser darmed oinitierade variabler fran
alla C# program:

[Variabler som inte initieras innan de anvands leder till kompileringsfel.]

Fordelen med denna strikta regeln &r att man undviker forekomsten av s.k.
skripvirden” — godtyckliga slumptal som rent fysiskt rakar finnas pa de platser
kompilatorn reserverar minne. Detta a&r mdjligt i C++, men C# har stoppat denna
mojlighet och tillfort darmed spraket mer sékerhet och stabilitet. Vi ar alltsa tvung-
na att arbeta med variabler som &r bade definierade och initierade, s.k. val definie-
rade variabler. En bra vana att initiera sina variabler &r att tilldela dem ett véarde di-
rekt i samband med deklarationen. En bra teknik for det &r foljande:

62

Deklaration och initiering i samma sats

Ett bra medel mot att gldomma variabelinitieringen &r att inte avsluta deklarations-
satsen forran man gett variabeln ett varde. Foljande program visar att C# tillater att
definiera och initiera variabler i en och samma sats:

// DefInit.cs

// Deklaration och initiering i samma sats

// Summan bildas direkt i utskriftssatsen: Sparar en variabel
// Vid utskrift konkateneras vanlig text, variabler & uttryck
using System;

class DeflInit

{
static void Main()
{
int numberl = 9; // Deklaration och initiering
int number2 = 2; // Initiering vid deklarationen
Console.WriteLine ("\n\t" + "Summan av " + numberl +
" och " + number2 + " &r " + (numberl + number2) + '\n');
}
}

Programmet ovan producerar denna utskrift:

Summan av 9 och 2 ar 11

Medan i programmet variable (sid 60) deklarationen och initieringen av variabler
gjordes i separata satser har dessa satser i programmet DefInit slagits ihop: Va-
riabeln number1 har blivit definierad och initierad i en och samma sats:

int numberl = 9;

Samma sak kan man gora med number2. Detta &r mojligt, for man méste inte defi-
niera alla variabler i borjan av programmet. Man kan gora det ndr det behovs, bara
man definierar en variabel innan man initierar den. Det gar t.o.m. att sla ihop de
tva forsta satserna i De£Init till en:

int numberl = 9, number2 = 2;

De tva variablers deklaration och initiering kan separeras med komma, vilket en-
dast &r mgjligt om variablerna har samma datatyp, som da skrivs en géng i borjan
av satsen. Ska béada variablerna ha samma varde kan man géra en dubbelinitiering:

int numberl, number2; // Separat deklaration
numberl = number2 = 2; // Dubbelinitiering

Men d& maste deklarationen sta separat innan. Kom ihdg att tilldelningsoperatorn
alltid tilltilldelar som en pil fran hoger till vanster. Darfor far variabeln number2

63

forst véardet 2. Variabeln number1 far samma vérde, dvs variabeln number2:s var-
de som redan &r 2.

Deklaration vs. definition

I litteraturen anvénds ofta begreppet deklaration istallet for definition av variabler.
Orsaken &r att de skrivs i en och samma sats. Sa &r det ocksa i vara egna program-
exempel: Alla variabeldefinitioner ar samtidigt variabeldeklarationer. And& kan
det vara av intresse att uppmarksamma deras begreppsmassiga skillnad, speciellt
nar man tillampar begreppen pa objekt, klasser och metoder. C#:s foreskrivna pro-
gramarkitektur har eliminerat den praktiska relevansen av denna skillnad — atmin-
stone nér det géaller variabler.

Vad ar deklaration?

Vad gor man nar man deklarerar skatt? Man anger att det finns en inkomst att be-
skatta. Deklarationen skapar inte inkomsten utan hanvisar bara till den. Sjélva
inkomsten har skapats i en helt annan process som inte har det minsta att géra med
skattedeklarationen. Samma sak &r det nar man deklarerar en vara hos tullen. De-
klarationen producerar inte varan utan ger endast information om dess existens.
Man kan deklarera en sak — vare sig inkomst eller vara — endast om saken redan
finns, har skapats eller kommer att skapas. Deklarationen kan inte ersatta skapan-
deprocessen. Men skapandet kan inkludera deklarationen: Man kan t.ex. ha det
som rutin att deklarera vid skapandet.

Nar det géller variabler talar deklarationen om for kompilatorn att det i program-
met finns en variabel som t.ex. heter number1 och att den &r av datatypen int.
Deklarationen ar en hanvisning till variabelns existens och dess datatyp. Nér man
déremot pratar om definition menar man alltid skapandet av en variabel dvs re-
servering av minnesutrymme for variabeln. Endast deklarationen skapar inte min-
nesutrymme utan gor bara att kompilatorn kan tolka informationen. Deklarationen
gor att kompilatorn forstar vad ordet number1 ar for ndgonting, namligen ett namn
till en variabel. Uppgiften om datatypen int ger kompilatorn méjligheten att han-
tera informationen.

Vad ar definition?

Definition skapar en sak — variabel eller objekt — fran scratch. | vart fall skapar den
en variabel dvs reserverar minnesutrymme i datorns RAM for lagring av ett vérde.
Namnet till variabeln anvéands i programmet for att komma at minnesutrymmets
innehall, for att skriva, lasa eller dndra vérdet. Datatypen till variabeln anvands for
att informera kompilatorn om minnesutrymmets storlek, om séttet (algoritmen) att
digitalisera data och for att definiera de operationer som far utféras med variabelns
varde. | C# inkluderar definitionen deklarationen av variabler sa att de sammanfal-
ler i en och samma sats. Nar vi kommer till objektorienterad programmering blir
det relevant att skilja mellan deklaration av en klass som inte reserverar minne och
definition av ett objekt som reserverar minne. Det géller att anvdnda en konsistent
terminologi som man inte behdver revidera.

64

Vad hander nar en variabel definieras?

Genom att besvara denna fraga kommer vi att forsta varfor man i C# maste definie-
ra variabler. Vad hander nér t.ex. variabeln number1 definieras till int?

1. En minnescell reserveras i datorns RAM-minne for lagring av
int-varden. Namnet pd minnescellen blir number1. Storleken pé
minnescellen bestams av datatypen int som i var C# installation
ar foreskriven till 4 bytes dvs 4 x 8 = 32 bitar. (En bit kan lagra en 0
eller en 1). Detta sker vid kompileringen och uppratthalls tills exe-
kveringen ar avslutad. Detta kallas statisk minnesallokering i den
bemarkelse att den inte kan andras under exekveringen. Allokering
&r bara ett annat ord for reservering. Faktiskt ar det definitionen
som allokerar minne. Foljande figur visar forenklat vad som sker i
datorns RAM nér 4 bytes minne reserveras for variabeln number1:

numberl

€ 4bytes —>

2. Specificieringen av datatypen gor att programmet kan tolka inne-
hallet i minnescellen ovan nar den fylls med ett varde. Det ar 32
ettor och nollor som maste tolkas som ett heltal. Olika datatyper
har olika algoritmer for omvandling av data till ettor och nollor
och omvant. Decimaltal omvandlas pa ett annat sétt an heltal eller
tecken osv. Datatypen &r avgorande: Heltalet 1 t.ex. bestar av en
annan foljd av ettor och nollor &n decimaltalet 1.0. En annan di-
gital sekvens har tecknet 1 for att inte tala om stréangen "1".

3. Namngivning har med adressering att gora. Minnescellens fysiska
adress i RAM kopplas till det logiska namn number1 vi valt i ko-
den for att kunna komma &t minnescellen genom att referera till
variabelnamnet. Med andra ord, variabler gér minnescellerna i
RAM adresserbara och darmed atkomliga via programmet.

Dessa tre punkter borde man ha klart for sig ndr man anvénder variabler. De for-
klarar ocksa varfor C# som de flesta programmeringsspraken, ar strikt typbestamta
sprak och varfor vi maste definiera alla variabler innan vi anvander dem.

[Variabler som inte definieras innan de anvands ger kompileringsfel.]

Det finns ingen regel som sager att alla variabeldeklarationer méste st i bérjan av
programmet. Man kan definiera sina variabler nar de behdvs, bara man gor det in-
nan man ger variabeln ett varde, sétter in den i ett aritmetiskt uttryck eller anvénder
den pa ett annat satt. Att vi 4nda placerar variabeldeklarationerna i bérjan av vara
program har ofta att géra med strukturering, laslighet och god programmeringsstil.

65

4.3 Inlasning av data

Vara C# program har hittills bara haft utdata, inga indata. Det var utdata som
skrevs ut fran programmet till bildsk&rmen, ndrmare bestdmt med metoden write-
Line () till konsolen. Men hur gér man nér man vill skicka indata till ett program?
Foéljande program visar hur man kan géra det med metoden ReadLine () :

/* Input.cs
Programmet f6r en dialog med anvidndaren, ldser in text med
ReadLine () som sedan skrivs ut. Inldsningen féregas av en
ledtext fér att instruera anvdndaren. ReadLine () dr en me-
tod definierad i klassen Console och returnerar den inma-
tade strdngen som lagras 1 variabler av typ string.

74

using System;

class Input

{
static void Main()
{
string name, course; // Datatypen string
Console.Write ("\n\tVad heter du?\t\t"); // Ledtext
name = Console.ReadLine () ; // 1l:a inldsning
Console.Write ("\n\tHej pa dig, " + name + ',' +
"\n\tvilken kurs laser du? M g
course = Console.ReadLine () ; // 2:a inldsning
Console.WriteLine ("\n\tVilkommen till " + course +
"-kursen!\n") ;
}
}

Programmet ovan producerar en dialog i tva delar. Den forsta fragar efter name, la-
ser in det och ger svar, efter att anvandaren matat in ett namn och tryckt pa Enter.
Den andra delen gor samma sak med inl&sning av course:

Vad heter du? Peter

Hej pa dig, Peter,
vilken kurs laser du? c#

Valkommen till C#-kursen!

Data som matas in fran tangentbordet eller lases in fran filer, ar indata. Till skillnad
fran utdata som inte behdver mellanlagras, maste indata lagras i minnet. Hur man
far indata in i datorn visar bilden pa sid 37: Bade indata och programkod méste
lagras i RAM-minnet. Programkoden laddas fran harddisken till RAM-minnet nér
maskinkoden i den exekverbara filen kors. Indata ddremot maste matas in under

66

programmkdrning och mellanlagras i en minnescell i RAM-minnet innan den kan
vidarebearbetas av programmet. Mjukvarumassigt innebar detta att indata maste tas
emot och lagras i en variabel — ytterligare ett skl till att variabeln maste vara
definierad, dvs vara associerad med en minnescell av en viss storlek som &r
reserverad i datorns RAM-minne. Variabelns namn blir en referens till minnesad-
ressen som sedan kan anvéndas for att komma &t data. Medan allokeringen av min-
nesutrymme i regel sker under kompilering via variabeldefinition, maste inmatnin-
gen goras under exekveringen. Darfor avbryts exekveringen nar en inmatning ska
ske. | koden fororsakas detta tempordra avbrott av anropet av metoden Read-
Line () som vi ska nu forklara ndrmare.

Metoden Console.ReadLine ()

Vad metoden gor kan vi se nar programmet Input exekveras: Forsta gngen anro-

pas metoden i satsen
name = Console.ReadLine() ;

Anropet sker med punktnotation eftersom metoden ReadLine () &r definierad i
klassen console. Men varfor bakas metodens anrop in i en tilldelningssats: name
= ... ?S&drdetinte med utskriftsmetoden WriteLine (). Dess anrop star fritt i
en sjalvstandig sats (jfr. sid 42). Detta beror pa att writeLine () laser in data som
maste lagras for att vidarebearbetas. Denna lagring gors i en variabel, i exemplet
ovan i variabeln name som tar emot och lagrar den inmatade texten. Vi har i Read-
Line () for forsta géngen att géra med en metod som returnerar ett vérde, det s.k.
returvardet. ReadLine () ar en metod med returvirde. Sadana metoder kan man
jamfaora med en lada i vilken man stoppar in parametrar och far ut ett returvarde:

Parametrar ~———» Metod ——= Returvarde

ReadLine () har ingen parameter och returnerar en strdng, ndmligen den av an-
vandaren inmatade texten. Denna strdng hamnar i variabeln name ndr anvandaren
trycker pa Enter. Darfor star anropet i en tilldelningssats, just for att ta hand om
den returnerade strangen (returvérdet). Att en strdng dvs vanlig text kallas har for
returvarde ar inte nagot anmarkningsvart. All form av data betecknas som varde
som lagras i form av en sekvens av ettor och nollor i en minnescell.

For ett korrekt anrop av en fordefinierad metod &r det dessutom avgdrande att veta
vilka datatyper metodens parametrar och returvarde har. Dessa ar namligen ocksa
fordefinierade och kan inte valjas fritt. Vi maste deklarera variabeln som lagrar re-
turvérdet med just den datatyp som metoden foreskriver for sitt returvéarde. Faktum
ar att returvardet till ReadLine () &r av datatypen string. Allts3, for att lagra re-
turvardet i variabeln name och sedan course maste dessa variabler deklareras till
datatypen string.

Mer om metoder kommer du att l&ra dig i kap 7, sid 157.

67

4.4 Overskrivning eller kan x=x+ 1 vara sant?

I C# har tilldelningsoperatorn (=) foljande betydelse:

variabel = varde ;
variabel -e—— varde

T.ex.isatsen a=9; tilldelas variabeln a vardet 9. Eller i satsen sum=r + t;
dar r och £ maste ha val definierade varden, bildas forst summan r + t som sedan
tilldelas till variabeln sum. Den gemensamma strukturen hos bada satser &r att de
tilldelade variablerna a och sum inte forekommer pa bada sidor av = utan endast
till vanster av den. Nu ska vi studera en annan struktur dar den tilldelade variabeln
finns pa bada sidor av = :

X = x + 1 ;

X —-=-—— x + 1

Har méste variabeln x till hoger redan ha ett vél definierat varde. Det som denna
sats gor ar att andra variabeln x:s vérde — en grundldggande teknik inom program-
mering som kallas for dverskrivning och demonstreras i féljande program:

// Overwrite.cs
// Demontrerar skillnaden mellan likhet och tilldelning
using System;

class Overwrite

{
static void Main()
{
int x;
string xAsText;
Console.Write("\n\tMata in ett heltal:");
xAsText = Console.ReadLine () ; // Inldsning
x = int.Parse (xAsText) ; // Omvandling till int
Console.Write ("\nDet inmatade talet " + x);
x=x +1; // Overskrivning
/) x++;
Console.WritelLine (" har okats med 1 och 4r nu " + x +
vl\nll) B
}
}

Sa har kan en dialog se ut:

Mata in ett heltal: 5

Det inmatade talet 5 har okats med 1 och a&r nu 6

68

I programmet ovan lases det inmatade vardet 5 in av ReadLine () Och returneras
som en stréng, tilldelas strangvariabeln xasText, omvandlas till heltal av metoden
int.Parse () och tilldelas heltalsvariabeln x. Lat oss aterkomma till denna typ-
omvandlingsmetod och utskriftstekniken lite senare och titta forst pd progammets

centrala sats:
Xx=x+ 1;

som gor att x-vardet okar till 6 och dverskriver det gamla inmatade vérdet 5. Har x
vérdet 5 fore denna sats, innebér satsen att 5 ska adderas med 1 och att det ny-
bildade vérdet 6 ska tilldelas variabeln x pa nytt dvs:

X = 5 +1

Flojaktligen har x vardet 6 efter satsen. Det nya vardet 6 skriver dver det gamla
vardet:

x | 56 |

Detta kallas 6verskrivning av variabelvardet och baseras pa egenskapen av varia-
beln x som platshéllare vars varde kan dndras medan namnet bibehalls (sid 59).

Vi har i satsen ovan att gora med tva olika varden till en och samma variabel x,
men vid tva olika tidpunkter. Det gamla vardet 5 finns i variabeln x fére satsen och
det nya vardet 6 finns i variabeln x efter satsen. Det beror pa likhetstecknets (=)
betydelse som tilldelning till skillnad frdn dess matematiska betydelse som likhet.
Matematiskt ar det fel att skriva x = x +1, en ekvation som leder till motségelsen
0 =1. | programmeringen daremot &r det helt OK att skriva sa, eftersom det inte
handlar om en ekvation, utan snarare om en instruktion om att ge variabeln x) ett
nytt varde genom att 6ka det gamla vérdet med 1. | matematiken borde detta for-

muleras med tva variabler: Xy = % +1. | programmeringen déremot &r x

ammalt
endast en variabel — vars varde byts ut medan namnet bibehalls. Darfor anvands i
satsen x = x + 1; en variabel pa bada sidor av tilldelningstecknet och inte tva.

I sjalva verket handlar det om den klassiska, filosofiska skillnaden mellan att vara
och att bli, mellan tillstdnd och handling, mellan den statiska likheten och den dy-
namiska tilldelningen. Vid tilldelning relateras sanningen till tiden. Dvs fragan &r
inte om utan nar x = 5. Jo, precis nér variabeln x tilldelas vérdet 5. Inte innan och
inte heller efterat, for redan i nasta sats kan ju x tilldelas ett annat varde. Man kan
man sdga: Tilldelning &r likhet relaterad till tiden, darfor ar den dynamisk.

Att satsen x = x + 1; utfor additionen forst och tilldelnigen sedan beror pa att ope-
ratorn + binder starkare dvs har en hdgre prioritet &n tilldelningsoperatorn = . Dér-
for slipper vi att skriva parenteser: x = (x + 1) ; vilket vi hade varit tvungna att
g6ra om = hade samma prioritet som + eller hogre.

69

| programmet overwrite (sid 68) kan man ersdtta satsen x = x + 1; med satsen
x++; som &r bortkommenterad. De gor samma sak: att 6ka x med 1. Testa gdrna
genom att aktivera satsen x++; och kommentera bort x = x + 1; Symbolen ++
(oBs! Utan mellanslag) kallas 6kningsoperatorn och kommer att behandlas senare
(sid 77). Den harstammar fran C++ och har en gang gett namnet till spraket C++:
Tillagget ++ ska antyda att man har lagt till 1 utvecklingssteg till C och dérigenom
fatt fram C++.

Metoden int.Parse ()

Har man vid exekveringen av programmet overwrite matat in t.ex. 5, lagras detta
varde nu i variabeln xAsText. Men pga denna variabels datatyp lagras 5 som
strang, inte som heltal. S3 vi kan inte rakna med det, vi kan inte addera eller mul-
tiplicera det med ett annat heltal. For att kunna géra det maste vi omvandla det till
en int. Just detta gor den fordefinierade metoden int.Parse () at 0ss. Den tar
emot i sin parentes en parameter som &r av typ string, omvandlar den till heltal
och returnerar den somen int.

Satsen x = int.Parse (xAsText) ;

utfor denna omvandling och lagrar resultatet i variabeln x som ar deklarerad som
int. Aven hdr &r anropet av metoden int.Parse () inbakat i en tilldelningssats
for att ta hand om metodens returvérde, i det hér fallet 5 som heltal.

70

4.5 Operatorer och uttryck

De fyra grundraknesatten +, —, *, / 4 exempel pa aritmetiska operatorer. Symbo-
len * star for multiplikation och / for division. De objekt som en operator tillam-
pas pa, kallas operander. | uttrycket a + b — 4 t.ex. &r a, b och 4 operander. Ett ut-
tryck &r en kombination av variabler, konstanter, operatorer och vanliga parenteser
som till slut, nér uttrycket beraknas, returnerar ett véarde. Pa sa satt definierar ett ut-
tryck en foreskrift for berdkning av ett vérde. Nér vérdet &r ett tal, pratar man om
aritmetiska uttryck eller rakneuttryck. Exempel pa aritmetiska uttryck ar:

nol * no2
a + 6*b - 4/ (c+l)

Ett annat exempel pa ett aritmetiskt uttryck visas i foljande program:

// Operator.cs

// Lidser in tiden 1 dr, manader och veckor, omvandlar den

// till dagar med ett aritmetiskt uttryck och skriver ut dem
// Strukturen Inmatning - bearbetning - utmatning

using System;

class Operator

{

static void Main ()

{

int year, months, weeks, days, totalDays;

/* Tnmatnding*/
Console.Write ("\n\tAnge antal ar:\t\t"): // Ledtext
year = int.Parse (Console.ReadLine()) ; // Inldsning

Console.Write ("\n\tAnge antal manader:\t") ;
months = int.Parse (Console.ReadLine()) ;

Console.Write ("\n\tAnge antal veckor:\t");
weeks = int.Parse (Console.ReadLine()) ;

Console.Write ("\n\tAnge antal dagar:\t");
days = int.Parse (Console.ReadLine()) ;

/*Bearbetning?*/ // Aritm. uttryck
totalDays = 365*year + 30*months + 7*weeks + days;

/* Utmatning*/
Console.WriteLine ("\n " +
year + " ar, " + months + " manader, " +
weeks + " veckor och " + days + " dagar ar " +
totalDays + " dagar totalt.\n");

71

En korning av programmet Operator ger foljande dialog:

Ange antal ar: 2
Ange antal manader: 11
Ange antal veckor: 3
Ange antal dagar: 6

2 ar, 11 manader, 3 veckor och 6 dagar ar 1087 dagar totalt.

Det aritmetiska uttryck som astadkommer resultatet i ovanstende program, ar:
365*year + 30*months + 7*weeks + days

Uttrycket anvénder sig av de aritmetiska operatorerna + och *. Inmatningen i kor-
exemplet ovan leder till foljande berdkning enligt uttryckets foreskrift:

365*2 + 30*11 + 7*3 + 6

Om year dr antalet ar, months antalet manader, weeks antalet veckor och days
antalet dagar, beraknas hér det totala antalet dagar. Har har man forutsatt att ett ar
har 365 dagar, en manad 30 och en vecka 7 dagar. Ingen hansyn har tagits till skott-
ar osv. Att * gors forst och + sedan beror pa att i C# multiplikationsoperatorn * —
precis som i matematiken — har en hdgre prioritet &n additionsoperatorn +. Darfor
behdvs inga parenteser.

Inmatning — Bearbetning — Utmatning

Vid sidan om aritmetiska uttryck, introducerar programmet operator ett koncept
inom programmering som kan bidra till att uppfylla de krav pa forstaelighet, an-
vandarvénlighet, strukturering och andringsbarhet som vi stéllde upp fér god pro-
grammeringsstil (sid 48). Det handlar om strukturering av programkod.

Det enklast tdnkbara sattet att strukturera ett program &r att dela in det i de tre na-
turliga stegen inmatning — bearbetning — utmatning som man kanske helt spontant
tar ndr man utvecklar ett program. | programmet operator matas in forst indata:
ar, manader och veckor. Sedan bearbetas dessa data genom att berakna det totala
antalet dagar och lagra resultatet i en ny variabel. Slutligen matas ut bearbetnin-
gens resultat genom att skriva ut den nya variabelns varde. Man borde hélla sig till
denna ordning om man inte har nigon speciell anledning att avvika fran den. Det
finns i regel ingen anledning att t.ex. splittra utmatningen och skriva en del av den
fore och en annan del efter bearbetningen. Inte minst nér koden véxer rekommen-
deras att utnyttja &tminstone denna naturligt givna struktur i sina program.

Struktureringen inmatning — bearbetning — utmatning kommer vi att ha stor nytta
av nar vi modulariserar véara program dvs skriver metoder. Da kommer vi namligen
att separera dessa tre delar, skriva dem i var sin metod och sedan anropa dem fran
main (). Darfor kan det vara bra att vénja sig vid denna goda sed redan nu. | fort-

72

sattningen kommer vi att halla oss i vara programexempel till konventionen att i re-
gel strukturera programkoden i dessa tre delar utan att explicit ndmna det.

Nastlat anrop av metoder

Ett néstlat anrop ar ett anrop i ett annat anrop. Lat oss ta som exempel den sats
som stér i programmet operator for att lasa in ett heltal:

int.Parse (Console.ReadLine ())

Hér anropas metoden ReadLine () i anropet av metoden int.Parse (), ndrmare
bestamt i dess parameterlista dvs pa en plats dar en parameter forvantas. Darmed
kommer ReadLine () :s returvérde, dvs den inlasta strdngen, att skickas till int. -
Parse (). Det nastlade anropet ovan ar helt identiskt med foljande tva anrop:

string yearAsText = Console.ReadLine() ;
int.Parse (yearAsText) ;

Som man redan ser behdver man tva satser for att dstadkomma samma sak. Des-
sutom behdvs en variabel (yearAsText) som maste definieras. Vid nastlingen
slipper man detta merarbete. Anledningen till att tva anrop &r nédvandiga, ar att
man med metoden ReadLine () inte kan l&sa in heltal eftersom dess fordefinierade
returvarde ar en string. Vi maste sedan konvertera till int med int.Parse().

Naéstlade anrop av metoder & mycket vanliga inom programmering darfor att man
spar kod. Sjalvklart gar det pad bekostnad av lasligheten vilket gor att man méste
avvaga rimligheten. | vart fall ar det forsvarbart med tanke pd att vi i programmet
Operator maste lasa in tre heltal s& att bade inlasningen och omvandlingen till
heltal maste ske tre ganger. Man spar alltsd hiar en hel del kod. Anvander man sig
av nastlade anrop maste foljande regel beaktas:

[Nastlade anrop av metoder exekveras inifrén.]

Detta innebér i vart exempel ovan att ReadLine () anropas forst och int.Par-
se () sedan. Dvs inlasningen gors forst och konverteringen till int sedan vilket
har betydelse for i vilken ordning vi skriver koden. En annan praktisk detalj ar att
man maste hélla ordning pé parenteserna. Just nu nar vi har tva anrop &r det inte s&
farligt, men flera nivéaer av nastling ar béade tankbara och méjliga. Dock, som sagt,
satter avvagningen mot laslighet granser pd antalet nivaer.

73

4.6 Overlagring av operatorer

Programmet operator i forra avsnitt anvénde sig av aritmetiska operatorer och ett
enkelt uttryck for att omvandla inmatad tid i antal ar, manader, veckor och dagar,
till antal dagar (sid 71). | kdrexemplet matade vi in 2 &r, 11 manader, 3 veckor, 6
dagar och fick 1087 dagar. Lite svarare ar det att l6sa det omvanda problemet dvs
att dela upp ett inmatat antal dagar i antal ar, manader och veckor, t.ex. att mata in
1087 dagar och fa ut av programmet uppdelningen i 2 &r, 11 manader, 3 veckor
och 6 dagar. Nyckeln till 16sningen ar tva nya aritmetiska operatorer — heltals-
division och modulooperatorn — varav den forsta ar en s.k. dverlagrad variant av
den vanliga divisionsoperatorn och den andra beslaktad med den forsta. Behandlin-
gen av det omvénda problemet introducerar oss till ett viktigt koncept i program-
mering som tillimpas hér pa operatorer, men kann dven generaliseras till metoder.

Overlagring

Nar tva eller flera operatorer betecknas med samma symbol, men anda betyda oli-
kakallas det dverlagring av operatorerb. Vi har redan sett ett exempel pa det nér vi
gick igenom konkatenering: Symbolen + betyder bade addition och konkatenering
(sid 51). Det & sammanhanget dar symbolen anvénds, som bestdimmer symbolens
aktuella betydelse. Ett annat exempel pa att operatorer kan vara Gverlagrade &r
slashtecknet / som anvands en gang som symbol for heltalsdivision, en annan gang
for vanlig division. Vi har i den 6verlagrade operatorn / att géra med en ny typ av
division. For att forsta det battre, ska vi l16sa

Det omvanda problemet

Vand pé problemet i programmet operator (sid 71). Dvs Omvandla en tid som ar
angiven i dagar till ar, manader, veckor samt resterande dagar. Skriv ett program,
som fragar efter en tid i antal dagar, laser in den, och sedan berdknar samt skriver
ut resultatet i antal ar, manader, veckor samt resterande dagar. | sjalva verket hand-
lar det om en omvandling av det decimala systemet till kalenderns system med ér,
manader, veckor och dagar. For denna omvandling anvands foljande algoritm:

Algoritmen

1. Kalla den givna tiden i dagar for totaldagar.

2. Dividera totaldagar med 365 och strunta i resten, sa far du det sokta antalet ar.

3. Taresten vid divisionen ovan. Dividera denna rest med 30 och strunta i resten
sé far du det sokta antalet manader.

4. Ta resten vid divisionen i punkt 3. Dividera denna rest med 7 och strunta i
resten sa far du det sokta antalet veckor.

5. Resten vid divisionen i punkt 4 &r det sokta antalet resterande dagar.

Operationen ”Dividera och strunta i resten” Kallas i fortsattningen for heltalsdivi-
dera och operationen "Ta resten vid heltalsdivision” for modulo. Algoritmen ovan
skrivs nu som pseudokod:

74

Pseudokoden

Antal ar = totaldagar heltalsdividerad med 365
Antal manader = (totaldagar modulo 365) heltalsdividerad med 30
Antal veckor = ((totaldagar modulo 365) modulo 30) heltalsdividerad 7

Resterande dagar = ((totaldagar modulo 365) modulo 30) modulo 7

Programmet overloadop implementerar ovanstdende algoritm och pseudokod. |
C# ar / operatorn for heltalsdivision, om bada operander ar heltal. Symbolen % &r
operatorn for modulo. Pseudokoden ovan aterfinns Gversatt till C# kod i bearbet-
ningsdelen av programmet overloadOp.

Heltalsdivision

Det finns tva olika typer av division, vanlig division och heltalsdivision. Vanlig di-
vision réknar med decimaltal, heltalsdivision bara med heltal. | C# ar slashtecknet
/ symbolen for bada. Vilken av dem som ska galla i en aktuell situation, avgors pa
foljande satt av sammanhanget dar / anvands: Om heltal finns pa bagge sidor av
symbolen / utférs heltalsdivision. Finns heltal pa den ena sidan av tecknet / men
decimaltal pa den andra, utfors vanlig division. C#-koden 9/2 ger inte 4.5 utan 4
vilket beror pa att 9 och 2 bada ar heltal. Vill man fa den vanliga divisionens resul-
tat 4.5 maste man i C# skriva 9.0/2 eller 9/2.0 eller 9.0/2.0 dvs minst en ope-
rand maste vara decimaltal. Heltalsdivision ddremot, dvs 9/2, trunkerar (klipper
av) alla decimaler och returnerar endast heltal — och detta utan ndgon avrundning.
Man dividerar utan att ga vidare till decimaler. Man kan ocksa saga: Divisionens
heltalsdel tas, resten ignoreras: 9 dividerat med 2 ger 4 och resten 1. Men resten
ignoreras vid heltalsdivision: 9 heltalsdividerat med 2 ger darfoér 4. En annan arit-
metisk operation tar hand om resten som heter modulo och ar beslaktad med hel-
talsdivision. Vi kommer att anvanda bada i vart nasta program.

Modulooperatorn %

% har i C# ingenting med procentrékning att gora utan ar symbolen for ett rakne-
satt som kallas modulo och innebar resten vid heltalsdivision. Man dividerar tva
heltal utan att ga vidare till decimaler, tar resten och ignorerar resultatet. T.ex. 16
% 5 ger 1, darfor att 16 heltalsdividerat med 5 ger 3 och en rest pa 1 blir kvar.
Modulooperatorn % ignorerar 3 och returnerar resten 1. Resten vid heltalsdivision
kallas modulo: 9 modulo 2 ger 1. Man kan uppfatta raknesattet modulo &ven som
en upprepad subtraktion: Man drar av 2 fran 9 s& manga ganger det bara gar och
tar det som blir kvar. Fyra ganger gar det att ta bort 2 frdn 9, kvar blir 1. Darfor ar
9 % 2 = 1. Generellt innebar att rakna modulo a helt enkelt att man bortser frén
alla multipler av heltalet a, att man kastar bort alla multipler av a och behaller
resten. Raknesattet modulo har manga tillampningar, speciellt vid 6vergadng mellan
tva talsystem, t.ex. mellan det decimala och binara talsystemet. En rolig anvand-
ning av denna rakneoperation &r foljande exempel:

75

Idag ar fredag och du vill tréffa din kompis om 11
dagar.
Vilken veckodag &r det?

Om vi numrerar veckodagarna stigande fran 1 med borjan pd mandag sa att fredag
blir den 5:e veckodagen, far du svaret pa fragan ovan genom att rakna modulo 7:

(5 + 11) %7 = 2

Dvs veckodagen i fragan &r tisdag. Med andra ord man ldgger till aktuell veckodag,
antalet dagar och raknar modulo 7. | sjélva verket handlar det om en omvandling
av det decimala talsystemet med basen 10 och siffrorna 0-9 — det system vi &r vana
vid — till veckodagarnas system dvs till talsystemet med basen 7 och siffrorna 0-6.

Programmet

// OverloadOp.cs

// Omvandlar dagar till &r, manader, veckor och restdagar
// Overlagring av operatorn / som heltalsdivision

// Modulooperatorn %

using System;

class OverloadOp

{

static void Main()

{

int year, months, weeks, restDays, totalDays;

/* Tnmatning*/
Console.Write ("\n\tAnge antal dagar:\t\t");
totalDays = int.Parse (Console.ReadLine()) ;

/* B e a
year
months
weeks
restDays

betning*/

totalDays / 365;

(totalDays % 365) / 30;
((totalDays % 365) % 30) / 7;
((totalDays % 365) % 30) % 7;

nnkx

/*Utmatning*/
Console.WriteLine ("\n\t" + totalDays + " dagar &r " +
year + " ar, " + months + " manader, " + weeks +
" veckor och " + restDays + " dagar.\n");

}

En kérning av programmet overloadop ger foljande dialog:

Ange antal dagar: 1087

1087 dagar ar 2 ar, 11 manader, 3 veckor och 6 dagar.

76

4.7 Okningsoperatorn ++

Denna operator harstammar fran programmeringsspraket C++ dar den gett namnet
till spraket. Det finns tva varianter av 6kningsoperatorn: Man kan skriva den fére
operanden, sa har ++a, eller efter operanden, sa har a++. Satts den efter operanden
talar man om okningsoperatorns postfixvariant. Skrivs den fore operanden blir det
prefixvarianten. Féljande program demonstrerar skillnaden mellan dessa tva:

// Increment.cs
// Skillnaden mellan a++ och ++a
using System;

class Increment

{

static void Main()

{
int a, b;
a=0;
b = a++;

// Samma som:

// b = a;

// a=a + 1;
Console.Write("\n\t a = 0: Efter b = a++; blir b = " +

b+ "ocha="+a+ '\n'");

a=20;
b = ++a;

// Samma som:

// a=a + 1;

// b = a;
Console.WriteLine("\t a = 0: Efter b = ++a; blir " +

"b =" +b+ "ocha="+a+ '\n");
}
}

En kdrning av programmet Increment resulterar i foljande utskrift:

|
[y

0 och a =
1 och a =

a =0: Efter b
a =0: Efter b

a++; blir b
++a; blir b

Il

Il
|

'—l

Har jamfors a och b:s vérden efter b = a++ och efter b = ++a med varandra. An-
markningsvart i bada fallen &r att det inte blir ndgon skillnad mellan 6kningsopera-
torns post- och prefixvariant nar det géller sjalva operanden a som ++ tillampas pa.
| bada fallen 6kar operanden a:s varde med 1. Efterdt ar a = 1 i bada fall. Skill-
naden paverkar snarare miljon dvs det som finns kring okningsoperatorn, i vart
exempel variabeln b: Efter postfixvarianten & b = 0 medan efter prefixvarianten ar
b = 1. For att forklara varfor méste vi precisera dessa tva varianternas betydelse:

77

Postfixvarianten a++; betyder:

»Utfor satsen med det aktuella virdet pa variabeln a och 6ka den darefter med 1”.

Narmare bestamt okar a:s varde efter satsen dvs efter semikolonet. Satsen a++; ar
en kompakt kod fér 6kning med 1 genom 6verskrivning, dvs:

a+t+; g6r samma sak som a=a+1;

Nu ser man att 6kningsoperatorn bestar av tva operationer, addition och tilldelning.
Observera att a++; inte gor samma sak som a + 1; | a++; ingdr aven en tilldel-
ning medan a + 1; endast innehdller en addition. Okningsoperatorn tar hansyn till
att det vid dverskrivning endast finns en variabel vars vérde éverskrivs. Darfor fo-
rekommer i a++; variabeln a bara en gang.

Prefixvarianten ++a; betyder:

”Oka forst variabeln a:s virde med 1 och
utfor darefter satsen med det nya 6kade vardet pé a”.

Aven satsen ++a; gor samma sak som a = a + 1; Skillnaden med prefixvarianten
blir pataglig forst nar det finns nagot som hander innan och/eller efterat, dvs nar
sammanhanget man anvander 6kningsoperatorn i ar lite mer komplex. Programmet
Increment pé forra sidan visar ett enkelt exempel pé ett sddant sammanhang.

For att kunna jamfora post- och prefixvarianten och se deras skillnad behover vi i
Increment Samma utgangssituation dvs en variabel som har samma initierings-
varde. Darfor tilldelas variabeln a vardet 0. Detta for att en gang anvinda post-
fixvarianten och en annan gang prefixvarianten pa ett och samma varde. | det forsta
fallet gors det i satsen b = a++; dér tilldelningen utfors innan a:s véarde okar. Dvs
forst far b vérdet 0, sedan okar a med 1 och blir 1. | det andra fallet utfors till-
delningen i satsen b = ++a; efter att a:s véarde dkar. Dvs forst 6kar a med 1 och
blir 1, sedan far b detta nyokade varde 1.

Att det inte blir ndgon skillnad mellan 6kningsoperatorns post- och prefixvariant pa
sjdlva operanden a som ++ tillampas pa utan snarare pa miljon dvs variabeln b be-
ror pa att skillnaden inte ligger i att operandens varde dkar med 1 utan nar detta
hander. Skillnaden ligger i saker och tings ordning, i vart fall:

b = a++; gor samma sak som b = a;
a=a+1;
och
b = ++a; gor samma sak som a=a+1;
b = a;

Man kan faktiskt i programmet Increment ersitta satserna till véanster med
satserna till hoger och far samma resultat. Testa garna!

Varfor, kan man undra, ska man anvanda a++; eller ++a; istéllet fora=a + 1;
om de astadkommer samma sak namligen att 6ka a:s varde med 1? Faktum &r att

78

Okningsoperatorn skapar maskinkod som ar mycket snabbare och effektivare an
maskinkod som skapas av tilldelningssatsen.

Det finns i C# aven minskningsoperatorn —- som fungerar pa liknande satt. Istallet
for okning med 1 gors minskning med 1. Aven minskningsoperatorn kan sattas
antingen efter (postfix) eller fére en variabel (prefix):

a--; eller --a; gor samma sak som a=a-1;
Bada operatorer kan endast ¢ka eller minska med 1, inte med négot storre vérde.

79

4.8 Sammansatta tilldelningar

Sammansatta operatorer ar dubbeloperatorer och bestar av tva operatorer varav en ar
tilldelning: Okningsoperatorn ++ t.ex. bestar av ¢kning med 1 och tilldelning,
minskningsoperatorn —-- av minskning med 1 och tilldelning. Oknings- och
minskningsoperatorn anvands s& har: a++ eller a—- dér a dr en operand. De kallas
for unara operatorer, darfér att de endast tar en operand. En annan grupp av
sammansatta operatorer ar de som star mellan tva operander (binara):

+= - *= / = %=

Eftersom tilldelning forekommer hos alla dessa operatorer pratar man om samman-
satt tilldelning. De ar sammansatta av tilldelning och en operation till. Déarfor
bestar deras symbol av tva tecken. Observera att alla dessa operatorer (inkl. ++ och
—-) skrivs utan mellanslag. Med mellanslag tappar de sin speciella betydelse och
kanns inte igen av kompilatorn. De sammansatta operatorerna &r binéra dvs de har
tva operander, eftersom de anvands s& har: a += b. Aven de aritmetiska operatorer-
na+, -, *, / och % ar binara.

Operatorn +=
4r sammansatt av de tva operatorerna addition och tilldelning och betyder:

Addera forst bada sidor av += med varandra och
tilldela sedan resultatet till variabeln som star till
vanster om +=.

Berakningen utfors helt enkelt fran vénster till hoger, t.ex.:
sum += a; gor samma sak som sum = sum + a;

Dvs addera forst sum med a och tilldela resultatet till sum. Operatorn += &ver-
skriver variabeln sum:s varde direkt. Om a = 1 gor bada satserna ovan samma sak
som sum++; Vilket visar att 6kningsoperatorn ++ &r ett specialfall av +=. P4 lik-
nande satt fungerar de andra: -=, *=, /=, %=. De utfor forst en aritmetisk opera-
tion och sedan en tilldelning.

Programmet CompAssign pa nasta sida demonstrerar alla binara sammansatta till-
delningsoperatorer. Anvéndaren matar in ett vérde till variabeln a via tangent-
bordet som kombineras via tilldelningsoperatorerna +=, -=, *=, /= med de redan
initierade variablerna sum, di££, prod och div. Dessa namn utfor forstés i sig in-
ga aritmetiska operationer, utan ar bara valda for att vara beskrivande. Deras initie-
ring &r avgdrande, annars kan vi inte kompilera eftersom oinitierade variabler leder
till kompileringsfel (sid 62).

Operatorn += fungerar pa samma satt &ven om + tolkas som konkatenering nér den
initieras med en strang. Sista exemplet i programmet CompAssign demonstrerar
detta:

80

// CompAssign.cs

// Sammansatta tilldelningsoperatorer: +=, -=, *=, /= och %=
// Utfér FORST operationen +, -, *, / och SEDAN tilldelningen
// Gdller &dven fOr konkateneringsoperatorn +

using System;

class CompAssign

{
static void Main()
{ int a = 8, sum = 10, diff = 20, prod = 30, div = 40;
string s = "Slut pa", t = " kapitel 4";
sum += a; // Samma som sum = sum + a;
diff -= a; // diff = diff - a;
prod *= a; // prod = prod * a;
div /= a; // div = div / a;
s += t; // + hdr konkatenering:
// Samma som s = s + t;
Console.WritelLine (
"sum = 10 och a ="+ a + ": \nEfter sum += a; " +
"blir sum = " + sum + "\n\n" +
"diff = 20 och a =" + a + ": \nEfter diff -= a; " +
"blir diff = " + diff + "\n\n" +
"prod = 30 och a = " + a + ": \nEfter prod *= a; " +
"blir prod = " + prod + "\n\n" +
"div = 40 och a =" + a + ": \nEfter div /= a; " +
"blir div = " + div + "\n\n" +
s + '\n');
}
}

Hér ska de bindra operatorerna testas genom att kombinera variabeln a via +=, -=,
*=och /= med andra, redan initierade variabler sum, dif£, prod och div. Dessa
namn &r forstas godtyckligt valda och har inget att géra med sjélva aritmetiska ope-
rationer som endast utférs pga sina resp. operatorer +, —, * och /. Vi har bara for-
sokt att vélja beskrivande namn. Satsen sum += a; gor exakt samma sak som sat-
sen sum = sum + a; dvs adderar forst sum med a och tilldelar sedan resultatet
till sum igen. Med andra ord, variabeln sum:S vérde dverskrivs av sum + a. Samma
sak dr det med de 6vriga dubbeloperatorerna.

En kdrning av programmet CompAssign ger foljande utskrift:

81

sum = 10 och a = 8:
Efter sum += a; blir sum =

diff = 20 och a = 8:
Efter diff -= a; blir diff
prod = 30 och a = 8:

Efter prod *= a; blir prod

div = 40 och a = 8:
Efter div /= a; blir div =

Slut pa kapitel 4

18

= 240

82

4.1

4.2

4.3

4.4

4.5

4.6

Ovningar till kapitel 4

Satsen Console.WriteLine (a); ger kompileringsfel till skillnad fran
Console.WriteLine('a') ; Sitt in bada i ett C# program och testa. Ger
&ven Console.WriteLine (6) ; kompileringsfel? Testa vilka utskrifter

féljande satser ger:
Console.WriteLine (6 + 6);
Console.WriteLine('6' + '6');
Console.WriteLine("6" + "6");
Console.WriteLine (6.6 + 6.6) ;
Console.WriteLine("6.6" + "6.6");

Forklara resultaten.

Komplettera programmet variable (sid 60) sd har: Definiera ytterligare
variabler, sdg diff, prod, div, mod, tilldela till dem uttryck (sid 71) bilda-
de med de andra raknesatten -, *, / och %. Skriv ut resultaten med me-
ningsfulla utskrifter. Bibehall &ndringen av variabeln numberi:s vérde
mellan de tva utskrifterna.

Vidareutveckla din lésning till 6vn 4.2 genom att ersétta den hardkodade
initieringen av variablerna nol och no2 med en initiering genom inlésning
som t.ex. kan géras med en ReadLine () -sats samt ledtext. Stryk &ndringen
av variabeln nol:s vérde.

Skriv ett program som laser in tva heltal, multiplicerar dem med varandra
och skriver ut resultatet blandat med forklarande text. Om du t.ex. matar in
3 till det forsta och 4 till det andra heltalet, ska programmet skriva ut: 3
ganger 4 dr 12. Utveckla programmet vidare med ytterligare rakneopera-
tioner, kanske s& smaningom till en liten kalkylator.

Ersitt i programmet DefInit (sid 63) de tva satser som definierar och
initierar variablerna numberl, number2 med satsen int numberl = 9,
number2 =2;.

Modifiera programmet overwrite (sid 68) sa att variabeln x:s gamla varde
skrivs ut, medan dess nya tkade varde visas senare. Ersatt satsen x = x +
1; med =x++; Blir det samma resultat om du ersétter den med x + 1;
istallet? Forklara!

83

4.7

4.8

4.9

4.10

Skriv ett program som léser in tre heltal till timmar, minuter och sekunder.
Berakna och skriv ut sedan hur manga sekunder det blir totalt. Gor utskrif-
ten anvéandarvanlig.

Varfor ger foljande program kompileringsfel? Atgéarda felet!

using System;

class ExInit

{
static void Main ()
{
int a, sum;
Console.Write("Mata in ett heltal:\t"):;
a = int.Parse (Console.ReadLine()) ;
sum += a;
Console.WriteLine("sum = " + sum + "\n\n");
}
}

Viénd pa problemet frn 6vn 4.7: Skriv ett program som laser in ett antal
totalsekunder, omvandlar det till antal timmar, minuter och sekunder och
skriver ut resultatet. Anvéand for denna omvandling foljande algoritm:

timmar = totalsekunder DIV 3600
minuter = (totalsekunder MOD 3600) DIV 60
sekunder = ((totalsekunder MOD 3600) MOD 60) MOD 60

dar DIV betyder heltalsdivision och MOD modulooperation. Om dessa tva
aritmetiska operationer las pa sid 75.

Skriv ett program som modifierar algoritmen ovan for att omvandla ett gi-
vet belopp i &ren till 10-kronor, 5-kronor, 1-kronor och 50-6ringar. Pro-
grammet ska ldsa in ett givet belopp i éren som kan vara véxeln efter inkop
av en vara i en automat. Sedan ska programmet skriva ut antalet 10-kronor,
5-kronor, 1-kronor och 50-6ringar som automaten ska spotta ut. Om 50-
oringar las fotnoten pé sidan 193.

84

Kapitel 5

Enkla

datatyper

Amne Sida Program

5.1 Kan datorn lagra hur stora tal som helst? 86 Primitives

- Overflow 89 Limits
5.2 Datatypen char 91 Char

- Teckenaritmetik 92
5.3 ASCII-tabellen 93 Int2char

- Explicit typkonvertering 94 Char2int
5.4 Escapesekvenser 97 Escape
5.5 Unicode 99
5.6 Decimaltalstyperna 101 Decimal
5.7 Automatisk typkonvertering 104 AutoConv
Sammanfattning av kapitel 4 och 5 108
Ovningar till kapitel 5 109

85

5.1 Kan datorn lagra hur stora tal som helst?

Man har ju hort talas om datorernas obegransade méjligheter. Deras kraft och ka-
pacitet véxer med teknikens snabba utveckling. Men hur avancerade de &n blir
kommer de alltid att ha ett begransat utrymme for lagring av data. Darfor har man i
alla programmeringssprak vissa fordefinierade datatyper for att bl.a. ekonomisera
och effektivisera minneshanteringen ndr ett program kors. Datatyperna int och
string har vi redan stiftat bekantskap med. | detta kapitel ska vi studera kategorin
enkla datatyper i C# (eng. primitive types). Andra kategorier &r sammansatta data-
typer och objekt som behandlas senare. | C# finns 13 fordefinierade datatyper av
kategorin enkel: bool, sbyte, byte, char, short, ushort, int, uint, long,
ulong, float, double 0ch decimal. De kallas enkla datatyper darfor att de re-
presenterar endast ett varde, dvs ett heltal, ett decimaltal, ett tecken eller ett
sanningsvérde. De kan inte lagra mer invecklade data som objekt. De ar inte heller
sammanatta som t.ex. datatypen string som lagrar flera tecken och darfor inte ar
en enkel datatyp.

I definitionen av datatyp (sid 58) sa vi att en datatyp var en foreskrift om bl.a.

” hur mycket minne den tar och darmed hur stora varden
den kan lagra (dvs det tillatna vardeomradet) ... ”

Det tilldelade minnesutrymmet &r forbestdmt i datatypens definition. De enkla da-
tatypernas fastlagda minnesstorlekar kan man se i féljande utskrift som &r produce-
rad av programmet Primitives pa nasta sida:

= C:AWINDOWS\system32icmd. exe bool representerar sanningsvardena sant eller
De enkla datatyperna i C#: falskt. char lagrar tecken. sbyte, byte,
"""""""""""""" short, ushort, int, uint, long, ulong ar
Patatypen 2;:19 tar : enkla datatyper for representation av heltal.
byte 1 Prefixet u som inleder nagra av dem betyder
char 2 unsigned och innebdr att dessa endast kan
3:2;:t 2 lagra positiva heltal, medan prefixet s star for
int 4 signed som tilldter dven negativa heltal. De
uint 4 enkla datatyperna £loat, double, decimal
i?:gg g representerar decimaltal. Alla enkla datatyper
float 4 hittar man i tabellen dver reserverade ord (sid
double 8 36). | denna tabell finns ocksé det reserverade
decimal 16 bytes grdet sizeof som anvénds for att mata min-

nesstorleken av varje datatyp i antal bytes. 1
byte bestar av 8 bitar dér 1 bit &r den minnesatom som kan lagra endast en nolla el-
ler en etta. Som man ser har vi ordnat de enkla datatyperna efter det minnesutrym-
me som é&r tilldelat och forbestamt i deras definition. Det tilldtna vardeomradet
ligger inom ett intervall som direkt kan hérledas frdn minnesstorleken som varje
datatyp har till forfogande.

86

Egentligen &r programmet Primitives ur programmeringsteknisk synpunkt inte
sarskilt intressant och bestar av en enda utskriftssats. Vi aterger den anda, inte
minst for att visa hur man anvéander operatorn sizeof:

// Primitives.cs

// Visar alla enkla datatyper i C# och deras minnesstorlekar
// Operatorn sizeof midter minnesstorleken i antal bytes
using System;

class Primitives

{
static void Main()
Console.WriteLine ("De enkla datatyperna i C#:\n" +
M o e e e e e e e e \n" +
"Datatypen bool tar " + sizeof (bool) + '\n' +
" sbyte " + sizeof (sbyte) + '\n' +
" byte " + sizeof (byte) + '\n' +
0 char " + sizeof (char) + '\n' +
W short " + sizeof (short) + '\n' +
u ushort " + sizeof(ushort) + '\n' +
" int " + sizeof (int) + '\n' +
W uint " + sizeof (uint) + '\n' +
0 long " + sizeof (long) + '\n' +
" ulong " + sizeof (ulong) + '\n' +
0 float " + sizeof (float) + '\n' +
W double " + sizeof(double) + '\n' +
" decimal " + sizeof (decimal) + " bytes\n");
}
}

Operatorn sizeof

sizeof dr en operator i C# som endast har en operand och méter storleken pa ope-
randens minnesutrymme. Ndrmare bestamt returnerar sizeof antalet bytes ope-
randen tar i minnesutrymme. Operanden som star i parentes kan vara en datatyp:

sizeof (datatyp)

sizeof returnerar minnesstorleken i antalet bytes for datatypen. C#:s egenskap
som ett plattformsoberoende sprak medfor att de enkla datatypernas minnesstorle-
kar och darmed deras granser &r enhetligt fastlagda i C#-kompilatorn for alla
plattformar (datortyp & operativsystem), vilket &r av stor fordel for sprakets porta-
bilitet. S, du kommer att fa precis samma varden for de enkla datatypernas granser
pé vilken dator an du kor C#, vilket t.ex. inte ar fallet i C++.

87

De enkla datatypernas granser

De enkla datatypernas granser som vi egentligen ar ute efter i detta avsnitt, kan nu
latt hérledas fran deras minnesstorlekar. Ett exempel ar heltalsdatatypen short
som enligt ovan har 2 bytes dvs 2x8 = 16 bitar till férfogande. Darfor reserverar
varje variabel definierad som short 16 bitar i minnesutrymme. Ett vérde till en
sadan variabel kan alltsa inte lagras i datorn om det dverstiger det storsta bindra tal
som kan lagras i 16 — 1 = 15 bitar. 15 darfor att en bit behdvs for att lagra sjélva tec-
knet + eller — dérfor att en short-variabel kan &ven anta negativa varden. Det stor-
sta bindra heltal som kan lagras i 15 bitar bestar av 15 ettor dvs 111 1111 1111 1111.
I det decimala talsystemet blir det 32 767. Darfor ar den positiva gransen for data-
typen short 32 767. P4 samma satt kan de andra datatypernas granser hérledas fran
deras resp. minnesutrymme. Ingen panik! Vi kommer inte att gora det. Dessa gran-
ser ar lagrade i vissa namngivna konstanter. Har skrivs ut dem for alla enkla data-
typer som ett kdrresultat av programmet Limits pa nasta sida:

Enkla datatypernas grénser:

sbyte finns mellan -128 och 127

byte 0 255

char 0 65535

short -32768 32767

ushort 0 65535

int -2147483648 2147483647

uint 0 4294967295

long -9223372036854775808 9223372036854775807
ulong 0 18446744073709551615
float -3,402823E+38 3,402823E+38

double -1,79769313486232E+308 1,79769313486232E+308
decimal -79228162514264337593543950335 och

79228162514264337593543950335

bool tar endast vadrdena True och False

Till skillnad frdn de andra datatyper som kan anta bade positiva och negativa var-
den, kan de teckenldsa datatyperna (u = unsigned dvs utan tecken + eller -)
endast anta positiva véirden: De heter s& darfor att deras véarden varken behéver ha
plus- eller minustecknet framfor talet. Dessa enkla datatyper har precis lika mycket
minnesutrymme till férfogande som sina motsvarande vanliga datatyper med tec-
ken. Detta innebdr att nédvandigheten att lagra tecknet faller bort hos unsigned-
typerna. Om vi resonerar vidare i exemplet med short skulle datatypen ushort
ha alla 16 bitar till forfogande for sjélva positiva heltalet. Det storsta binédra heltal
som kan lagras i 16 bitar bestar av 16 ettor dvs 1111 1111 1111 1111. | det decimala
talsystemet blir detta 65 535. Darfor ar gransen for datatypen ushort dubbelt sa
stort (fast +1 pga nollan) som for short. Och sd ar det med alla unsigned-typer:
deras granser ar dubbelt sa stora fast de har lika stort minnesutrymme till forfogan-
de, dérfor att de inte behover lagra tecknet och dérmed har 1 bit mer for att lagra
sjalva positiva heltalet. Av samma anledning har byte en dubbelt sa stor dvre
grans som sbyte fast bada tar endast 1 byte minne. Decimaltalstyperna £1oat och
double:s granser visas i utskriften ovan i s.k. Exponentiellt format, &ven kallat

88

grundpotensform (eng.: Scientific notation) vilket innebér att t.ex. £loat:s positiva
grans 3.4028235E38 ar lika med 3,4028235 ganger 10 upphdjt till 38 dvs

3.4028235-10° |

Overflow

Vad hénder nu om man Overskrider de ovan angivna grénser dvs om man tilldelar
ett vérde till en variabel som overskrider det maximalt tillatna vardet for dataty-
pen? Fenomenet kallas overflow. Ja, vad hdander om man forsoker att hdlla mer vat-
ten i ett glas &n det ryms? | vissa miljoer blir det exekveringsfel och program-
krasch. | C# fortsétter programmet: Det verskridna vérdet “’slar runt” och hamnar
pa andra dndan av det tillatna talomradet. Overflow innebar forlust eller forfalsk-
ning av information. Beroende pa datatypen kan det bli felaktigt resultat samt
foljdfel som &r svart att spara, om man raknar vidare utan att upptacka felet. Ett
exempel pa overflow visas senare i programmet AutoConv (sid 106). Det enda sat-
tet att undvika overflow ar att utveckla en medvetenhet om fenomenet overflow
och kénna till ndr det kan intréffa. Programmet nedan som skriver ut de enkla data-
typernas granser (forra sida), kan hjalpa i sadana situationer. Dessutom bekantar vi
0ss med nya klasser som &r associerade till enkla datatyper:

// Limits.cs

// Visar enkla datatypernas grdnser som 4r lagrade 1
// konstanter definierade 1 datatypklasserna

using System;

class Limits

¢ static void Main ()

{ Console.WriteLine ("Enkla datatypernas grénser:\n" +
Voo mosssos o s o s e e \n" +

"sbyte finns mellan " + sbyte.MinValue +

" och "+ sbyte.MaxValue +

"\nbyte "o+ byte.MinValue +

" "+ byte.MaxValue +

"\nchar " 4+ (int) char.MinValue +

" " 4+ (int) har.MaxValue +

"\nshort " 4+ short.MinValue +

" " + short.MaxValue +

"\nushort " + ushort.MinValue +

" " + ushort.MaxValue +

"\nint " 4+ int.MinValue +

" " + int.MaxValue +

"\nuint " 4+ uint.MinValue +

" " 4+ wuint.MaxValue +

"\nlong " + 1long.MinValue +

" " + long.MaxValue +

89

"\nulong " + ulong.MinValue +
" " + ulong.MaxValue +
"\nfloat " + float.MinValue +
" " + float.MaxValue +
"\ndouble " + double.MinValue +
" " + double.MaxValue +
"\n\ndecimal\t " + decimal.MinValue +
" och \n\t\t " + decimal.MaxValue +
"\n\nbool tar endast vidrdena " + true +
" och " + false + '\n');

}
}

Inte heller programmet Limits &r ur programmeringsteknisk synpunkt sarskilt in-
tressant, men har fordelen att lata datorn gora jobbet och lista upp ett antal intres-
santa varden — de enkla datatypernas granser. Vardena hamtas fran lagrade kon-
stanter som &r definierade i klasser som &r identiska med C#:s enkla datatyper.

90

5.2 Datatypen char

I vara programexempel hittills forekom endast datatyperna int och string. Nu
ska vi lara oss att anvanda ytterligare en datatyp ndmligen char som star for cha-
racter, tecken pa engelska (uttalas dérfor “kar”). I en variabel av typ char kan en-
dast ett tecken lagras. Darfor ar char en enkel dataytyp. Fler an ett tecken bildar en
strang (= text) som da inte langre far tilldelas en variabel av typ char utan maste
lagras i en variabel av den sammansatta datatypen string. Datatypen char repre-
senterar alltsa tecken och anvands i forsta hand for att definiera teckenvariabler.
Men det &r bara halva sanningen:

Hur lagrar datorn tecken? All data, dven tecken, maste ju slutligen omvandlas till
ettor och nollor. Darfor maste alla tecken omvandlas till tal. Varje tecken har sin
heltalskod enligt ett visst kodsystem, en 6verenskommen teckenuppséttning eller
teckentabell. Det &r dessa heltalskoder som omvandlas till ettor och nollor. Boksta-
ven a t.ex. har enligt den radande teckentabellen koden 97 som &r 1100001 binért.
Redan nar man trycker pa tangenten a Gverfors sekvensen 1100001 via tangent-
bordssladden till datorn. Darfor representerar datatypen char dven dessa koder.
Hela sanningen &r alltsa att char ar en datatyp som representerar bade tecken och
sadana heltal som &r koder till tecken dvs tal som ryms i char-vardenas minnes-
storlek pa 2 bytes (enligt forra avsnitt). Féljande program introducerar datatypen
char genom att definiera en variabel av typ char och initiera den till bokstaven a.
I sjalva verket kommer koden 97 i binér form att lagras i RAM-minnet.

// Char.cs

// Datatypen char fér tecken och tal (mellan 0 och 65535)

// Tolkas som tecken i strdngsammanhang (konkateneringar)

// tal i rdknesammanhang (aritmetiska uttryck)
using System;

class Char

{
static void Main ()
{
char letter = 'a’';
// char letter = (char) 97 ; // G6r samma sak
string concat = " " + letter + letter; // Konkatenering
int add = letter + letter; // Addition
Console.WriteLine ("\n\tEn char-variabel har " +
"initierats till " + letter + "\n\tTecknet " +
letter + " konkatenerat med tecknet " + letter +
" ger " + concat + "\n\tMen tecknet " + letter +
" adderat med tecknet " + letter + " ger " +
add + "\n");
}
}

91

En testkdrning av programmet char ger foljande utskrift:

En char-variabel har initierats till a
Tecknet a konkatenerat med tecknet a ger aa
Men tecknet a adderat med tecknet a ger 194

I programmet char definieras variabeln letter, deklareras till datatypen char
och initieras till a. Observera att teckenkonstanten a maste i C#-kod skrivas inom
apostrofer (sid 46). Annars kommer den att tolkas av kompilatorn som ett nytt
variabelnamn och leda till kompileringsfel da en sadan variabel inte &r definierad.
Teckenkonstanten a lagras i teckenvariabeln letter i form av koden 97 (fast bi-
nart). Darfor ar det &ven mojligt att initiera letter med heltalet 97 efter att ha om-
vandlat det till char. Den mojligheten ar bortkommenterad i programmet ovan just
nu. Men testa garna genom att aktivera den bortkommenterade raden och kommen-
tera bort raden ovan istéllet. | raden som foljer konkateneras variabeln letter
med sig sjalv genom att initiera konkateneringen med en tom strang och tilldela
resultatet till string-variabeln concat. Vid denna konkatenering omvandlas
tecknet a automatiskt till strangen a. Darfor far vi ut aa nar den konkatenerade
strangen skrivs ut med concat.

Teckenaritmetik

Sedan adderas a med sig sjalv utan initiering till strang. Resultatet tilldelas int-va-
riabeln add. Vid (och pga) additionen tolkas char-variabeln letter som tal. Dér-
for far vi ut 194 ndr summan 97 + 97 skrivs ut med add. Att kunna addera tva tec-
kenvariabler med varandra ar ett exempel pa teckenaritmetik — att kunna “riikna”
med tecken, i sjalva verket med deras koder.

Avgorande for tolkningen av variabeln letter:s varde a som tecken ar deklaratio-
nen till datatypen char och avgorande for dess omvandling till strdng &r initierin-

gen till den tomma strangen " i féljande tilldelnings hdgerled:
concat = " " + letter + letter;
For att vara mer exakt kan man sdga att den tomma strangen " " gor att operatorn

+ tolkas som konkatenering och inte som addition. Denna tolkning gor att den ef-
terféljande variabeln letter:s vdrde a omvandlas till strang. Samma sak gors i
resten av satsen. Strdngen aa bildas och tilldelas strdngvariabeln concat.

Avgdrande for tolkningen av char-variabeln letter:s varde a som tal i ndsta sats
ar att det inte gors ndgon initiering till strang i foljande tilldelnings hogerled:

add = letter + letter;

Hér tolkas operatorn + som addition, inte som konkatenering. Darmed tas heltals-
vardet 97 fran variabeln 1etter:s minnescell och adderas med sig sjalv. Resultatet
blir talet 194 som tilldelas int-variabeln add.

92

5.3 ASCII - tabellen

I forklaringen till programmet char i forra avsnitt har vi hela tiden lite halvmys-
tiskt talat om “koder” eller ”den radande teckentabellen” utan att sdga vad det
egentligen &r for koder och hur de bestdms. Varfor &r just 97 teckenkoden till bok-
staven a? En fordjupad insikt i datorns hantering av tecken far vi nar vi tar upp da-
torns teckenuppséttning. Den vanligaste teckenuppséttningen &r ASClII-tabellen.

ASCII (uttalas “aski”) star for American Standard Code for Information Inter-
change och &r en standard for kodning av tecken skapad av det amerikanska stan-
dardiseringsorganet ANSI. Innan man hann sétta igang nagot standardiserings-
arbete pa internationell niva, hade ASCII redan erdvrat varlden. Sa idag ar ASCII
den de facto-standard som anvands pa alla persondatorer, bade PC och Mac.

Teckenstandarden ASCII omfattar alla engelska bokstéver, siffrorna 0-9, de vanli-
gaste specialtecknen och en del styr- och kontrolltecken. ASCII anvénder sig av s.k.
7-bitars kodning vilket innebér att heltalskoden till ett tecken placeras som ettor
och nollor i 7 bitar av en byte. Den lediga attonde biten anvands for felkontroll och
kan dérfor inte utnyttjas for representation av data. Exempel: Tecknet a:s ASCII-
kod &r 97 vilket omvandlat till ettor och nollor blir 11000017, dvs ett binér tal som
ar 7 bitar langt. For att fa reda pa vilka tal man kan uttrycka med 7 bitar, kan man
titta pa det minst mojliga talet — det ar 7 nollor 0000000 som &r 0 — och det storst
mojliga — det &r 7 ettor 1111111 som &r 127 (kontrollera med kalkylatorn). Darfor
bestar ASClI-koderna av heltalen mellan 0 och 127 och &r definierade enligt:

0 1 2 3 4 5 6 7 8 9
0 null soh stx etx eot enq ack bel bs ht
1 nl vt ff cr S0 si dle dcl dc2 dc3
2 dc4 nak syn eth can em sub esc fs gs
3 rs us sp ! ” # $ % & ’
4 () * + , - . / 0 1
5 2 3 4 5 6 7 8 9 : ;
6 < = > ? @ A B C D E
7 F G H I J K L M N (o]
8 P Q R S T U v W X Y
9 z [\] ~ 1 _ : a | b c
10 d e £ g h i 3j k 1 m
11 n o P a r s t u v w
12 x y z { | } ~ del

“ For att verifiera omvandlingen till binart tal utan att g4 in p& hur det gérs, kan du anvénda
t.ex. Kalkylatorn som du hittar bland dina appar i Windows (i tidigare versioner: Start >
Program -> Tillbehar). Valj i menyn Visa undermenyn Avancerad for att kunna omvandla tal
till och fran olika talsystem (Binar: ettor och nollor, Decimal: vanliga tal, Hexadecimal: 0-9
och A-F, Octal: 0-7).

93

Siffrorna till vénster i tabellens 1:a kolumn anger de tva forsta siffrorna i ASCII-
koden och siffran hogt upp i tabellens 1:a rad anger den sista siffran i ASCII-koden.
Soker man ASCII-koden till t.ex. t gar man pa samma rad langst till vanster och
hittar 11, gar sedan fran t i samma kolumn hogst upp och hittar 6. Alltsa har t AS-
Cli-koden 116. ASClI-tabellen visar att endast tecknen med koderna mellan 33 och
126 ar skriv- och lasbara. De andra bestar av icke-skriv- och icke-lasbara styr- och
kontrolltecken eller vita” tecken. Dessa specialtecken har symboliska namn. T.ex.
kallas mellanslaget for sp = space med ASCII-koden 32 och radbyte har beteck-
ningen nl = newline med ASCII-koden 10 (en dldre beteckning ar If = line feed). Vi
kommer att anvanda nagra av dessa specialtecken senare, men en fullstandig ge-
nomgang ligger utanfor denna boks ramar.

AsClI-tabellen visar ocksa denna teckenstandards begransningar. Specialtecken i
andra sprak an engelskan saknas, t.ex. de svenska tecknen &, &, 6, A, A, 0. Rent
tekniskt beror denna begransning pa 7-bitars kodningen. Slapper man kravet pa att
anvénda den attonde biten for felkontroll och utnyttjar aven denna bit for represen-
tation av data, kan man utvidga ASCII-omradet bortom 127. Det storsta binara hel-
tal man kan placera i 8 bitar &r 8 ettor 11111111 som ger 255. Det har man gjort i
andra teckenuppséttningar och skapat koder mellan 128 och 255. Denna utvidg-
ning ar daremot inte en standard, inte ens de facto”. And4 pratar man ofta lite slott
om ”ASCII”-koder. | sjalva verket tillampas i kodintervallet 128-255 olika tecken-
uppsattningar inte bara i olika datorer, utan t.0.m. i olika program pa samma dator,
t.ex. Windows och Kommandotolken. | C# anvénds teckenstandarden Unicode for
utvidgningen av ASClI-tabellen, aven i Kommandotolken. Andra sprak som t.ex.
C++ och Java “forvranger” de svenska tecknen &, &, 6, A, A, O nar de skriver ut
dem till konsolen (i Windows: Kommandotolken). Forklaringen &r att de skriver till
konsolen med en annan teckenuppséttning &n Unicode. C# visar dock de svenska
tecknen korrekt aven i konsolen. Né&r det galler Java kan denna inkonsekvens bero
pa konkurrenskampen mellan Microsoft och Oracle (4garen till Java) som tyvarr
utkdmpas pa bekostnad av anvandarna.

Explicit typkonvertering

Explicit betyder uttrycklig och innebar har att man sjalv — utan nagon férdefinierad
metod — omvandlar datatypen. Generellt kan programkoden for explicit typkonver-
tering beskrivas sa har:

[(datatyp) uttryck]

dar uttryck ar en kombination av variabler, konstanter, operatorer och vanliga pa-
renteser som i specialfall dven kan besté av en enda variabel eller en enda konstant
(sid 71). Det enklast tdnkbara uttrycket — ett specialfall — &r en konstant eller en
variabel. For det mesta kommer vi i vara program att ha en variabel som uttryck.

Programmet Int2char pa nasta sida anvander foljande exempel pa explicit typk-
onvertering:
(char) code

94

code 4dr en variabel deklarerad som int. Genom att satta typen char inom paren-
tes och placera den framfor variabeln code, omvandlas variabelns varde till char.
Dvs explicit typkonvertering forandrar inte variabelns datatyp, utan dndrar endast
det aktuella vardets datatyp lokalt. Nar programmet kors och det matas in t.ex. 65
omvandlas 65 som ar variabeln code:s vérde, till tecknet a. Det ar alltsa talet 65
som omvandlas till char, inte variabeln code. Den fortsétter att vara av typ int
enligt deklaration i borjan av programmet:

// Int2char.cs

// Ger tecknet till en inmatad ASCII-kod
// Representation av tecken med ASCII-koder
// Explicit typkonvertering

using System;

class Int2char

{
static void Main()
{
Console.Write ("\n\tMata in ett heltal:\t");
int code = int.Parse (Console.ReadLine()) ;
Console.WriteLine ("\n\t" +
"Det inmatade talet " + code + " ar " +
"ASCII-koden till tecknet " + (char) code + "\n\n"):;
// Explicit typkonvertering: omvandlar till char
}
}

Den med vit bakgrund framhévda explicita typkonverteringen (char) code &r in-
bakad i utskriftssatsen: int-variabeln code:s varde omvandlas till char innan det
skrivs ut. Darfor skrivs ut tecknet a tillhérande ASCIl-koden 65 nar vi matar in 65
till code:

Mata in ett heltal: 65

Det inmatade talet 65 &r ASCII-koden till tecknet A

Men innan explicit typkonvertering hander féljande i programmet Int2char: Siff-
rorna 6 och 5 lases in av metoden ReadLine () och returneras som en strang da
denna fordefinierade metod alltid returnerar en strdng (sid 67). Strdngen i sin tur
omvandlas av metoden int.Parse () till heltalet 65 (sid 70) som tilldelas int-va-
riabeln code. Anropen av dessa tva metoder har vi néstlat for att spara en variabel
som skulle mellanlagra den returnerade strangen. Darfor utfors anropen inifran dvs
forst ReadLine () Och sedan int.Parse () (sid 73). Slutligen omvandlar explicit
typkonvertering heltalskoden 65 till char dvs till det tecken vars kod &r 65, ndm-

95

ligen bokstaven a. Genom att kora programmet Int2char kan man alltsé ta reda
pa tecken tillndrande vilken ASCII-kod som helst.

Det omvanda problemet

Programmet Int2char gav 0ss tecknet ndr vi matade in ett heltal (ASCII-koden).
Programmet Cchar2int pa nasta sida loser det omvénda problemet: Det skriver ut
ASCII-koden till tecknet vi matar in. N&r vi t.ex. matar in bokstaven a laser meto-
den ReadLine () in den som en strdng. Metoden Convert.ToChar () omvandlar
strangen A till ett tecken som tilldelas char-variabeln letter. Slutligen om-
vandlas tecknet a till ASCII-koden 65 med explicit typkonvertering och skrivs ut.

// Char2int.cs
// Ger ASCII-koden till ett inmatat tecken
using System;

class Char2int

{
static void Main()
{
char letter;
Console.Write ("\n\tMata in ett tecken:\t");
letter = Convert.ToChar (Console.ReadLine()) ;
Console.WriteLine ("\n\t" +
"Det inmatade tecknet " + letter + " har " +
"ASCII-koden " + (int) letter + "\n\n");
}
}

Programmet char2int kan avsléja datorns alla ASClI-koder nar man exekverar
det med dialoger av typ:

Mata in ett tecken: A

Det inmatade tecknet A har ASCII-koden 65

Genom att kdra programmet char2int kan man alltsa ta reda pa ASCII-koden till
vilket tecken som helst. Hur daremot typomvandlingen fran den inlasta strangen till
tecken genomfors ska vi titta narmare pa:

Programmet Char2int:s mal var ju att till sist fi ut tecknets ASCII-kod. Detta sista
steg tas med explicit typkonvertering. Det 4r generellt s& att typomvandlingar inom
enkla datatyper kan genomfdras med explicit typkonvertering pa ett mycket enkla-
re satt an omvandlingar fran eller till ssmmansatta datatyper som string. For dem
behovs i regel vissa metoder som maste anropas och som ar definierade i klasser
som t.ex. metoden ToChar () i klassen Convert.

96

5.4 Escapesekvenser

Foljande fragor ar fortfarande obesvarade nar det géller hantering av tecken:

1. Vilka koder géller for de tecken som inte finns i AS-
Cll-standarden dvs utanfor kodintervallet 0-127 (sid
93)?

2. Hur kommer vi i C#-kod &t de icke-skriv- och icke-
lasbara styr- och kontrolltecknen med ASCII-koderna
0-327?

3. Hur kodar vi inom en strangkonstant "..." sjalva
tecknen " eller ' (eller andra) som redan &r koder
for att omgérda stréngar resp. tecken (eller annat)?

For att kunna besvara dessa fragor behovs kunskap om escapesekvenser och Uni-
code.

Escapesekvenser ar kod som inleds med tecknet backslash \ atfoljt av ett tecken
eller tecknets kod i ett visst format (Unicode). P& svenska betyder to escape att fly.
Med \ vill man fly fran tecknets vanliga betydelse och ge det en annan innebdrd.
Med \n tex. vill man undvika bokstaven n och astadkomma radbyte istallet:
newline. P& samma sétt fungerar andra escapesekvenser. Programmet Escape
(nasta sida) anvander denna teknik och visar i féljande utskrift ngra symboliska
och kodade escapesekvenser i Unicode-format. Med symboliska escapesekvenser
menas \n, \r, \t, \b 0sv. De som inleds med \u &r kodade i Unicode som kom-
mer att behandlas i detalj indsta avsnitt.

Escapesekvens Unicode Tecknet Direkt
\O 0 nolltecknet osynligt
\a 7 dator1jud osynligt
\b 8 baksteg osynligt
\t 9 tabulator osynligt
\n 10 radbyte osynligt
\r 13 vagnretur osynligt
\u0020 32 mellanslag osynligt
" 34 " n
\I 39 [[
92 A \
\u0061 97 a a
\uOOE4 228 a a
\uOO0ES 229 a a
\uOOF6 246 é &
\u00Cc4 196 A A
\u00C5 197 A A
\u00D6 214 (o] 0
\uO0FC 252 u u
\u03B2 946 R oskrivbart

97

Den forsta kolumnen visar nagra escapesekvenser symboliskt med en bokstav och
andra i hexadecimalt Unicode-format. Den andra kolumnen anger koderna deci-
malt. Den tredje kolumnen skriver ut sjalva tecknen s lange de ar skrivbara. Man
ser att svenska specialtecken aterges korrekt béde nar vi i programmet pa nasta sida
anger dem med sina resp. escapesekvenser (3:e kolumnen) och direkt (4:e kolum-
nen). Osynliga och oskrivbara tecken beskrivs. Den fjarde kolumnen skriver ut de
tecken som dr skrivbara direkt dvs genom att ange sjélva tecknen, inte escape-
sekvenserna.

Det ar foljande C#-kod som producerar utskriften pa forra sidan:

// Escape.cs
// Skriver ut bdde symboliska och kodade escapesekvenser
using System;

class Escape

{
static void Main()
{Console.WriteLine(
"\n\tEscapesekvens\tUnicode Tecknet Direkt \n" +
B \n" +
"\t\\0 \t\t" + (int)'\0' + "\t u +
"nolltecknet\t osynligt\n" +
"\t\\a \t\t" + (int) '\u0007' + "\t\u0007 u +
" datorljud\t osynligt\n" +
"\t\\b \t\t" + (int)'\b' + "\t u +
" Dbaksteg\t osynligt\n" +
"\t\\t \t\t" + (int)'\t' + "\t m +
" tabulator\t osynligt\n" +
"\t\\n \t\t" + (int)'\n' + "\t "o+
" radbyte\t osynligt\n" +
"\t\\zr \t\t" + (int)'\r' + "\t "o+
" vagnretur\t osynligt\n" +
"\t\\u0020 \t" + (int)'\u0020' + "\t "o+
" mellanslag\t osynligt\n" +
"\E\\\" \E\E" + (int) '\"" £ \EVE\ £ \"\an o+
VWL ARLET + (@ng) '\ e\l \e \'\a" o+
"\NEMMAN O \E\E" + (int) "\\' + "\t\t\\ \t \\\n" +
"\t\\u0061 \t" + (int)'\u0061' + "\t\t\u0061\t a \n" +
"\t\\uOOE4 \t" + (int)'\uOO0E4' + "\t\t\uOOE4\t a \n" +
"\t\\uOOE5 \t" + (int)'\uOOE5' + "\t\t\uOOE5\t a \n" +
"\t\\uO0F6 \t" + (int)'\uOO0F6' + "\t\t\uOOF6\t 6 \n" +
"\t\\u00C4 \t" + (int)'\u00C4' + "\t\t\uOOC4\t A \n" +
"\t\\u00C5 \t" + (int)'\u00C5' + "\t\t\u00OC5\t A \n" +
"\t\\u00D6 \t" + (int)'\u00D6' + "\t\t\uOOD6\t O \n" +
"\t\\uOOFC \t" + (int)'\uOOFC' + "\t\t\uOOFC\t i \n" +
"\t\\u03B2 \t" + (int)'\u03B2' + "\t\t\uO3B2 " +
"oskrivbart\n") ;
}
}

98

5.5 Unicode

Hur representeras tecken vars kod 6verskrider ASCII-standardens ¢vre gréns 1277
Det finns manga olika utvidgningar av ASCII-tabellen. | C# har man bestamt sig
for att anvanda teckenkodningsstandarden Unicode som dven anvands i Windows
och i manga andra miljcer. Till skillnad fran ASCII som lagrar ett tecken i 1 byte (8
bitar) anvénder sig Unicode av 2 bytes (16 bitar), varfor datatypen char i C# har 2
bytes till forfogande. Dérmed kan man koda ett vésentligt storre antal tecken, dven
sadana fran andra sprak som arabiska, japanska, kinesiska, hebreiska, kyrilliska
osv. Unicode har plats for dver en miljon tecken varav drygt 90 000 tecken redan &r
tilldelade. For att vara bakatkompatibel har man inkluderat ASCll-standarden i
Unicode som en delméangd sa att alla tecken upp till koden 127 har samma koder i
Unicode som i ASCII, bara att dven dessa tar 2 bytes i Unicode. Utéver koden 127
har man infort nya koder. Vilka koder det &r, star i Unicode-tabellen som man t.ex.
kan hitta pa Internet under adressen http://unicode.coeurlumiere.com.

Nagra av dem ser man i féljande ruta som
visar bokstaver fran tre olika sprak som ta-

gits fram med sina resp. koder enligt Uni- | ({7 De svenska speciattecknen
code. Utskriften ar resultat av javapro- | " 4,3 6,4, &, O har Unicodes:
grammet pé nasta sida. 228, 229, 246, 196, 197, 214
Unicode anges som escapesekvensen \u Det grekiska alfabetet birjar med
foljt av ett fyrasiffrigt hexadecimalt tal, ¢ B, v, 8, & ¢ som har Unicodes:
dvs s har: \uAAAA dar u star for unicode 945,846, 847, 9489, 949, 050

och A for ndgon hexadecimal siffra. For- Det arabiska alfabetet innehaller
matet &r foreskrivet vilket bl.a. innebér att £o5 ik g 0e

ett hexadecimalt tal med mindre an fyra som har Unicodes:

siffror maste inledas med nollor. Alla tec- 1594, 1593, 1592, 1591, 1590, 1589
ken oavsett skriv- och lasbharhet kan i C#

kod skrivas i detta format. | programmet

pa nasta sida initieras char-variabeln a1-
pha till tecknet \u03B1 som &r angivet i Unicode-format dér 3B1 &r den hexadeci-
mala motsvarigheten till det decimala talet 945 som enligt Unicode-tabellen &r
teckenkoden till den grekiska bokstaven o vilket man kan dvertyga sig om med en
sokning pa Internet. Vi har ingen chans att fa in detta tecken i datorn, da det inte
finns nagon s&dan tangent pa ett svenskt eller amerikanskt tangentbord. S&, den
enda mojligheten att ta fram det &r att anvanda escapesekvensen med Unicode.
Apostroferna kring \u03B1 nér det tilldelas char-variabeln alpha visar att koden
\u03B1 symboliserar endast ett tecken — ndmligen bokstaven o — och behandlas
som vilket tecken som helst. P4 den namnda Internet-lanken kan man dven se att
det grekiska alfabetet férekommer som ett sammanhdngande block i Unicode-
tabellen. Darfér kan vi anvanda teckenaritmetik for att fa fram de bokstaver som
foljer efter o (sid 92). Samma sak gors i programmet med de arabiska bokstéverna
genom att initiera char-variabeln arab till tecknet \u0635 dér 635 ar den hexa-

99

decimala motsvarigheten till det decimala talet 1589, koden till den arabiska
bokstaven = osv. Anmarkningsvart ar ocksa att programmet automatiskt gar éver
till att skriva fran hoger till vanster nar Unicodes till de arabiska bokstaverna
skickas till utskrift. For att fa ut de svenska specialtecknen behdver vi inte hamta
deras koder fran Unicode-tabellen, omvandla dem till hexadecimala och skicka
dem som escapesekvenser, darfor att vi direkt kan skriva in dem fran vara svenska
tangentbord.

// Unicode.java
// OBS! Detta &r ett javaprogram
Import javax.swing.JOptionPane; // fran boken Programmering 1
// med Java, se www.techpages.se
class Unicode

public static void Main(String[] a)

{
char alpha = '\u0O3Bl', arab = '\u0635';

JOptionPane.showMessageDialog (null,
"De svenska specialtecknen\ni, a, 6, A, A, O" +
" har Unicodes:\n" +
(int) VéV + n , n + (int) Iél + n , n + (int) |6| + n , ll+
(int) VAV + u, "4 (int) |11| + n’ "4 (int) 161 + |\n|+

"\nDet grekiska alfabetet bérjar med\n" + alpha + ", "+

(char) (alpha+l) + ", " + (char) (alpha+2) + ", " +
(char) (alpha+3) + ", " + (char) (alpha+4) + ", " +
(char) (alpha+5) + " som har Unicodes:\n" +
(alpha+0) + ", " + (alpha+l) + ", " +
(alpha+2) + ", " + (alpha+3) + ", " +
(alpha+4) + ", " + (alpha+5) + '\n' +
"\nDet arabiska alfabetet innehdller\n" + arab + ", " +
(char) (arab+1l) + ", " + (char) (arab+2) + ", " +
char) (arab+3) + ", " + (char) (arab+4) + ", " +
(char) (arab+5) + "\nsom har Unicodes:\n" +
(arab+5) + ", " + (arab+4) + ", " +
(arab+3) + ", " + (arab+2) + ", " +

(arab+l) + ", " + (arab+0), "Unicodes", 1);
}

Programmet Unicode anvander sig av (char) (alpha+1) for att skriva ut B néar
alpha har vérdet o fast alpha redan &r av typ char. Anledning till den explicita
typkonverteringen till char &r att additionen gér om parentesens resultat till en
int sd att en explicit omvandling tillbaka till char blir nédvandigt. Omvant nar vi
behdver Unicode-koden utnyttjar vi just den automatiska typkonverteringen t.ex. i
(alpha+0) som férorsakas av additionen, for att fa fram koden 945 utan explicit
typkonvertering. Samma teknik anvands for (alpha+1) osv. for att fa koderna till
B, y osv. samt for behandlingen av variabeln arab.

100

5.6 Decimaltalstyperna

C# har tre enkla datatyper for lagring av decimaltal: £1oat, double 0ch decimal.
Decimaltal kallas &ven flyttal darfor att deras decimalpunkt ”flyter” dvs varierar
nar de lagras i datorn, beroende pa storleken. De omvandlas till ettor och nollor pa
ett helt annat satt an heltal och far en form som kallas flyttalsrepresentation. Dari-
fran harstammar ocksa namnet pa datatypen £loat. Féljande program demonstre-
rar nagra intressanta egenskaper av decimaltal som delvis &r éverraskande:

// Decimal.cs
using System;

class Decimal

{
static void Main()
¢ // float flyt = 4.5; // Ger kompileringsfel
float flyt = 4.5f; // 4.5 som float
int hel = (int) £flyt; // Avhuggning till int
float flo = 1/3f; // 3 som float
double dou = 1/3d; // 3 som double
decimal dec = 1/3m; // 3 som decimal
Console.WriteLine (
"\n\tHeltalsdivision 9 / 2 ger " + (9/2) + " och " +
"resten " + (9%2) +
"\n\tDecimaltalsdivision 9,0 / 2 ger " + (9.0/2) +
"\n\tHeltalsdelen av " + flyt + " &r " + hel +
"\n\tfloat wvariabel 1/ 3 ger " + ' ' + flo +
"\n\tdouble variabel 1 / 3 ger " + ' ' + dou +
"\n\tKonstanten 1/3,0ger "+ ' '+ (1/ 3.0) +
"\n\tdecimal variabel 1 / 3 ger " + ' ' + dec +
"\n\tKonstanta decimaltal lagras som double\n") ;
}
}

En kdrning ger foljande utskrift:

Heltalsdivision 9 / 2 ger 4 och resten 1
Decimaltalsdivision 9,0 / 2 ger 4,5
Heltalsdelen av 4,5 ar 4

float variabel
double variabel
Konstanten
decimal variabel
Konstanta decimalta

1 3 ger 0,3333333

1 3 ger 0,333333333333333

1 3,0 ger 0,333333333333333

1 3 ger 0,3333333333333333333333333333
lagras som double

H NSNS

101

En 6verraskande egenskap av decimaltal i C# &r t.ex. att 4.5 inte direkt kan tillde-
las till en £1oat-variabel, darfor att konstanta decimaltal lagras som double. En
automatisk typkonvertering nedat — dvs fran double till £loat — &r inte mgjligt
(se sid 104), darfor att C#-kompilatorn inte tillater lagringen av ett 8-bytes-véarde
(double) i en 4-bytes-minnescell (£Loat) for att undvika overflow (sid 89).

Datatypen float lagrar decimaltal i 4 bytes, double i 8 bytes och decimal i 16
bytes. Darfor ser du i kdrexemplet ovan dubbelt s& méanga siffror i utskriften av
double-variabeln dou jamfort med f£loat-variabeln £1o och dubbelt s& manga
siffror i utskriften av decimal-variabeln dec jamfort med double-variabeln dou.

Kan en decimaltalstyp inte specificeras via deklarationen — som é&r fallet for kon-
stanta decimaltal, sa blir datatypen automatiskt double. Vill man inte ha det s3,
utan vill man att det lagras som £loat, maste man anvanda explicit typkonverte-
ring: (float) 4.5 eller satta ett £ som stéar for £loat utan mellanslag direkt i slu-
tet av vardet: 4.5€ som &r bara en kortform for explicit typkonvertering. Aven ett
heltal med £ t.ex. 3£ blir omvandlat till £1oat. FOrst £1oat-vérdet 4.5£ kan till-
delas till £10at-variabeln £1yt. | ndsta sats omvandlas detta £1oat-vérde till int

och tilldelas en int-variabel:
int hel = (int) flyt;

Variabeln hel ger 4 (se utskriften ovan) vilket visar att typkonverteringen till int
inte avrundar decimaltalet utan endast tar heltalsdelen dvs trunkerar eller avhuggar
decimalerna. Pa liknande satt som det lilla £ kannetecknar det som £1oat kan ett d
i slutet av ett tal karakterisera det som double. T.ex. blir 3d ett double-vérde sa
att 1/3d utfors som en vanlig division mellan tva decimaltal som ger ett double-
varde. 1/3 skulle utfora heltalsdivision och resultera i 0. Darfor ger ocksa 9/2
heltalet 4 och 9%2 resten 1 (sid 75). P4 samma sétt som suffixet m karakterisera ett
varde som decimal. T.eX. blir 3m ett decimal-vérde

| bérjan av kapitlet hade vi skrivit ut de enkla datatypernas granser (sid 88). Det
som hos heltalen ar konsekvensen av det begransade minnesutrymmet — ndmligen
heltalstypernas grénser — &r for decimaltalen deras precision vid den decimala
framstallningen dvs noggrannheten uttryckt i antal siffror. Vad vi menar ar antalet
siffror man kan lita pé vilket har att gora med den for decimaltal typiska egenska-
pen att de kan ha oandligt manga decimaler. Darfér maste de forr eller senare av-
rundas i alla fall. Det &r endast heltal som representeras exakt inom det vardeom-
rdde som foreskrivs av datatypen, medan decimaltal representeras i regel bara
approximativt (ungefarligt) &ven om de haller sig inom det tillatna vardeomréadet.
Sedan tillkommer avrundningsfelen vars fortplantning vid komplexa berékningar
kan vara forodande, men &r relevanta redan vid enkel rékning. T.ex. vid multiplika-
tion av tva decimaltal fordubblas antalet decimaler, medan man i regel har samma
minnesutrymme for resultatet som for operanderna.

De enkla datatypernas granser — bade for hel- och decimaltal — bestams av den till-
delade minnesstorleken. Men for att kunna ta reda pa decimaltalstypernas
noggrannhet behéver man veta hur decimaltal férvandlas till ettor och nollor, vilket

102

ar mer komplicerat an hos heltal. Utan att behova ga in narmare pa detta kan vi
konstatera att man vid representation av decimaltal i datorn kan lita pa 7 siffror om
man definierar sina variabler som £loat. Utfér man inga eller ganska enkla berak-
ningar borde detta racka. Ar daremot variablerna involverade i lite mer komplexa
berdkningar bér man snarare halla sig till double dar man kan lita pa 15 siffror
vid den interna bindra representationen vilket i de flesta praktiska sammanhang &r
en tillrdcklig noggrannhet. Hogst noggrannhet har datatypen decimal med 28 siff-
rors precision. Observera att noggrannheten géller antal (signifikanta) siffror och
inte antal decimaler.

103

5.7 Automatisk typkonvertering

C# ar ett strikt typbestamt programmeringssprak vilket innebar att alla varden mas-
te ha en datatyp. Data utan datatyp kan inte bearbetas i ett C# program. Detta galler
aven for varden som ar resultat av ett uttryck. | ett uttryck finns som regel flera
varden inblandade bade som variabler och konstanter. Man kan inte utesluta att de
har olika datatyper. Om flera olika datatyper &r inblandade i ett uttryck vilken data-
typ ska da berakningen slutligen resultera i? Vilken datatyp ska t.ex. a+b fa om a
ar av typ int, men b av typ double? For att 16sa problemet tillampar C#-kompi-
latorn automatiskt vissa regler som &r begrénsade till enkla datatyper, med undan-
tag for datatypen boo1l vars varden aldrig kan omvandlas till andra typer.

I avsnitt 5.3 behandlades explicit typkonvertering (sid 94) dar programmeraren sjalv
uttryckligen kan bestdimma nér och hur ett vérde ska byta datatyp. Vi anvénde ex-
plicit typkonvertering ofta for att fa reda pa tecknens ASClI-koder genom att om-
vandla vérden av typ char till varden av typ int och omvént. Men typkonverte-
ringar kan aven ske automatiskt (implicit) och utan vart uttryckliga medgivande i
aritmetiska uttryck eller vid tilldelningar. Vid tilldelningar darfor att tilldelnings-
tecknet = ocksa dr en operator precis som de aritmetiska operatorerna +, -, *,
/ eller %.

Regeln for automatisk typkonvertering

Automatisk typkonvertering kan forekomma vid anvandning av tilldelningsopera-
torn eller i aritmetiska uttryck enligt foljande regel:

K Ar olika enkla datatyper involverade vid en tilldelning, konverteras\
till den datatyp som stdr till vénster om tilldelningstecknet, endast
om denne star hogre i de enkla datatypernas hierarki:

sbyte > byte > char > short > ushort > int > uint
> long > ulong > float > double > decimal

Ar olika enkla datatyper involverade i ett aritmetiskt uttryck, kon-
k verteras till den higsta forekommande datatypen enligt hierarkin. j

Hierarkin ovan definieras efter datatypernas tilldelade minnesutrymmen samt av att
decimaltalstyperna star higre 4n heltalstyperna. Enligt denna regel far endast auto-
matisk typkonvertering uppat forekomma. Inget varde kan omvandlas automatiskt
nedat via tilldelning: Kompilatorn sétter stopp for det. Darfor leder t.ex. satsen int
a = 3.4; till kompileringsfelet:

Cannot implicitly convert type 'double’ to 'int'.
An explicit conversion exists (are you missing a cast?)

Med ‘double’ menar kompilatorn den decimala konstanten 3.4 som tolkas som
double och darfér med 8 bytes minne (sid 86/105) inte kan omvandlas till och lag-
ras som en int med 4 bytes minne pga risken fér forlust av noggrannhet dvs trun-

104

kering av siffror. Daremot gar det bra att kompilera och &ven kora £float b = 3;
darfor att 3 som int kan lagras som en £loat enligt de enkla datatypernas hierar-
ki: Har skulle ske en automatisk typkonvertering uppat. Med cast menar kompila-
torn explicit typkonvertering och undrar om man har missat en sadan. Det gar nam-
ligen lika bra att kompilera och kdra int a = (int) 3.4; dér vi sjalva véljer att
trunkera decimaltalet och lagra endast heltalsdelen 3 i variabeln a och ansvara for
forlust av noggrannhet.

Regeln for automatisk typkonvertering motiveras av omsorgen for att inte tappa
eller forfalska information genom att 6verfora ett varde fran en storre minnesplats
till en mindre. Vill man anda ta en sadan risk ska man gora det sjalv med explicit
typkonvertering vilket alltid & mojligt. C# vagrar gora det automatiskt.

En direkt konsekvens av regeln for automatisk typkonvertering ar foljande regel
vars verkan vi redan konstaterade i programmet Decimal (sid 101):

[Decimaltalskonstanter lagras automatiskt som double.]

Filosofin att inte tappa eller forfalska information leder till att t.ex. den decimala
konstanten 3.4 far den datatyp som star hogst i de enkla datatypernas hierarki,
namligen double. Man kan tolka regeln &ven sa har: Ar ingen datatyp specificerad
via deklarationen tas den hdgsta for att vara pa den sakra sidan.

int-regeln

Det dar anmarkningsvart att automatisk typkonvertering &ven kan ske nar samma
datatyper ar inblandade i ett uttryck, t.ex.: Summan av tvd short-variabler om-
vandlas automatiskt till int — ett exempel pa int-regeln:

Ar endast heltalstyperna inblandade i ett aritmetiskt uttryck,
omvandlas uttryckets varde automatiskt till datatypen int.

int-regeln ska forhindra overflow (sid 89): Nar t.ex. tvd short-virden som var
och en ryms i 2 bytes, adderas eller multipliceras med varandra, ska resultatet lag-
rasien int dvs i 4 bytes eftersom det finns risken att resultatet 6verskrider short-
gransen. Darfor meddelar ocksd C#-kompilatorn Cannot implicitly convert type ‘int' to
'short' ... ndr man forsoker att tilldela resultatet av en rdkneoperation med short-
variabler till en short-variabel. Ett exempel pa det visas i programmet AutoConv
pa nasta sida. En direkt konsekvens av int-regeln ar foljande regel:

[Heltalskonstanter lagras automatiskt som int.]

Fattas decimalpunkten i en konstant tolkas den inte langre som decimal- utan som
heltal. Men hér tas inte den hogsta typen bland heltalen som vore long, utan int

105

enligt int-regeln. S&, det verkar s som att int ar en slags favoritdatatyp for heltal
darfor att alla rutiner kring int &r optimerade sa att C# raknar snabbast med int.

En annan sak dr det med namngivna (symboliska) konstanter som definieras med
det reserverade ordet const framfor datatypen. Deras datatyp specificeras explicit
sd att reglerna om konstanter borde preciseras sa har: Endast icke-namngivna deci-
maltalskonstanter lagras automatiskt som double och ickenamngivna heltalskon-
stanter lagras automatiskt som int. FOljande program demonstrerar automatisk
typkonvertering samt int-regeln:

// AutoConv.cs

// int-regeln gbér att summan av 2 shortvariabler blir automa-
// tiskt int och ger kompileringsfel ndr den tilldelas till
// en short. Automatisk typkonvertering uppat: frdn short

// till int. Explicit typkonvertering kan leda till felaktigt
// resultat pga overflow

using System;

class AutoConv

; static void Main()
{
short sl = 1;
short s2 = 2;
// short not ok = sl + s2; // Ger kompileringsfel:
// Cannot implicitly convert
// type 'int' to 'short'
short ok = (short) (sl + s2); // int-regeln gér explicit
// typkonvertering ndédvindig
short max = Intlé6.MaxValue; // short-grdnsen
int hel = max; // Automatisk typkonvertering
// fran short till int
short fel = (short) (hel+l);// Overflow: hel+l Sver-—
// skrider short-grdnsen
Console.WriteLine ("\n\t" +
"Rdtt short-varde = " + ok + "\n\t" +
"short-grédnsen = " + max + "\n\t" +
"Overflow: Fel short = " + fel + ": slar runt!\n\t" +
"Riatt int-vdrde = " + (hel + 1) + '"\n');
}
}

En kdrning visar foljande utskrift:

Ratt short-varde = 3

short-gransen = 32767

Overflow: Fel short = -32768: slar runt!
Ratt int-vdarde = 32768

106

Programmet AutoConv pa forra sidan ar ett exempel p& hur mycket man kan lara
sig av sina misstag: Den bortkommenterade satsen

short not ok = sl + s2;

ger kompileringsfel av foljande skél: For det forsta bildas uttrycket s1 + s2 dvs
summan av tva short-variabler med vardena 1 och 2. Resultatet 3 omvandlas en-
ligt int-regeln automatiskt till en int. S& langt forekommer inget fel. Men nar
satsen sedan forsoker att tilldela detta int-vérde till short-variabeln not_ok blir
det fel eftersom short star ldgre 4n int i de enkla datatypernas hierarki: Automa-
tisk typkonvertering vid tilldelning kan i C# aldrig goras nedét utan endast uppat i
hierarkin. Additionsoperatorn + i uttrycket s1 + s2 &r orsaken till att uttryckets
resultat omvandlas till int. FOr att kunna kompilera blir det ngdvandigt att explicit
typkonvertera “tillbaka” sé att séga till short for att kunna tilldela summan till en

short-variabel:
short ok = (short) (sl + s2);

Forst nu ar det mojligt att skriva ut rétt short-varde med variabeln ok. Sedan tar
programmet AutoConv fram Ovre gransen till datatypen short med hjélp av den
lagrade konstanten Int16.MaxValue och tilldelar den till short-variabeln max
som sedan skrivs ut korrekt: 32 767 — samma varde vi hade i utskriften av de enkla
datatypernas granser (sid 88) och storsta vardet som (med tecknet) fortfarande ryms
i 2 bytes dvs vardet fyller utrymmet med 16 ettor, 1 for tecknet och 15 for vardet 32
767. | nésta sats vidarebefordras detta vérde till en int-variabel:

int hel = max;

Vid denna tilldelning sker nu en automatisk typkonvertering fran short till int
och det gér bra eftersom det ar uppét: int star i de enkla datatypernas hierarki hég-
re an short. 32 767 lagras nu bade i max och hel, med skillnaden att det lagras i 2
bytes i max, men i 4 bytes i hel. Nar vi bildar he1+1 &r det ok sa lange vi lagrar
detien int. Men i satsen short fel = (short) (hel+l); gors forsoket att ex-
plicit omvandla det till short for att lagra det i en short-variabel. Utan den expli-
cita typkonverteringen hade ju koden inte kunnat kompileras darfor att C# végrar
att automatisk typkonvertera nedat frn int till short. Men dven om den explicita
typkonverteringen kan kompileras genererar den det felaktiga resultatet -32 768
som utskriften av variabeln £el visar: hel+1 dvs 32 768 ryms inte i 2 bytes — ett
exempel pa overflow (sid 89). Det dverskridna vérdet slr runt” och hamnar pa den
negativa sidan av short-datatypens tillatna talomradet. Programmet raknar modu-
lo 2" dér n &r antalet bitar i minnesutrymme som stér till forfogande for den aktuel-
la datatypen. Har r n pga short 2 bytes dvs 16 bitar. Det blir allts& modulo 2*° dar
2'® = 65 536. Virdet “slar runt” och hamnar pa andra dndan av short:s talomréde
innebér har: 32 768 — 65 536 = -32 768. Om modulo las pa sid 75. Det farliga med
overflow &r att kompilatorn inte ger ndgot felmeddelande, inte ens en varning, och
att exekveringen av programmet inte paverkas. Om man inte skriver ut vardet till
fel mirker man inte ens felet. Programmet ”fungerar”, men producerar ett felak-
tigt resultat.

107

Sammanfattning av kapitel 4 och 5

> Variabel = platshéllare (minnescell) for ett varde (minnescellens innehall).

» Datatyp = foreskrift om hur en viss typ av data ska lagras i datorn, hur
mycket minne den tar och darmed hur stora varden den kan lagra samt vilka
operationer man far utféra med denna typ av data.

» Definition innebér att skapa en variabel genom allokering av minnes-
utrymme for variabeln. Det gors genom att ange variabelns datatyp.

» Deklaration innebér att ange en variabels namn och datatyp.

» Tilldelning innebdr att ge en variabel ett varde (att placera data i en
minnescell) och kan goras med tilldelningsoperatorn eller via inlasning.

> Initiering innebar att tilldela en variabel forsta gangen ett varde.

» Regler for anvandning av variabler:

e En variabel maste definieras dvs skapas med en datatyp innan den kan
initieras. Skalet ar att C# ar ett strikt typbestamt programmeringssprak.

e Envariabel maste vara definierad och initierad innan den far anvandas.

> Enkla datatyper representerar endast ett varde at gangen dvs ett heltal, ett
decimaltal, ett tecken eller ett sanningsvérde.

Foljande enkla datatyper &r fordefinierade: bool for sanningsvérden; char
for tecken; sbyte, byte, short, ushort, int, uint, long, ulong for
heltal samt £1oat, och double och decimal fOr decimaltal .

> Varje enkel datatyp har en tilldelad storlek pa minnesutrymme som i C# ar
enhetlig for alla plattformar. Overskridandet av de féreskrivna granserna le-
der till overflow (sid 89).

» Nar olika enkla datatyper &r inblandade i en tilldelning eller i ett aritmetiskt
uttryck utfor kompilatorn automatisk typkonvertering enligt foljande regler:

1. Vid tilldelningar omvandlas till datatypen till vanster om tilldelnings-
tecknet endast om denne stér hogre i de enkla datatypernas hierarki.

2. Vid aritmetiska uttryck omvandlas till den hdgsta i uttrycket inblanda-
de datatypen enligt datatyphierarkin. Decimaltalskonstanter lagras som
double.

3. int-regeln: Ar endast heltal inblandade i ett aritmetiskt uttryck, om-
vandlas uttryckets vérde automatiskt till int. Heltalskonstanter lagras
som int.

» Explicit typkonvertering kan goéras med koden: ~ (datatyp) uttryck

108

51

52

53

54

55

5.6

Ovningar till kapitel 5

Skriv ett program som laser in 3 tecken och skriver ut dem i omvénd ordning.

Tips: | Python kan detta problem I6sas med féljande kod:

text = input('\nMata in tre tecken skilda med mellanslag:\t"')

teckenl = text[0]
tecken2 = text[2]
tecken3 = text[4]
print('\nTecknen i omvand ordning:\t\t ',

tecken3, tecken2, teckenl, ‘\n')

Forsok att hitta en egen 16sning, annars versatt pythonkoden ovan till C#.

Skriv ett program som l&ser in en gemen och skriver ut dess versal och se-
dan laser in en versal och skriver ut dess gemen.

Experimentera med programmet Int2char (sid 95) for att ta reda pa ASCII-
koden till datorns ljudsignal. Dvs kor sa lange tills du vid inmatning av ett
heltal hor ett pip fran datorn. Andra datatypen till variabeln code fran int till
char. Atgdrda kompileringsfelet. Hor du fortfarande pipet nar du matar in
ASClI-koden for ljudsignal? Forklara.

Kryptering av tecken: Skriv ett program som l&ser in ett tecken och forskju-
ter det i teckentabellen med ett visst antal steg som en slags krypterings-
nyckel. Skriv ut bade det inlasta och det forskjutna tecknet pa ett anvandar-
vanligt satt. Borja med att hardkoda krypteringsnyckeln och fortsitt med att
l4sa in den.

Kryptering av ord: Skriv ett program som laser in fem tecken och skriver ut
dem forskjutna med ett steg i ASClI-tabellen sé att t.ex. inmatningen Kalle
ger utskriften Lbmm£. Aterstall sedan det krypterade ordet. Vidareutveckla
programmet genom att utéka och ldsa in antalet steg (krypteringsnyckeln).

Om 6kningsoperatorn ++ (sid 77) har vi lart oss:
letter++; QO0rsammasak som letter =letter+1;

Anda ger programmet ovn_5_6 kompileringsfel om vi ersatter satsen
letter++; med letter = letter + 1; Varfor? Forklara! Forsok att at-

gérda felet genom att ersétta 1etter++; med en modifikation av letter =
letter +1;

109

5.7

using System;

class Ovn_5_6

{
static void Main()
{
char letter = 'Y';
Console.Write ('Tecknet " + letter + " har koden " +
(int) letter);
letter++;
Console.WriteLine ("\nTecknet " + letter +
" har koden " + (int) letter);
}
}

Ta reda pa vilka escapesekvenser som galler for de svenska specialtecknen
genom att kdra programmet Escape (sid 98) och skriv ut de sammanhéngan-
de strdngerna #asAA0 och & 4 6 A A 6 med de hexadecimala escape-
sekvenserna istéllet for direkt. Gor samma sak med de decimala Unicode-
koderna.

110

Kapitel 6

Kontrollstrukturer

Amne Sida Program
6.1 Vad ar kontrollstrukturer? 112
6.2 Enkel selektion: if-satsen 113 SimpleIf
- Jamforelseoperatorer 115
- Sortering med flera satser i if 116 MiniSort
- Villkorlig initiering 118 (Un) CondInit
6.3 Tvdvégsval: if-else-satsen 121 IfElse
6.4 Flervagsval: switch-satsen 123 Switch
6.5 Spelserien Gissa tal 128
- med nastlad if-else 128 GuessIfElse
- med kombination av switch och if-else 129 GuessSwitch
6.6 Efter-testad repetition: do-satsen 131 GuessDo
- Hantering av slumptal 134 DoRand
- Gissa tal med slumptal 135 GuessDoRand
- Evighetsloop 138
6.7 For-testad repetition: while-satsen 139
- ASCII-tabellen med while 140 Ascii
6.8 Bestamd repetition: for-satsen 142 ForRandom
- Rackvidden av for-satsens raknare 145
6.9 Nastlade for-satser 147 NestedFor
- Multiplikationstabellen 149 MultipTab
Ovningar till kapitel 6 (Projekt Pyramiden) 151

111

6.1 Vad ar kontrollstrukturer?

Kontrollstrukturer &r algoritmers byggstenar — programmeringens mest grundlag-
gande verktyg. Det finns generella strukturer i alla algoritmer som &r oberoende av
det aktuella problemet. Darfér kan de anvandas som byggstenar vid beskrivning av
alla algoritmer som i sin tur ligger till grund for alla datorprogram, oberoende av
programmeringssprak.

Kontrollstrukturer bestar av tre grundlaggande typer:

e Sekvens (foljd)
e Selektion (val)
- Enkel selektion
- Tvavagsval
- Flervégsval
e Repetition (upprepning)
- Fortestad repetition
- Eftertestad repetition
- Bestdmd repetition

Alla datorprogram &r kombinationer av dessa tre typer av kontrollstrukturer. | detta
kapitel ska vi ga igenom alla tre och lara oss hur de kodas i C#. Kontrollstrukturer
anvands och ar i princip uppbyggda enligt samma logik i alla programmeringssprak.
Bade Javas och C#:s kontrollstrukturer har — nar det géller syntaxen — tagits Gver
frén och &r i princip identiska med C/C++ bortsett fran nagra detaljer. Annu langre
tillbaka i historien kan man hitta deras spér i de forsta strukturerade spraken som Al-
gol, Simula och Pascal.

Sekvens (foljd)

Instruktion 1

Redan i algoritmdefinitionen forekommer begreppet foljd:
”En algoritm dr en f6ljd av precisa anvisningar, s.k. ele-

mentéra instruktioner, som loser ett givet problem . ..” Y

En sekvens &r alltsa en foljd av instruktioner (bilden till héger) Instruktion 2
— den enklast mgjliga strukturen som tankas kan. Alla vara

program hittills bestdr endast av sekvenser. Varje instruktion l

kan i sin tur innehdlla andra kontrollstrukturer. S& dven om se-

kvensen &r en enkel struktur, kan néstlade sammansattningar av
den med sig sjélv (underinstruktioner) och andra kontrollstruk-
turer anda ge en ganska invecklad bild.

Selektion (val)

Kontrollstrukturen selektion ar mer komplex an sekvens. Beroende pé antalet alter-
nativ man kan valja mellan tre olika varianter: Enkel selektion, tva- eller flervagsval.
Vi bérjar med den forsta.

112

6.2 Enkel selektion: if-satsen

Enkel selektion ar ett val utan alternativ dvs valet mellan att gora nagot eller ingen-
ting. Det som avgor valet ar ett villkor. Ar villkoret sant, utférs en eller flera instruk-
tioner. Ar villkoret falskt, gors ingenting.

Pseudokod

Flodesschema

sant

oM villkor uppfyllt

instruktion(er) Instruktion(er)

I C# kallas den enkla selektionen for i£-sats och kodas generellt pa foljande sétt:

if (condition)

{
}

Forsta raden kallas huvudet, resten dr kroppen som omsluts av klamrarna { och }.
Bestar kroppen endast av en sats kan klamrarna uteldmnas:
if (condition)
statement ;

statement(s) ;

// SimpleIf.cs

// Férhindrar division med 0 (& didrmed programavbrott) med if
using System;

class SimpleIf

{
static void Main()
¢ Console.Write("\n\tMata in ett heltal: N
int nol = int.Parse(Console.ReadLine()) ;
Console.Write("\n\tMata in ett heltal till: ");
int no2 = int.Parse (Console.ReadLine()) ;
if (no2 !'= 0)
Console.WriteLine ("\n\t" + nol + " heltalsdividerad" +
"med " + no2 + " blir " + nol/no2 + '\n');
if (no2 == 0)
Console.WriteLine ("\n\tOBS!\n\t" +
"Du har matat in 0 f6r det andra talet.\n\t" +
"Det gar inte att dividera med 0.\n");
}
}

113

Programmet laser in tva heltal och dividerar dem med varandra. i£-satserna gor att
division endast sker om det andra talet no2 (det som ska divideras med) inte &r o,
for att forhindra den matematiskt odefinierade divisionen med 0. Fdljande dialog
far man nar man matar in ett varde skilt ifran o till det andra talet:

Mata in ett heltal: 19
Mata in ett heltal till: 5

19 heltalsdividerad med 5 blir 3

P.g.a. datatypen int till no1 och no2 blir det heltalsdivision: 19/5 ger 3 hela, res-
ten skrivs inte ut har. Matas in daremot o till det andra talet uppstar foljande dia-
log:

Mata in ett heltal: 8
Mata in ett heltal till: O

OBS!
Du har matat in 0 f6r det andra talet.
Det gar inte att dividera med O.

Inmatning av o till det andra talet genererar ett **felmeddelande”, annars far man ut
fran programmet simpleIf resultatet av divisionen for vilka heltal som helst. Lat
0ss nu titta ndrmare pa if-satserna som astadkommer distinktionen mellan dessa
tva alternativ: Det finns tva i£-satser i programmet simpleI£. Den forsta if-sat-
sens huvud

if (no2 '= 0)
betyder i termer av pseudokod: OM no2 &r skilt ifrdn O

Huvudet inleds med det reserverade ordet if utan att avsluta raden med semiko-
lon. Utan semikolon, dérfor att i £-satsen inte &r avslutad &n i slutet av denna rad.
Sedan ska ju kroppen félja. Efter i£ skrivs ett villkor (condition) inom parentes.
Observera att parenteserna tillhor syntaxen och inte far under nagra omsténdighe-
ter utelamnas. Men hur skriver man villkor i C#? Vi blir paminda om algoritmer
ndr vi hor begreppet villkor.

Villkor

Det &r viktigt att skilja mellan begreppen villkor och instruktion. Enklast kan ett
villkor forklaras som en fraga som endast kan besvaras jakande eller nekande: &r
no2 skilt ifran 0, ja eller nej? Narmare bestamt &r ett villkor en utsaga som endast
kan vara sann eller falsk. Medan en instruktion &r en handling som ska utféras kan
ett villkor endast testas for att fa ut svaret ja eller nej, sant eller falskt. i (no2 !'=
0) testar om no2 dr skilt ifrn o eller ej. Variabeln no2:s vérde jamfors med o.
Finns icke-likhet mellan dessa varden &r villkoret sant, annars &r villkoret falskt.

114

Dubbeltecknet '= (utan mellanslag) ar en s.k. jamforelseoperator. Det &r vanligt
att formulera villkor med jdmforelseoperatorer. Icke lika med med symbolen = &r
en av dem. Det finns fler som anvénds i i£-satsers villkor. Darfor ska vi titta nar-
mare pa sadana operatorer.

Jamforelseoperatorer

< mindre an

<= mindre &n eller lika med
> storre én

>= storre an eller lika med
== lika med

I= icke lika med

De jamfor tva talvarden med varandra och returnerar jamforelsens resultat som ett
s.k. sanningsvarde dvs sant eller falskt, true eller £alse som ar reserverade ord.

—| Jamforelse-

2 talvarden
operator

——=1 sanningsvarde: true eller false

Sanningsvérdena true och false dr de enda varden som villkor kan anta varfor
jamforelseoperatorer anvéands for att skriva villkor. Exempel:

number == 0
number '= 0
7>5
guessedNo <= 17

Observera att de jamforelseoperatorer som ar dubbeltecken, inte far innehélla mel-
lanslag, annars tolkas de som respektive tecken och inte som jamforelseoperatorer.
T.ex. & == symbolen for lika med. Redan pa sid 69 pratade vi om skillnaden
mellan likhet och tilldelning och poangterade att = i C# inte betyder likhet utan
tilldelning. Har har vi symbolen == for likhet. Medan tilldelningsoperatorn = fore-
kommer i instruktioner (satser) anvands jamférelseoperatorn == i villkor, t.ex. i
villkoret till den andra i£-satsen.

Sa langt om if£-satsens huvud. Sedan kommer i£-satsens kropp som i programmet
SimpleIf bestdr av en enda utskriftssats. Darfor kan klamrarna { } kring kroppen
uteldmnas. Men det vore inte heller fel att skriva dem. Villkorets sanningsvérde
avgor nu om kroppen dvs utskriftssatsen utfors eller j. Ar variabeln no2:s varde
icke lika med o, utfors kroppen. Observera ocksa att hela utskriftssatsen ar indra-
gen for att markera att denna tillhr i£-satsen och att den bildar i£-satsens kropp
—en kodstil som hor till god programmeringssed och hdjer kodens laslighet.

Den andra i£-satsens huvud i programmet SimpleI£:
if (no2 == 0)

betyder i termer av pseudokod: OM no2 &r likamed 0

115

Precis som !'= &r dven dubbeltecknet == (utan mellanslag) en jamforelseoperator,
men star for lika med. Dvs vérdet i variabeln no2 jamfors med o. Finns likhet mel-
lan dem ar i£-satsens villkor sant, annars ar villkoret falskt. Observera skillnaden
mellan likhet som kodas med tva likhetstecken == och tilldelning vars kod ar ett
likhetstecken =. Aven den andra i £-satsens kropp ar en utskriftssats som skriver ut
ett felmeddelande om vérdet 0 matas in som andra tal. P& sd satt utfors inte divi-
sion med 0, for divisionen forekommer endast i den forsta i£-sats som inte utfors
eftersom dess villkor blir falskt, ndr man matar in 0 som andra tal.

Flerasatseri if

| programmet SimpleIf (sid 113) bestdr bada if-satsers kroppar av en enda sats.
Darfor racker det med satsens semikolon for att avskilja kroppen fran programmets
efterfoljande satser. Men om i£-satsens kropp bestar av flera satser maste klamrar-
na { och } markera kroppen. Hur ska annars kompilatorn skilja mellan i£-kroppens
och de efterfoljande satserna? | programmet MiniSort (sid 116) finns ett exempel
pa detta. Men forst ska vi titta pa programmets algoritm som handlar om sortering:

Algoritm for platsbyte

Lat oss anta vi har tva tecken charl och char2 som vi vill byta pltas pa. For att
kunna gora det behdvs en tredje, temporér plats. Vi borjar med att ldgga undan
charl pa den temporéra platsen temp (steg 1). Sedan byter vi plats pd char2 och
lagger det i charl som témdes i steg 1 (steg 2). Och slutligen, i steg 3, l&gger vi
charl som under tiden mellanlagrats i temp, in i char2 som tomdes i steg 2:

1

charl char2 temp

Illustrationen ovan ar en grafisk beskrivning av algoritmen dar 1, 2 och 3 anger
ordningen i den. Den tredje platsen temp, behdvs, for att temporért ldgga undan det
felplacerade tecknet. | féljande program inplementerar vi algoritmen ovan:

// MiniSort.cs

// Ldser in 2 tecken och sorterar dem i teckentabellens ord-
// ning med hjdlp av en algoritm fér platsbyte av tva objekt
using System;

class MiniSort

{

static void Main ()

{

char charl, char2, temp;

116

Console.Write ("\n\tTva osorterade tecken:\n\n\t" +
"Mata in tva tecken skilda med mellanslag:\t");
string text = Console.ReadLine() ;

charl = text[0]; // Férsta tecknet tas ut
char2 = text[2]; // Andra tecknet tas ut
if (charl > char2) // tecknens ASCII-koder jamfdérs
{
temp = charl; // Algoritm fér platsbyte
charl = char2; // av tva tecken
char2 = temp; // Flera satser i if
}
Console.WriteLine ("\n\tDe tva tecknen sorterade:\t\t\t"
+ charl + ' ' + char2 + "\n");

}

I foljande korexempel byts plats pa de inmatade tecknen z och A som har blivit in-
matade i fel ordning. De sorteras enligt teckentabellens ordning:

Tvad osorterade tecken:
Mata in tva tecken skilda med mellanslag: Z A

De tva tecknen sorterade:

Algoritmens kérna ligger i i£-satsen med sina tre satser. | den forsta satsen lagger
vi undan char1l:s varde i temp (steg 1 i bilden ovan). | den andra satsen byter vi
plats pd char2:s varde och lagger det i charl (steg 2). Och slutligen laggs temp
som under tiden har mellanlagrat char1:s varde, in i char2 (steg 3). Platsbytet pa
charl och char2 dger endast rum om de inmatade teckenvérdena &r felplacerade
dvs endast om charl > char2. Annars behéller de sina platser.

I kdrexemplet ovan jamfor if-satsens villkor charl > char2 vdrdena z och a
med varandra. Men tecken kan inte sittas i en relation av typ “storre dn” till varan-
dra. | sjalva verket &r det Unicode-koderna till z och a som jamférs med varandra.
Det &r endast tal som kan jamforas med varandra. Jamforelseoperatorn > behandlar
char-variablerna char1 och char2 som tal precis som aritmetiska operatorer gor.

Block

I C# kallas ett antal satser som omsluts av klamrarna { och } for ett block. Blockets
uppgift ar att gruppera satserna inom klamrarna och avgransa dem fran andra delar
av programmet. Klamrarna &r granser mellan programmets olika delar. De satter
grans for variablers rackvidd. For att Gverskrida dem maste vissa regler om block-
struktur beaktas. Ibland kan blockets avslutande klammer t.o.m. ersétta ett ev. ef-
terfoljande semikolon. Exempel pa block fanns redan i vart allra forsta program.

117

Main () -metodens kropp bildar ett block, det s.k. Main () -blocket. For laslighetens
skull brukar blockets satser skrivas indragna. Dessutom placerar man blockets
klamrar pa separata rader. Alternativt kan man placera den inledande klammern i
slutet av huvudets rad och den avslutande i blockets slut pa separat rad. Jag viljer
dock att anvidnda den forstnamnda stilkonventionen da denna ger en mer lattlast
kod: Man kan lattare para ihop de inledande och avslutande klamrarna.

I programexemplet MiniSort kodas sorteringsalgoritmen i de tre tilldelningssatser
som finns i i£-satsens kropp. Avgransningen innebér har att alla tre satser hor till
if-satsen och att alla tre ska utforas i fall att i£-satsens villkor &r sant. Om block-
markeringen med klamrarna fattades, skulle endast den forsta av de tre satserna
utforas, vilket skulle innebéra att sorteringsalgoritmen inte utfors i sin helhet, dvs
ingen sortering sker.

Tomma if-satser

Vad hidnder om man av misstag skriver ett semikolon i slutet pa i£-satsens huvud?
Dvs s& hir: if (no2 == 0) ; Kompilatorn kan tolka koden endast som en tom if-
sats dvs oM no2 lika med O gor ingenting! Semikolonet avslutar if-satsen da det
inte finns nagon sats mellan villkoret och semikolonet, dvs kroppen ar tom. Krop-
pen som foljer kommer i alla fall att utforas och inte bara om no2 ar lika med 0.
Genom att skriva semikolonet i slutet pd i£-huvudet, kopplar man bort kroppen
fran if£-satsen och dess villkor. Tomma i£-satser ar i regel meningsldsa dven om
de kan kompileras. Se dérfor upp for regeln vi nd&mnde inledningsvis: i£-satsens
huvud far inte avslutas med semikolon om man inte uttryckligen vill ha en tom i£-
sats.

Villkorlig initiering

Aven om man i C# har tagit dver kontrollstrukturers syntax fran C++ forekommer
sma skillnader. En av dem ér villkorlig initiering av variabler som inte far goras i
C#, men ér tillaten i C++. Det handlar inte om kontrollstrukturers syntax utan om
behandlingen av variabler dar C# har en striktare policy &n C++ som syftar at mer
stabilitet av koden. Variabler deklarerade till enkla datatyper i en metod — och detta
galler forstas aven for Main () -metoden — maste initieras innan (om) de anvands. |
C# far initieringen inte vara villkorlig dvs sta i en i£-sats. Narmare bestamt far ini-
tieringen inte skrivas i kroppen till en i £-sats vars villkor involverar variabler. Det-
ta géller oavsett villkorets sanningsvarde. Aven om villkoret &r sant kan koden inte
kompileras om variabeln initieras i i £-satsen och villkoret &r formulerat med varia-
bler. | foljande program star initieringen av variabeln letter i en if-sats och ar
darmed beroende av if-satsens villkor i vilket variabeln i &r involverad. Déarfor
kan koden inte kompileras fast villkoret i == 0 dr pga i:s initiering sant:

118

// CondInit.cs

// Ger kompileringsfel pga villkorlig initiering
// av variabeln tecken 1 if-satsen

using System;

class CondInit

{
static void Main()
{
char letter;
int i = 0;
if (i == 0)
letter = 'a'; // Villkorlig initiering
Console.WriteLine (letter) ;
}
}

Kompilatorn genererar felmeddelandet: Use of unassigned local variable 'letter'
Dvs C#-kompilatorn anser variabeln 1etter som icke-tilldelad. Samma felmedde-
lande far man om man missar att tilldela en variabel. Problemets I6sning &r att helt
och hallet koppla bort tilldelningen fran villkoret och skriva den fristaende:

// UncondInit.cs // Kan kompileras
using System;

class UncondInit

{

static void Main ()

{

char letter;
int 1 = 0;

// if (1 == 0)
letter = 'a'; // Ovillkorlig initiering

Console.WriteLine("\n " +
"Nu nar if ar bortkommenterad ar variabeln letter " +
"initierad\ntill " letter + "\n utan villkor!\n");

}

Istallet for kompileringsfel far vi nu foljande utskrift nér vi kor:

Nu nar if ar bortkommenterad a&r variabeln letter initierad
till a
utan villkor!

119

| programmet UncondInit dr initieringen av letter helt oberoende av ndgot vill-
kor. Raden som inleder i£ och dérmed hela i£-satsen &r bortkommenterad. Aven
om initieringen av letter fortfarande star indragen, ar den en fristdende sats utan
villkor.

Anmarkningsvart ar att programmet condInit skulle kunna kompileras om man
byter ut if£-satsens huvud mot if (1 == 1) eller if (true) dvs om endast kon-
stanter dr involverade i villkoret. Endast ’variabelt’ formulerade villkorliga ini-
tieringar satter C#-kompilatorn stopp for. Darfor maste regeln om villkorlig initie-
ring formuleras sa har:

Variabler vars initiering ar beroende av icke-konstanta villkor leder
i C# till kompileringsfel.

i == 1 &r ett icke-konstant villkor, darfor att dess sanningsvérde ar beroende av va-
riabeln i:s varde.

Forbudet mot villkorlig initiering &r inte begrénsad till i£-satser utan galler dven i
andra kontrollstrukturer dér villkor &r inblandade. T.ex. anvander &ven programmet
switch i Overnasta avsnitt ovillkorlig initiering (sid 125). Ett annat exempel kan
man hitta i programmet NestedFor (sid 142).

120

6.3 Tvavagsval: if-else-satsen

Tvavagsval ar ett val mellan tva alternativ. Precis som i i£-satsen gors valet pga
ett enda villkor. Ar villkoret sant, utférs en eller flera instruktioner. Lat oss kalla
dessa alternativ 1. Ar villkoret falskt, utfors en annan uppsattning instruktioner
som vi kallar alternativ 2. oM-ANNARS-satsen ar ett exempel pa tvavagsval. All-
mant kan tvavagsvalet beskrivas sa har:

Pseudokod Flédesschema

oM villkor uppfyllt sant
alternativ 1 Alternativ 1

ANNARS
alternativ 2 falskt

Alternativ 2

dar

alternativ 1 och

alternativ 2 &r tva olika instruktioner
eller uppsattningar av instruktioner. Y

Endast ett av de tva alternativen kommer att utforas, beroende pa villkorets san-
ningsvarde. D& sanningsvardena sant och falskt utesluter varandra, utesluter dven
de bada alternativen varandra. Darfor gar flodet (pilen i flédesschemat) efter alter-
nativ 1 till flédet efter alternativ 2. Det vore logiskt fel att leda pilen till ett stalle
fore alternativ 2. i £-else-sats kodas generellt pa foljande satt:

if (condition)

{

statement(s)1;
}
else
{

statement(s)2 ;
}

Om if- eller else-blocket bestar endast av en sats kan klamrarna { och } ute-
lamnas. Anta att bada block bestar bara av en sats, da forenklas formen avsevart:
if (condition)
statementl ;
else
statement2 ;

Observera att varje sats i if-else-satsen maste avslutas med semikolon enligt
semikolonets roll i C# som satsavslutningstecknet. Detta géller dven for den allra

121

sista satsen i ett block och for statementl ovan strax fore else. Darfor forekom-
mer flera semikolon — minst tva — &ven om vi pratar om en if-else-sats, vilket
beror pd att i£-else-satsen ar en huvudsats som innehaller flera delsatser, minst
tva. Jamfor detta med huvud- och underinstruktioner i algoritmer. Féljande exem-
pel visar if-else-satsen med endast en sats i respektive i£f-else-del:

// IfElse.cs

// Ldser in ett heltal och avgdr om det &r jdmnt eller udda
// Tvavdgsval: if-else-satsen med EN sats 1 resp. if-else-del
using System;

class IfElse

{
static void Main()
{
Console.Write("\n\tMata in ett heltal:\t");
int number = int.Parse (Console.ReadLine()) ;
if (number % 2 == 0)
Console.WriteLine ("\n\t" +
"Det inmatade talet " + number + " &r jamnt.\n");
else
Console.WriteLine ("\n\t" +
"Det inmatade talet " + number + " &r udda.\n")
}
}

Korexempel av programmet I£fElse med ett udda tal som inmatning ger:

Mata in ett heltal: 5

Det inmatade talet 5 &r udda.

Med ett jamnt tal som inmatning far vi foljande dialog:

Mata in ett heltal: 6

Det inmatade talet 6 a&r jamnt.

Det egentliga jobbet — ndmligen att avgdra mellan jamnt och udda — har gjorts med
hjélp av modulooperatorn % som anvénds i i £-satsens huvud:

if (number % 2 == 0)
och betyder: OM resten vid heltalsdivision av number med 2 &r lika med 0

9 % 2 t.ex. ger 1 dvs inte 0, darfor &r 9 udda. 8 % 2 déremot ger 0, darfor &r 8 ett
jamnt tal. Alla jdmna tal ger resten o vid heltalsdivision med 2. Alla udda tal ger
resten 1 vid heltalsdivision med 2. Om modulooperatorn las pé sid 75.

122

6.4 Flervagsval

Flervagsval — valet mellan fler 4n tva alternativ — kan programmeras pa olika sétt.
Det enklaste sattet ar att beskriva flervagsval med flera tvavigsval som antingen
foljer efter varandra eller &r néstlade i varandra. Att rada upp flera i£- eller i£-
else-satser efter varandra ar inget fel, men kan i praktiken ha sina begransningar.
Nar du kommit sa har Iangt i boken bor du klara av det pa egen hand. Lite svarare
ar det att nastla if- eller if-else-satser vilket vi kommer att ta upp lite langre
fram (sid 128). En annan mojlighet att programmera flervégsval & sammansatta
villkor. Standard-kontrollstrukturen daremot som ofta anvénds for flervégsval och
har motsvarigheter i sa gott somm alla programmeringssprak, ar den s.k. switch-
satsen. Vi borjar med den och kommer att fortsatta med de andra alternativen.

switch-satsen

En nastlad if-else-sats kan bli komplicerad och odverskadlig nar antalet al-
ternativ man ska valja emellan, véaxer. For att strukturera komplexiteten vid stora
antal alternativ har man i C# tagit fram kontrollstrukturen switch for flervagsval
som i vissa fall ar enklare och mer éverskadlig och i de flesta fall battre struktu-
rerad &n ett antal nastlade tvavagsval, dven om ocksé den har vissa begransningar
vilket kommer att diskuteras senare. S& hér ser switch-satsens flodesschema och
pseudokod ut:

Pseudokod Flodesschema
Alternativ 1 >
VALJ fall ur
Fall 1: Alternativ 1
Fall 2: Alternativ 2
Alternativ 2 >

nej

Annars: Alternativ x

\—> Alternativ x >

\ 4
Alternativ 1, 2, ... innebdr olika instruktioner eller olika uppsattningar instruk-
tioner och Fall 1, 2, ... motsvarar olika villkor.

| C# kodas switch-satsen pa foljande satt:
123

switch (expression)

{

case constantl :
statement(s)1;
break;

case constant? :
statement(s)2 ;
break;

default:
statement(s)x ;
break;

}

Forsta raden ar switch-satsens huvud och far inte avslutas med semikolon. Resten
ar switch-satsens kropp som bestar av ett block. Kroppens avslutande klammer
ersétter har det semikolon som skulle avsluta hela switch-satsen. expression i hu-
vudet &r en slags valjare, ett uttryck (sid 71) som kan innehalla variabler och vars
varde far vara av typ int, char eller string. | det enklaste fallet — i vara exem-
pel forekommer bara det enklaste fallet — kan expression vara en int- eller char-
variabel. constantl, constant2 osv. daremot maste vara konstanta uttryck som inte
far innehalla variabler. Nar switch-satsen exekveras, jamfors expression i huvudet
en i taget med alla konstanter som stér efter case. Jamforelsen innebér:

if (expression == constantl)
if (expression == constant2)

Da blir villkoren som &r dolda i switch-satsen avslGjade: Man ser att de ar hard-
kodade med operatorn == och inte kan ersattas med andra jamforelseoperatorer.
Tva enskilda varden kan jamforas med varandra endast pa likhet. For att testa om
ett varde ligger i ett intervall (olikheter) kan nastlad if-else anvandas. Tva iden-
tiska konstanter i en switch-sats leder till kompileringsfel.

Om likhet foreligger mellan expression och en konstant, s& kommer man in i
switch-satsens kropp och utfor alla satser som foljer case tills break bryter
switch-satsen eller kroppen slutar. Programmet utfor alltsa inte bara de satser som
omedelbart féljer det case dér likheten intréffar, utan alla satser som foljer &nda
tills en break-sats kommer. switch-satsen viljer endast ett fall bland flera, sa att
varje case maste avslutas med break. Till skillnad fran C++ och Java &r break-
satsen i C# obligatorisk. Det finns inte mojligheten att uteldmna break eller skriva
“tomma” case-satser. Inte ens det allra sista break i default-satsen far inte ute-
ldmnas. GOr man det ger kompilatorn felmeddelandet: Control cannot fall through
from one case label (‘'default:’) to another.

124

Foljande program demonstrerar switch-satsen:

// Switch.cs
// En enkel kalkylator: Flervdgsval med switch-satsen
using System;

class Switch

{

static void Main ()

{

char
double nol, no2,

op;

answer

0;

Console.Write ("\n\tMata in nol:\t");

nol =

Console.Write("\n\tMata in en " +
"operator +,
op = Convert.ToChar (Console.ReadLine()) ;
Console.Write ("\n\tMata in no2:\t");

no2 =

switch (op)

{

}

case '+':
answer
break;
case '-':
answer
break;
case '*':
answer
break;
case '/':
answer
break;
case '~':
answer
break;
default:

Console.WriteLine ("\n\tOBS!

= nol +

= nol -

= nol *

= nol /

no2;

no2;

no2;

no2;

’

*

4

Convert.ToDouble (Console.ReadLine ()) ;

/ eller ~

Convert.ToDouble (Console.ReadLine ()) ;

// switch bérjar

= Math.Pow(nol, no2);

:\t") ;

Felaktig inmatning:"

+

"\n\tDu far mata in endast +, -, *, / eller ~ " +

op = '
break;

"som operator.\n\n") ;

21 .
< ’

if (op !'= '?')
Console.WriteLine ("\n\tResultat:\t" + nol + " "
" + answer + "\n\n");

op + "

" 4+ no2 + "

// switch slutar

125

+

Vi matar in forst ett tal, sedan ett av tecknen +, -, *, / eller ~ och sist ett tal till, dar
~ ska utfora operationen upphdjt till. Resultatet av resp. rakneoperation skrivs ut
om man foljer instruktionerna. | switch-satsen véljs det inmatade alternativet
bland de fem symbolerna for réknesétten och rakneoperationen utfors. Medan talen
deklareras som double dr symbolen for rdknesattet en char-variabel som kallas
op och anvands i switch-satsen som valjare och ska sta for operator. Valet av det
mer beskrivande namnet operator var inte mojligt eftersom operator ar ett reser-
verat ord i C# (sid 36). En korning med korrekt inmatning ger féljande dialog:

Mata in nol: 24,5

Mata in en operator +, -, *, / eller * : A
Mata in no2: 7,8

Resultat: 24,5 ~ 7,8 = 68469232237,5913

Har har operatorn ~ valts dvs upphdjt till (exponentiering). | programmet Switch
har operationen utférts med metoden Pow () som &r fordefinierad i klassen Math
som i sin tur ligger i C#:s namnutrymme System — det bibliotek som inkluderas
med using-direktivet. Metoden Pow (a, b) tar in tvd double-parametrar a och b
och returnerar double-vardet a upphdjt till b enligt en inbyggd matematisk formel.

Matar man in trots instruktion en felaktig operator dvs nagot annat tecken an +, -,
* / eller ~, far man ut en dialog av typ:

Mata in nol: 3
Mata in en operator +, -, *, / eller * : \
Mata in no2: 5

OBS! Felaktig inmatning:
Du far mata in endast +, -, *, / eller ~ som operator.

Anledningen &r att satsen for den hér utskriften &r placerad i switch-satsens
default-del som & motsvarigheten till else i de andra varianterna av selektion.
Om ingen likhet pétraffats i ndgon case-sats mellan op och tecknen +, -, *, /, ~
utfors istallet de satser som foljer efter default. PA sa sitt har man mojligheten att
skriva kod som dokumenterar det just intraffade. Ofta véljer man att skriva ut na-
gon form av felmeddelande. Anvéndningen av default-satsen dr frivillig. Den
kan uteldmnas i switch-satsen, men rekommendationen &r att ha den kvar.

case

| varje case testas ett villkor pa likhet mellan expression och en konstant. Men vad
menas med likhet i case-satserna? Dar star ju ingen likhet. Jo, det ar darfor att den

126

ar gomd, den ingdr implicit dar. Som vi redan namnde, gors i sjalva verket jamfo-
relsen pa likhet vilket man ser nar man 6versatter den forsta case-satsen till i £:

if (op == '+'")

{

answer = nol + no2;
break;

break

ar ett reserverat ord i C# som bryter programflédet i switch-satsen och i loopar
och skickar programflddet till den forsta satsen efter det block dér break skrivs.
Alla satser mellan break och blockets avslutande klammer } hoppas 6ver. | det hédr
fallet gor alltsd break att programflodet lamnar switch-satsen. Detta garanterar
ett entydigt val mellan flera alternativ. break-satsen ar som sagt obligatorisk.

Variabeln op ldses in med: op = Convert.ToChar (Console.ReadLine()) ;
som &r ett nastlat anrop av tva metoder: Forst anropas ReadLine () Som returnerar
tecknet vi matar in som ett string-objekt. Sedan anropas ToChaxr () for att om-
vanbdla stréngen till char som tilldelas op. Sedan jamfor switch-satsen variabeln
op:s varde med de fem teckenkonstanterna *+', '=', '*', ' /' och '~ . Hittar den
likhet med nadgon av dem, utfors de satser som foljer efter resp. case tills break
bryter switch-satsen. Pa sa satt traffas ett entydigt val mellan de fem alternativen.
Hittas ingen likhet, har anvandaren matat in ett tecken som inte ar en réakneopera-
tion. Default-satsen skriver ut meddelandet OoBS! Felaktig inmatning: ...

Tva fragor ar kvar att besvara innan vi lamnar switch-satsen:

1. Varfor &r variabeln answer initierad till o direkt vid deklarationen foére och
inte i switch-satsen dar den anvénds? Vi har redan sett att switch-satsen ar
en strukturerad samling av if-satser. Och i i£-satser ar villkorlig initiering in-
te maojligt (sid 118). Nar regeln formulerades sades ocksa att forbudet gallde
aven for andra kontrollstrukturer. Faktiskt skulle en initiering av variabeln an-
swer i switch-satsen réknas som en villkorlig initiering och leda till kompi-
leringsfel darfor att switch-satsens véljare dr en variabel dvs en sadan initie-
ring vore dé beroende av t.ex. villkoret op == '+' osv. Testa gérnal!

2. Varfor har variabeln op tilldelats ? i default-delen av switch-satsen? Det
har att gora med den i£-sats som foljer efter switch-satsen som har villkoret
op != '?' och skriver ut resultatet. Denna kombination ska férhindra att re-
sultatet dyker upp i fall och efter att felmeddelandet har skrivits ut. Resultatet
ska endast visas nar variabeln op verkligen fatt ett av vardena +, -, *, /, ~.
Den ska inte visas vid felaktig inmatning. Testa gdrna genom att kommentera
bortop='?'; i default-satsen.

127

6.5 Spelserien Gissa tal

Har introduceras ett litet enkelt spel som i fortsdttningen kommer att utvecklas steg
for steg 6ver flera kapitel. | varje version av det kommer vi att lara oss ett nytt
koncept. Lat oss kalla det for Gissa tal: Anvandaren ska gissa fram ett hemligt tal
inom ett visst intervall. Talet ar hardkodat i de forsta och slumpat i de senare
versionerna av spelet. Som hjalp far anvandaren reda pa inom vilket intervall talet
ska ligga samt om det gissade talet var mindre an, storre an eller lika med det
hemliga talet. For att kunna ge den hjélp anvandaren behdver for sina gissningar,
maste programmet vid varje gissning avgora vilket fall bland dessa tre alternativ
foreligger. Darfor ar Gissa tal-spelet programmeringstekniskt ett exempel pa ett
trevagsval. Tankbara utvecklingssteg ar: Till att bérja med kan det hemliga talet
vara en hardkodad konstant. Sedan kan man ga Over till att anvinda C#:s
slumptalsgenerator for att forse hemliga talet med slumptal i ett Gnskat intervall. S&
lar vi oss pa kopet hanteringen av slumptal i C#. Onskemalet att kunna upprepa
gissningarna tills man gissat ratt och genomfora flera spelomgangar leder till att
skriva repetitioner (loopar) i C#. For att kontrollera loopars korrekta avslutning be-
hover man kunskaper i logik som vi dgnar oss 4t i nasta kapitel. Slutligen kommer
vi att skriva spelet som en klass. Vi borjar med att 16sa problemet med:

Nastlad if-else

Denna nastlade kontrollstruktur kan tankas bade som alternativ och komplement
till switch-satsen for att koda flervagsval. Vi kommer att lara oss bada majlig-
heter. Men forst ska vi anvanda den for att fa fram Gissa tal-spelet, version 1:

// GuessIfElse.cs
// Flervdgsval med ndstlad if-else-sats
using System;

class GuessIfElse

{
static void Main ()
{
Console.Write ("\n\tGissa ett tal mellan 1 och 20:\t");
int guessedNo = int.Parse (Console.ReadLine()) ;
if (guessedNo <= 17)
if (guessedNo == 17)
Console.WriteLine ("\u0007\n\tGrattis, du har " +
"gissat ratt!\n");
else
Console.WriteLine ("\n\tFér litet!'\n");
else
Console.WriteLine ("\n\tFér stort!\n") ;
}
}

128

Programmet ovan ldser in ett tal, avgér om det ar mindre, lika med eller stérre &n
17 och skriver ut det. S& har kan korningar se ut for de tre olika alternativen:

Gissa ett tal mellan 1 och 20: 15

For litet!

Gissa ett tal mellan 1 och 20: 19

For stort!

Gissa ett tal mellan 1 och 20: 17

Grattis, du har gissat ratt!

Samtidigt kommer programmet GuessIfElse producera datorljudet ndr man gis-
sat rétt pga escapesekvensen \u0007 skickas till konsolen om det inmatade tal som
lases in till variabeln guessedNo, 4r 17. Men |at oss titta hur den nastlade struk-
turen ser ut:

—— m if (guessedNo <= 17)

— if (guessedNo == 17)

Inre Ce

Yttre L e else

L else

Vi har en inre if-else-sats som ar néstlad i i£-delen av en yttre if-else-sats.
Den yttre i £-else-satsen behandlar de tva grupperade alternativen <= 17 i i£-de-
len och alternativet > 17 i else-delen. Den inre if-else-Satsen tar hand om
”gruppen”, splittrar upp den i sina bestandsdelar < 17 och == 17, behandlar == 17 i
if-delen och < 17 i else-delen. P& sa satt aterfors trevagsvalet till tva tvavagsval
som var och en loses med en if-else-sats. Man anar hur komplexiteten véxer
med storre antal alternativ. For att inte raka ut for det s.k. luriga-e1se-fenomenet —
sa kallas det nar ndgot else paras med “fel” if — later vi alla else hitta “riitt” if
genom att skriva if£-else alltid som par och inte hoppa 6ver ndgot else. Regeln
ar att else automatiskt paras till ndrmaste i£. Man kan jamfora det med pa-
renteser.:Oppnar man en parentes maste man dven stanga den.

Kombination av switch och if-else

Aven om tomma case-satser loser trevagsvalet med olikheter, &r det ju inte precis
nagon elegant I6sning att rada upp en massa case utan innehall, sarskilt om man

129

skulle vilja utvidga gissningsintervallets storlek. Alternativt kan problemet I6sas
med en kombination av switch for if-else. D3 det galler att skilja mellan de tre
alternativen lika med, storre &n och mindre &n 17 kan switch-satsen testa likheten
i en case-sats. Nér det ar gjort, har man reducerat trevagsvalet till ett tvavagsval
mellan storre &n och mindre an. Tvavagsvalet tar sedan hand om fallen storre &n
och mindre &n i en vanlig i£-else-sats som kan placeras i switch-satsens de-
fault-del. case-satsen behandlar alltsa ett fall och default de tva andra fallen:

// GuessSwitch.cs

// Gissa tal-spelet med switch kombinerad med if-else
// Reduktion av trevdgsval till tvavdgsval

using System;

class GuessSwitch

: static void Main()

{ Console.Write ("\n\tGissa ett tal mellan 1 och 20:\t");
int guessedNo = int.Parse (Console.ReadLine()) ;
Console.Write ("\n\t") ;
switch (guessedNo)

{
case 17:
Console.Write ("\aGrattis, du gissade ratt!\n\n");
break;
default:
if (guessedNo < 17)
Console.Write ("Fér LITET, forsoék igen'!\n") ;
else
Console.Write ("F6r STORT, forsék igen'!\n") ;
break;
}
}
}

Programmet ovan ger exakt samma resultat (sid 129) som programmet Guess-
1fElse. Kombinationen av de tva kontrollstrukturerna switch och if-else le-
der till en avsevirt forenkling och klarhet av koden. Aven denna kombination &r
forstas en slags nastling: if-else-satsen ar nastlad i switch-satsen. Men nastlin-
gen har innebdr mindre komplexitet &n hos den néstlade if-else-satsen. Enkelhe-
ten och klarheten i strukturen motiverar anvandningen av default-satsen pa ett
okonventionellt satt.

Den egentliga férdelen med den hér I6sningen &r att man tillampat idén att bryta
ned ett stort, svart problem (trevagsval) till ett mindre, enklare problem (tvavags-
val) vars 16sning redan &r kand — en metodik som med férdel kan anvéndas &ven i
andra sammanhang. | matematiken ar det vanligt att bevisa nya satser (stora, svara
problem) med hjélp av redan ké&nda satser (mindre, enklare problem). | program-
meringen anvénds idén om modularisering pé ett mer genomgripande satt nar man
skriver metoder och klasser.

130

6.6 Efter-testad repetition: do-satsen

Datorn har nagra egenskaper som ar helt dverlagsna motsvarande egenskaper hos
manniskan: snabbheten, noggrannheten och férmagan att effektivt lagra och hante-
ra stora datamangder samt formégan att inte bli trétt. Datorn kan upprepa en sak
miljardtals ganger utan att tappa i noggrannhet. Denna forméaga utnyttjas i stor
skala av alla méjliga datorprogram. Och darfor har man en speciell kontrollstruk-
tur i algoritmer som beskriver den: repetitionen. “Att lata datorn géra grovjobbet”
innebdr att lata datorn utféra en repetition. Beroende pa hur repetitionens avslut-
ningsvillkor formuleras och var det placeras skiljer man mellan:

Tre typer av repetition*

Efter-testad repetition
For-testad repetition
Bestdmd repetition

Efter-testad repetition

Nar avslutningsvillkoret till en upprepningsslinga — &ven kallad loop — testas efter
loopens instruktioner dvs efter det som egentligen ska upprepas, kallas den for do-
satsen. Sa har kan den formuleras i pseudokod och som flodesschema:

Pseudokod Fl6desschema

!

REPETERA Instruktion(er)
instruktion(er)
SA LANGE villkor uppfyllt Loop

sant

falskt

I C# inleds den efter-testade repetitionen med det reserverade ordet do:

do
{

statement(s) ;
} while (condition) ;

“ Ibland anvands istallet for repetition det synonyma begreppet iteration som &r en fackterm
aven i andra sammanhang, t.ex. i numerisk analys. Ett beslaktat koncept ar rekursion som ar
ett alternativ till repetition, men har en annan logisk struktur. Alla rekursiva algoritmer kan
skrivas som iterativa.

131

Forsta raden ar do-satsens huvud och féar inte avslutas med semikolon. Resten &r
do-satsens kropp som bestar av ett block (sid 117). Om kroppen bestar endast av en
sats kan klamrarna { och } utelamnas. Till skillnad fran i£-satsen kan har kroppens
avslutande klammer inte ersatta do-satsens avslutande semikolon, da do-satsen inte
&r komplett utan fortsatter med villkoret. Och villkoret kan bara testas nér det som
vanligt skrivs inom vanliga parenteser som foljer det reserverade ordet while. Ef-
ter villkoret &r do-satsen komplett vilket bekraftas med det avslutande semikolonet.

Med hjélp av den nya kontrollstrukturen efter-testad repetition ska vi nu skriva en
do-sats. Som applikation tar vi Gissa tal for att vidareutveckla det. Den stora
nackdelen av alla tre versioner hittills var att man inte kunde gissa flera omganger
utan var tvungen att kéra om programmet for att gissa vidare. Féljande program
anvander en do-loop for att kunna kdra programmet tills man gissat ratt:

// GuessDo.cs
// Gissa tal-spelet i dialog med do-loop
using System;

class GuessDo

{

static void Main ()
{
int guessedNo;
do

{

Console.Write ("\n\tGissa ett tal mellan 1 och 20:\t");
guessedNo = int.Parse (Console.ReadLine()) ;
Console.Write ("\n\t") ;

switch (guessedNo)

case 17:
Console.Write ("\aGrattis, du gissade ratt!\n\n");
break;
default:
if (guessedNo < 17)
Console.Write ("Fér LITET, £forsék igen'!\n");
else
Console.Write ("F6r STORT, forsék igen'!\n") ;
break;
}
} while (guessedNo != 17);
}
}

do-satsen ar en lamplig variant av repetition nar det géller att astadkomma en
dialog mellan datorn och anvandaren. | Guessbo inleds dialogen med inlédsning av
guessedNo. Sedan tar switch-satsen hand om valet mellan tre alternativ, namli-
gen om det gissade talet &r lika med, mindre &n eller stérre &n spelets hemliga tal
17. | slutet testas om guessedNo ar skilt fran 17. Om sé ar fallet, atervander pro-

132

gramflodet till borjan av do-blocket och allt upprepas tills guessedNo ndgon gang
blir lika med 17. Nu kan vi gora flera gissningar vid endast en kérning. Program-
met avslutas forst ndr vi hittat det hemliga talet. En kdrning av programmet
GuessDo kan t.ex. ge féljande dialog:

Gissa ett tal mellan 1 och 20: 5
For LITET, forsok igen!
Gissa ett tal mellan 1 och 20: 15
For LITET, forsok igen!
Gissa ett tal mellan 1 och 20: 19
For STORT, forsok igen!
Gissa ett tal mellan 1 och 20: 17

Grattis, du gissade ratt!

| do-satsen utfors satserna forsta gangen oavsett om villkoret ar sant eller falskt.
Sedan testas villkoret: &r det sant upprepas satserna. Sedan testas villkoret igen: ar
det fortfarande sant, fortsitts repetitionen osv. Ar villkoret falskt, stoppas repetitio-
nen. Man kan alltsa saga: dérrvakten (villkoret) star vid utgangen till lokalen (loo-
pen). Konsekvensen blir att, nar villkoret ar falskt fran borjan, kommer satserna i
alla fall att utforas atminstone en gang. | nasta avsnitt behandlas en annan variant
av repetition, den for-testade repetitionen dar dorrvakten sa att saga star vid ingan-
gen till lokalen och inte tillater att ndgon sats exekveras nar villkoret ar falskt fran
borjan. Ar villkoret sant hela tiden, kommer loopen att snurra i all evighet. Darfor
kallas den evighetsloop (sid 138).

Det ar avgorande att skilja mellan repetition och selektion. I selektionens pseudo-
kod har vi nyckelordet oM och i C# det reserverade ordet if, vilket innebdr ett val
en enda gang, dvs ingen upprepning alls. | repetitionens pseudokod har vi SA LAN-
GE och i C# det reserverade ordet while, vilket innebar att villkoret testas uppre-
pade ganger. | selektionens flodesschema gar allt flode endast framat dvs alla pilar
nedat, se sid 113, 121 och 123. | repetitionens flddesschema ovan gér pilen efter in-
struktionerna tillbaka till villkoret for att testa det igen. Orsaken till att program-
flodet gér tillbaka &r att det finns en hoppats inbyggd i alla repetitioner som skickar
programflodet tillbaka till loopens villkor. Ett annat sétt att se pa efter-testad
repetition &r att i pseudokoden (sid 131) anvanda nyckelordet TILLS istéllet for sA
LANGE. Sa kan logiken ibland uppfattas enklare:

REPETERA
instruktion(er)
TILLS villkor inte uppfyllt

Om man véljer samma villkor som i formuleringen med sA LANGE, dvs bibehaller
villkorets formulering, maste man negera villkoret nar man gar 6ver till TILLS. Det

133

beror pa skillnaden i den logiska innebérden av sA LANGE och TILLS. | flodes-
schemat av den efter-testade repetitionen blir det ingen strukturell &ndring, bara
man séatter sant och falskt pa de logiskt korrekta utgangarna av villkoret.

Hantering av slumptal

En nackdel av programmet GuessDo ar att det hemliga talet ar hardkodat som 17.
Det skulle innebéra en vésentlig forbattring av Gissa tal om programmet kunde
generera ett slumptal mellan 1 och 20 som hemligt tal varje gang man korde det.
Darfor éppnar vi hér en liten parentes om slumptal av typ int och deras hantering.

Generellt kan man med datorn som en deterministisk maskin som datorn é&r, inte
producera dkta slumptal utan endast simulera dvs pa nagot sétt berékna s.k. pseu-
doslumptal enligt en viss algortim. Overallt vi pratar om slumptal menar vi egent-
ligen pseudoslumptal. I C# kan man simulera slumptal pa olika satt, bl.a. med
klassen Random och dess metod Next () som returnerar slumptal av typ int mel-
lan 1 och int.MaxValue, Om den anropas utan parameter. En annan variant av
Next () returnerar slumptal mellan sina parametrar, ndrmare bestamt:

a <= r.Next(a, b) < b

dér r ar ett objekt klassen Random. FOr att skraddarsy metoden Next (a, b) till att
fa slumptal mellan 1 och 20 maste vi anropa r.Next (1, 21). Féljande program
testar bdda varianter av Next () :

// DoRand.cs

// Skriver ut 5 slumptal mellan 1 och int.MaxValue samt
// 20 mellan 1 och 20

// Anropar tva varianter av Random-metoden Next () en gang
// med ingen parameter, en gang med tva paramtrar

using System;

class DoRand

{
static void Main ()
{
int i =1, j =1;
Random r = new Random(); // Objekt av klassen Random
Console.WriteLine ("Slumptal mellan 1 & int.MaxValue:\n");
do // do-loop
Console.WriteLine ("\t" + r.Next()):
while (i++ < 5); // 1 testas férst, Skar sedan
Console.WriteLine ("\nSlumptal mellan 1 och 20:\n\t");
do // do-loop
Console.Write (r.Next (1, 21) + "\t");
while (j++ < 20); // j testas férst, Skar sedan
Console.WriteLine('\n');
}
}

134

En kérning av DoRand ger foljande resultat:

Slumptal mellan 1 & int.MaxValue:

1460841191
225482400

1438321568
1700127070
1513406452

Slumptal mellan 1 och 20:

7 20 2 12 12 14 3 16 3 15
2 15 12 9 1 10 14 15 1 2

For det forsta ser man att vi far endast heltal vilket beror pa att badda metoderna
Next () och Next (a, b) returnerar int. Vill man ha decimalslumptal finns det en
annan metod i klassen Random som heter NextDouble (). FOr det andra har vi fatt
i intervallet [1, 20] &ven randvérdena 1 och 20. Hade vi anropat r.Next (1, 20)
hade vi fatt slumptal mellan 1 och 19 eftersom den andra parametern inte ingar i
slumptalsgenereringen. S&, anropet r.Next (1, 21) ger slumptal mellan 1 och 20.

Nar det galler de bada varianterna av metoden Next () ger den ena utan parameter
de stora slumptalen i utskriften ovan mellan 1 och int.MaxValue och den andra
med tva parametrar de sma slumptalen mellan 1 och 20. Tva olika do-satser i Do-
Rand tar hand om slumptalen i dessa tva olika intervall. | den forsta do-satsen
anropas Next () utan parameter, i den andra med tva parametrar. Vi har hér att go-
ra med ett koncept i programmering som kallas dverlagring av metoder som &r en
generalisering av dverlagringen av operatorer som vi behandlat tidigare (sid 74).
Innebérden &r att det ar tva olika metoder med samma namn, men olika parameter-
listor. I anropet avgors vilken av dem det géller darfor att parameterlistan avsléjar
identiteten — bade for oss och kompilatorn. C#-biblioteket ar fullt med 6verlagrade
metoder. De flesta biblioteksklasserna har t.o.m. flera dverlagrade metoder dvs
flera olika metoder med samma namn.

Gissa tal med slumptal

Resultatet frdn DoRand kan vi nu anvanda i nasta version av Gissa tal for att slum-
pa fram det hemliga talet varje gang vi kor och kunna spela tills vi gissat ratt (sid
128).

Spelet har forbéttrats i tvd avseenden: For det forsta bestams programmets hemliga
tal inte langre redan i koden utan slumpas fram med Random-metoden Next () en-
ligt ovan. For det andra behdver man inte vénta tills man gissat ratt for att avsluta
programkdrningen, utan kan avsluta innan man hunnit gissa rétt: Man matar in 0
och far samtidigt reda pa spelets hemliga tal som ar olika for varje korning pga
anvandningen av slumptal.

135

Foljande program implementerar Gissa tal-spelet med slumptal:

// GuessDoRand.cs
// Gissa tal-spelet med slumptal i dialog med do-loopen
using System;

class GuessDoRand

{

static void Main ()

{

}

Programmets forsta if-sats bryter da do-loopen med hjalp av break. Nar vi
behandlade switch-satsen sade vi att break dr ett reserverat ord som bryter
programflédet &ven i loopar (sid 127). Och det &r precis vad den gor hér. break
bryter do-satsen utan att testa do-satsens avslutningsvillkor (gquessedNo != sec-
retNo) som i regel — dvs ndr break inte utférs — kommer till anvadndning och
avslutar dialogen nar man gissat ratt. Annars fortsatter dialogen sa ldnge man gis-
sar fel.

int guessedNo;
Random r = new Random() ;
int secretNo = r.Next(l, 21);

do
{
Console.Write (
"\n\tGissa ett tal mellan 1 och 20" +
" (Avsluta med 0):\t");
guessedNo = int.Parse (Console.ReadLine()) ;
Console.Write ("\n\t") ;
if (guessedNo == 0)

{
Console.WriteLine ("Avbrott: Programmets " +
" hemliga tal var " + secretNo + '\n');
break; // Bryter do-loopen
}
if (guessedNo == secretNo)

Console.Write ("\aGrattis, du har gissat " +
"ratt!\n\n") ;
break; // Bryter do-loopen

if (guessedNo < secretNo)
Console.Write ("Fér LITET, £o6rsdk igen!\n");
else
Console.Write ("Fér STORT, forsdék igen!\n");
} while (guessedNo != secretNo) ;

136

Fragan som dyker upp ndr man tittar pd koden i programmet GuessDoRand, &r:
Varfor anvands inte langre switch i kombination med if-else Som i den senaste
versionen av Gissa tal hade gett bra resultat. Vi hade helst velat gora det. Men
évergangen till slumptal gor att slumptalet maste lagras i en variabel — i det har
fallet secretNo — och switch-satsen inte tillater jamférelse med en variabel. |
spelets forsta versioner var programmets hemliga tal hardkodat som konstanten 17
och switch kunde jamfora expression guessedNo med denna konstant. Men nu
lagras det hemliga talet i variabeln secretNo. Den allménna strukturen:

switch (expression)

{

case constantl :

sétter stopp for anvandningen av switch i GuessDoRand darfor att expression kan
vara en variabel av typ int eller char — i vart fall &r guessedNo en int-variabel
(det &r ok) — medan constantl maste vara ett konstant uttryck, annars kan man inte
kompilera. | vart fall &r secretNo som skulle skrivas efter case, inget konstant
uttryck utan en int-variabel, vilket inte ar ok. Vi stoter har pd switch-satsens
begrénsningar. Darfor anvands i GuessDoRand en enkel if- samt en if-else-
sats for att avgora trevigsvalet “guessedNo lika med, mindre eller storre &n se-
cretNo”. En kdrning ger:

Gissa ett tal mellan 1 och 20 (Avsluta med 0): 10
For LITET, forsok igen!
Gissa ett tal mellan 1 och 20 (Avsluta med 0): 15
For STORT, forsok igen!
Gissa ett tal mellan 1 och 20 (Avsluta med 0): 12
For LITET, forsok igen!
Gissa ett tal mellan 1 och 20 (Avsluta med 0): 13
For LITET, forsok igen!
Gissa ett tal mellan 1 och 20 (Avsluta med 0): 14

Grattis, du har gissat ratt!

Har man efter ett tag ingen lust att gissa vidare och vill avsluta, kan man mata in 0.
Man far da reda pa programmets hemliga slumptal vid just den aktuella kdrningen:

Gissa ett tal mellan 1 och 20 (Avsluta med 0): O
Avbrott: Programmets hemliga tal var 20

137

do-satsen &r en lamplig variant av repetition fér dialoger mellan dator och anvéan-
dare. Fragan om vilken variant av repetition man ska vélja, kan inte besvaras gene-
rellt, eftersom det ar det konkreta problemet som avgér valet.

Innan vi avslutar do-satsen vill vi namna en foreteelse som man kan réka ut for nar
man jobbar med loopar:

Evighetsloop

I det inledande exemplet DoRand &r den forsta do-satsens avslutningsvillkor i++ <
5. Detta innebdr att det egentliga villkoret &r i < 5 och att efter villkorets test, i:s
varde 6kas med 1. Ersatts avslutningsvillkor med i < 5 avslutas loopen och
darmed programmet aldrig: Man har rakat ut for en s.k. evighetsloop. Orsaken ar
att villkoret ar sant frdn borjan — i har ju initierats till 1 — och forblir sant hela
tiden, sa loopen fortsatter i all evighet. Generellt innehller en loop alltid méjlig-
heten till en evighetsloop. For att undvika den, maste villkoret och satserna i krop-
pen formuleras pa ett sddant sitt att villkorets sanningsvirde andras, sa att
villkoret blir falskt efter nagra varv. Detta krav har realiserats i programmet Do-
Rand genom att anvanda i++. Dvs, har man med en lamplig initiering av i kom-
mit in i do-satsen, kommer i att 6ka med 1 i varje varv sé att det ndgon gang blir =
5. Da stoppas loopen. Glommer man 6kningen ++ och initierar i med ett varde
mindre 4n 5 blir do-satsen en evighetsloop. Omvant: Ar do-villkoret falskt fran
borjan, gors ingenting. Initieras i till ett varde >= 5, blir villkoret falskt fran bérjan
och man kommer aldrig in i kroppen (aldrigloop”). Programflddet fortsétter vid
forsta satsen efter do-loopen. Testa garna dessa mojligheter.

138

6.7 FOr-testad repetition: while-satsen

while-satsen &r en upprepningsloop dér avslutningsvillkoret testas fore loopens
instruktioner dvs innan det som ska upprepas. Enda skillnaden gentemot den efter-
testade repetitionen &r ordningen mellan villkor och instruktioner. Denna ordning
blir omvénd:

Pseudokod och ritas som Fl6desschema
Loop —
SA LANGE villkor uppfyllt
instruktion(er) sant Instruktion(er)
falskt

I C# inleds for-testad repetition med det reserverade ordet while och skrivs sa har:

while (condition)

{
}

Forsta raden ar huvudet och far inte avslutas med semikolon, om man inte vill ha
en tom while-sats. Resten &r while-satsens kropp som omsluts av klamrarna {
och }. Om kroppen bestér endast av en sats kan klamrarna utelamnas.

statement(s) ;

// Ascii.cs
// Skriver ut en del av teckentabellen med en while-loop
using System;

class Ascii

{
static void Main ()
{
int code = 33;
while (code <= 256)
{
Console.Write(code + " " + (char) code + '\t');
if (code % 8 == 0) // Var 8:e utskrift:
Console.WriteLine() ; // Radbyte
code++;
Console.WriteLine ("\nEfter while-satsen &r code = " +
code + '\n');
}
}

139

Programmet Ascii visar ett exempel pd while-satsen med tre satser i kroppen
som skriver ut foljande del av Ascii-tabellen till konsolen. Kroppens avslutande
klammer kan ersétta det semikolon som skulle avsluta hela while-satsen.

33 | 34 " 35 # 369% 37 % 38& 39 ° 40 (
41) 42 % 43 4+ 44 45 - 46 . 47 / 48 0
491 502 513 524 535 546 557 568
579 58 59 ; 60 < 6l= 62> 637 64@
65A ©66B 67C 68D 69E 70F 711G 72H
731 7431 75K 76L 77M 78N 790 80P
81lq 82 R 8sSs 8T 88U 8V 8 W 88X
89 Y 92z 91[92\ 93] 94 A 95 _ 96 °
97a 98b 99c 100d 10l1'e 102 f 103 g 104 h
105 i 106 j 107 k 1081 109m 110 n 1110 112 p
113 q 114 r 115s 116t 117 u 118 v 119 w 120 x
121y 122z 123 { 124 | 1253 126 ~ 127 o 128 ?
1297 1307 1317 132 ? 133 ? 134 7 1357 136 ?
137 7 138 7 1397 140 7 141 ? 142 7 143 7 144 ?
145 7 146 ? 147 ? 148 ? 149 ? 150 ? 151 ? 152 ?
153 ? 154 ? 155 ? 156 ? 157 ? 158 ? 159 ? 160
161 ; 162 ¢ 163 £ 164 = 165¥ 166 ! 167 § 168
169 @ 170 @ 171 « 172 -~ 173 - 174 ® 175 - 176 °
177 + 178 2 179 > 180 ° 181w 1829 183 - 184
185 1 186 ° 187 » 188 % 189 % 190 ¥ 191 ; 192 A
193 A 194 A 195 A 196 A 197 A 198 £ 199 g 200 E
20LE 202 E 203E 2041 2051 2061 207 208
2008 2100 2110 2120 2130 21408 215 x 216 @
217 0 2180 2190 2200 221Y 222k 223R 2244
225 4 2264 227 4 2284 2294 2302 231c 2322
233 6 2348 2358 23613 2371 23893 23971 2409d
241 A 2420 2436 2448 2456 24606 247 = 248 ¢
2490 2500 2510 2520 253y 254p 2559y 256 A

Efter while-satsen ar kod = 257

ASCIl-tabellen med while

Nar vi i kapitel 5 tog upp ASClI-tabellen kunde vi i programmen Int2char,
Char2int och Unicode med hjalp av explicit typkonvertering fa reda pa enskilda
teckens koder och omvént. Nu nér vi kan hantera loopar kan vi skriva ut delar av
teckentabellen i ett ssmmanhé&ngande kodintervall. Programmet Ascii skriver ut i
en for-loop bade tecken och tillhérande kod genom att anvinda en int-variabel
code som raknare och fa ut resp. tecken genom explicit typkonvertering fran int
till char: Variabeln code initieras till 33. while-satsen borjar med att testa vill-
koret code <= 256. Ar det sant utfors kroppens satser. Darfor hamnar 33 ! som
allra forsta i utskriften ovan. Sedan testas villkoret igen: Ar det fortfarande sant,
utfors satserna igen osv. Detta upprepas gang péa gang. Sist skrivs ut 256 2 darfor
att 256 ar variabeln code:s sista varde som fortfarande uppfyller villkoret code
<= 256. | nasta varv da code hunnit bli 257 &r villkoret inte langre uppfyllt och
while-loopen stoppas. Nar vi efter while-satsen skriver ut code far vi 257.

140

En jamforelse av Ascii-programmets utskrift pd forra sidan med ASClI-tabellen
pa sid 93 visar 6verensstammelse i standard ASClI-koderna upp till 127. Resten &r
icke standardiserade koder. Men hur astadkommer while-satsen utskriften? LAt
0ss ga igenom det varv for varv.

Dé code i forsta varvet & 33 och darmed mindre &n 256, kommer vi in i while-
satsen och far utskriften 33 1 féljd av en tabultaor. Att det blir ! och inte 33 beror
pa att vi i utskriftssatsen med explicit typkonvertering omvandlat int-variabeln
code:s Vvérde till char (sid 94). Sedan foljer i£-satsen med villkoret code % 8 ==
0. Det har villkoret ar falskt da code:s varde 33 modulo 8 ger 1 dvs inte 0 (sid 75).
Dérfor utfors inte if-satsens kropp dvs inget radbyte skrivs ut. Efter if-satsen
utfors uppdateringen code++ sa att code blir 34.

Efter while-satsens forsta varv gar programflodet tillbaka till villkoret code <=
256. DA 4r code:s varde 34 som jamfors med 256. D4 34 ar mindre 4n 255,
kommer vi igen in i while-satsens andra varv. 33 " skrivs ut foljt av en tabultaor.
D& if-satsens villkor fortfarande ar falskt — 34 modulo 8 ger 2 som inte ar 0 — ut-
fors kroppen inte heller den har gangen: inget radbyte. | slutet av loopens andra
varv uppdateras code:s vérde till 35.

Allt detta upprepas pa samma sétt dven i while-satsens 3:e, 4:e, 5:¢, 6:e och 7:e
varv. Vi kommer s langt da dven 38 och 39 4r mindre &n 256. | det 8:e varvet har
code hunnit bli 40. D& skrivs ut 40 (foljt av en tabultaor. Men nu &r for forsta
gangen if-satsens villkor code % 8 == 0 sant, eftersom code:s varde, 40 modulo
8 ger 0. Déarfor utfors if-satsens Kropp: Console.WriteLine () Vilket innebér
radbyte. Observera ocksd att utskrifterna langs en rad gors med
Console.Write () Vilket innebar utskrift utan radbyte. | slutet pa loopens 8:e
varv uppdateras code:s varde till 41.

P& den nya, andra raden i utskriften — i loopens 9:e varv — skrivs ut 41) féljtav en
tabulator. Darefter inget radbyte da, pga 41 modulo 8 &r 1. Utskriften fortsétter pa
den andra raden utan radbyte tills code:s varde natt 48. For andra gangen blir i£-
satsens villkor sant, ndr code &r 48 for 48 modulo 8 ger 0. Mdnstret har klarnat:
if-satsens roll &r att producera radbyte nér code:s varde ar jamnt delbart med 8
dvs var attonde utskrift. Detta ar just inneborden i villkoret code % 8 == 0. Vi har
gjort s for att fa en tabellartad utskrift.

while-satsen avslutas nar villkoret code <= 256 blivit falskt dvs nir code nétt
257 som &r varken mindre eller lika med utan storre &n 256. Darfor stoppas repeti-
tionen. Efter det skrivs code:s sista varde 257 ut fér kontroll.

141

6.8 Bestamd repetition: for-satsen

for-satsen dr en upprepningsloop dér antalet repetitioner &r ké&nt i forvag. | de
hittills behandlade varianterna — for- och efter-testad repetition — styr endast vill-
koret antalet repetitioner och man kan fa reda pa antalet repetitioner efter att ha
kort programmet dvs i efterhand. | den bestdmda repetitionen kan programmeraren
redan vid kodningen bestamma antalet repetitioner. Det ar anvandbart i de fall da
man vet hur manga ganger en sak ska upprepas. Visserligen finns dven i den be-
stdmda repetitionen ett villkor som testas i varje varv av loopen, men det finns
aven en inbyggd mojlighet att styra villkoret och darmed antalet repetitioner med
hjalp av en raknare, dven kallad styrvariabel.

Réknaren satts fore repetitionen till ett 6nskat startvarde, for det mesta nagot
heltal, ofta 1. Detta kallas initiering av rdknaren dvs den allra forsta tilldelningen
av ett vérde till rdknaren. Sedan testas ett villkor dar man brukar lagga in ett 6ns-
kat slutvarde pa raknaren. Darmed ar antalet repetitioner fastlagt, t.ex. till slut-
varde minus startvarde om réaknaren dkar med 1. Om villkoret ar uppfyllt, t.ex. om
raknaren ar mindre &n slutvardet, utfors ett antal instruktioner. Sedan gors en upp-
datering av riknaren, ofta en 6kning med 1, men det ar mojligt att rdkna nedat el-
ler vélja ett annat steg &n 1. Allt detta hdnder i varje varv av repetitionen. S& hér
ser den bestdmda repetitionens flédesschema ut:

l

Initiera raknaren

- Loop

Villkor

Instruktion(er) = Uppdatera réknaren

Flodesschemat askadliggor den logiska strukturen av problemet. Den bestimda
repetitionens pseudokod blir enligt flédesschemat ovan:

Initiera réknaren

SA LANGE villkor ar uppfyllt
utfor instruktion(er)
uppdatera raknaren

I ndgra aldre programsprak som t.ex. Basic, Fortran och Pascal, finns endast det-
ta specialfall, dar villkoret implicit (dvs underforstatt) ar inbyggt och raknarens
uppdatering sker automatiskt. Detta specialfall kan beskrivas med féljande pseu-
dokod:

142

STEGA raknaren FRAN startvarde TILL slutvarde (med STEG)
instruktion(er)

Da det inbyggda villkoret riknare < slutviirde inte syns i pseudokoden — darfor
implicit — kan det inte heller &ndras. | flodesschemat blir det ingen strukturell &n-
dring om man tar ver detta villkor.

Nyckelordet sA LANGE i pseudokoden pa forra sidan visar att den bestdmda repeti-
tionen alltid kan Overséttas till en while-sats om man sjélv tar hand om raknaren.
Langre fram ska vi ge exempel pa oversattningar frAn do och while till for.
Precis som i while-satsen har man i princip friheten att formulera villkoret hur
som helst. Men da raknaren ar inbyggd i £ox- till skillnad frén while-satsen, kan
man i villkoret jamfora rdknaren med nagot slutvarde, t.ex. s har: “riknare dr
mindre an eller lika med slutvérde”. Detta ger ett specialfall av den bestimda
repetitionen.

I C# inleds bestamd repetition med det reserverade ordet £or och skrivs s har:

(—
for (initiering; Vvillkor; uppdatering)

4
satser); (%) /
}

Forsta raden ar £or-satsens huvud och far inte avslutas med semikolon. Resten ar
for-satsens kropp som omsluts av klamrarna { och }. Kroppens avslutande klam-
mer kan ersatta det semikolon som skulle avsluta hela £or-satsen. Om kroppen
endast bestar av en sats kan klamrarna utelamnas. Jamfor man C#-koden med flo-
desschemat pé& forra sidan kan man konstatera att koden &r lite kryptisk i den
bemarkelsen att den inte foljer flodesschemats struktur initiering — villkor —
sats(er) — uppdatering. Darfor har vi i koden ovan numrerat for-satsens olika de-
lar for att visa i vilken ordning de utférs. Pilarna markerar loopens forlopp. Initie-
ringen gors endast en gang och ingar ej i loopen. Béde initieringen och uppdaterin-
gen, avser rdknaren som &r en vanlig variabel och darfor maste definieras precis
som vilken variabel som helst.

| foljande program har vi modifierat programmet boRand genom att skriva om do-
satserna till £or-satser (sid 134):

143

// ForRandom.cs

// Skriver ut 4 slumptal mellan 1 och int.MaxValue samt
// 19 mellan 1 och 20

using System;

class ForRandom

{
static void Main()
Random r = new Random() ;
Console.WriteLine ("Slumptal mellan 1 och " +
" int.MaxValue:\n") ;
for (int i = 1; i < 5; i++) // 1 gdller bara i
Console.WriteLine ("\t" + r.Next()); // denna for-
// sats
Console.WriteLine ("\nSlumptal mellan 1 och 20:\n\t");
for (int i = 1; i < 20; i++) // Ny lokal var. i
Console.Write(r.Next (1, 21) + "\t");
Console.WriteLine('\n') ;
}
}

Fragan &r nu: Blir det samma resultat som i programmet DoRand? Gor de tva do-
saterna dar samma sak som motsvarande for-satserna hdr? En korning av pro-
grammet ovan producerar foljande resultat vilket visar att det finns en viktig skill-
nad till Dorand-utskriften pa sid 135 bortsett fran de annorlunda slumptalsvardena:

Slumptal mellan 1 och int.MaxValue:

3107148
735561933
153248854
1692537805

Slumptal mellan 1 och 20:

1 7 10 10 7 4 8 19 6 10
18 20 14 3 7 1 15 17 7

Den avgorande skillnaden &r att det nu skrivs ut 4 medan da fanns 5 slumptal mel-
lan 1 och int.MaxValue och att det nu skrivs ut 19 medan dé& fanns 20 slumptal
mellan 1 och 20. L&t oss nu jamfora looparnas koder lite narmare med varandra for
att fa reda pa orsaken till denna skillnad. L3t oss ta t.ex. den forsta do-satsen i Do-
Rand (sid 134) :

144

do
Console.WriteLine ("\t" + r.Next()):;
while (i++ < 5);

Vi jamfor denna do-loop med den férsta £oxr-loopen i programmet ForRandom;

for (int i = 1; 1 < 5; i++)
Console.WriteLine("\t" + r.Next());

Det star exakt samma sats i deras resp. kroppar: Den skriver ut en tabulator samt ett
slumptal genom konkatenering. Men fragan ar: hur manga ganger sker detta dvs
hur manga varv har resp. loop? Fragan besvaras inte av kroppen utan av villkoret
och programflédet, dvs i vilken ordning villkorets test och raknarens uppdatering
genomfors.

| do-satsen testas réknaren i forst och 6kar sedan pga i++ dvs dkningsoperatorns
postfixvariant, vilket innebdr: Nar raknaren &r 4 i loopens 4:e varv, har pga do-loo-
pens efter-testade karaktér, redan fyra slumptal skrivs ut innan villkoret 4 < 5 tes-
tas. D& fortsatter loopen och raknaren uppdateras till 5. Loopen kommer in i sitt 5:e
varv och utfor kroppen. Sedan avslutas loopen da 5 < 5 ger £false. Alltsd genom-
gar do-loopen fem varv och skriver ut fem slumptal. | £for-satsen daremot hander
pga strukturen initiering — villkor — sats(er) — uppdatering (forra sidan) foljande:
Nar for-loopen inleder sitt 4:e varv med testet 4 < 5 har pga for-loopens for-
testade karaktar skrivits ut forst 3 slumptal, vilket forstas dven framgar av for-sat-
sens flodesschema (forforra sidan). D& gar programflodet forst “ned” till kroppen
och skriver ut det 4:e slumptalet, innan rdknaren hinner bli 5. Sedan testas villkoret
5 < 5 som ger false. Darfor avslutas loopen. Alltsd genomgar f£or-loopen fyra
varv och skriver ut fyra slumptal. Det ar den avgoérande skillnaden mellan do- och
for-satserna ovan och darmed mellan programmen DoRand 0ch ForRandom. Dér-
for producerar det forsta fem medan det andra endast fyra slumptal. Vill man att
DoRand producerar fyra utskrifter behéver man bara byta ut postfixvarianterna i++
och j++ mot prefixvarianterna ++i och ++j i do-looparnas avslutningsvillkor.
Omvant: Vill man att ForRandom producerar fem utskrifter behdver man bara byta
ut i < 5 mot i <= 5 i for-looparnas avslutningsvillkor. Testa gérna! Ganska
liknande resonemang forklarar varfér ForRandom skriver ut 19 slumptal medan
mellan 1 och 20, medan boRand gor det 20 ganger.

Rackvidden av for-satsens raknare

En annan foreteelse som man kan observera nar man jamfor do i DoRand med for
i ForRandom &r att vi i forsta fallet behovde tva olika variabler i och j som
réknare, en i varje do-sats, medan det i andra fallet rdckte med en variabel i som
rdknare i bdda for-satserna. Frdgan &r nu: Ar det i fallet £or verkligen en och
samma variabel eller r det bara ett och samma namn for tva olika variabler? Nésta
frdga: Om det ar s, blir det inte namnkonflikt? Far man definiera tvd olika
variabler med samma namn? Svaret &r: For det forsta &r det faktiskt ett namn for
tva olika variabler. For det andra, kan man gora sa eftersom bada foxr:s raknare i

145

programmet ForRandom ar definierade inuti for-satserna. Det géller namligen i
C# foljande regel:

for-satsens raknare ar odefinierad efter £or-satsen
om den definieras inuti for-satsen.

Variabeln i ar definierad sa att séga lokalt i for-satsen:
for (int i = 1; i < 5; i++)
Console.WriteLine ("\t" + r.Next());
Variabeln i &r inte definierad och galler darfor inte i hela programmet utan endast i
for-satsen, darfor lokalt. Efter for-satsen ~dor” variabeln i. Varje forsok att refe-
rera till den efter for-satsen kommer att leda till kompileringsfel. Darfor &r det
mojligt att i ndsta for-sats definiera raknaren med samma namn i. for-satsens in-
re variabler &r inte synliga utat i enlighet med C#:s generella regler om lokala va-
riabler. Vill man inte ha det s3, maste man definiera raknaren fore £or-satsen:
int i;
for (i = 1; i < 5; i++)
Console.WriteLine ("\t" + r.Next()):;
Eller:
int i = 1;
for (; i < 5; i++4)
Console.WriteLine ("\t" + r.Next()):

D& kommer i vara dven giltig efter for-satsen och vi skulle kunna referera till
den, t.ex. skriva ut vardet. D& kommer det inte langre vara mojligt att anvanda
namnet pa nytt i resten av programmet.

146

6.9 Nastlade for-satser

Nastlade for-satser ar ett viktigt verktyg i alla programmeringssprak for att
bearbeta ordnade tvadimensionella strukturer. Tabeller och rektanguldra scheman
ar exempel pa sadana 2D-strukturer. Foljande program skriver ut tal i en tabell ge-
nom att nastla tvd for-satser i varandra:

// NestedFor.cs

// Skriver ut en tabell S6ver tal med 6 rader och 8 kolumner
// Ndstlad for-sats: En inre for-loop ndstlas 1 en yttre

// Radbyte mellan den yttre och inre loopen

using System;

class NestedFor

g static void Main()
‘ for (int row = 1; row <= 6; row++) // Yttre loop skri-
{ // ver ut 6 rader
for (int column=1l; column<=8; column++) // Inre loop
Console.Write(" " + row); // skriver ut 8
// Console.Write (" " + column),—4%4+tgl 1 en rad
Console.WriteLine () ; // R4dbyte mellan
} // yHtre och inre
}
}

Utskriften till vanster far man nir man kor den aktuella koden| ovan. Utskriften till
hoger fa&s om man kor koden med den bortkommenterade raden istallet for raden
ovanpd.

2 2 2 2 2 2 2 2 1 2 3 4 5 6 17
3 3 3 3 3 23 3 23 i 2 3 4 5 6 17
4 4 4 4 4 4 4 4 D SR AR SR G T
5 5 05 5 5505k 1 2 3 4 5 6 7
6 6 6 6 6 6 6 6 12 3 4 5 6 7
Med andra ord, satsen Console.Write(" " + row); ger utskriften till van-
ster. Ersitts daremot variabeln row med column sé att den bortkommenterade sat-
sen Console.Write(" " + column); Kors istallet far man utskriften till ho-

ger. For att forsta varfor det blir s, 14t oss borja med att undersoka hur den vanstra
utskriften kommer till: N&r vi néstlade if-else-satser i varandra (sid 128) pratade
vi om en inre if-else-sats som nastlas i en yttre. Samma sak &r det i programmet
NestedFor pa forra sidan: Den nastlade for-satsen, dven kallad dubbel for-sats,
bestar av tva slingor: Vi har en inre £ox-loop som nastlas i en yttre. Den yttre for-

147

00 00 00 0 00 00

loopen omfattar tva satser, for det forsta den inre £ox-loopen och for det andra en
utskriftssats som gor radbyte. Darfor &r dessa satser omslutna av klamrar. Den inre
for-loopen

for (int column=1l; column<=8; column++)
Console.Write(" " + row);

skriver ut i sina 8 varv den férsta raden av 1-orna (med tva mellanslag daremellan)
som syns i den vanstra utskriften pa forra sidan. Variabeln row som ar den yttre
for-loopens raknare, har namligen under alla dessa 8 inre varv, vardet 1 darfor att
vi da hela tiden befinner oss i den yttre £or-loopens forsta varv. Nar alla 8 inre
varv ar slutférda och villkoret column<=8 satter stopp fér den inre loopen
fortsétter programflgdet till nasta sats som foljer i den yttre for-satsen. Det &r den
som lagger till radbytet i utskriften. Sedan uppdateras réknaren row till 2 och det
hela upprepas: Raden av 2-orna (med tva mellanslag) skrivs ut i den vénstra ut-
skriften pa forra sidan osv. Detta pagar tills den yttre £ox-loopens villkor row<=6
satter stopp for den. Darfor far vi 6 rader utskrivna dér i varje rad den yttre rakna-
ren row:s vérde syns.

Om vi nu tar den hégra utskriften pa forra sidan och undersoker hur den kommer
till kan vi konstatera att den ar enklare att forsta, for det ar den inre for-loopen

for (column=1l; column<=8; column++)
Console.Write(" " + column);

som dr ansvarig for den, efter att vi aktiverat den bortkommenterade raden, gjort
den till den inre £or-loopens kropp och kommenterat bort raden ovanfér. Det blir
enklare da loopens riknare column ar samtidigt den variabel vars vérde skrivs ut.
Sé det ar inte nagra variabler fran den yttre loopen som &r involverade har: Endast
raknaren column:s varden 1-8 hamnar i den hogra utskriften pé forra sidan. Rad for
rad kommer de ut skilda med radbyte, 6 ganger sammanlagt pga den yttre loopens
huvud:
for (row=l; row<=6; row++)

I bada utskrifternas fall skriver programmet ut tabellen radvis. P& s& satt uppstér en
rektangular utskrift av tal bestdende av 6 rader och 8 kolumner.

Programmet NestedFor 4r ett exempel pa foljande generell regel:

Regel for nastlade for-satser:

I ndstlade £or-satser maste den inre £for-loopen slutforas
innan den yttre kan varva vidare.

Denna regel &r inget principellt nytt utan en direkt konsekvens av for-satsens fl6-
desschema nar man tillampar den béde pa den inre och yttre for-satsen (sid 139).
Sammanfattningsvis kan vi sdga att den yttre loopen enligt denna regel later den in-

148

re loopen konkatenera raderna och géra radbyte, medan den inre loopen konkatene-
rar talen (samt tva mellanslag) i varje rad.

Multiplikationstabellen

Nu nar vi lart kdnna den néstlade for-satsen kan vi anvanda den for en lite nyttig
applikation, ndmligen att skriva ut multiplikationstabellen. Samtidigt kommer vi
genom att rita flodesschemat, att besvara frdgan om den nastlade for-satsen &r en
ny kontrollstruktur eller en en nastling av den redan k&nda bestdmda repetitionen.

// MultipTab.cs
// Skriver ut multiplikationstabellen med ndstlad for-sats
using System;

class MultipTab

{ static void Main()
{ Console.WriteLine ("\nMultiplikationstabell:\n") ;
for (int a = 1; a <= 9; a++) // Yttre loop skri-
{ // ver ut 9 rader
for (int b = 1; b <= 9; b++) // Inre loop
Console.Write(a*b + "\t"); // skriver ut 9
// tal 1 en rad
Console.WriteLine('\n') ; // Radbyten mellan
} // yttre och inre
}
}

Ilustrationen nedan visar flodesschemat till den néstlade for-satsen i MultipTab:

a=1
- Yttre loop —
b=1 a++
[}
falskt - Inre loop
a*b »| b++
falskt
Console.WriteLine('\n')

149

Pga platsbrist i flodesschemat star i den inre loopens forsta ruta, a * b som en slags
symbolisk forkortning for hela den inre loopens kropp i programmet MultipTab

dvs koden:
Console.Write(a*b + "\t");

Detta gors i varje varv av den inre £or-loopen. En jamforelse av den néstlade for-
satsens fldesschema pa forra sidan med den enkla £or-satsens flodesschema pa
sid 139 visar att det &r en nastling av tva enkla £ox-strukturer i varandra: Den yttre
for-strukturen har efter initiering av sin rdknare a = 1 och efter test av sitt villkor
a <= 9 som ”instruktion(er)” en £or-struktur till, den inre, foljd av en utskriftssats
som konkatenerar radbyte. Den inre fox-strukturen har i sin tur sin egen initiering
av réknaren b = 1 och sitt eget villkor b <= 9 och som "instruktion(er)” de tva sat-
ser ovan som lagger till multiplikationernas resultat pa en rad med ett avstand av 8
mellanslag for alla, dessutom 2 till dvs 10 mellanslag for alla tal mellan 0-9. Vi far
foljande tabellerad utskrift nér vi kfr MultipTab:

Multiplikationstabell:

1 2 3 4 5 6 7 8 9

2 4 6 8 10 12 14 16 18
3 6 9 12 15 18 21 24 27
4 8 12 16 20 24 28 32 36
5 10 15 20 25 30 35 40 45
6 12 18 24 30 36 42 48 54
7 14 21 28 35 42 49 56 63
8 16 24 32 40 48 56 64 72
9 18 27 36 45 54 63 72 81

Sjalvklart kan man minska (eller hoja) avstandet mellan kolumnerna genom att
skicka mindre (eller storre) antal mellanslag istéllet for en tabulator till utskrift.
Radavsténdet som egentligen motsvarar tva radbyten pga Console.WriteLine-
("\n") ; kan minskas om man skriver Console.WriteLine () ; istallet.

En kluring:
Byt ut i programmet MultipTab raden:

Console.Write(a*b + "\t"); // skriver ut 9

Mot foljande rad och kor:
Console.Write(a*b + '\t'); // skriver ut 9

Utsrkiften blir knasig. Forklara varfor?

150

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

Ovningar till kapitel 6

Skriv ett program som laser in tva tal och skriver ut OK om de matats in i
ratt ordning, dvs om det forsta &r mindre an det andra. Vad hander om de &r
lika stora?

Modifiera din 16sning fran 6vn 6.1 genom att lasa in tva tecken istallet for
tal. Skriv ut OK om de matats in i ordning. Annars ska programmet skriva ut
ett meddelande om att tecknen matades in i fel ordning.

Skriv ett program som laser in tre tal, hittar och skriver ut det storsta av
dem. Vilken &ndring i koden leder till det minsta talet?

Skriv ett program som l&ser in begynnelsebokstaven till en veckodag, med
en switch-sats bestammer vilken veckodag det & och skriver ut den. Fixa
problemet med tisdag/torsdag genom att néstla en if-else-sats i switch-
satsen for att lasa in och bearbeta den andra bokstaven. Ta hand om felaktig
inmatning.

Vidareutveckla dvn 6.2 sa att anvandaren far flera chanser att mata in tva
tecken i ratt ordning s& lange han/hon matar in dem i fel ordning. Du kan
gobra det genom att bygga in inmatningen, bearbetningen och utmatningen i
en do-loop.

Skriv ett program som l&ser in ett heltal och anvander det som stegvariabel
for att skriva ut talen fran 1 till 5000. Om steget &r t.ex. 5 skrivs var femte tal
ut.

Skriv ett program som anvander for-satser for att lasa in fem tecken, kryp-
tera dem genom att forskjuta dem med ett steg i ASCII-tabellen och skriva ut
dem. T.ex. ska inmatningen Kalle ge utskriften Lbmme£. Aterstéll sedan det
krypterade ordet: Lbmm£ ska aterstillas till Kalle. Vidareutveckla program-
met genom att utfka (t.ex. lasa in) antalet steg (krypteringsnyckeln). I évn
5.5 (Kryptering av ord, sid 109) gjordes detta utan for-satser.

Skriv ett program som laser in ett stort heltal och utgdende fran det, skriver
ut alla tal baklanges till 1. For att rdkna ned i en loop kan du anvénda
minskningsoperatorn -- som fungerar pa liknande satt som
6kningsoperatorn: Satsen i--; goérsammasaksom i=i-1;

151

6.9

Press any key to continue . . .

Labyrinten (projekt) Visst ar det roligt att med ett C# program lata da-
torn rita en labyrintartad figur pa skarmen som kan se ut sa har:
B CHAWINDOWS\system32\cmd.exe - m} =

Ange labyrintens bredd (t.ex. 50): 5@
Ange labyrintens héjd (t.ex. 28): 20

jEH'r'LJ”LF%ht vl T L LLLu i
il ﬂ L 'ﬁj - Nl i
JLELF Q” (U—Félr” H::JU il’_r J-l-ll-u ” u”[LJIJJ
sl gﬁnlﬂ& il |,_|\
Ll I_I

J” ‘FLII_IL
h rl]lpr:
__| r

1%WL4L“i$L“"*P e
ij R Ty L

[

el
W

ﬂ_LJﬂELL | : Ii_ i | L HJJDE o [yl
H%WWH R A e
DS

e

TrmEl

Visserligen ar detta ingen riktig labyrint. For en sadan skulle det krévas
mycket mer. En riktig labyrint skulle kunna vara foremal t.ex. for ett spel-
projekt, som underliggande grafik, sjalvklart med lite andra finesser, férg
osv. Bilden ovan visar snarare om en labyrintartad figur som &r slump-
massigt ihopsatt av ett antal tecken som vi kallar for dubbla linjegrafikntec-
ken (LGT). De &r tagna ur teckentabellen Unicode som &r den géllande tec-
kenstandarden i hela vérlden. | figuren ovan &r de ordnade som en sorts
tabell (50 rader, 20 kolumner). | koden gér man det med en dubbel- eller
nastlad for-loop, som ar helt enkelt en (inre) for-loop i en (yttre) for-
loop. Denna nastlade kontrollstruktur anvands i alla programmeringssprak
for att tstadkomma en 2D utskrift — typ tabell — dar den yttre loopen skriver
ut raderna och den inre loopen kolumnerna.

Tecknen i figuren ovan &r slumpvis valda. Dérfér borde varje kérning av
programmet generera en lite annorlunda labyrintartad figur. Du kan géarna
forsoka med en egen algoritm att stadkomma ett program som ritar en laby-

152

rintartad

figur. Men foljer du instruktionerna i 6vningarna har du i alla fall

ett forslag till en algoritm som fungerar.

Gor sa har for att rita "labyrinten”:

Steg 1 Repetera hantering av tecken inkl. explicit typkonvertering och
Unicode genom att mata in och kdra programmet Int2char (sid
95) for koderna 9552-9580. For att se alla tecken till dessa koder i en
oversikt genomfor Stegen 2-3 :

Steg 2 Studera programmet NestedFor (sid 147) som visar hur man nast-
lar en inre for-sats i en yttre for-sats. Jamfor den nastlade for-
satsens kod med programmets korexempel pd samma sida. Anvand
idén till nastlade for-satser for att konstruera en egen sadan, som
du kommer att behova i Steg 3 :

Steg 3 Skriv ett C# program som producerar foljande utskrift:

B CAWINDOWS\system32\emd exe - [m] _/
De dubbla LGT-tecknen i C#:s implementering av Unicode:
9552 = = 9553 = || 9554 = f 9555 = | 9556 = |
9557 = § 9558 = j 9559 = 3 9560 = L 9561 = L
9562 = L 9563 = 4 9564 = 4 9565 = 4 9566 = |F
9567 = |t 9568 = |t 9569 = 9 9570 = 4 9571 = {4
9572 = 9573 = 7 9574 = F 9575 = & 9576 = & |
o577 - 4 9578 = 4 9579 = 4 9580 = ¥
Press any key to continue . . .
Dessa tecken finns i den standardiserade teckentabellen Unicode
och anvénds i text mode for att rita raka linjer, ramar osv. i kon-
solen. Vi kallar dem for linjegrafiktecken (LGT). Deras koder som
&r angivna ovan, anvands i Steg 5 dar du ska rita den labyrint-
liknande figuren pa forra sidan med dessa tecken. Den fullstandiga
Unicode-tabellen som &r den géllande teckenstandarden i hela
varlden, hittar du t.ex. pa Internet under adressen: unicode.-
coeurlumiere.com. Jamfor garna koderna ovan med denna tabell
som &r den géllande teckenstandarden i hela vérlden, och konstate-
ra de sma skillnaderna. C# foljer inte exakt Unicode-standarden.
Steg 4 Bekanta dig med hantering av slumptal i bl.a. programmet DoRand

(sid 134),

153

6.10

Steg 5 Skriv slutligen det program som med hjalp av de dubbla linjegra-
fiktecknen fran steg 3, C#:s slumpgenerator och en dubbel- eller
nastlad for-sats ritar en labyrintliknande figur i konsolen som ar
slumpmassigt ihopsatt av de ndmnda LGT-tecknen, se projektets
presentation.

Lopande texten (projekt) Skriv ett program som visar (simulerar)
en lopande text, t.ex.: c# ar kul> som horisontellt ror sig i konsolfonstret
tills den traffar” pa ett hinder, t.ex. ett kryss i form av ett X. Skriv ut forst
krysset i slutet av en rad i konsolen, sedan textens initialposition i borjan av
samma rad. Ta exakt reda pa hur manga mellanslag krysset har avstand fran
konsolens vanstra rand. For att ga till borjan av samma rad (utan radbyte)
for att skriva texten initialt, kan escapesekvensen \r (carriage return)
anvandas. Gor experiment med \r for att bekanta dig med dess funktion.

Rorelsen kan sedan simuleras i en loop genom att i varje varv av loopen
med 10 styck \b ta bort den i forra varvet ritade texten (om den var ritad
med 10 tecken), stega med (dvs skriva ut) kanske ett (eller flera) mellanslag
(rérelsens “hastighet™) och skriva om texten c# ar kul>. Har loopen lika
manga varv som krysset X har avstand fran konsolens vanstra rand minus
textens langd — i det foreslagna exemplet 10 — kommer rérelsen att stoppas
strax innan texten “triffar” pd X. Nedan ser du nagra 6gonblicksbilder av
den I6pande txten.

Aven om du gjort allt ratt kommer du inte se att texten ror sig om du inte
lagger in en fordrojning i loopen, eftersom allt gar s& fort och man inte
hinner se nagot forlopp. Det kan du gora genom att i loopen skriva satsen:

System.Threading.Thread.Sleep(100) ;

= CHWINDOWS \ system32omd.exe -|a| x|
CH &r kul> H

=l

= C:\WINDOWS\system32\cmd.exe (=] F3
C# Hr kul> H

=l

= CWINDOWS system32h cmd.exe - 0| x|
C# Hr kuldX

Tryck pd en valfri tangent for att fortsitta... _ ;I

154

6.11 Pyramiden (projekt) Slutmalet med detta projekt ar att utveckla ett

program som skriver ut en pyramidliknande figur med tal, t.ex. s har:

S WINDOWS\ system32'cmd.exe -10] x|
fAinge antal rader fir pyramiden mellan 1 och 13 : 13 :I
1
2 1 2
3 21 2 3
4 3 2 1 2 3 4
5 4 3 2 1 2 3 45
6 5 4 3 2 1 2 3 45 ¢
7?7 65 43 2 1 2 3 4656 6 7
g8 7 6 5 4 3 2 1 2 3 456 7 8
92 8 ? 65 43 2 1 2 3 4546 78 ¢
1@ 9 8 7 6 5 4 3 2 1 2 3 465 6 7 8 %10
1118 9 8 ? 6 5 4 3 2 1 2 3 4 5 6 7 8 %1011
121118 9 8 ? 6 5 4 3 2 1 2 3 4 5 § 7 8 910 11 12
13121118 9 8 7 6 5 4 3 2 1 2 3 4 5 6 7 8 91811 12 13 =

Programmet ska vara sa generellt att det skriver ut talpyramider dven om
man matar in mindre antal rader. Uppmana anvéndaren att halla sig talinter-
vallet [1, 13]. Anledning till denna restriktion &r att talpyramiden inte ryms i
konsolen om man Gverskrider detta intervall . S& har kan det se ut:

= CHWINDOWS\system32'cmd.exe - 10| x|

Ange antal rader fir pyramiden mellan 1 och 13 = 28 :’

Du mdste mata in ett tal mellan 1 och 13.
Ange antal rader fir pyramiden mellan 1 och 13 = -1

Du m3ste mata in ett tal mellan 1 och 13.

Ange antal rader fir pyramiden mellan 1 och 13 = 9
1
2 1 2
3 2 1 2 3
4 3 2 1 2 3 4
5 43 212 3 45
6 543 2 12 3 405 6
7?7 6 543 2 12 3 465 6
g 2 6 5 4 3 2 1 2 3 456 78
? 8 6 5 43 212 3 45 ¢ 8 9 o
Tips till Pyramiden:
For att komma igang borja med ett program som ritar en stjarnpyramid:
=+ CWINDOWS\ system32'cmd.exe - 0] x|
fAnge antal rader for pyramiden mellan 1 och 13 : 13 i’
=
PR
= w ox ox ok
* o ow % % % w
X x % % ox % ox o®
s s s s % % o o ok x %
s om sk o o oM om oM M % % M ®
Mok s s Mo oM Mo M M M % % * W
* ow % % o® oW % oW oW oM X % % o™ X % ®
® ox o® % % % % % o ox % % % % x x x x %
XX o % % % % R X O X * X ® X ® X % % % %
s s s s % % M e M % M % M % M e sk sk % % % ®
o s s % % M M M M M M M M M M M % o % % m o o M =
-

Strunta till att bérja med dven pé& hanteringen av felinmatning av antal rader och
jobba med ett fast antal rader. Du kan l&gga till det senare.

155

Anvand en nastlad for-sats med en yttre loop och tre inre loopar:
e En for de tomma platserna i pyramiden (mellanslagen)

e En for stjarnorna i pyramidens hogra halvan (raknat fran den ver-
tikala mittlinjen (symmetriaxeln))

e En for stjdrnorna i pyramidens vanstra halvan.

Rakna med att du maste anvénda i de inre looparna den yttre loopens raknare och
slutvarde. T.ex. kan villkoret i den forsta inre loop som ritar de tomma platserna,

se ut s& har:
column <= numberOfRows - row;

Dér column dr den inre loopens, row den yttre loopens rdknare och number-
ofRows hela pyramidens antal rader, t.ex. 13 som ovan. Da kan den har forsta inre
loopen skriva ut tre mellanslag i varje varv. | de tva andra inre looparna kan tva
mellanslag och en * skrivas ut.

Observera att alla dessa tips inte ska forhindra att du anvénder dina egna idéer for
att l6sa projektuppgiften. Det finns inte endast ett tillvagagangssétt. Uppgiften kan
I6sas pa valdigt manga olika stt.

156

Kapitel 7

Metoder

Amne Sida Program

Vad ar en metod? 158

- Modularisering eller Lego-principen 159

Metoder med returvédrde 161

ReturnMethod

- Definition av metoder 162

- Anrop av metoder 164

Externlagrade metoder 169 TotalTest

Metoder utan returvarde 171 VoidMethod
Ovningar till kapitel 7 (Projekt Kalkylatorn) 174

157

7.1 Vad ar en metod?

De flesta kanner till begreppet funktion frdn matematiken. Man tanker forst pa en
formel som beréknar ett varde utgdende fran ett annat varde. Aven i programme-
ring finns den matematiska synen pa funktion som underliggande koncept och
historisk utgéangspunkt. Men under tiden har den fatt en bredare tolkning da den
tillampats pa all datoriserad problemldsning.

En metod &r en funktion som definieras i en klass. | objektorienterade programme-
ringssprak ar metoder inkapslade i klasser. | C# &r det obligatoriskt. Darfor finns
det i C# inga fristdende funktioner utan endast metoder. Bortser man fran denna
dverordnade struktur och ser pd det “inifrén”, ir funktioner och metoder identiska.

En metod i C# ar en namngiven kodmodul (ett antal satser) i en klass
som utférs nar metoden anropas. Vid anropet kan den ta emot indata,
s.k. parametrar, bearbeta dem och returnera utdata, s.k. returvarde.

Som “ett antal satser” dr en metod en del av en klass som isoleras och skrivs sepa-
rat som en anropbar modul for att kunna anvandas aven i andra klasser.

Ur praktisk synpunkt kan en metod jamforas med en “svart lada” i vilken man
stoppar in indata och far ut utdata: Indata kallas &ven parametrar och utdata retur-
varde:

Parametrar (indata) —— Metod — Returvérde (utdata)

En metod kan ha 0, 1 eller flera parametrar. Den kan ha O eller 1 returvarde. En
metod kan alltsé inte ha flera returvarden. Béde parametrarna och returvardet kan
vara tal, tecken, stréngar, sanningsvarden eller referenser till objekt. Metoden bear-
betar de ev. inkommande parametrarna pa ett visst satt och returnerar ev. ett varde.
Metoder med returvarde behandlas forst. Metoder utan returvérde tas upp senare.

Vi har hittills anvant nigra av C#-bibliotekets metoder, t.ex. Console.Write (),
Console.WritelLine(), Console.Read(), Console.ReadLine(), int.-
Parse (), ... Utan att behdva veta hur de var kodade, darfor: “svarta lador”. De var
forprogrammerade at oss och vi anvdnde dem bara for att dstadkomma vissa
funktionaliteter. | detta kapitel ska vi nu ldra oss att sjalva skriva metoder. Men en
metod som vi redan har skrivit sjdlva — och det har vi gjort i alla vara program-
exempel — ar metoden Main (), for den &r obligatorisk. S har definierade vi tidi-
gare ett C# program (sid 43):

Ett C# program ar en samling av klasser, av vilka en och endast
en maste innehdlla metoden Main ().

Nar programmet kors startar exekveringen i Main ().

158

Varfor metoder?

Fragan ar berattigad for nyborjare: Varfor ska man krangla till det hela? Kan man
inte helt enkelt skriva kod rakt ned i Main ()? Forestall dig en verksamhet som
dynamiskt vaxer med tiden, ett expanderande fdretag eller en organisation med sti-
gande antal medlemmar. Hur organiserar man jobbet? Man genomfor arbets-
delning och delegerar uppgifterna. Var och en far en val definierad specifik arbets-
uppgift. Annars skulle man inte kunna klara av jobbets komplexitet. Samma sak
g6r man med program vars kod vaxer, vilket hander ndr man utvecklar program
efter behov och behoven bara blir storre och stérre. Man delar upp det stora pro-
grammet i mindre moduler for att kunna klara av komplexiteten. Hur det gors ska
vi nu diskutera under rubrikerna: Modularisering, ateranvandning av kod och
strukturering av program.

Modularisering eller Lego-principen

De flesta har val nagon gang som barn, eller tillsam-
mans med sina barn, byggt ett hus, en bil eller lik-
nande med Lego-bitar. Efter ett tag har huset kanske
rasat och nya tekniska underverk har konstruerats.
Men &ven de har ndgon gang plockats isir. Det enda
som blivit kvar ar sjalva Lego-bitarna som man sa
smaningom samlat i en kartong for att kunna ater-
anvénda dem senare.

Vill man l6sa ett komplext problem, t.ex. bygga ett
hus eller en bil, bryter man ned det i ett antal mindre
problem som &r enklare att I6sa. Sedan satter man
ihop de sma enkla losningarna till den stora komplexa I6sningen. Principen heter
modularisering och kan anvéandas vid bade modellering och problemlésning. Ett
stort komplext problem bryts ned i mindre moduler — motsvarande Lego-bitarna —
och bearbetas en i taget. | traditionell (procedural) programmering &r dessa modu-
ler funktioner som blir metoder nér de bindas in i klasser.

For att kunna gora det méste varje modul kommunicera med sin omgivning. Aven
har kan man lara av Lego: Varje Lego-bit ar konstruerad sa att den passar in i en
annan Lego-bit. De delar av Lego-biten som tillater denna passning, kan anses
som Lego-bitens granssnitt mot andra Lego-bitar. P4 samma satt har en metod ett
granssnitt mot andra metoder for att kunna kommunicera med dem. Aven detta
granssnitt har tva delar: For det forsta metodens parametrar som importerar var-
den frdn omgivningen och for det andra metodens returvarde som exporterar ett
varde till omgivningen. Men sedan maste Lego-bitarna séttas ihop” vilket i pro-
grammeringstermer innebar att anropa den ena fran den andra. Ett anrop av en
metod innebdr att aktivera metoden. Detta sker genom att ev. skicka till den para-
metrar, utfora koden som star i metoden och ev. fa tillbaka returvardet. Generellt
finns det i ett program flera metoder som anropar varandra. Det enklast tdnkbara

159

exemplet &r att Main () anropar en Method dvs Main () &r den anropande och
Method den anropade metoden. Da kan programflodet mellan dem se ut sa har:

|

Main () - Method

!

Ateranvandning av kod

ar det andra svaret pa fragan varfér man i programmering sysslar med metoder.
Samma idé finns bakom Lego-biten som minsta ateranvandbara modul for att byg-
ga i princip vad som helst. Har man i ett program redan beskrivit en funktionalitet
som &ven dyker upp i andra sammanhang och vars kod kan vara relevant i andra
program, sa vill man ju helst inte satsa tid och resurser for att koda den en gang
till. Man vill undvika att ateruppfinna hjulet. Detta ar inte bara av teoretiskt-
estetiskt intresse utan dven av stort ekonomiskt intresse. Det man gor &r att sepa-
rera koden for denna kategori fran det aktuella programmet och skriva den som en
klass for att kunna ateranvanda koden i vilket annat program som helst. Det kraver
att den ursprungliga koden som kanske var skraddarsydd for just det speciella pro-
grammet, nu som klass maste formuleras pa ett mer generellt sétt. Hela C#:s klass-
bibliotek bygger pa idén om ateranvandning av kod.

Y

Strukturering av program

Genom att modularisera ett komplext problem som ska l6sas med hjélp av datorn
underlattar man inte bara sjalva losningen (innehallet) utan kan aven lattare fa en
strukturering av programkoden (formen). Beroende pa applikationen kan det fin-
nas manga olika méjligheter till modularisering.

Det enklast tdnkbara sattet att strukturera vilket program som helst &r t.ex. att dela
in det i inmatning — bearbetning — utmatning vilket diskuterats tidigare (sid 72).
Dessa tre delar kan skrivas i var sin metod som sedan kan anropas av Main ().
Denna huvudmetod kan da besta av ett fa antal satser som endast skapar objekt
och anropar objektens metoder. Pa sa satt har man frdn Main () en Gvergripande
kontroll 6ver hela programflodet. Dessutom kan metoderna placeras i klasser som
lagras i separata filer och importeras som innehaller Main (). S& kan man sa sma-
ningom bygga upp sitt eget bibliotek av egendefinierade klasser och metoder —
skraddarsydda for det egna behovet.

160

7.2 Metoder med returvarde

Modularisering och strukturering ar inga sjalvandamal. Man genomfor dem for att
underlétta och effektivisera programutveckling. Endast logiskt sammanhé&ngande
uppgifter som pa ett naturligt och meningsfullt satt kan avgransas fran andra, ska
modulariseras. Som exempel tar vi upp programexemplet operator (sid 71) dér vi
redan hade strukturerat koden enligt monstret inmatning — bearbetning — utmat-
ning. Nu modulariserar vi programmet genom att skriva bearbetningen i en metod
som vi doper till Totalbays (), placerar den utanfér och anropar den i Main ().
Fortfarande finns all kod i en fil kallad ReturnMethod. cs.

Den bit av kod som formulerar metoden — langst ned vitmarkerad utanfor Main ()
— kallas for metodens definition. Metoden TotalbDays () har tre parametrar av typ
int och ett returvirde av typ int. Denna bit av kod har hamnat pd nasta sida.
Kvar blir i Main () in- och utmatningen samt metodens anrop. Anropet &r den bit
av kod som kallar funktionens namn med parametrarna i parentesen — dven den
vitmarkerad, men i Main (). Den hér biten av kod finns pé& denna sida.

// ReturnMethod.cs

// G6ér samma sak som progr. Operator (sid 71). In- och utmat-
// ning gérs i Main (), bearbetningen utanfdr Main ()

using System;

class ReturnMethod

{

static void Main()

{

int year, months, weeks, days;

/* T nmatnding*/
Console.Write ("\n\tAnge antal ar:\t\t"); // Ledtext
year = int.Parse (Console.ReadLine()) ; // Inldsning

Console.Write ("\n\tAnge antal manader:\t");
months = int.Parse (Console.ReadLine()) ;

Console.Write ("\n\tAnge antal veckor:\t");
weeks = int.Parse (Console.ReadLine()) ;

Console.Write ("\n\tAnge antal dagar:\t");
days = int.Parse (Console.ReadLine()) ;

/* Utmatnding*/
Console.WriteLine ("\n " + year + " ar, " +
" manader, " + weeks + " veckor och " + months +
days + " dagar ar " +
TotalDays (year, months, weeks, days) +
" dagar totalt.\n");
} // OBS! Hir slutar Main ()

161

static int TotalDays(int y, int m, int w, int d)// Metoden

{

/* Bearbetning*/
return 365*y + 30*m + 7*w + d;

} // OBS! Har slutar programmet (klassen)

En kérning av programmet ReturnMethod ger foljande utskrift:

Ange antal ar: 2
Ange antal manader: 11
Ange antal veckor: 3
Ange antal dagar: 6

2 ar, 11 manader, 3 veckor och 6 dagar ar 1087 dagar totalt.

Sjalvfallet blir det samma utskrift som for programmet operator (sid 72).

Programmet ReturnMethod bestar av en klass innehallande tvd metoder: Forst
skrivs Main (), sedan metoden TotalDays (), men det gar lika bra att placera
dem i omvénd ordning. Det enda som inte far goras ar att placera dem i varandra.
Bada skrivs (just nu) i samma klass och dven i samma fil. Metoden TotalDays ()
har fyra parametrar y, m, w och 4, alla av typ int samt ett returvérde av typ int.
Exekveringen startar i Main () som i sin tur anropar TotalDays (). For att bada
metoderna ska kunna utféras nar programmet kors, har anropet av TotalDays ()
skrivits i Main (). N&r Main () anropar TotalDays () Overfors de inl4sta vardena
till variablerna year, months, weeks, days frdn Main () till variablerna y, m,
w, d i den ordning som de forekommer i parentesen av metodnamnet. Metoden
berdknar antalet totaldagar och returnerar resultatet till Main () dér det skrivs ut
tillsammans med lite anvéndarvanlig text.

Definition av metoder med returvarde
Generellt ser definitionen av metoder med returvérde ut sa har:

modifierare returtyp metodnamn (datatyp fparl, datatyp fparz, ...)
{

statement(s) ;

return uttryck;

}

Forsta raden kallas metodens huvud inklusive parentesen (...) som innehdller
listan Gver alla parametrar, darfor kallad parameterlistan. Resten, det som star
inom klamrarna { ... }, & metodens kropp. Huvudet kan inledas med en eller flera
modifierare vilket vi kommer att aterkomma till. Med returtyp menas datatypen till
returvardet. Ordningen &r av betydelse: Modifierarna kan utelamnas, men far inte

162

skrivas efter returtypen. fpar star for formell parameter. Sa kallas parametrar som
forekommer i metodens definition inom parameterlistan. Den kan innehélla en eller
flera parametrar, men kan &ven vara tom. Oavsett antalet parametrar inkluderar
man alltid, ndr man i beskrivande text ndmner en metod, parentesen () och lagger
den till metodnamnet vilket man gor for att skilja mellan metoder och variabler.
Parentesen ar alltsd kannetecknet for en metod.

Observera att metodhuvudet inte avslutas med semikolon. Det &r ju inte en sats
utan bara huvudet till en metod vars kropp féljer. | programexemplet Return-
Method dr metoden Totalbays () definierad pa foljande satt:

. int TotalDays(int y, int m, int w, int d)

Detta int &r returvérdets datatyp, kort kallad returtyp. Metoden returnerar ett
heltal med return-satsen som star i kroppen. Men varfor star returtypen framfor
metodens namn? Det verkar — om man for ett 6gonblick bortser fran parameter-
listan — som om int TotalDays vore en deklaration for ”variabeln” TotalDays
till datatypen int. Denna tolkning &r korrekt om man vet att TotalDays 4r bade
metodens namn och returvardets variabel”. Denna variabel kan fa sitt varde endast
frdn return-satsen nar metoden anropas. Medan returvirdet &r metodens output
(utdata) ar parametrarna metodens input (indata). TotalDays () har fyra paramet-
rar av typ int. De dr definierade i parameterlistan: (int y, int m, int w,
int d). Observera att det inte gar att skriva (int y, m, w, d) vilket man kan
gora vid deklaration av vanliga variabler. Visserligen ar parametrar ocksa varia-
bler, men nar de definieraras i parameterlistan, maste man upprepa deras datatyper
aven om de dr av samma typ. Det &r den enda syntaktiska skillnaden mellan para-
metrar och vanliga variabler. | definitionen heter de formella parametrar dérfor att
de definieras i parameterlistan som “tomma” minnesceller i vantan pa att bli initie-
rade nar metoden anropas. Deras hamn saknar betydelse — bara man anvénder kon-
sekvent samma namn i metodens kropp. De initieras ndr metoden anropas med To-
talDays (year, months, weeks, days). Da importeras de s.k aktuella para-
metrarna year, months, weeks, days frdn Main() via de formella
parametrarna y, m, w, d in i metoden TotalbDays () dér de bearbetas. Sedan ex-
porteras returvirdet frdn TotalDays () via metodnamnet till Main ().

I kroppen till en metod kan ett antal satser std avgransade med klammerparet { ...
}. Klamrarnas uppgift &r att gruppera satserna under metodhuvudet till ett s.k. block
(sid 117). | metoden TotalDays () bestar detta block av return-satsen som retur-
nerar ett heltalsvarde till metodnamnet. Men return-satsen gor en sak till: Den
avslutar &ven metoden. Eventuell kod efter den kommer att inte utforas. Darfor ska
return-satsen alltid vara metodens sista sats. Den logiska slutsatsen &r att det far
exekveras endast en return-sats i en metod. DA den returnerar ett varde till me-
todnamnet, maste namnet ha beredskapen at ta emot det. Detta innebar att Total-

163

Days samtidigt som det 4&r metodnamnet, ocksa ar en variabel av typ int — med
den begrénsningen att den endast kan fa sitt varde fran return-satsen. TotalDays
kan inte lagra returvardet som &r ett haltal, om det inte &r via returtypen deklarerat
till datatypen int.

Placering av metoder

Nar vi pratar om metoders placering menar vi placeringen av deras definition. Kan
man definiera metoder var som helst i ett C# program? For det forsta maste meto-
dens definition alltid placeras i en klass. | programexemplet ReturnMethod place-
rade vi metoden TotalDays () i en och samma klass som Main (). Har man dem i
samma klass som Main () spelar inbdrdesordningen ingen roll. Detta &r o.k. sa lan-
ge man haller pd med att utveckla och testa metoden. Men nar man ar klar med ut-
vecklingsstadiet, ska man helst ha den i en separat klass som da kommer &dven att
placeras i en separat fil vilket vi kommer att ta upp i nasta avsnitt. Men innan vi gar
vidare ska vi konstatera foljande absolut férbud nar det géller placering av meto-
der:

[Metoder f&r inte definieras inuti en annan metod.]

Observera att detta férbud endast géller for definition av metoder, inte for anropet.
Anropen kan vara néstlade i varandra, men inte definitionen.

Anrop av metoder med returvérde

Metodens definition &r endast ar en mall, en féreskrift om vad som skulle hédnda om
metoden anropades, jamforbar med ett matrecept som man skriver ned och stoppar
i koksképets lada i vantan pa att ndgon gang ta fram det och laga mat. Forst nar be-
redskapen till matlagning finns — alla ingredienser ar handlade och finns pa plats —
kan matreceptet komma till anvandning som en algoritm. Samma sak ar det med
metodens definition: den &r endast en potentiell eller formell kod. Aktuell blir den
forst nar vi anropar metoden. Da borjar saker och ting att handa. | programmet Re-
turnMethod anropas metoden TotalDays () fran metoden Main () med:

TotalDays (year, months, weeks, days)

Anropet bestar av att kalla metoden vid namn och i parameterlistan skriva lika
manga parametrar som definitionen foreskriver — i det har fallet fyra. Parametrar
som férekommer i metodens anrop — hér year, months, weeks, days — kallas
aktuella. Antalet aktuella parametrar maste vara lika med antalet formella paramet-
rar — de som férekommer i metodens definition. Annars blir det kompileringsfel.
Samtidigt borde de aktuella parametrarna ha samma datatyp som de formella. An-
nars forsoker kompilatorn att géra automatisk typkonvertering till méldatatypen,
vilket kan vara problematiskt. Dessutom maste vi se till att parametrarnas ordning
stammer dvs vi méste kontrollera, for exakt i den ordning vi skriver dem i anropet,
kommer deras véarden att dverforas till de formella parametrarna i metodens defini-
tion.

164

Att anropet kan ldggas i utskriftssatsen beror pa att Totalbays () ar en metod med
returvérde — dvs har en return-sats. Darmed béar metodnamnet samtidigt retur-
vardet i sig. | exemplet bakar vi in anropet i utskriftssatsen for att konkatenera det
med forklarande, anvéndarvanlig text:

Console.WriteLine (metodnamn (aparl, apar2, ...));

Ett alternativ &r att lagga anropet i en tilldelningssats:
variabel = metodnamn (aparl, apar2, ...);

dar apar star for aktuell parameter och metodnamn &r den anropade metoden.
Sjalvklart maste variabel och dven alla aktuella parametrar vara definierade fore
anropet pa vanligt sétt i den anropande metoden — i vért exempel i Main (). Para-
metrar som skrivs i en metods anrop kallas aktuella parametrar *, en beteckning
som ska framhéva deras skillnad till de formella parametrar som skrivs i metodens
definition. Med aktuell menas att de har aktuella varden som galler vid anropet for
att skickas till metodens formella parametrar. Darfor maste de vara konstanter eller
definierade och initierade variabler. | programmet ReturnMethod ar de variabler:
year, months, weeks, days. De formella parametrarna daremot — i vart exem-
pel y, m, w, d — maste alltid vara variabler som definieras i metodens parameter-
lista nar denna definieras. Sina vérden far de forsta gangen inte tilldelade i meto-
dens kropp utan fran de aktuella parametrarna vid metodens anrop.

Vad hander vid anropet av en metod?

Tre saker hander nar en metod anropas frén en annan metod. L&t oss som exempel
ta programmet ReturnMethod dir metoden TotalDays () anropas fran Main () :

1. Parameterdverforing D& overfors de aktuella parametrarna year,
months, weeks, days till de formella parametrarna y, m, w, d. Observera
att korresponderande parametrar bestdms av ordningen i parameterlistan och
borde vara av samma datatyp. Anropet av metoden vidarebefordrar vardena till
metodens formella parametrar. S& hamnar de i kroppen till metoden To-
talDays ().

2. Exekvering av koden i metodens kropp vilket i vart fall innebér att utfora
den return-sats som star dér dvs berdkna uttrycket 365*y + 30*m + 7*w
+ d och returnera resultatet till metodnamnet Totalbays. Med vérdena fran
parameterdverforingen (punkt 1 ovan) blir det 365*years + 30*months +
T*weeks + days.

*

Andra beteckningar som férekommer i litteraturen &r anropsparametrar eller argument.
Speciellt argument anvands ofta da det &r en inkord matematisk term: T.ex. ar V3 ett anrop
av metoden \x dir x — i matematiska termer — &r “variabeln” och 3 “argumentet”. |
programmeringstermer skulle x kallas for den formella och 3 den aktuella parametern.

165

3. Overforing av returvardet sker i omvand riktning jamfort med parameter-
éverforingen, namligen fran den anropade metoden TotalDays () till den
anropande metoden Main (). Vi far returvardet frdn metoden, i exemplet ar det
heltalsvardet till det uttryck som star efter return. Att returvardet hamnar i
Main () beror pd att anropet gors med metodnamnet TotalDays som fatt
returvardet.

Det som hander vid anrop av en metod ar alltsd att data byts ut mellan den
anropande och den anropade metoden, i vart exempel mellan Main () och Total-
Days (), att koden i den anropade metoden utfors ndr anropet intréffar, samt att
returvardet till sist hamnar i den anropande metoden. En &versikt dver dataflodet
mellan dessa tva metoder (se pilarna nedan) och framfor allt i vilken ordning deras
koder utférs ges i foljande bild som illustrerar punkterna 1-3 ovan.

Dataflddet mellan Main() och TotalDays()

static void Main()
{
int year, months, weeks, days;
/* Inmatnding*/
/*Utmatning */
Console.WriteLine("\n " +
TotalDays (year, months, weeks, days).. // Anrop av metoden
static int TotalDayh‘y,i\nt‘m,i\nt‘w,i\nt‘d)
{
/* Bearbletning?*/
return |365*y + 30*m + 7*w + dj;
}
}

Observera att bilden visar det som hander nar programmet ReturnMethod exe-
kveras, inte hur det skrivs i koden. Det &r ndmligen en skillnad mellan den ordning
i vilken koden skrivs och den nar koden kdors. Bilden visar sjdlva aktionen som
startar vid exekveringen i Main (). N&r den den kommit till anropet av metoden
TotalDays () Klistras metodens kod in just pa detta stalle och utfors enligt
punkterna 1-3 pa forra sidan. De bada metodernas aktioner ar nastlade i varandra,
men det &r absolut inte koden som &r skriven i programmet ReturnMethod. Den
har en helt annan struktur: De béda metodernas koder ar inte alls nastlade i
varandra, snarare tvartom, de &r isolerade fran varandra. Och s& maste det vara:
Koden till metoden Totalbays () far inte under ndgra omstandligheter skrivas i
Main (), den maste std utanfér Main (), antingen fore eller efter Main (), ja den

166

kan t.o.m. ligga i en separat fil. Men nar vi kor programmet i sin helhelt hander
saker och ting i den ordning som visas pa bilden pa forra sidan.

Bilden ovan visar dataflédet som gar fran de aktuella parametrarna 1, 6 till de for-
mella parametrarna a, b. Dessa bearbetas i metoden TotalDays () dvs formeln
efter return beréknas. Sedan skickas resultatet som returvarde via metodnamnet
till Main (). Metodens TotalDays () :s kropp utfors precis pa det stallet dér anro-
pet i Main () star. | den har processen spelar metodhuvudet static int Total-
Days (int y, intm, int w, int d) rollen av ett granssnitt mellan Main () och
TotalDays (). Det &r ddr kommunikationen mellan dessa separat skrivna moduler
ager rum. Darfér har vi satt metodhuvudet i en extra ruta i bilden for att under-
stryka rollen som grénssnitt. Huvudet &r namligen atkomligt bade fran Main () och
TotalDays (). De skulle annars inte kunna kommunicera med varandra eftersom
de ligger i olika block. Bilden ska ndmligen &ven visa att metodanropet resulterar i
en blockstruktur som &terges av ramarna i bilden. Motsvarande kod till denna
blockstruktur utgérs av klamrarna { 1} till bdde Main() och TotalDays().
Klamrarna bildar dessa modulers fasta granser for kodens giltighet eller réackvidd.
For att overskrida dem maste vissa regler beaktas vilket vi kommer att precisera
senare. Blockstrukturen &r den egentliga orsaken till att metoden TotalDays () in-
te kan kommunicera med Main () annat dn via granssnittet static int Total-
Days (int y, intm, int w, int d). Det motiverar dessutom varfér metodernas
koder inte far nastlas i varandra nar de skrivs. Om block las pa sid 117.

En viktig ingrediens av metoden TotalDays ():s huvud har vi inte gatt in pé
hittills, namligen att det star static framfor namnet Totalbays (). Vi nojer oss
med att konstatera att TotalDays () inte kan anropas i Main () utan att definiera
den med static. Vi ska avsluta behandlingen av metoder med returvarde med en
foreteelse som liknar villkorlig initiering av variabler (sid 118):

Villkorlig return-sats

For det forsta méaste man konstatera att return-satsen ar en obligatorisk del av en
metod med returvarde dvs en metod vars huvud innehaller en returtyp. T.ex. har
metodhuvudet static int TotalDays(int y, int m, int w, int d)
returtypen int. Darfor maste metodens kropp ha en return-sats, annars blir det
kompileringsfel. For det andra far return-satsen inte std i en i£-sats (utan else)
eller i andra kontrollstruktur dar villkor &r inblandade. Precis som variablers initie-
ring far inte heller return-satsen vara beroende av villkor utan alternativ.

Foljande regel galler for villkorliga return-satser:

Metoder vars return-sats ar beroende av villkor
utan alternativ leder i C# till kompileringsfel.

167

En villkorlig return-sats ger kompileringsfel oavsett villkorets sanningsvérde.
Forbudet galler alltsa aven for sanna villkor, ja t.o.m. for sddana somi i£ (1 ==1)
eller 1 £ (true). Dvs till skillnad fran villkorligt initierade variabler galler forbudet
aven for konstanta villkor, dvs sddana som inte involverar variabler.

Avslutningsvis ska vi ndmna att return-satsen samtidigt avslutar en metod med
returvéarde. Den 4r alltsd en slags terminator efter vilken ingen kod mer utfors. All
kod efter den kommer att ignoreras. Darfor borde den sta sist i en metods kropp.

168

7.3 Externlagrade metoder

Programmet ReturnMethod som behandlades i forra avsnitt (sid 161) hade tva
moduler: Metoden Main() Som organiserar inlasningen samt utskriften och
metoden TotalDays () som skdter berdkningen. Men nackdelen var att dessa
moduler inte var oberoende av varandra: Bada fanns i en och samma klass. Tanken
med modularisering ar ju att kunna t.ex. anvanda metoden TotalDays () i helt
andra sammanhang &n att bara skriva ut slumptal i tabellform, t.ex. som radata till
sokning och sortering eller som statistiskt material eller for att dverféra dem till en
databas, D4 ér det ndodvéndigt att renodla modulariseringstekniken och inte
bara separera modulerna pd metodnivd, utan dven pa klassniva. Detta &stad-
kommer man genom att separera metoden TotalDays () fran allt annat och skriva
den i en klass for sig och lagra klassen i en fil for sig. Det menar vi med ex-
ternlagrade metoder som garanterar att man kan anropa dem fran vilket program
som helst utan att i det nya programmet ha med sig kod som inte har att géra med
den nya applikationen. Foljande klass ger nu var gamla metod TotalDays () en
ny ram och goér den till en renodlad klassmodul:

// Total.cs

// Egen modul som kan anvidndas 1 vilket program som helst
// Metoden TotalDays () &r inkapslad i klassen Total

// public fér att kunna anropas utifrdn klassen Total

class Total

{
public static int TotalDays(int y, int m, int w, int d)
{
return 365*y + 30*m + 7*w + d;
}
}

| programmet nedan sker anrop av metoden TotalDays () fran Main () som nu
finns i en annan klass, klassen TotalTest. Forutom den annorlunda syntaxen till
anropet av TotalDays () -metoden skiljer sig koden inte frdn programmet Re-
turnMethod. Men nu tillhér metoderna Main () och TotalDays() tva olika
klasser, lagrade i tva olika filer, varfor Main () maste anropa den externlagrade
metoden TotalDays () med koden Total.TotalDays (). De tva klasserna kan
hitta varandra om de lagras i samma mapp och i Visual Studio i samma projekt.

// TotalTest.cs
using System;

class TotalTest

{

169

static void Main()

{

int year, months, weeks, days;

/* I nmatning*/
Console.Write ("\n\tAnge antal ar:\t\t"); // Ledtext
year = int.Parse (Console.ReadLine()) ; // Inldsning

Console.Write ("\n\tAnge antal manader:\t");
months = int.Parse (Console.ReadLine()) ;

Console.Write ("\n\tAnge antal veckor:\t");
weeks = int.Parse (Console.ReadLine()) ;

Console.Write ("\n\tAnge antal dagar:\t");
days = int.Parse (Console.ReadLine()) ;

/*Utmatnding*/
Console.WriteLine ("\n W +
year + " ar, " + months + " manader, " +
weeks + " veckor och " + days + " dagar ar " +
Total.TotalDays (year, months, weeks, days) +
" dagar totalt.\n");

}

Programmet ger samma utskrift som programmet ReturnMethod (sid 162).

Pga den externa placeringen av metoden TotalDays () i klassen Total &r syn-
taxen till metodanropet annorlunda &n i forra avsnittet dar bade den anropande
metoden Main () och den anropade metoden TotalDays () fanns i samma klass.
Klassen TotalTest har ingen direkt tillgang till metoden Totalbays () och kan
darfor inte anropa den endast med metodnamnet utan maste ga via klassen Total
for att gora det med punktnotation: Total.TotalDays ().

Det & anmarkningsvart att vi for detta anrop varken behdver inkludera klassen
Total till det nya programmet eller ndgon annan speciell atgard i koden. Det réc-
ker med att placera filerna TotalTest.cs och Total.cs som lagrar de resp.
klasserna i en och samma mapp pa datorn. Néar C#-kompilatorn stoter pa anropet
med det okdnda klassnamnet Total soker den automatiskt efter filen Total.cs i
den aktuella C#-filens mapp och inkluderar den i kompileringen. | Visual Studio
maste bada filerna ingd i det aktuella projektet.

170

7.4 Metoder utan returvarde

De flesta av de metoder vi hittills anvant i vara programexempel hade returvarden.
Det var en typ av metod, en ganska viktig sédan. Metoder med returvarde kan
returnera endast ett varde, ett tal, ett tecken, ett sanningsvarde, en strang eller en
referens till ett objekt. Med returvarde menar vi alltid det som returneras av re-
turn-satsen via metodnamnet. En annan kategori av metoder 4r sddana som inte
har nagot returvarde alls. Metoder utan returvarde kallas dven for void-metoder.

En void-metod &r en metod som inte returnerar ndgot vérde. I
metodhuvudet ersatter void returtypen.

En void-metod har antingen ingen return-sats alls eller en
tom return-sats: return;

void &r i C# ett reserverat ord som kan tolkas som ”ingenting”. Nir void i metod-
huvudet ersétter datatypen till returvérdet (returtypen) och skrivs framfér metod-
namnet, eliminerar det returvérdet och definierar en void-metod. Detta medfor att
return-satsen i kroppen antingen maste strykas eller ersattas av en tom return-
sats dvs utan vérde: return; vilket verkar vara onddigt: | vara exempel foredrar
vi att stryka den helt.

Metoden Test () i klassen Password var ett exempel pa en void-metod utan
parametrar (sid 181). Har foljer ett exempel med parametrar. Bada utelamnar re-
turn-satsen och lagras externt i en klass (i en separat fil) samt anrpas av Main () i
en testklass:

// VoidMethod.cs
// Klass med en void-metod: tva parametrar utan returvidrde
using System;

class VoidMethod

public static void divSafe(int numerator, int denominator)
¢ if (denominator != 0) // Férhindrar division med 0
Console.WriteLine ("\n\tSidker heltalsdivision:\n\n" +
"\t\t" + numerator + " heltalsdividerad med " +
denominator + " &r " + numerator/denominator + '\n');
else
Console.WriteLine ("\n\tOBS! Division med 0:\n\n\t\t" +
"Du har matat in 0 f6r det tal som ska \n\t\t" +
"delas med. Det gar inte att dela med 0.\n\t\t" +
"Division med 0 d&r odefinierad.\n");

171

I exemplet ovan stdr void exakt pd samma plats som returtypen eller istallet for
den for att indikera att metoden divsafe () inte ger nagot varde nar den anropas.
Speciellt returnerar den inte divisionens varde. Allt den gor &r att exekvera krop-
pens kod nar den anropas. Da skrivs ut all relevant information frdn metodens
kropp: Endast om den andra parametern denominatox ar skilt ifran 0, utfors divi-
sionen numerator/denominator och divisionens varde skrivs ut. P4 sa satt und-
viks division med 0. Pga datatypen int som bade numerator och denominator
ar deklarerade till (i parameterlistan), blir det inte vanlig utan heltalsdivision (sid
75). Att vi valt har int och inte £1loat eller double beror pa att C# beter sig olika
vid olika datatyper nér det géller division med 0. Medan vanlig decimaltalsdivision
med 0 inte leder till programavbrott utan producerar symbolen INF som star for in-
finity (odndligheten) och kérningen avslutas regulart, leder heltalsdivision med o
till abrupt programavbrott (DivideByZeroException) som uppfattas som krasch. All
kod som féljer exekveras inte langre. Det dr den situation som klassen void-
Method, ndrmare bestdmt metoden divsafe () ska forebygga. Pga det modulari-
serade uppldgget kan den anvéndas i vilket program som helst. | langre program
kommer &ven all kod som foljer efter en felaktig division med o att utféras som
vanligt och kdrningen avslutas regulért. Daremot kommer ett egenkonstruerat fel-
meddelande att hanvisa till felet utan att avbryta exekveringen.

Fast void kan tolkas som “ingenting” fir det inte std Gverallt i koden dar man
misstanker “ingenting”. T.ex. far void inte sta i parameterlistan till en metod for
att antyda att den inte har ndgra parametrar: void Test (void) som metodhuvud
ger kompileringsfel. void far inte heller ersitta datatypen i definitionssatser till
vanliga variabler. C# som &r strikt typbestamt tillater inte att en variabel definieras
till ”ingen datatyp”. | féljande program anropas nu void-metoden divSafe ():

// VoidMethodTest.cs

// Testar klassen VoidMethod genom att frdn Main() anropa
// dess void-metod divSafe ()

// Anropet star som en fristdende sats eftersom divSafe ()
// inte returnerar ndgot vdrde

using System;

class VoidMethodTest

{

static void Main()
{
int t, n;
Console.Write ("\n\tAnge ett heltal som ska delas:\t\t");
t = int.Parse (Console.ReadLine()) ;
Console.Write ("\n\tAnge ett heltal som ska delas med:\t");
n = int.Parse (Console.ReadLine()) ;

VoidMethod.divSafe(t, n); // Anrop av void-metod

172

Matar man in ett heltal skilt frdn o for det andra heltalet ger programmet ovan fol-
jande utskrift:

Ange ett heltal som ska delas: 27
Ange ett heltal som ska delas med: 4
Sdker heltalsdivision:

27 heltalsdividerad med 4 &r 6

Inmatning av 0 till det andra heltalet producerar daremot féljande dialog:

Ange ett heltal som ska delas: 27
Ange ett heltal som ska delas med: 0
OBS! Division med O:

Du har matat in 0 f6r det tal som ska
delas med. Det gar inte att dela med O.
Division med 0 ar odefinierad.

En viktig praktisk konsekvens av void-metoder ar att anropet till skillnad fran me-
toder med returvarde inte behdver — ja inte far — inbaddas i en utskrifts- eller till-
delningssats. void-metoder anropas helt enkelt med namn och vél definierad para-
meterlista, om sadan finns. | vart exempel finns tva parametrar:

VoidMethod.divSafe(t, n);

Eftersom sjalva metodnamnet inte langre bér nagot varde, kan det varken skrivas ut
eller tilldelas nagon variabel. Darfor behéver vi inte langre ndgon variabel som tar
hand om returvérdet. Det enda anropet gor ar att exekvera den kod som star i meto-
dens kropp, efter att ha Gverfort parametrarnas vérde till metoden. Fran metoden
kommer inget tillbaka.

173

7.1

7.2

7.3

7.4

7.5

Ovningar till kapitel 7

Modularisera I6sningen till 6vn 4.4 (sid 83) som laser in tva heltal, gor
berékningar med dem och skriver ut resultaten. Separera en av berékningar-
na, t.ex. multiplikationen fran kodens andra delar inmatning och utmatning.

a) Flytta multiplikationen till en metod med returvdarde med huvudet
static intMult(int a, int b) i samma klass som Main (). Anropa
metoden Mult () frdn Main (). Bibehall alla andra berakningar. Se upp
med att inte placera den nya metoden i Main (), utan fore eller efter.

b) Fortsatt med att flytta metoden Mult () till en annan klass i samma fil.
Anropet ska fortfarande goras frdn Main (). Aven har: Se upp med att
inte placera den nya klassen i den gamla, utan fore eller efter.

c) Flytta den nya klassen samt metoden Mult () till en separat fil.

d) Gor samma sak med alla andra berdkningssatt. Lagra var och en klass
med resp. metod i en separat fil. Anropa alla metoder frén Main ().

Modularisera programmet Operator (sid 71) genom att skriva dess bearbet-
ningsdel som en ny metod i samma klass. Bibehall in- och utmatnigsdelen i
Main () och anropa den nya metoden frdn Main (). Avgor sjalv om den nya
metoden ska returnera ett varde och om den ska vara statisk. Ge den ett
beskrivande namn.

Vénd om problemet fran 6vn 9.2: Modularisera programmet overloadop
(sid 76) genom att flytta bearbetnings- och utmatnigsdelen till en void-me-
tod. Dvs skriv ett program som laser in tiden i ett antal dagar, anropar void-
metoden som omvandlar tiden till antal ar, manader, veckor och restdagar
och skriver ut resultaten. Anvénd for omvandlingen den algoritm som &r im-
plementerad i programmet overloadop. Varfor &r det inte lampligt har att
anvanda en metod med returvarde?

Skriv forst ett program med endast Main () -metoden som laser in side till
en kub samt beréknar och skriver ut kubens volym side 3 och dess yta 6 x
side 2. Flytta sedan dessa berakningar till tva metoder, en for volymen, en
for ytan, bada i en separat klass cube. Definiera side som en datamedlem i
klassen cube. Avgdr om metoderna Volume () och Area () ska returnera
eller vara av void-typ. Anropa dem fran Main (). Skriv férst en variant med
statiska metoder, byt sedan till icke-statiska metoder. Testa bada varianter.
Avgor slutligen sjélv vilken variant som ska foredras om ldsningen ska vara
objektorienterad.

Varfor ger foljande program kompileringsfel? Atgérda felet genom att flytta
pé kod, utan att ta bort ndgon klammer och utan att ha tomma klamrar:

174

7.6

7.7
7.8

7.9

using System;
class Ovn_7_5

{
static void Main ()
{
{
int t = 30;
}
Console.WriteLine("t = " + t);
}
}

Modularisera programmet MiniSort (kap 6, sid 116) efter eget godtycke.

Modularisera programmet overloadOp (kap 4, sid 76) efter eget godtycke.

Collatz problemet (projekt) * Skriv foljande pseudokod till ett C# pro-
gram:

Las in ett positivt heltal (startvarde)
Sa lange talet # 1 REPETERA:
OM talet ar udda
multiplicera med 3, addera 1
ANNARS
dividera talet med 2
Skriv ut talet

For # (inte lika med) kan du skriva C# koden != och for att avgéra om tal
&r udda, koden if (tal % 2 == 1). Testa programmet for startvérdena 3,
6, 7, 13 och 50. Testa dven gérna storre startvarden.

Studera de talféljder som uppstar. Fundera pa varfor alla startvarden slutar
med 1 oavsett hur stora de &r. Formodan &r att det &r sant generellt, vilket
dock hittills inte har kunnat bevisas matematiskt.

Tillagg till Pyramiden (projekt) Modularisera projektet Pyramiden
frén évn. 6.11 (sid 155) genom att flytta koden som bestammer det tilldtna
antalet rader 1-13 till en metod som definieras i en separat klass och anropas
frdn Main () innan pyramiden ritas”.

* Ként dven som Collatz férmodan eller (3n+1)-problemet och kallat efter den tyske matematikern Lo-
thar Collatz (1910-1990) som stéllde upp det nér han var student. Collatz var Professor for Tillampad
Matematik vid Hamburgs Universitet p& 60-talet.

Att talféljderna i Collatz problemet slutar med 1 for alla startvarden, & matematiskt hittills obevisat.
Men man kan testa: Kor koden till denna algoritm i appen app.mattekollen.se = En mobil pythonmiljo.
Dér kan du sjélv 6vertyga dig om att kdrningen slutar med 1 for vilket startvarde som helst.

175

7.10 Kalkylatorn (projekt) | detta projekt ska du komplettera kalkylatorn
som presenterades i klassen switch i kap 6.4, sid 125, med ytterligare funk-
tionalitet. Du ska skriva en klass calculator som stddjer funktionalitet for
addition, subtraktion, multiplikation, division och potensiering av tva tal
precis som den ursprungliga kalkylatorn i switch-klassen. Funktionaliteten
som du ska lagga till ar att kalkylatorn skall kunna ange det stérsta och min-
sta av tva inmatade tal. Dessutom ska din kalkylator vara igdng kontinuer-
ligt tills anvandaren viljer att stanga av den, vilket innebar att du maste
l&gga in hela switch-satsen i en loop. Dessutom ska de olika rdkneoperatio-
nerna definieras i separata metoder och anropas i switch-satsen.

Féljande metoder ska definieras i klassen calculator:

public double Add(double operandl, double operand2)

{
// Additon av operandl och operand2

}

public double Sub(double operandl, double operand2)
{
// operandl - operand2
// Aven subtraktion av negativa tal ska vara méjligt

}

public double Mult(double operandl, double operand2)
{
// Multiplikation av parametrarna

}

public double Div(double operandl, double operand2)

{
// operandl / operand2
// Division med 0 far ej foérekomma (operand2 != 0)

}

public double Potens (double operandl, double operand2)

{
// Berdkning av potens: operandl upphdéjt till operand?2

}

public double max(double operandl, double operand2)

{
// Returnera det stérre vdrdet av operandl och operand2
// H&ar kan du anvdnda dig av den fédefinierade metoden
// Math.Max (double a, double b) fér att snabbt
// avgéra vilken av operanderna som dr stérre

}

public double Min(double operandl, double operand2)
{

// Returnera det mindre vdrdet av operandl och operand2
// Math.Min (double a, double b) kan anvidndas

176

Programmet skall exekvera kontinuerligt tills anvandaren véljer att avsluta
korningen. For att dstadkomma detta kan du exempelvis anvéanda dig av
en do-sats. Kalkylatorn kan avslutas genom att anvandaren matar in t.ex.
tecknet ’q’ (Quit) istéllet for en operator.

Du far sjalv bestamma om du vill placera all kod i en fil eller om du hellre
skapar en separat fil for klassen calculator med alla ovanndmnda me-
toder och en klass med Main () i en annan fil som testar klassen calcu-
lator. Det senare &r att foredra.

Det ar upp till dig om du lagger in kod for att kunna hantera fel inmatning
av operator eller andra felaktiga inmatningar.

177

178

Kapitel 8

Klasser, objekt

och referenser

Amne Sida

Program
8.1 Vad ar en klass? 180 Password
- Testa losenord som klass 181 PasswordTest
8.2 Klass som egendefinierad datatyp 185
- Vad &r en referens? 186
8.3 Gissa tal som klass 188 GuessNo
Ovningar till kapitel 8 (Projekt Automaten) 191

179

8.1 Vad ar en klass?

I forra avsnitt besvarades fragan Vad ar en klass? i allmanna termer av modellering
och design. Nu ska vi behandla samma fraga i mer konkreta termer av implemente-
ring dvs C# programmering. Den allménna definitionen Program = Modell av
verkligheten som introducerades dar kommer att preciseras har. Vi borjar med
klasshegreppet:

En klass ar kod som pd ett generellt och modulart sétt beskriver en
kategori av verkliga eller virtuella saker och ting. Den bestdr av ett an-
tal datamedlemmar och ett antal metoder och anvdnds som en mall
for att skapa objekt (instanser, exemplar) av denna klass.

En Klass &r en del av ett program som isoleras och skrivs separat som en namn-
given modul for att kunna anvéndas dven av andra program. | denna bemarkelse ar
en klass modulér. De saker och ting som den beskriver &r objekt i den reala vérl-
den som ar foremal for datorisering. Varje klass ar en abstrakt idé, en definition av
alla saker och ting (objekt) som tillhdr en viss kategori. | denna bemérkelse ar en
klass generell. Klassens centrala roll for programmering framgar redan av defini-
tionen for C# program (sid 43):

Ett C# program ar en samling av klasser, av vilka en
och endast en méaste innehéalla metoden Main ().
Nar programmet kors startar exekveringen i Main ().

Alla C# program bestér av klasser som minsta bestandsdel. | alla procedurala
programmeringssprak bildar funktioner och procedurer programmets byggstenar.
C# som ar objektorienterat har klasser som minsta komponenter som i sin tur kan
innehélla funktioner och procedurer vilka da kallas metoder.

Varfor klasser?

Fragan ar berattigad for nyborjare: Varfor ska man krangla till det hela? Kan man
inte helt enkelt skriva kod rakt ned i Main () ? Det som i programmeringshistorien
gjorde att man behdvde klasser var den vaxande komplexiteten hos program under
70-talet. Programmens storlek var avgérande for den véxande komplexiteten. Man
forstod att det inte langre rackte till att skriva och testa program som fungerade
just d&. Man insdg nédvandigheten att med rimliga kostnader dven kunna under-
halla stora program, férnya och vidareutveckla dem sa att de fungerade aven i
flera &r och att de framfor allt kunde anpassas till nyuppkomna situationer utan
ooverkomliga svarigheter. Men varfor maste man anvéanda sig av klasser for att
uppna detta mal? Forestall dig en verksamhet som dynamiskt vaxer med tiden, ett
expanderande foretag eller en organisation med stigande antal medlemmar. Hur
organiserar man jobbet? Man genomfor arbetsdelning och delegerar uppgifterna.
Var och en far en val definierad specifik arbetsuppgift. Samma sak gér man med
program vars kod véxer, vilket hdnder nér man utvecklar program efter behov och

180

behoven bara blir stérre och storre. Man delar upp det stora programmet i mindre
moduler for att kunna klara av komplexiteten. | objektorienterad programmering &r
modulerna klasser. Program bryts ned i ett antal klasser. Varje klass beskriver en-
dast en kategori av saker och ting som dr oberoende av andra och antagligen en-
klare att koda &n det stora programmet. Sedan géller det att satta ihop modulerna
till det stora programmet. Detta kallas for modularisering pa klassniva.

Testa losenord som klass

Vi kan i denna larobok inte komma upp till att kunna presentera sddana komplexa
program som motiverade anvandningen av klasser i programmeringshistorien. Men
idén bakom klasser kan &ven illustreras med de sma program som vi brukar visa
for att exemplifiera programmeringens koncept. Lat oss realisera klasskonceptet
genom att skriva var forsta klass: | alla véra program hittills finns all kod rakt
nedskriven i Main () vilket inte ett dugg &r objektorienterat, d&ven om C#:s klass-
bibliotek anvénds flitigt. Men man kan skriva om alla dessa program till objekt-
orienterade varianter. Vi ska demonstrera, hur man gor det, med det program vi
avslutade forra kapitlet med. Metodiken ar viktigare an resultatet. Samtidigt blir
det en avslutning pé programserien Testa losenord. Har &r klassvarianten:

// Password.cs

// Beskriver klassen Password med 2 datamedlemmar & en metod
// Innehdller endast kod som dr relaterad till ett lésenord:
// En strdng fér inmatning och ett sanningsvdrde fér test

// Att verifiera sig och skriva ut resultatet (metod)

// Kan kompileras men inte exekveras eftersom Main () saknas

using System;

class Password

{
String input; // Datamedlemmar
bool wrongPasswd;

public void Test() // Metoden Test ()
{
do
{
Console.Write ("\n\tSkriv ditt 1ldésenord:\t");
input = Console.ReadLine() ;
wrongPasswd = !input.Equals ("hemligt") &&
!input.Equals ("HEMLIGT") ;
if (wrongPasswd)
Console.WriteLine ("\n\tFel lésenord. " +
"Forsok igen!") ;
} while (wrongPasswd) ;

Console.WriteLine ("\n\tOK, nu &r du inloggad!'\n") ;

181

For forsta gangen i vara exempel bestar ett C# program av tva klasser. | en separat
fil skrivs foljande klass dar Main () skapar ett objekt av den forsta klassen for att
testa den:

// PasswordTest.cs

// Testar klassen Password genom att skapa ett objekt av den
// Anropar metoden Test () som dr definierad i Password

// Kan bdde kompileras och exekveras: Utgér med klassen Pass-—
// word ett program som gér samma sak som PasswdCapsLock
using System;

class PasswordTest

{
static void Main()
{
Password myPasswd = new Password() ; // Objekt skapas
myPasswd.Test() ; // Metod anropas
}
}

En kdrning av PasswordTest ger foljande dialog:

Skriv ditt losenord: HEMLIGT

OK, nu ar du inloggad!

Med inmatningen HEMLIGT i versaler lyckas inloggningen. Inmatningen hemligt
i gemener skulle ge samma resultat. Alla andra inmatningar kommer att misslyc-
kas.

Observera att klassen Password som tillhdr programmet och lagras i filen Pass-
word.cs, endast kan kompileras — antingen separat eller ndr PasswordTest
kompileras — men inte koras, for exekveringen ska starta i Main () nar programmet
kors. Och ndgon Main () finns ju inte i Password, den finns i PasswordTest
istallet. Men varfor ar det sa? Jo, for det forsta kan ett program ha endast en
Main () -metod. Password 0Ch PasswordTest Utgor ett program, sd Main () far
skrivas antingen i den ena eller i den andra. Sedan hanger det ihop med hur vi
skrivit om progarmmet PasswdCapsLock till klassvarianten bestaende av tva klas-
ser. Nedan foljer forfarandet att skriva om ett icke-objektorienterat program dar all
kod &r rakt nedskriven i Main (), till en objektorienterad version med klasser :

“ Generellt rekommenderas inte att skriva om ett icke-objektorienterat program till en
objektorienterad version, utan att helst fran borjan tanka och skriva objektorienterat. Men
det ar kanske lattare sagt 4n gjort. Vi maste ju forst lara oss att modellera objektorienterat.
For manga kan det vara enklare att (fortsitta) tanka i icke-objektorienterade banor. Men
stravan borde vara att lamna denna vana och modellera verkligheten s som den ér,
namligen som en samling av objekt — reella eller virtuella — som kommunicerar med
varandra genom att anropa varandras metoder. Att vi har anda beskriver 6vergangen fran ett
icke-objektorienterat program till ett objektorienterat sadant har endast pedagogiska skal.

182

1.

4,

Hitta p& ett namn for den klass som du ska skriva. Namnet ska vara
beskrivande fér de objekt som programmet &r tankt for att skapa enligt
klassmallen. | vart fall var det naturligt att kalla klassen for Password. Har
foljer vi forstas de vanliga namngivningsreglerna for identifierare som stalldes
upp tidigare (sid 59) samt att inleda klassnamn med versaler for att skilja dem
frén andra identifierare som variabler, metoder osv. Darmed &r dven namnet pa
filen som du ska skriva klassen i fastlagd: Password.cs.

Ta de lokala variablerna fran den rakt nedskrivna Main () -koden och deklarera
dem som klassens datamedlemmar. Med lokala variabler menas de som ar de-
finierade i Main () -blocket och &r dérfor giltiga endast inom Main (). Klassen
kring Main () kanner inte till dem. I vart fall &r det string-variabeln input
och bool-variabeln wrongPasswd som var lokala variabler i Main () och blir
nu datamedlemmar nar vi flyttar dem till klassen Password. Med denna flytt-
ning sker samtidigt en andring av dessa variablers status: De far ett storre gil-
tighetsomrade och blir nu giltiga i hela klassen och darmed i klassens alla
metoder. Dessutom blir de automatiskt initierade till vissa default-varden. Sa

hér inleds var klass:
class Password

{
String input;
bool wrongPasswd;

}

Vi gor s& darfor att varje l1osenord som testas méste ha en strangvariabel for
lagring av anvéandarens inmatning och en logisk variabel for lagring av san-
ningsvérdet som testar loopen och utskriften av testresultatet. Detta ar typiskt
for alla 16senord.

Ta hela koden i den rakt nedskrivna Main () -metoden och skriv den till krop-
pen av en eller flera metoder i den nya klassen. Hur manga och vilka metoder
det blir beror pa de logiskt sammanhéngande funktionaliteter dessa koder har. |
vart fall ar det hela do-loopen och utskriftssatsen efter do som utgér en enda
funktionalitet, ndmligen att testa l6senordet och skriva ut testresultatet. Darfor
gor vi en enda metod av det hela och déper den till Test (). Vi flyttar alltsd
hela koden frdn PasswdCapsLock:s Main () till Password-klassens Test () -
metod som da blir en s.k. void-metod och far returtypen void darfor att den
inte returnerar ngot varde alls. Férutom void maste metoden Test () skrivas
som public for att den ska vara atkomlig fér och ska kunna anropas av klas-
sen PasswordTest som lagras i en annan fil. Dédrmed &r Main () -kroppen
tomd fran all sin kod. Samtidigt ar den nya klassen Password fardigskriven.

I den tomma Main () -kroppen skriver vi nu foljande kod istallet:

Password myPasswd = new Password() ;
myPasswd.Test() ;

183

Samtidigt déper vi om den gamla PasswdCapsLock-klassen till Password-
Test. Visserligen ar frigan om beteckningen inte avgorande, men vi féljer en
viss konvention som ocksa ger en battre forstaelse om de tva klassers samv-
erkan i programmet: PasswordTest &r en slags test for klassen pPassword,
for i dess Main () -metod — med den forsta satsen i koden ovan — testas klassen
Password i den bemarkelsen att det skapas ett objekt av denna klass. Alla C#-
klasser som skrivs i separata filer och inte sjalva kan exekveras behdver ha ett
program som testar — eller instansierar — dem. Man sager sa eftersom instans
ar bara ett annat ord for objekt. Annars liknar klassen ett matrecept som ligger
i koksladan och aldrig anvands. Man kan ocksa jamfora PasswordTest med
en slags drivrutin for klassen Password. Det ar drivrutinen som sétter igang
och gor nagot med klassen, skapar ett objekt av den och — med den andra sat-
sen i koden ovan — anropar det nyss skapade objektets metod Test ().

Klassen password beskriver kategorin l6senord som en abstrakt idé utan att skapa
ett verkligt l6senord (sid 181). Den &r en mall for att skapa verkliga 16senord, en fo-
reskrift om hur ett verkligt 16senord med en viss inmatning och ett testvarde skulle
se ut och hur det skulle verifieras om det skapades. Ett verkligt, konkret 16senord
kallas for objekt. Det &r objektet som behdver minnesutrymme for att lagras. Klas-
sen definierar inga objekt utan stéller bara till férfogande modellen for framtida
objektdefinitioner. Om man byter ut I6senord mot pepparkakor kan man sdga att
pepparkaksformen ar klassen och sjalva pepparkakorna &r objekten. Formen be-
hover ingen pepparkaksdeg — motsvarigheten till minne — den framstélls bara en
gang medan kakorna kan bakas i tusentals. Aven klassen skrivs endast en gang, ob-
jekt daremot kan skapas hur manga som helst. | exemplet PasswordTest skapas
bara ett Password-objekt. Hur man gor det med det reserverade ordet new och hur
man sedan kan komma &t objektet behandlas i nista avsnitt. Sedan far vi ocksa re-
da pa varfor myPasswd kan deklareras till klassen Password.

Slutligen kan man undra om det hade varit mgjligt resp. rimligt att lagra bada klas-
ser Password Och PasswordTest i en och samma fil. Svaret &r: Mojligt ja, men
inte rimligt. Varfor? Jo, darfor att det gar bade att kompilera och kéra programmet
nar bada klasser lagras i en fil, foljer man bara regeln att dépa filen efter den klass
som innehaller Main (). Men rimligt &r det inte, for da gar man miste om hela idén
med klasser, namligen modularisering och ateranvandning av kod. Meningen med
att skriva separata klasser var ju att kunna ateranvanda koden i andra program. Det
kan man inte langre om man stoppar allt i en fil. D4 kan man ju lika bra kéra med
den ursprungliga icke-klassvarianten PasswdCapsLock.

184

8.2 Klass som egendefinierad datatyp

Det ar inte alls fel att jamfora klasser d&ven med enkla datatyper som t.ex. int. Vad
ar det som gor int till en datatyp? Definitionen séger att datatyp ar en foreskrift
om hur en viss typ av data ska lagras i datorn, hur mycket minne den tar och vilka
operationer man fér utfora med den. For int &r det +, —, *, / och %. Aven explicit
typkonvertering av en float till en int eller ndgon annan enkel datatyp, ar en
operation som &r implementerad i datatypen. Minnesstorleken — ett fast varde i an-
tal bytes — som maste lagras som ett konstant varde i datatypen, kan jamforas med
datamedlem. Vad som far goras med varden av en viss datatyp och hur allt detta
ska goras ar metoder som ar definierade for datatypen. Att samla data och metoder
som é&r relaterade till dessa data, i en enhet, &r samma koncept som ligger bakom
klassbegreppet.

Den forsta satsen i PasswordTest-klassens Main () ar:
Password myPasswd = new Password() ;

For att forstd vad den gor forenklar vi forst lasligheten genom dela upp den i sina

bestandsdelar:
Password myPasswd;
myPasswd = new Password() ;

Vi borjar med att forklara det reserverade ordet new som forekommer i den andra
satsen ovan. new ar en fordefinierad minnesallokeringsoperator i C#. Generellt ut-
for en operator en operation och returnerar ett varde. Den tar in en parameter (eller
flera), gor nagot med den (dem) och ger tillbaka ett vérde. new tar in en klass som
parameter, allokerar (reserverar) minne av den storlek som klassen foreskriver, ko-
pierar ett exemplar av klassens datamedlemmars varden till det nyss skapade min-
net och returnerar det allokerade minnesutrymmets adress:

Operatorn

—— Adress till ett objekt
new

Klass ~——]

I exemplet ovan skapar new genom att sattas framfor klassen Password ett Pass-
word-objekt med datamedlemmarna input och wrongPasswd och initierar dem
automatiskt. Skillnaden till traditionell allokering med vanlig definition av varia-
bler av enkel datatyp ar att new allokerar minne under programmets kérning — at
run time medan vanlig definition av variabler av enkel datatyp allokerar minne un-
der kompileringen — at compile time. Denna teknik kallas dynamisk minnesalloke-
ring. Pa sa satt skapar new ett objekt enligt klassen som mall. Nar objektets metod
anropas utdkas det allokerade minnesutrymmet s& att dven metodens data (para-
metrar, returvardet och lokala variabler) far plats vilket ar mgjligt pga att minnes-
allokeringen sker dynamiskt.

185

Eftersom operatorn new returnerar en adress maste den tilldelas en variabel som
kan ta emot och lagra adresser, for att sedan kunna referera till data som lagras vid
denna adress. Med data menas det objekt som new skapar. Ingen av vara hittills
kanda datatyper kan lagra adresser. Darfor finns det i C# en helt ny typ av variabler
som &ar konstruerade endast for att lagra adresser: Referensvariabler eller kort refe-
renser.

Vad &ar en referens?
En referens ar en ny typ av variabel, en forkortning for referensvariabel:

[Referens @r en variabel vars datatyp ar en klass.]

Ett exempel &r variabeln myPasswd som ovan deklarerats till datatypen Password.
Lyckligtvis behdver vi varken bry oss om hur adresshantering skots internt i C#
eller lara oss hexadecimala tal — formatet for lagring av adresser i datorn. Vi
behdver inte heller som i C++ ldra oss pekare, for i C# finns inga pekare. Adress-
hanteringen skéts automatiskt. Det enda som vi maste kanna till & anvandningen
av referensvariabler for att via dem kunna komma &t véra objekt, for det ar det en-
da sattet att gora det i C#: Objekt kan bl.a. skapas med operatorn new. De har inga
direkta namn som vanliga variabler av enkel datatyp utan kan endast refereras
indirekt med referensvariabler. Det &r jamforbart med tyglar till en hést eller fjarr-
kontrollen till en TV, bada ar latthanterade men avgérande verktyg for styrning av
tunga objekt. Aven en referens &r jamfort med stora objekt, minnesekonomisk och
tar sa litet minne som en int: 4 bytes.

Med satsen Password myPasswd; skapas inget objekt av typ Password utan en-
dast en referens till ett sdant objekt. S& lange man inte initierar denna variabel till
ett varde behandlas den som vilken oinitierad variabel som helst, leder t.ex. till
kompileringsfel nédr den anvénds. En referensvariabels vérde déremot kan per
definition bara vara en adress. En sadan levereras av operatorn new:s returvarde
efter att med koden new Password () har allokerat minne for och dérmed skapat
objektet. Forst kopplingen av referensdefinitionen till skapandet av objekt med
hjalp av tilldelning ger resultat:

Password myPasswd = new Password() ;

Foljande generell struktur &r formen till kanske de mest forekommande satserna i
objektorienterade C# program:

[Klass referensvariabel = new Klass();]

Sjalva new:s syntax star hoger om tilldelningstecknet. Till vanster definieras en re-
ferensvariabel som tar hand om new:s returvarde. Har ser man ocksa att operatorn
new inte behdver parenteser kring sin parameter Klass(). Observera att klasserna pa
tilldelningens bada sidor maste vara identiska: new Password () allokerar minne

186

for lagring av ett Password och returnerar en adress till ett Password. Darfor
maste den ocksa tilldelas en variabel av typ referens-till-rPassword. Tilldelning till
en referens-till-annan klass ger kompileringsfel. Man kan, om man inte har behov
av att komma at objektet senare, aven skapa anonyma objekt direkt nar man be-
hover dem. T.ex. kan anropet myPasswd.Test () ; | PasswordTest dven erséttas
av new Password () .Test () ; Vilket 4n en gang visar att det &r inget annat &n
new SOm skapar objektet. Testa garna!

Nér det galler vanliga variabler av enkel datatyp hanvisar vi till minnescellerna
direkt med variabelnamn. Nar det galler objekt gér vi det indirekt med deras adres-
ser i form av objektens referenser. Vilken metod som ar “direkt” och vilken ”indi-
rekt” kan man ha olika &sikter om. Nar man vant sig vid att anvinda referenser kan
man t.0.m. tycka att hanteringen av data via adresser &r det naturliga sattet, vilket
inte & nagon dum idé med tanke pa att variabelnamn &nda &r en slags mjukvaru-
lank till hardvarans minnesadress.

Det enda som vi inte forklarat ovan dr de tomma parenteserna efter klassnamnet: |
den allmanna formen Klass() och i exemplet Password (). De far absolut inte ute-
lamnas &ven om de &r tomma. De anropar klassens konstruktor, ett koncept som
har att géra med objektets initiering.

187

8.3 Gissatal som klass

Nu kan vi sammanfora vara kunskaper om klasser, objekt och referenser, for att
skriva en klassvariant till spelserien Gissa tal som introducerades pa sid 128 och
vidareutvecklades sedan i ett antal steg. Samtidigt tillampar vi idéerna om modula-
risering och ateranvindning av kod: Klassen Random samt dess metod Next ()
anvands — fran biblioteket system — for att initiera programmets hemliga tal med
ett slumpvéarde mellan 1 och 20. Féljande klass anropar Next () for att forse varje
objekt av den med ett nytt slumptal:

// GuessNo.cs

// Klass som implementerar Gissa tal-spelet med tva datamed-
// lemmar fér det gissade och hemliga talet och en metod med
// spelets regler som hjdlper anvdndaren att gissa ratt
using System;

class GuessNo

{
int guessedNo;
int secretNo = new Random() .Next(1l, 21); // Anrop av metod
// 1 anonymt objekt
public void Play ()
{
do
{
Console.Write ("\n\tGissa ett tal mellan 1 och 20 " +
" (Avsluta med 0) :\t");
guessedNo = int.Parse (Console.ReadLine()) ;
Console.Write ("\n\t") ;
if (guessedNo == 0)
{
Console.WriteLine ("Avbrott: Programmets hemliga " +
"tal var " + secretNo + '\n');
break; // Bryter do-loopen
}
if (guessedNo < secretNo)
Console.Write ("Fér LITET, fdrsdk igen!\n") ;
if (guessedNo > secretNo)
Console.Write ("Fér STORT, forsdk igen!\n");
} while (guessedNo != secretNo) ;
if (guessedNo == secretNo)
Console.Write ("\aGrattis, du har gissat ratt!\n\n");
}
}

I klassen GuessNo anropas metoden Next () for att initiera datamedlemmen se-
cretNo med ett slumptal i intervallet [1, 20]. Anropet gors med ett s.k. anonymt
objekt new Random () dvs ett objekt som skapas med new utan att man tilldelar
minnesadressen till en referens. Dessutom &r det inbakad i en tilldelningssats darfor

188

att Next () dr en metod med returvérde. Att initiera en datamedlem direkt i klassen
ar inte sa vanligt. | det hér fallet ar det motiverat eftersom variationen i slumpen
ger olika varden for de olika objekt som kommer att skapas av klassen GuessNo.
Annars hade det lika bra varit mojligt att initiera secretNo i metoden Play ().
Dessutom ska varje spelomgang — och darmed varje objekt — ha endast ett hemligt
tal som anvéndaren ska gissa fram sig till. Att initieringen gors i klassen betyder
inte att datamedlemmen secretNo &r en klassvariabel. Da borde den vara deklare-
rad som static vilket den inte &r. Utan den dr en instansvariabel precis som den
andra datamedlemmen gissat som initieras forst i metoden Play ().

Klassen ovan kan kompileras for sig, men inte exekveras eftersom Main () saknas.
Programmet i sin helhet bestar av tva klasser (moduler) i tva filer som lagras i en
mapp: Klassen GuessNo och foljande klass som “testar” den i den bemdrkelse att
Main () &r placerad i den och ett GuessNo-0objekt skapas samt dess metod Play ()
anropas diar. Man kan ocksé séga att ’test”’klassen (nedan) ar en slags “’drivrutin”
eller ”drivklass” for klassen GuessNo. Den sitter igdng (’driver”) hela program-
met. Utan den fungerar ingenting. Men huvudjobbet gors anda av klassen GuessNo
eftersom den innehaller spelets egentliga kod i form av metoden play ().

// GuessNoTest.cs

// Testar klassen GuessNo genom att skapa ett objekt av den
// Anropar objektets metod Play ()

// Utgbr med klassen GuessNo ett program som gér samma sak
// som Gissa tal-spelets tidigare versioner

using System;

class GuessNoTest

{
static void Main ()
{
GuessNo g = new GuessNo() ; // Objekt skapas
g.Play(); // Metod anropas
}
}

Allt gér ut pa att anropa void-metoden Play () som implementerar spelets regler
och genomfor det i ordande former dvs later anvandaren — med lite hjalp — gissa
flera ganger tills den gissat ratt eller p& begaran avslojar spelets hemliga tal. Den
innehéller i huvudsak en loop som haller igdng, styr, kontrollerar och avslutar en
spelomgang. Vi har tagit 6ver koden fran Gissa tal-spelets senaste version Guess-
NEG och skrivit den i klassen GuessNo pa forra sidan efter att ha eliminerat allt
som har att géra med den logiska operatorn NEGATION for att ha fokus pa pro-
grammets objektorienterade aspekter.

Men metoder i C# och darmed aven metoden Play () kan endast anropas utifran
ett objekt eller en klass. Nar det sker fran en klass maste de vara statiska vilket
Play () inte &r (se klassen GuessNo). Darfor behdver det ett objekt for att anropas.

189

Ett sddant skapas i klassen GuessNoTest med new GuessNo() och tilldelas
referensvariabeln g. Sedan anropas metoden med denna objektreferens: g.Play (),
dvs metoden anropas i det objekt som g refererar till. Man skulle kunna anropa
Play () &ven med ett anonymt objekt i en enda sats: new GuessNo () .Play() ;
och darmed spara undan referensvariabeln vilket inte just forbattrar kodens laslig-
het.

Mer om metoder kommer vi att lara oss i nasta kapitel (sid 157). Da kommer vi
aven fullt forstd modifierarna public och void i metoden Play () :s huvud.

En kérning av GuessNoTest kan se ut s& har:

Gissa ett tal mellan 1 och 20 (Avsluta med 0): 12
For STORT, forsok igen!
Gissa ett tal mellan 1 och 20 (Avsluta med 0): 6
For LITET, £fo6rsok igen!
Gissa ett tal mellan 1 och 20 (Avsluta med 0): 9
For LITET, £fo6rsok igen!
Gissa ett tal mellan 1 och 20 (Avsluta med 0): 10
For LITET, forsok igen!
Gissa ett tal mellan 1 och 20 (Avsluta med 0): 11

Grattis, du har gissat ratt!

Har man efter ett tag ingen lust att gissa vidare och vill avsluta, kan man mata in 0.
Man far da reda pa programmets hemliga slumptal vid just den aktuella kérningen:

Gissa ett tal mellan 1 och 20 (Avsluta med 0): O

Avbrott: Programmets hemliga tal var 16

Korresultaten ovan ar — bortsett fran slumpens variation — identiska med dem fran
prorammet GuessDoRand pa sid 137, darfor att GuessNoTest ar en klassvariant
av samma program.

190

8.1

8.2

8.3

8.4

Ovningar till kapitel 8

Skriv ett program som bestér endast av klassen A11_in_Main som i sin tur
innehdller endast Main () -metoden. Lés in radien r till en cirkel och berak-
na samt skriv ut cirkelns area © r2 och dess omkrets 2r r, dér m = 3.14159.
Du kan anvédnda konstanten Math.PI fran C#:s klasshibliotek for =. Pro-
grammet ska inte vara objektorienterat eftersom du inte skapar nagra objekt,
utan endast lokala variabler (radie, area, omkrets). Programmet ska inte
heller vara modulariserat eller proceduralt eftersom all kod (inmatning-
bearbetning- utmatning) finns i en enda metod Main () som definieras i en
klass. Dessa steg ska tas i de efterféljande tva 6vningarna. Deklarera alla va-
riabler till double.

Modularisera programmet A11_in Main fran 6vn 8.1 pd metodniva, dvs:
Flytta bearbetningsdelen dvs beraknlngen av area och omkrets ur Main ()
till separata metoder Area () och Circumference (), men stanna i samma
klass. Dop om klassnamnet till Procedural. | Main () ska finnas kvar va-
riabeln for radien, inmatning, utmatning och anropen av Area () och Cir-
cumference (). FOrse de nya metoderna med en parameter som Gverfor
radiens vérde fran Main () till dem. Valj olika namn fér den aktuella an for
den formella parametern. Dessutom ska Area () och Circumference ()
returnera ett double-vérde och vara statiska. For att testa, mata in 1 for ra-
dien. D& ska arean bli & pga & r 2 = © och omkretsen bli 2r pga 27 r = 2.

Modularisera programmet A11_in Main fran 6vn 8.1 pa klassniva, dvs:
Dela upp programmet i tva Klasser, Iagrade i tva separata filer. Kalla den ena
klassen for circle, den andra for circleTest. Samla all information om
begreppet cirkel i klassen circle, dvs: Deklarera radien r som datamed-
lem samt Area () och Circumference () Som metoder. Ta bort fran meto-
derna bade static och parametern for radien. Den andra klassen circle-
Test ska endast innehalla metoden Main (). Skapa i den ett objekt av klas-
sen Circle. Lds in ett varde till objektets datamedlem r och anropa samt
skriv ut returvérdena till objektets metoder Area() och Circumferen-
ce (). Bada klassfiler borde ligga i samma projekt.

Skriv en klass Fish som beskriver en fisk med datamedlemmarna sort,
weight 0och size. Testa din klass i en annan klass FishTest i en separat
fil som endast innehaller metoden Main () dér tva objekt av klassen Fish
skapas. Tilldela det forsta objektets datamedlemmar vérdena Laxforell, 719
(gram) och 38,5 (cm). Enheterna gram och cm behdver inte anges. Valj sjalv
andra vérden till det andra objektets datamedlemmar. Skriv ut dessa vérden
till konsolen i en tabell av typ:

191

8.5

8.6

8.7

8.8

= CYWINDOWS\system3 2vemd. exe

Laxforell
Torsk

Ta klassen Fish fran 6vn 8.4. Forse den med en metod som beraknar priset
pa fisken oberoende av sort, t.ex. 7,25 kr per hekto. Lagg till a&ven en metod
som berdknar och returnerar frakten utifran fiskens vikt och langd genom att
t.ex. multiplicera en viss kostnadsfaktor, s&g 0,02, med vikten, en annan, sag
0,1, med langden och addera dem. Metoderna ska returnera priset och frak-
ten i hela kronor utan 6ren. Anropa metoderna fran klassen FishTest:s
Main () -metod for de tva Fish-objekten. Lagg till nya rubriker Pris och
Frakt i tabellen ovan och skriv ut deras varden till tabellens tva rader.

Modifiera programmet fran 6vn 8.5 sa att datamedlemmarnas varden inte
hardkodas utan lases in. Utskriften ska skickas till konsolen och laggas till
tabellen ovan. Skriv din kod s att den latt kan generaliseras sa att man kan
mata in flera fisksorter med hjélp av en loop och en array av referenser till
Fish-objekt som vi kommer att lara oss senare. Dessutom ska programmet
kunna modifieras till att skriva ut till en tabell i en fil eller en databas istallet
for att skriva till konsolen.

Deklarera en klass Triangle med datamedlemmarna side a, side b,
side_c, height b av typ int och metoderna Area(), Circumferen-
ce (). Skapa i en annan klass som innehdller Main (), ett objekt av klassen
Triangle och tilldela datamedlemmarna vérden. Anropa metoderna och
skriv ut denna triangels area och omkrets. Skapa en andra referens som
pekar pd samma objekt och anropa metoderna samt skriv ut deras returvar-
den med denna referens. Du borde fi samma resultat som med den forsta
referensen. Anropa sedan metoderna Area () och Circumference () med
tvd anonyma objekt (utan referenser). Kolla om du far de forvintade
resultaten som &r baserade p& objektens default-initiering. Sist, peka om
Triangle-objektets forsta referens till null och forsok att anropa metoder-
na med denna referens. Vad hander?

Automaten (projekt) Skriv ett program som simulerar interaktionen
med en automat. Foljande klass beskriver i stora drag det som pagar i auto-
maten efter att anvéndaren lagt in pengar och valt en vara:

class Automat

{

string productName;
double price;

192

double payment;
double change;

void Automat_action(double money,
char product)

{
switch (product)
{
}
payment = money;
change = payment - price;
}
void Change_in coins()
{
}

}

switch-satsen i metoden Automat action() ska tilldela datamedlem-
marna productName 0Och price virden beroende pd valet av vara och
skriva ut ett meddelande om inlagt belopp samt varan som ska levereras.
Testa klassen Automat i en annan Kklass (testklassen) i en separat fil som en-
dast innehéller metoden Main ().

Borja i Main () med att skriva ut en meny 6ver alla varor samt priserna. For
enkelhets skull kan du t.ex. borja med en meny for en kaffeautomat. LAt
sedan anvéndaren lagga in pengar. L&s in beloppet till en double-variabel.
Lat anvandaren dven vilja en vara. Sedan kan ett objekt av den ovan dekla-
rerade klassen Automat skapas och metoden Automat_action () anropas.
Vid detta anrop skickas de inlédsta vérdena till det inlagda beloppet och den
valda varan som aktuella parametrar till Automat_action (). Efter att ob-
jektet skapats och datamedlemmarna initierats, kan metoden change_in_-
coins () anropas.

Komplettera programmet med att ta hand om en eventuellt felaktig eller
otillracklig betalning frn anvandarens sida.

Metoden change in_coins() ar till for att dela upp véxeln i "tilldtna”
myntslag (endast 10-kr, 5-kr, 1-kr och 50-6ringar ~) och skriva ut hur ménga

Inkluderingen av myntslaget 50-6ring som inte langre finns i det svenska myntsystemet,
beror inte pa nostalgi utan pa internationalisering. Vi vill halla mojligheten oppen for en
oversattning till andra sprak resp.for en Gvergang till Euro eller andra valutor. Behandlingen
av en halv enhet (50-6ring) vid omvandling av véxelbeloppet till automatens tillatna
myntsystem inkluderar en programmeringsteknisk finess som &r vard att lara sig. Sa kan
t.ex. vara program aven anvéndas for Euron dar 50 cent ersétter 50-ringen.

193

av varje “tillitet” myntslag som ska ges tillbaka. Véaxelbeloppet maste
omvandlas till detta mynt”system”. For att dstadkomma det, anvand foljande
algoritm:

Algoritm foér omvandling av ett belopp till olika myntslag

Eftersom denna algoritm endast fungerar for heltal, maste change som é&r
ett belopp i kronor och 6ren av typ double, forst rdknas om till ett rent ore-
belopp av typ int, vilket kan géras genom att multiplicera det férst med
100 och sedan avrunda resultatet till heltal:

int total = (int) Math.Round (change * 100) ;

| fortsattningen kommer alltsa den givna véxeln att std som ett Grebelopp i
int-variabeln total. Anledningen till konverteringen till int i satsen ovan
ar att den fordefinierade metoden Round () som avrundar till ndrmaste hel-
tal, anda returnerar ett varde av typ double.

1. For att fa antalet 10-kronor heltalsdivideras total med 1000 eftersom

10-kronor ar 1000 Oren:
int ten = total / 1000;

Hur manga ganger ryms 1000 — eller 10-kronor — i total? Det antalet till-
delas till ten. Eller med andra ord: 1000 dras av fran total s manga gan-
ger tills resten blivit mindre &n total. Det antalet som tilldelas till ten blir
antalet 10-kronor. Divisionen ovan &r inte vanlig division utan heltalsdivi-
sion (sid 75) eftersom bade total och 1000 &r heltal. Dvs total divideras
med 1000, resultatet tas, resten ignoreras, t.ex. 6975/1000 ger 6. Resten
975 ignoreras hér, men anvands i fortsattningen.

2. For att fa antalet 5-kronor divideras just resten som blev kvar fran punkt
1 med 500 eftersom 5-kronor &r 500 6ren:

int five = (total % 1000) / 500;

”Resten som blev kvar fran punkt 1” &r just (total % 1000). H&r anvands
modulooperatorn % (sid 75). T.ex. 6975 % 1000 ger 975. Efter att ha dragit
av alla 10-kronor fran total divideras resten med 500 for att fa reda pa hur
manga 5-kronor som finns i total. T.ex. 975/500 ger 1. Resultatet av
denna division ges till £ive, resten ignoreras och anvands i fortsattningen.

| ytterligare tre steg kan foljande satser for berékning av antalet 1-kr (one),
50-6ringar (half) och resten i 6re (rest) skrivas, ndr ménstret i algoritmen
(férhoppningsvis) har tratt fram. Om 50-6ringar las fotnoten pa sid 193.

int one = ((total % 1000) % 500) / 100;
int half = (((total % 1000) % 500) % 100) / 50;
int rest = (((total % 1000) % 500) % 100) % 50;

194

Man tar forra stegets formel, ersétter / med % och lagger till en heltalsdivi-
sion med den nya enhetens 6rebelopp. | det allra sista steget daremot, déar
man &r ute efter allra sista resten i 6re, maste % anvandas hela vagen. Sjalv-
klart &r restérebeloppet inte av praktiskt intresse ndr automaten inte kan
spotta ut det.

195

Kapitel 9

Array

Amne Sida Program

9.2 Vad ar en array? 197

- Deklaration och initiering av en array 199 Array

- foreach-satsen 201
9.3 Arrayens initieringslista 204 ArrayInit
9.4 Texthantering med array av char 206 ArrayChar

- Slumplésenord 207
Ovningar till kapitel 9 (Projekt Master Mind) 209

196

9.1 Vad ar en array?

Ordet array betyder i engelskan ordnad skara eller ordnad uppstélining (battle ar-
ray = stridsordning). Som datalogisk term hittar man i litteraturen begreppen falt,
vektor, matris, lista, Ibland anvinds 4ven harledd datatyp som syftar t att den
ar baserad pa en annan datatyp. Vi kommer dock att anvanda endast termen array.

En array ar en sammansatt datatyp — en ordnad mangd av variabler av
samma datatyp grupperade under samma namn.

En array bestdr av ett antal element. Elementens position kallas for index.

Index &r synonym till nummer och specificerar varje elements position i arrayen for
att adressera” elementet. Elementen kan i sin tur vara av enkel, sammansatt eller
av referenstyp. S& man kan dven — med hjalp av referenser — gruppera objekt till en
array. En array ar den enklast tankbara sammansatta datatypen. Som exempel tar vi
en array som ar sammansatt av den enkla datatypen int. Varje element i en sédan
array kan betraktas som en indexerad dvs numrerad variabel av typ int.

Anta att vi vill definiera 20 heltalsvariabler. Hittills behdvde vi skriva 20 satser for
att gora det. Men array ger oss mdjligheten att géra samma sak med endast en sats:

Hittills: enkel datatyp int: Nu: int-array med referens:
int nol;
int no2;
—_— int[] no = new int[20];

/

int no20;

Vi definierar en variabel no av datatypen int[], anvander new och lagger till in-
formationen om antalet element inom hakparentes: [20]. Men vad &r int[] for
datatyp? Det reserverade ordet new avslojar att det &r ett objekt. new allokerar min-
nesutrymme for ett objekt bestdende av 20 int-vérden och returnerar den samman-
héngande “minneskedjans” adress — ndrmare bestdmt adressen till dess forsta cell —
till referensvariabeln no. D&rmed har vi att goéra med en referenstyp: Datatypen
int[] &ren referens till en int-array som i sjilva verket &r ett objekt. For att géra
det annu tydligare kan man skriva den nya koden dven i tva separata satser:

int[] no;
no = new int[20];

Det ar inte den forsta utan den andra satsen, ndrmare bestdamt koden new int[20]
som skapar sjalva arrayen. Darfor star ocksé storleken 20 dar det behévs, namligen

197

i satsen dar new allokerar minne. Typiskt for array dr hakparenteserna [1, pa eng.
brackets. | satserna ovan har [1 tva olika betydelser: | den forsta satsen specifice-
rar int[] variabeln no:s datatyp som en referens till en int-array, i den andra
satsen innehaller [20] arrayens storlek. Referensvariabeln no ersatter de 20 vanli-
ga int-variablerna nol, no2, ..., no20, vilket medfor en stor effektivitet i koden.
Tank dig att det &r inte 20 utan fler data vi vill jobba med. no pekar fysiskt pa det
forsta elementet av arrayen som allokeras i ett sammanhéngande minnesutrymme.
Darfor kan man komma at de andra elementen via indexering som &r bara ett annat
namn fér numrering.

Indexering i en array

Lat oss anknyta till exemplet ovan dar bade arrayen och dess referens no definie-

ras.
int[] no = new int[20];

Lat oss ytterligare anta att vissa varden — de som visas i bilden nedan — har till-
delats arrayens element efter satsen ovan. Eftersom elementen lagras i ett samman-
hiangande minnesomrade uppstar féljande minnesbild av arrayen i datorns RAM:

Index: 0 1 2 17 18 19
wost [25 [1257 [-10] [358 | 65 | 219 |
no[0] no[l] no[2] e no[l7] no[l8] no[19]
no

Medan sjalva arrayens allokering (den 6vre delen) gors av new int[20], allokeras
minnescellen no (den undre delen) av int[] no. Kopplingen mellan dem gérs av
tilldelningsoperatorn, vilket gor att arrayens adress (t.ex. 190d11 — ett hexadecimalt
tal) som new har genererat, hamnar i minnescellen no. Den sa uppkomna situatio-
nen innebér att no pekar pa eller refererar till arrayen. Under arrayens minnes-
celler star varje elements varde: no[0] ger den forsta minnescellens vérde 25 som
har index 0, no[1] ger den andra minnescellens varde 1257 som har index 1 osv.
no[0] lagras vid adressen till arrayens forsta minnescell. no[1] lagras vid adres-
sen till den andra minnescellen. no[2] lagras vid adressen som ligger 2 x 4 bytes
langre bort fran no osv. Adressering i RAM sker byte-vis. Avgorande for denna in-
dexeringsteknik &r att en array alltid allokeras i ett sammanhangande minnesomra-
de. Indexnumreringen bérjar med 0 och inte med 1. Det géller:

Indexregeln: I en array borjar numreringen av index alltid med 0.
Darfor galler: elementets position = index + 1

Med position menas numret som méanniskan anvénder for att numrera elementen.
Manniskor &r vana vid att pabdrja numreringen av saker och ting med 1. Med index
menas numret som datorn anvander for samma sak. C# och de flesta andra pro-

198

grammeringsspraken bérjar numreringen av index i en array med o. Tillampad pa
exemplet: Det 1:a elementet i den array som no refererar till har vérdet 25 och in-
dex 0: Positionen ar 1 medan indexet ar 0. Det 2:a elementet (vérdet 1257) har in-
dex 1 och koden no[1], det 3:e elementet (v&rdet —10) har index 2 och koden
no[2] osv. Det n:e elementet har alltid index n-1. Darfor har ocksa det 20:e ele-
mentet (vardet 219) index 19.

Det ar avgorande nar man arbetar med array och &r samtidigt felkédlla nr 1 — om
man glommer det — att halla isar det manskliga sattet att numrera som borjar med 1
fran C#-kodens satt som borjar med 0. | exemplet ovan har vi definierat en array av
20 heltalselement med referenserna no[0]1, ..., no[19]. Antalet element &r 20.
Indexen daremot gar fran o till 19. Felkéalla nr 2 &r att forvéaxla en arrayelements
index med dess varde: Det sista elementet i exemplet ovan har index 19, men var-
det 219. Man har alltid med tva tal att gora, index (position) och vérde (innehall).
Det galler att halla isér positionen fran innehallet.

Tre egenskaper skiljer objekt fran array:

e Indexering
e Allokering i ett ssmmanhingande minnesomrade
e Allaarrayelement har samma datatyp.

Annars behandlas array i C# som objekt: Bada maste skapas med new och man kan
komma at bada endast med referensvariabler. Bada initieras till default-varden
aven om de kan forekomma som lokala variabler i metoder.

Deklaration och initiering av en array

Hér testas allt vi sagt hittills om array speciellt indexregeln. Utdver det visas ytter-
ligare en egenskap hos array som relaterar den till objekt, ndmligen en egenskap
Length som lagrar arrayens storlek nédr den skapas. Programmet demonstrerar
ocksd vad som hander om man Overskrider arrayens maximala index: Man kan
kompilera, men inte exekvera: arrayens allokering sker vid run time.

// Array.cs

// Definierar en array, skriver ut arrayens storlek,

// initieringsvdrdena 0 och de nya tilldelade védrdena

// Overskridning av arrayens index leder till exekveringsfel
using System;

class Array

{ static void Main()
int[] no; // Deklarerar referensen no
// utan att skapa arrayen
no = new int[4]; // Skapar arrayen vars adress
// tilldelas referensen no
// int[] no = new int[4]; // Alternativt 1 EN sats

199

Console.Write ("\n\tArrayens storlek:\t\t");
Console.WriteLine (no.Length) ;
Console.Write ("\n\tArrayens default-initiering:\t");
foreach (int element in no)

Console.Write (element + "\t");

no[0] = 64; // Tilldelar 1:a elementet
no[l] = 86; // vdrdet 64 osv. Overskriver
no[2] = 34; // default-initieringen

no[3] = -6;

Console.Write ("\n\n\tArrayen efter tilldelning:\t");
foreach (int element in no)
Console.Write (element + "\t");
Console.WriteLine (
"\n\n\tOverskridning av arrayens index leder till " +
"programavbrott:\n\n\t\tno[4] inte definierad\n\t" +
"\tIndex 4 overskrider gransen: Exekveringsfel!") ;
no[4] = 1; // no[4] kan kompileras, men
} // leder till exekveringsfel

}

Inte alla satser i programmet Array exekveras. Det blir avbrott nér den kompilera-
de koden no[4] i allra sista satsen ska exekveras dér index 4 Gverstiger arrayens
tilldtna maximala indexgrans som &r 3 darfor att new i borjan av programmet allo-
kerar endast 4 minnesceller at arrayen, namligen de med index 0, 1, 2 och 3. N&-
gon minnescell med index 4 &r inte allokerad. Darfor kan vi inte heller referera till
den med no[4]. Men eftersom arrayens allokering sker med new och darmed un-
der exekveringstid (eng. run time) leder detta till exekveringsfel, medan kompila-
torn godtar den syntaxmassigt korrekta koden no[4]. Programmet Array ger fol-
jande utskrift nar man kor det:

Arrayens storlek: 4
Arrayens default-initiering: 0 0 0 0
Arrayen efter tilldelning: 64 86 34 -6

Overskridning av arrayens index leder till programavbrott:

no[4] inte definierad
Index 4 overskrider gransen: Exekveringsfel!

Unhandled Exception: System.IndexOutOfRangeException: Index
was outside t bounds of the array.

at Array.Main() in C:\Programmering\Programmering 2\2
OOP\Array.cs:line 32

Vi drar slutsatsen:

[Att referera till icke-definierade eIerzn(%lt i en array leder till exekveringsfel.]

Man kan &ven sdga att C#-interpretatorn (VM) kontrollerar indexgrénserna och inte
tillater atkomsten till icke-allokerade minnesplatser, vilket ur allman datasiker-
hetssynpunkt &r en fordel. Programmen blir stabilare. Andra programmeringssprak
som C++ har i detta avseende en mer liberal attityd. Dér ligger ansvaret for kontroll
av indexgranserna helt och hallet hos programmeraren.

foreach-satsen

Denna sats som anvands i programmet Array (sid 199) &r en ny kontrollstruktur
som inte kunde tas upp i kapitlet om kontrollstrukturer (Progrl) darfor att den forut-
satter array-begreppet eller liknande sammansatta datatyper, som vi inte hade
hunnit g& igenom da.

foreach-satsen ar idealisk for att skriva ut sammansatta datatypers véarden. Den
gor samma sak som f£or-satsen, men har en lite annorlunda — ja t.o.m. lite enklare
syntax, om man &r fortrogen med arrays. | programmet Array (sid 199) ser satsen

ut sd har:
foreach (int element in no)
Console.Write (element + "\t");
Oversatt till svenska:
For varje element av arrayen no
Skriv ut elementet foljt av en tabulator.

element — ett namn som &r valt av 0ss — kallas f0r foreach-satsens iterations-
variabel. Den definieras till int och motsvarar for-satsens raknare. element pe-
kar pa vardet (innehallet) som star i arrayen. Iteration betyder upprepning och inne-
bar hér att satsens kropp upprepas: Programflodet fortskrider fran element till ele-
ment tills alla element & genomgangna. Det reserverade ordet in betyder av eller
element av. no pekar pa arrayen som ska loopas igenom. Darfor: ” For varje ele-
ment av arrayen no”.

foreach-satsens enkelhet bestar i att den till skillnad frén for-satsen varken
behover ett start-, steg- eller slutvarde resp. avslutningsvillkor. Den gar helt enkelt
igenom arrayens alla element, fran det forsta till det sista. Det &r sjalva arrayen
som bestdmmer start-, steg- och slutvardena. Variabeln element pekar i varje varv
av loopen pa resp. arrayelementets varde och kan sedan anvandas i loopens kropp
for att gora det man onskar. | véart exempel for att skriva ut arrayens element foljt
av en tabulator.

foreach-satsens iterationsvariabel maste ha samma datatyp som arrayelementen
eller en sddan datatyp som arrayelementens datatyp automatiskt kan konverteras
till. I vart exempel har vi int. Det ar t.0.m. méjligt att ha egendefinierade dataty-
per dvs Klasser.

201

En viktig egenskap av iterationsvariabeln &r att den inte kan &ndra arrayelementens
varden i foreach-satsens kropp. Den &r s att siga read only. | praktiken innebar
detta att iterationsvariabeln inte far forekomma till vanster om tilldelnings-
operatorn (=) i nadgon sats i foreach-satsens kropp. Vill man i foreach-satsens
kropp dndra pa arrayelementens varden maste man anvanda £ox-satsen istallet med
arrayens index som raknare.

Hakparentesernas tre olika betydelser

Man kan ju undra varfér no[4] inte &r definierat — som vi hdvdar ovan — fast talet
4 ”forekommer” i definitionssatsen new int[4]. Detta beror pa att hakparenteser-
na [] i no[4] inte har samma betydelse som i new int[4]. Den korrekta tolknin-
gen av [1 beror pd sammanhanget. Man kan ocksé saga att [] ar symbolen for tre
olika operatorer som 6verlagrar varandra dvs betyder olika i olika sammanhang:

1. [] som storleksoperator omsluter i definitioner med new antalet element i
arrayen specificerar ddrmed arrayens storlek. T.ex. innebar koden

new int[4]

i programmet Array att new skapar en array av int med 4 element dvs att 4
minnesceller reserveras for lagring av int-varden. Det gemensamma for dessa
element &r att de lagras en efter den andra vid adressen eller referensen no:

no [0 [o [o [o |

Hiér ér fragan om “Hur manga element?”. I matematiken kallas detta kardinal-
tal.

2. [] som indexeringsoperator omslutar indexet till varje element av en array.
Har handlar det om ett elements position i arrayen. Man anger index inom
hakparenteser for att referera till elementet nar man vill hamta eller tilldela det
ett vérde. Indexregeln (sid 198) tillampas enligt vilken indexeringen bdrjar med
0. Darfor ar no[4] i arrayen ovan inte definierat:

no | no[0] [nof[l] | no[2] [no[3] |

Har ar fragan om “Vilket element?”. I matematiken kallas detta ordinaltal.

3. [] som en del av datatypen “referens till array” omsluter ingenting utan ar
tom och skrivs direkt efter en datatyp for att definiera en ny referenstyp. T.ex.

innebér satsen
int[] no;

i programmet Array att en minnescell allokeras (en referensvariabel med
namnet no definieras) for lagring av en adress till en int-array. Vi kan i
fortsattningen anvanda namnet no for att komma at arrayen vid denna adress. |
satsen ovan har referensen no inte initierats. Det sker inte heller automatiskt,

202

for no ar en lokal variabel i Main (). Det sker forst med tilldelningen no =
new int[4]; som initierar referensen explicit.

Default-initiering av en array

Det anmérkningsvérda &r nu att det som galler for referensen no — att den &r
oinitierad nér den skapas — inte galler for sjalva arrayen. Referensen no &r oinitie-
rad och maste initieras explicit eftersom den ar en lokal variabel i Main (). Men
trots att dven arrayen ar lokal i Main () initieras den till datamedlemmars default-
varden, vilket ar ett tecken pa att array aven i detta avseende behandlas som objekt.
Programmet Array skriver ut arrayelementens varden en gang innan och en andra
gang efter att de har fatt vardena 64, 86, 34 och -6. Utskriften pa forra sidan visar
for arrayens alla element initialvardet 0 som &r den foreskrivna default-initieringen
for variabler av typ int vilket dven galler for element i en int-array. Generellt
géller:

Alla element i en array initieras automatiskt till default-varden (precis som
datamedlemmar i ett objekt) aven om arrayen skapas lokalt i en metod.

203

9.2 Arrayens initieringslista

Man kan effektivisera hanteringen av arrays inte bara med foreach-satser utan
dven genom att anvinda sig av en s.k. initieringslista som slar ihop definitionen
med initieringen — en kortform som ersdtter koden newr:

// ArrayInit.cs

// Initieringslista: Kortform fér definition och initiering
// av en array 1 en och samma sats utan new

// Utskrift av arrayens element med foreach-satsen

using System;

class ArraylInit

{
static void Main()
{

int[] no = { 64, 86, 34, -6 }; // Initieringslista:
// Deklaration OCH ini-
// tiering av en array

//int[] no = new int[4] { 64, 86, 34, -6 }; // Samma sak

Console.Write ("\nVardena fran arrayen skrivs ut med" +
" referensen:\n\n\t") ;

foreach (int element in no)

Console.Write (element + "\t");

int[] copy = no; // Ny referens till no
// samma array

Console.Write ("\n\n\tArrayens virden skrivs ut" +

" med den nya referensen copy:\n\n\t");
foreach (int element in no)
Console.Write (element + "\t");
Console.WriteLine ("\n\n\tEndast referensen kopieras,
inte arrayen.\n");
}
}

En korning visar att vardena i initieringslistan som forst tillelas arrayen no
verkligen kopierats dver till arrayen copy, for det ar de som skrivs ut:

Arrayens vadrden skrivs ut med referensen no:

64 86 34 -6

Arrayens varden skrivs ut med den nya referensen copy:
64 86 34 -6

Endast referensen kopieras, inte arrayen.

204

Bade definitionssatsen och initieringssatserna i programet Array (sid 199) — det ar
de 5 forsta satserna i Main () — kan slas ihop till en enda sats:

int[] no = { 64, 86, 34, -6 };
Satsen ovan &r bara en forkortning pa:
int[] no = new int[4] { 64, 86, 34, -6 };

Dvs initieringslistan kan skrivas efter new int[4] som egentligen skapar eller de-
finierar arrayen. Men new int[4] far uteldmnas. Detta visar att den forkortade
versionen gor tva saker: Forst, fram till tilldelningstecknet definieras referensen no
(utan ndgon uppgift om arrayens storlek). Sedan, fran och med tilldelningstecknet
tilldelas arrayen no:s element fyra varden som star i en kommaseparerad lista grup-
perad inom klamrarna { } som Kallas arrayens initieringslista. Kortformen gor
precis samma sak som satsen med new. Kompilatorn far informationen om arra-
yens storlek genom att i initieringslistan rékna antalet element inom klamrarna
{ '} Det &r inte ens tillatet att explicit ange det korrekta antalet element inom
hakparenteserna [1. Det blir kompileringsfel om man gor det, darfor att no en-
dast ar en referens till en array, inte arrayen sjalv. Observera aven att man inte far
anvénda initieringslistan separat utan endast i samma sats som definitionen.

Valet av variabelnamnet copy kan vara missledande i foljande sats av programmet
ArrayInit om man inte beaktar skillnaden mellan referens och array:

int[] copy = no;

copy blir ndmligen en kopia av referensen no i satsen ovan, inte av arrayen — en ny
referens som kommer att peka pa samma array som den gamla referensen no pekar
pa. Det skapas ingen ny array eftersom det varken finns ndgon new eller ndgon
initieringslista som skulle ersdtta new. Anledningen till detta & — som vi
konstaterat tidigare — féljande viktigt faktum:

[En array i C# ar alltid ett objekt som behdver en referens.]

For att skapa ett objekt maste en new-sats skrivas. En referens definieras utan new.

Minnesmassigt lagras arrayen pa en och samma adress som fran programmet kan
nas med referenserna no eller copy:

no [64 | 86 | 34 | -6

copy

205

9.3 Texthantering med array av char

I borjan av detta kapitel motiverade vi behandlingen av arrayer med att kunna lagra
och bearbeta stora datamangder. Ett exempel pa det &r texthantering dar stora text-
mangder snarare ar regel an undantag. Textbehandling ar ett klassiskt omrade for
datortillampning just pga datorns formaga att effektivt och snabbt kunna hantera
stora datamangder. Vanligtvis kan text framstéllas med datatypen string som é&r
en klass. En direkt dndring av en text som skapats med datatypen string &r inte
mojlig. Har man daremot en array av datatypen char har man obegransade mdj-
ligheter till manipulation i och med man kan ga ned till elementniva. Foljande
program demonstrerar ett enkelt fall av texthantering med en array av char:

// ArrayChar.cs

// Deklaration och initiering av en array av char

// I C# d4r en array av char inte samma sak som String

// char-array tillater &dndring av innehdllet, men inte String
using System;

class ArrayChar

g static void Main()
{ String str = "Russell";
char[] text = str.ToCharArray () ; // Omvandling av en
// strdng till en array av char
// char[] tex = "Russell"; // Kompileringsfel: strdng
// &r INTE array av char
Console.WriteLine ("\n\tArrayen har langden\t" +
" text.Length) ;
Console.Write ("\n\tInnehdllet ar\t\t"):;
foreach (char element in text)
Console.Write (element) ; // Elementvis utskrift
Console.WriteLine () ; // FORE &ndringen
text[0] = 'r'; // Andring av char-array
text[1l] = 'i';
Console.Write ("\tsom gdérs om till\t");
foreach (char element in text)
Console.Write (element) ; // EFTER &ndringen
Console.WriteLine('\n') ;
}
}

Ett korresultat av programmet ovan ger foljande utskrift:

Arrayen har langden 5
Innehallet &r Russell
som gors om till rissell

206

Utskriften visar arrayens innehéll fore och efter andringen av tva bokstaver i
strdngen Russell. FOr att kunna géra denna dndring var det nddvandigt att om-
vandla string-objektet Russell till en array av char med String-metoden
ToCharArray (). Resultatet anvands for att initiera den med char[] text defini-
erade referensen till en char-array. Narmare bestdmt dr satsen char[] text =
str.ToCharArray () ; Som gor detta, en kortform for satserna:

char[] text; // Referens till en char-array
text = new char[5]; // Deklaration av char-array
text = str.ToCharArray(); // Initiering av char-array

Har maste arrayens storlek anges medan den i kortformen inte far anges. Program-
met tar sjélv reda pa storleken fran strangen Russell. Vi kan sedan fa tag i
storleken med string-egenskapen Length som enligt utskriften ovan ger 5. En
gang omvandlad till char-array kan vi ga in pa elementniva och andra strangens
innehéll med hjélp av arrayens index.

Slumplésenord

En mer intressant tillampning av textbehandling med hjélp av char-array visas i
foljande program som genererar ett slumplésenord:

// RandPasswd.cs

// Skriver ut ETT slumpvis genererat l&senord med policyn:
// 8 tecken = 3 smd bokstdver: ASCII-intervall (97, 122) +
// 2 siffror (48, 57) +
// 3 stora bokstdver (65, 90)
using System;

class RandPasswd

{

static void Main ()

{
Random r = new Random() ;
char[] password = new char[8];

for (int i=0; i < 3; i++)
password[i] = (char) r.Next(97, (122+1)); // 3 smé
// bokstdver

A

for (int i=3; i
password[i]

5; i++)
(char) r.Next (48, (57+1)); // 2 siffror

for (int i=5; i < 8; i++)
password[i] = (char) r.Next(65, (90+1)); // 3 stora
// bokstdver
Console.Write ("\n\t") ;
Console.WriteLine (password) ;
Console.WriteLine() ;

207

Ett antal kdrningar av programmet RandPasswd ger foljande slumpldsenord:

208

9.1

9.2

9.3

9.4

9.5

9.6

9.7

Ovningar till kapitel 9

Skriv ett program som laser in 10 heltal fran konsolen, lagrar dem i en array
och skriver ut dem i omvand ordning.

Skriv ett program som slumpar fram 1000 heltal mellan 60 och 140 (tdnkbara
hastigheter pa en motorvag), lagrar dem i en array kallad hastighet,
beréknar och skriver ut deras medelvarde med forklarande text.

Skriv ett program som l&ser in en strang, lagrar den i en array av char och
skriver ut den bakldnges. Anvand tekniken i programmet EncryptChar-
Test for att omvandla den inlésta strangen i en array av char.

Skriv ett program som l&ser in text i gemener, lagrar den i en array av char
och skriver ut den framh&vd i versaler och med mellanslag mellan varje te-
cken.

Skriv ett program som fragar efter anvandarens for- och efternamn, halsar
sedan anvandaren i en utskrift med fullstindiga namnet, férnamnets langd
samt efternamnets forsta och sista bokstav. Los uppgiften generellt utan att
anvanda information om nagot speciellt for- och efternamn.

Skriv ett program dér Main () laser in en persons fullstdindiga namn och hél-
sar tillbaka med namnets initialer. Dessa ska bestdimmas och skrivas ut i en
annan metod — med huvudet static void Initials(char[] name) —
som anropas i Main ().

Master Mind (projekt) &r ett litet spel som later anvandaren gissa ett
slumpmaéssigt genererat fyrsiffrigt heltal genom att leda spelaren med en in-
byggd hjélpprocedur vars regler ar beskrivna nedan. Aven har galler det att
forsoka hitta egna losningar. Foljande ska anses som ett forslag till 16sning:

Bdrja med att behandla fyrsiffriga heltal som en serie av fyra ensiffriga tal
dvs som en array av heltal med fyra element.

Skriv forst en metod med huvudet void Create (int[] secretNo) som
ska generera det hemliga fyrsiffriga talet och lagra det i en int-array, sig
secretNo, med 4 element. Varje element i arrayen secretNo kan genere-
ras som ett slumptal mellan 0 och 9. Dessutom ska metoden Create () kon-
trollera spelets regel enligt vilken alla fyra siffror maste vara olika.

Skriv sedan en metod med huvudet void Help(int[] guessedNo,
int[] secretNo) som ska bearbeta spelarens gissning enligt féljande reg-
ler:

209

For varje ratt siffra pa ratt plats fran vanster till hoger skrivs utett R
For varje rétt siffra pa fel plats fran vanster till hoger skrivs ut ett S
For varje fel siffra fran vénster till hoger skrivs ut ett mellanslag ?

Om tex. det hemliga talet ar 4693 och spelaren gissar 7498, s& erhélls
hjalpen:

? SR?

Nér hjalpen skriver ut RRRR har spelaren lyckats och programmet avslutas
med att skriva ut ett lampligt meddelande. Skriv ett program som tillater
flera spelomgangar.

210

211

Appendix

Vad ar objektorienterad

programmering?

212

En ny syn pa programmering

En given definition pad programmering ar problemldsning med hjalp av datorn. Om
man dé beskriver problemets 16sning i form av en algoritm kan man séga Program
= algoritm + data. Denna definition stalldes upp av Niklaus Wirth pa 60-talet och
aterspeglar den procedurala synen pd programmering. Fokuset ligger pa algoritmen
dvs att inte bara hitta utan aven beskriva tillvagagangssattet (proceduren) for att
I6sa ett problem. Sedan aterstar bara att koda denna beskrivning. En annan
definition som kom upp pa 80-talet och aterspeglar den objektorienterade synen pa
programmering ar:

[Program = Modell av verkligheten]

Om man i formeln Program = algoritm + data lagger om betoningen pa data istal-
let for pé algoritmen och inte langre betraktar data som ett slags bihang till algorit-
men utan som objekt kommer man till objektorienterad programmering. Denna
nya programmeringsfilosofi kommer att genomsyra hela boken, eftersom C# ar ett
objektorienterat sprak.

Paradigmskifte

Det som i programmeringshistorien gjorde att man behdvde objektorienterad
programmering var den véxande komplexiteten hos program under 70-talet.
Programmens storlek var avgdrande for den vaxande komplexiteten. Man insdg att
det inte langre rackte till att skriva och testa program som fungerade just da. Det
var nodvandigt att med rimliga kostnader kunna &ven underhalla stora program,
fornya och vidareutveckla dem sé att de fungerade &ven i flera ar och att de framfor
allt kunde anpassas till nyuppkomna situationer utan oéverkomliga svarigheter. Det
i sin tur krédvde att man redan i designstadiet behdvde ett annorlunda upplégg. Fo-
kuset forskjots fran problemldsning till modellering av verkligheten. Objektorien-
terad design kom in i bilden. Allt detta var endast med procedural programmering
inte langre mojligt. Ett s.k. paradigmskifte hade blivit nédvandigt, dvs en andring
av helhetssynen pa programmering.

Objektorienterad programmering syftar &t att efterlikna verkligheten. Man vill av-
bilda den reala varlden — dtminstone den del som tillater datorisering — och konstrue-
ra en modell av den i sina datorprogram for att kunna simulera verkligheten genom
att testa modellen. For att undvika filosofiska diskussioner kan vi anta att den reala
varlden bestar kort sagt av objekt. Varlden kring oss ar full med sadana objekt: Man-
niskor, byggnader, bilar, tag, flygplan, trad, mobler, bocker, butiker, skolor, biblio-
tek, kontor, anstéllda, kunder, varor, fakturor, order, bokningar, kurser osv. Objekten
kan vara verkliga eller virtuella. Ett datorprogram forsoker att beskriva dessa objekt.
L&t oss precisera detta:

213

Objekt, klass och metod

Ett objekt har vissa egenskaper. Generellt kan man séga att ett objekt &r summan av
alla sina egenskaper. Ett annat ord for egenskap ar attribut. Ett objekt bestar av alla
sina attribut. Attributen tillhor objektet. T.ex. har objektet bil som attribut fabrikat,
modell, farg, arsmodell, antal kérda mil, antal hastkrafter, maximala hastigheten,
antal och storlek pa cylindrar i motorn osv. Alla dessa data ger svar pa fragan "Vad
ar det for bil?”. Men bilden vore ofullstdndig om vi ndjde oss med dessa intressanta,
men statiska data. Vi vill ocksa veta vad man kan gora med bilen. Ett objekt kan i
regel dven utfora vissa aktioner eller operationer. | den objektorienterade program-
meringens terminologi kallas de for metoder. Typiska metoder for en bil &r t.ex. att
kora fram, att backa, att accelerera, att bromsa, att parkera, att byta olja osv. Den
fullstandiga definitionen pa en bil som objekt vore alltsa att ange bade dess attribut
och metoder. Bilfabrikanten maste forse bilen med alla dessa fardigheter for att kun-
na sélja den. Darfor gar man i bilfabriken efter en plan nar man tillverkar bilen. | den
objektorienterade programmeringens terminologi kallas denna plan for bilens klass.
Nar vi skriver ett program maste vi forst formulera klassen Bil for att sedan kunna
skapa objekt av den. Klassen skrivs bara en gang, medan objekt kan skapas enligt
klassens beskrivning i obegransat antal. | klassen maste vi ta upp alla attribut och
metoder som &r relevanta eller av nagon anledning 6nskvérda for en bil. Den praktis-
ka anvandningen avgor fran fall till fall vad som ar relevant eller 6nskvart.

Vad é&r skillnaden mellan objekt och klass? Om vi byter ut bilar mot pepparkakor
kan man sdga att pepparkaksformen &r klassen och sjélva pepparkakorna ar objek-
ten. Klassen ar alltsa en slags mall, en forskrift for produktion av objekt: En enda
pepparkaksform kan producera tusentals pepparkaksgubbar. Gubbarna kan skiljas
fran varandra i vissa detaljer, t.ex. materialet, smaken osv. Man kan t.0.m. mala
dem i olika farger eller modifiera pa annat sétt efterat. De forblir pepparkaksgubbar
av den ursprungliga formen. | formen ingar det som ar gemensamt hos alla peppar-
kaksgubbar. Man har, nar man byggde formen, bortsett fran ovasentliga skillnader
och tagit hansyn endast till det vasentliga, det gemensamma hos alla pepparkakor.

Att bortse fran skillnader och att bibehalla det gemensamma hos olika verkliga
objekt, ar en abstraktion (abstrahera betyder pa latin: att ta bort, att dra av). Man tar
bort allt som skiljer saker och ting av samma kategori eller typ och kommer pa det
viset till sjalva kategorin. Abstraktion leder till begreppsbildning, till klassificering
eller kategorisering av den reala vérlden. Ett vixande barn gar igenom samma
abstraktionsprocess, ser forst sina fordldrar (objekt), abstraherar sedan via erfarenhet
s& smaningom till begreppet manniska (klassen) och inser att sina fordldrar &ar tva
konkreta exemplar av den abstrakta klassen manniska. Sa gor barnet med alla saker
och ting omkring sig och lar sig vuxenvérldens begreppsapparat. Det abstrakta be-
greppet penna (klassen) t.ex. bildas efter att man sett hundratals verkliga pennor (ob-
jekt). Objektorienterad programmering aterspeglar denna naturliga tankeprocess fran
det konkreta till det abstrakta, fran objekt till klass.

214

Metoder

En metod &r en funktionalitet som definieras i en klass. Den talar om vad ett objekt
av denna klass kan gora. Det finns tva steg i hantering av metoder: Forst definierar
man dem dvs skapar man deras kod i en klass. Sedan anropar dvs aktiverar man
dem i ett objekt av denna klass. Ofta &r det forsta steget redan genomfort av andra,
sa vi behover bara anropa en redan fordefinierad metod. I klassen Bil t.ex. & meto-
derna att kora fram, att backa, att accelerera, att bromsa osv. definierade i huvuden
pa bilkonstruktorerna och i deras konstruktionsritningar och dokumentationer. Se-
dan har man tillverkat massor med objekt av klassen Bil i fabriken och byggt in
dessa metoder i alla bilar. Vi behdver bara anropa dem i den bil vi kor. Den bil vi
kor ar ett specifikt objekt av klassen Bil. Lat oss kalla det for minvolvo. Objektet
minVolvo har ett antal attribut som t.ex. fabrikat, modell, farg, arsmodell osv.,
men ocksa ett antal metoder, bl.a. metoden kéx () . Parenteserna i metodens namn
brukar man skriva for att karakterisera Kéx () som en metod och skilja den frén
klassens attribut. I C# skriver man ett anrop av metoden Kér () s& har:

minVolvo.Kor () ;

Observera att fore punkten star ett objekt, inte klassen. Det ar ju den specifika bil
som jag anvander just nu som ska kéras. Forst efter punkten star sjalva anropet av
metoden k&x (). Det har sattet att skriva kallas punktnotation. Metoder maste alltid
anropas med punktnotation, vilket har sin grund i att de endast &r deklarerade i
klasser, sa att de endast existerar i objekt av en klass. Till skillnad fran fristaende
funktioner kan metoder varken definieras utanfor klasser eller anropas utanfor
objekt. I C# finns endast metoder, inga funktioner. Om vi bortser fran bilexemplet
kan det i andra sammanhang dven férekomma en klass (istéllet for objekt) fore
punkten i anropet av en metod. | sa fall & metoden definierad i klassen pa ett spe-
ciellt satt ndmligen som en statisk metod, vilket tas upp senare nér vi behandlar
metoder i detalj.

En annan variant av metoden Kéx () kan anropas pa faljande sétt:
minVolvo.Kor (40) ;

Det kan t.ex. betyda: Kor bilen med hastigheten 40 km/h. Vardet 40 kallas da en
parameter som skickas till metoden nar den anropas. | s& fall maste d&ven metoden
Koér () vara definierad sd att den har beredskapen att ta emot denna parameter. Sa
det kan inte vara samma metod som anropades utan parameter. Det maste vara en
annan variant av den, exakt talat en annan metod med samma namn. Konceptet
kallas Gverlagring av metoder och innebar tva eller flera metoder med samma
namn, men olika parametrar.

Klassdiagram

Lat oss ta som exempel en algoritm som beskriver hur man gér upp, duschar, tar pa
sig kladerna och aker till jobbet. Lat oss kalla algoritmen for Morgonsyssla, vilket ar
ett typiskt fall av problemldsning: Det l6ser problemet hur man tar sig till jobbet.

215

Tillvagagangssattet och framfor allt hur vi beskriver det, ar foremal for algoritmer.
Men vem eller vilka gor det, dvs vilka objekt som &r involverade i algoritmen och hur
man beskriver dessa objekt, 4r en annan aspekt pé saken. Objektorienterad program-
mering prioriterar objektaspekten framfor algoritmaspekten. Den primara fragan ar
inte langre vad man gér utan vem man &r dvs hur kan personen beskrivas? Hur man
gor for att ta sig till jobbet kommer att inga som en del i denna beskrivning. Algorit-
men Morgonsyssla blir en metod i objektet Person. Det &r objektet som utfor meto-
dens instruktioner for att ta sig till jobbet.

Personen kan t.ex. vara en anstélld vilket férresten skulle forklara varfor han tar sig
till jobbet. I sa fall ar personen ett objekt av

kategorin eller klassen Employee. Darfor defi- / Employee \

nieras en klass som beskriver alla anstéllda.

Personen i fraga gors till ett objekt, ett exem- - firstName
plar av denna klass. Pa sa sitt kan koden ater- - lastname
anvdndas aven for andra anstéllda. Ateran- - :?rthite
vandning av kod gor utvecklingsarbetet av : wzziiig;wr
programvara effektivare och ar en av den ob-

jektorienterade synens fordelar. | klassen Em- + Salary()
ployee ingér all typ av information som &r rele- t present()

. R . M ingActivit
vant for en anstélld, det vi kallar for attribut, k orninghetivity () j
t.ex. for- och efternamn, fodelse- och anstall-

ningsdatum, arbetstid osv. Dessutom tar vi upp allt som en anstalld kan géra, det vi
kallar for metoder, t.ex. att fa 1on, att presentera sig eller ocksa att ta sig till jobbet.
Pa sa satt blir algoritmen Morgonsyssla i den objektorienterade programmeringens

terminologi en metod i klassen Employee. Ett
4 7\ verktyg speciellt for objektorienterade modelle-

Person ringar &r UML (Unified Modeling Language). En-
_ ligt det har modelleringsspraket skulle klassen
} f:i;‘::‘;‘e Employee beskrivas med diagrammet till vénster
. som kallas for klassdiagram. Déar star tecknet —
- birthDate . .
for attribut och + for metoder. Andra betecknin-
+ Present() gar for attriout & datamedlem eller egenskap.
\ [} Morningetivity)] Dessa termer 4r synonymer. En klass bestar av
A datamedlemmar och metoder. Klassen Employee
t.ex. har fem datamedlemmar och tre metoder.
Klassens konstruktor
/ \ Eftersom klassens datamedlemmar i regel ar
inkapslade (privata) och inte atkomliga utifran
Employee klassen — detta gor man bl.a. ur datasékerhets-
- hireDate synpunkt — maste programmeraren anvanda sig
- workingHour av ett verktyg for att pa ett kodat satt 4nda kunna
+ Salar komma at dem, lasa och &ndra dem osv. Detta
y ()

+ MorningActivity () verktyg Kkallas klassens konstruktor och &r en spe-
k / ciell metod vars namn ar identiskt med klassens

216

namn. Den initierar automatiskt klassens privata datamedlemmar nar ett objekt
skapas. For enkelhetens skull har vi inte tagit upp den i klassdiagrammet ovan bland
klassens metoder. Konstruktorn har ju endast programmeringsteknisk karaktér och
behandlas i Programmering 2.

Arv

I den reala varlden som vi vill efterlikna, finns inga isolerade objekt. Alla objekt ar
mer eller mindre relaterade till andra objekt. En klok modellering maste dra nytta
av de befintliga relationer mellan objekt for att effektivisera och optimera utveck-
lingsarbetet. En sadan relation &r arvrelationen.

Man kan alltid etablera en arvrelation mellan tva begrepp om de stér i en “ar”-rela-
tion till varandra. | exemplet ovan kan vi konstatera ett en anstélld &r en person.
Dérfor kan klassen Employee drva klassen Person, ndrmare bestamt &rver klassen
Employee klassen Person:s alla datamedlemmar och metoder. Klassen Person
kallas bas- eller superklass. Klassen Employee kallas harledd eller subklass. Sub-
klassen &rver superklassens alla datamedlemmar och metoder, vilket i praktiken
innebdr att klassen Employee tar Over all kod som redan finns i klassen Person
och lagger till ny kod som narmare specificerar en anstéalld. P& s satt slipper man
skriva om kod som redan finns. T.ex. har en person ett for- och efternamn samt ett
fodelsedatum. Vid modellering av en anstélld &rvs dessa attribut, och man lagger
till de nya attributen hireDate och workingHour som &r speciella for en anstalld.
Klassdiagrammet ovan (till vanster) visar modellen dér arvrelationen ritats med en
pil riktad mot superklassen. Féljer man pilens riktning underifran kan man avlasa
att det ar klassen Employee som arver klassen Person.

Objektorienterad programmering bygger pa tre hornstenar:
e Inkapsling
e Arv
e Polymorfism

De tva sista har vi forsokt att introducera har utan att behdva skriva en enda rad
kod. For den forsta behdver vi lite mer detaljerade kunskaper om programmering.

Nagra konventioner

Nar vi ritade UML-diagrammen ovan och skrev text i dem tillimpade vi nagra
konventioner som man i regel brukar anvénda inom programmering.:

1. Klasser och metoder inleds med versaler

For att battre kunna k&nna igen klasser och metoder i objektorienterad kod,
inleds de med versaler. S& darfor skriver vi klasserna Employee 0Ch Person
samt metoderna Salary (), MorningActivity (), sd har. Féljer man konse-
kvent alla konventioner kan man latt avgora att ett ord i koden som har en stor
begynnelsebokstav, ar en klass eller en metod.

217

Datamedlemmar och objekt inleds med gemener

Till skillnad fran klasser och metoder inleds alla datamedlemmar och objekt
med gemener, t.ex. firstName, surname, workingHours, Aven den hir
konventionen hdjer kodens laslighet nar den f6ljs i kombination med punkt 1.

Metoder skrivs med parentes

Till skillnad fran en datamedlem som kan ha ett véarde, beskriver en metod en
funktionalitet som kan anropas fran en annan metod vilket medfér att man vid
anropet kan skicka vissa parametrar till den anropade metoden. Dessa para-
metrar skrivs inom en parentes direkt efter metodens namn. Pa sa satt ar paren-
tesen kannetecknet for en metod. Aven om en viss metod inte har ndgon para-
meter alls som i vara exempel med salary (), MorningActivity (), ... bru-
kar man anda skriva den tomma parentesen med. Detta &r en regel for att skri-
va kod, men har blivit en konvention som man &ven foljer utanfér programkod.

218

Fullstandiga l6sningar till alla 6vningar (Facit) *

Kapitel 1 C# programmeringens miljo, sid 30:

Ovn_1 2.cs

Modifiera programmet MessageBox (sid 29) sa att meddelanderutan
far rubriken ”“Ovning 1.1”. Hur man skriver ut en MessageBox med
egenvald rubrik har vi ldrt oss i programmet Interaction (sid 26).

Forml.cs
using System;
using System.Windows.Forms;

namespace Messagebox

{
public partial class Forml : Form
public Forml ()
{
InitializeComponent () ;
}
private void Forml_Load(object sender, EventArgs e)
{
MessageBox.Show ("Hdlsningar fran Windows MessageBox " +
"som visas nar formen laddas.", "évning 3.9");
}
}
}

ok ok

Ovn_1 2, Ovn_1 3 och Ovn_1 4

Dessa 6vningar innehdller ingen kod utan l6ses med visuell program-
mering. Anvdnd och modifiera anvisningarna pa sid 23.

AA A

Kapitel 3 Att komma igdng med C#, sid 53:

Ovn_3 1l.cs

Mata in koden till programmet First (sid 42), kompilera och kOr.

a) Skriv om programmet First genom att ta bort using-direktivet och
modifiera istdllet utskriftssatsen sa att den kan kompileras och
ger samma resultat som programmet First.

b) Undersdk skillnaderna mellan apostrof,citationstecken & accent.

a)
class Ovn_3 1

For att uppmuntra till egna ldsningar ges inga I6sningsforslag till projektuppgifterna Lopande texten,
Pyramiden, Automaten, Kalkylatorn, Mater Mind eller uppgifter som &r relaterade till ett projekt. Istallet
finns det i projektenas lydelse alltid en mer eller mindre utforlig ledning (algoritm) till I6sningen.

219

static void Main()

{

System.Console.WriteLine ("\n\tMitt fdrsta C# program!\n");

}
}

b)

Apostrof &r
Citationstecken &r

Tvd typer av accent &r

OBS! Beakta skillnaden mellan apostrof & accent.

och

(Tillsammans med * tangenten)
(Tillsammans med 2:ans tangent)
(Till héger om + tangenten)
De férvidxlas 1&tt.

KA KA Ak bbbk kbbb kbbb bbbk bbbk bbbk bbbk bbbk bbbk bbbk bk bk bk kb bk b sk b b b ok b ok A A A A A &

Ovn_3 2.cs

Sdtt in féljande kod i ett C# program fér att testa vad den ger for

utskrift:

Console.
Console.
Console.
Console.
Console.
Console.
Console.
Console.
Console.

Write ("**\n");
WriteLine ("***");
WriteLine ("****")
Write ("*****\n");
WriteLine ("**xxxx") ;
WriteLine ("****#*m) .
Write ("****\n"),
WriteLine ("***")
WriteLine ("**\n");

a) Ersdtt alla anrop av Console.Write() med Console.WriteLine ()
och dndra lite i koden utan att utskriften &ndras.

b) Ldgg till lite kod i varje sats sa att hela den utskrivna
figuren hamnar lite ldngre bort fran konsolfdénstrets vdnstra

och 6vre rand.
a)
using System;
class Ovn_3 2a

{

static void Main()

{
Console.
Console.
Console.
Console.
Console.
Console.
Console.
Console.
Console.

WriteLine ("**") ;
WriteLine ("***") ;
WriteLine ("****") ;

WriteLine ("****") ;
WriteLine ("***") ;
WriteLine ("**\n") ;

WriteLine ("***x*x") ;
WriteLine ("***%x%m) .
WriteLine ("***xx*") ;

b)

using System;
class Ovn_3 2b
{

static void Main()

{

Console.WriteLine ("\n\t**") ;

220

Console.WriteLine ("\t***") ;
Console.WriteLine ("\t**x*") ;
Console.WriteLine ("\t**x*%m) ;
Console.WriteLine ("\t***x*x*xx") .
Console.WriteLine ("\t**x**m) ;
Console.WriteLine ("\t**x*") ;
Console.WriteLine ("\t***") ;
Console.WriteLine ("\t**\n") ;

}

KA A KA A A A KA XA A A A A A A A A A KA I A A A A KA A A A A A KA A A A A A KA A A A A A A A A A A A A kA Ak Ak A A

Ovn_3 3.cs
Skriv ett program och testa vilken utskrift féljande satser ger:
Console.Write ("Jag") ;
Console.Write ("heter") ;
Console.WriteLine ("K.\n Vad heter du?\n");
Ldgg till resp. ta bort mellanslag, radbyte och tabulator fér att
fa en snygg utskrift utan att sla ihop de tre satserna till en.

using System;
class Ovn_3 3

{

static void Main()
{
Console.Write("\n\tJag ") ;
Console.Write ("heter ");
Console.WriteLine ("K.\n\n\tVad heter du?\n");

}

ok ok

Ovn_3 4.cs

Skriv ett program som férst skickar féljande kod till WriteLine():
"Resultatet dr " + 8 + 3

och sedan: "Resultatet dr " + (8 + 3)

Férklara skillnaden i de tva utskrifterna. Hur maste + tolkas?

using System;
class Ovn_3 4

{
static void Main()
Console.WriteLine ("\n\t Resultatet &r " + 8 + 3);
Console.WriteLine ("\n\t Resultatet &r " + (8 + 3) + '\n');
}
}
Utskriften blir: Resultatet &r 83

Resultatet dr 11

I den forsta utskriftssatsen tolkas bada + som konkateneringar.

I den andra utskriftssatsen tolkas det férsta + tecknet som konka-
tenerings- och det andra + tecknet som addititonsoperator, eftersom
parentesen exekveras férst och i parentesen tolkas + som addition.

Kok ok ok ok ok ok ok ko ok A ok ok ok ko A ok K ok

221

Ovn_3 5.cs
Vilka utskrifter ger féljande satser? Sdtt in dem i1 ett program.

Console.WriteLine ("*\n**\n***x\p***x\ptxkLtxr) .
Console.WriteLine ("*****\pnt*xk\pnttt\n*x\n*n) .

Skriv om koden sd& att du far samma utskrift med EN utskriftssats.
using System;
class Ovn_3 5

{

static void Main()
{
Console.WriteLine ("*\n**\n***\nx*xk\pkkxkxn +
"\n¥kkkk\nkkkk\nkkx\pkk\nk")

}

KA A KA A A A KA XA A A A A A A A A A KA I A A A A KA A A A A A KA A A A A A KA A A A A A KA KA A A A kA Ak Ak A A

Ovn_3 6.cs

Skriv in koden till programmet Concat (sid 51), kompilera och kér.
Modifiera det till att skriva ut en oval byggd av stjdrnor (*).
using System;

class Ovn_3 6

{

static void Main()
{
Console.Write("\n * ok ok ok ok ok Kk Kk kK "
"\n * * "
"\n * * n
ll\n * * "
ll\n * * "
"\n * * "
"\n * * "
ll\n * * "
"\n * % * % * % * *x % * "

" \n\nll) ;

+++++++ A+

}

AAA A

Ovn_3 7.cs

Skriv ett program som skriver ut en triangel byggd av stjdrnor (*).
using System;

class Ovn_3 7

{

static void Main()
{
Console.Write ("\n * "
"\n * % n
"\n * * "
"\n * * "
"\n * * "
"\n *
"\n * * "
n\n * * "
"\n * * "
"\n * k % k *k k *k k * *x "

"\n\n") ;

*
+++

222

Sk ok b ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok b ok ok ok b ok ok b ok b b b oF b ok b ok ok ok

Ovn_3_8.cs

Rita féljande figur i konsolen med en enda utskriftssats.
Se upp fér skillnaden mellan slash / och backslash \.

Anvdnd tva backslash \\ 1 koden - som en escapesekvens inbakad 1
den konkatenerade strdngen — fér att dstadkomma en backslash \ 1
(Lds om escapesekvenser pa sid 97).

utskriften.

using System;
class Ovn_3 8

static void Main()

Console.Write ("\n

}

"o+
"\n / /\\ "o+
"\n / A\ "o+
"\n / A\ NN/ "ot
"\n / / \\/ / / "ot
"\n / / /7 \\//\\ "+
"\n \\ \\//\\ /7 "+
"\n \\ / 7/ /\\ / "ot
"\n \\ / \\\\ \\ "4
"\n \\ AR RN "+
"\n \\ \\/ "+
"\n\n\n") ;

AAA A A A A A A A A A

Kapitel 4 Grundbegrepp i programmering, sid 83:

Ovn_4 1l.cs

Satsen Console.WriteLine(a),; ger kompileringsfel till
skillnad frdn Console.WriteLine('a'),; Sdtt in bada 1 ett

C# program och testa.

Ger dven Console.WriteLine(6);

kompileringsfel? Testa vilka utskrifter fOljande satser ger:

Console.
Console.
Console.
Console.
Console.

Férklara resultaten.

using System;

class Ovn_4_1

{

static void Main()

{

Console.
Console.
Console.
Console.
Console.

WriteLine (6 + 6);

WriteLine('6' + '6'");

WriteLine ("6" + "6"),;

WriteLine (6.6 + 6.6);

WriteLine ("6.6" + "6.6");

WriteLine (a) ; // Ger kompileringsfel
WriteLine('a') ; // Teckenkonstant:

WriteLine(6 + 6); // Addition av 6 med 6:
WriteLine('6' +

WriteLine("6" + "6"); // Konkatenering:

223

'6'); // Addition av 54 med 54:

12
108
66

Console.WriteLine(6.6 + 6.6); // Addition av 6.6 med 6.6: 13,2
Console.WriteLine("6.6" + "6.6"); // Konkatenering: 6.66.6

}

Férklaringar:

Console.WriteLine (a); ger kompileringsfel ddrfér att a dr en odefinierad va-
riabel.

Console.WriteLine('a'); ger a ddrfér att 'a' dr ett tecken: bokstaven a.
Console.WriteLine (6 + 6); ger 12 ddrfér att 6 dr tal och + adderar talen.
Console.WriteLine('6' + '6'); ger 108 didrfér att '6' &r tecknet med ASCII-ko-
den 54, dvs ASCII-koderna adderas: 54 + 54 = 108.

Console.WriteLine ("6" + "6"); ger 66 dirfor att "6" 4r en strdng och + konka-
tenerar strdngarna "6" och "6".

Console.WriteLine (6.6 + 6.6); ger 13,2 didrfér att 6.6 &r decimaltal och + ad-
derar talen.

Console.WriteLine ("6.6" + "6.6"); ger 6.66.6 dirfor att "6.6" dr en strdng och
+ konkatenerar strdngarna "6.6" och "6.6".

Sk ok

Ovn_4 2.cs

Komplettera programmet Variable (sid 60): Definiera ytterligare
variabler, sdg diff, prod, div, mod, tilldela till dem uttryck
bildade med de andra rdknesdtten -, *, / och %. Skriv ut resultaten
med meningsfulla utskrifter. Bibehdll &ndringen av variabeln nol:s
vdrde mellan de tva utskrifterna.

using System;
class Ovn_4_2

{
static void Main()
{
int nol, no2, sum, diff, // Deklaration av variabler
prod, div, mod;

nol = 9; // Initiering av variabler

no2 = 3;

sum = nol + no2; // Addition

diff = nol - no2; // Subtraktion

Console.WriteLine ("\n\tAddition definierad f6r int:\t" +
nol + " + " + no2 + " ger " + sum +
"\n\tSubtraktion definierad f6r int:\t" +
nol + " - " + no2 + " ger " + diff);

nol = 11; // Variabelns vdrde &ndras

prod = nol * no2; // Multiplikation

div = nol / no2; // Heltalsdivision

mod = nol % no2; // Modulo: resten vid div.

Console.WriteLine ("\n\tMultiplikation definierad fér int:\t" +
nol + " * " + no2 + " ger " + prod +
"\n\tHeltalsDivision definierad f£6ér int:\t" +
nol + "/ " + no2 + " ger " + div +
"\n\tModulo definierad f£6r int:\t" +
nol + " $ " + no2 + " ger " + mod + '\n');

}

Kok ok ok ok ok ok ok k ok A ok ok ko A ok K ok

Ovn_4 3.cs

Vidareutveckla din 16sning till 6vn 4.2 genom att ersdtta den hdard-
kodade initieringen av variablerna nol och no2 med en initiering
genom inldsning som t.ex. kan gbéras med en ReadLine()-sats samt

224

ledtext. Stryk dndringen av variabeln nol:s vdrde.
using System;
class Ovn_4 3

{

static void Main()

{

int nol, no2, sum, diff, prod, div, mod;

string nolAsText, no2AsText;

Console.Write ("\n\tMata in ett heltal:\t\t"); // Ledtext

nolAsText = Console.ReadLine() ; // Inldsning

nol = int.Parse(nolAsText) ; // Omvandling

Console.Write("\n\tMata in ett heltal till:\t"); // Ledtext

no2AsText = Console.ReadLine() ; // Inldsning

no2 = int.Parse (no2AsText) ; // Omvandling

sum = nol + no2; // Addition

diff = nol - no2; // Subtraktion

prod = nol * no2; // Multiplikation

div = nol / no2; // Heltalsdivision

mod = nol % no2; // Modulo: resten vid div.

Console.WriteLine ("\n\tAddition definierad f£6r int:\t" +
nol + " + " + no2 + " ger " + sum +
"\n\tSubtraktion definierad £6r int:\t" +
nol + " - " + no2 + " ger " + diff +
"\n\tMultiplikation definierad £f&r int:\t" +
nol + " * " + no2 + " ger " + prod +
"\n\tHeltalsDivision definierad f&r int:\t" +
nol + "/ " + no2 + " ger " + div +
"\n\tModulo definierad f6r int:\t" +
nol + " $ " + no2 + " ger " + mod + '\n');

}

ok ok

Ovn_4 _4.cs

Skriv ett program som ldser in tva heltal, multiplicerar dem
med varandra och skriver ut resultatet blandat med forklarande
text. Om du t.ex. matar in 3 till det fdrsta och 4 till det
andra heltalet, ska programmet skriva ut: 3 ganger 4 &r 12.
Utveckla programmet vidare med ytterligare rdkneoperationer,
kanske sa smaningom till en liten kalkylator.

using System;

class Ovn_4_4

{
static void Main()
{
Console.Write("\n\tMata in ett heltal:\t\t"); // Ledtext
int nol = int.Parse (Console.ReadLine()) ; // Inldsning

Console.Write("\n\tMata in ett heltal till:\t");
int no2 = int.Parse(Console.ReadLine()) ;

Console.WriteLine ("\n\n\t" +
nol + " plus " + no2 + " & " + (nol + no2) + "\n\t" +
nol + " minus " + no2 + " &r " + (nol - no2) + "\n\t" +
nol + " gadnger " + no2 + " & " + (nol * no2) + "\n\t" +
nol + " heltalsdividerad med " +

no2 + " &r " + (nol / no2) + "\n\t" +

225

nol + " modulo " + no2 + " &r " + (nol % no2) + "\n\t");

}

Sk ok b ok b ok b ok b oF b ok b ok ok ok

Ovn_4 5.cs
Ersdtt i programmet DefInit (sid 63) de tva satser som definierar &
initierar variablerna nol, no2 med satsen int nol = 9, no2 = 2;

using System;
class Ovn_4_5

{

static void Main()
{
int nol = 9, no2 = 2; // Deklaration och initiering
// 1 en och samma sats
Console.WriteLine ("\n\t" +
"Summan av " + nol + " och " +
no2 + " 4&r " + (nol + no2) + '\n');

}

ok ok

Ovn_4 _6.cs

Modifiera progr. Overwrite (sid 68) sa att variabeln x:s gamla vdrde
skrivs ut, medan dess nya &kade vdrde visas senare.

Ersdtt i din 16sning satsen x = x + 1; med x++;

Blir det samma resultat om du ersdtter den med x + 1; istdllet?
using System;

class Ovn_4 6

{

static void Main()
{
Console.Write ("\n\tMata in ett heltal:\t\t");
int x = int.Parse (Console.ReadLine()) ;
Console.Write ("\n\tTalet " + x);
x=x+1;
// X++; // Gdr: Samma som x = x + 1;
// x + 1; // Gdr ej! Ger kompilerings -
// fel: Tilldelning saknas
Console.WriteLine (" har oékats med 1 och d&r nu " + x + '\n');

}

ok ok

Ovn_4_7.cs

Skriv ett program som ldser in tre heltal till timmar, minuter
och sekunder. Berdkna och skriv ut sedan hur manga sekunder det
blir totalt. G6r utskriften anvidndarvidnlig.

using System;

class Ovn_4_7

{

static void Main()

{
Console.Write("\n\t Ange antal timmar:\t\t");
int hour = int.Parse(Console.ReadLine()) ;
Console.Write("\n\t Ange antal minuter:\t\t");
int min = int.Parse(Console.ReadLine()) ;
Console.Write("\n\t Ange antal sekunder:\t\t");

226

int sec = int.Parse(Console.ReadLine()) ;
int totalsek = 3600*hour + 60*min + sec;

Console.WriteLine ("\n\t" +
hour + " timmar, " + min + " minuter och " +
sec + " sekunder dr " + totalsek + " sekunder totalt.\n");

}

KA A KA A A A KA XA A A A KA A A A A A KA A A A A A KA I A A A A KA A A A A A KA A A A A A A A A Ak Ak Ak kA kA kA A

Ovn_4_8.cs

Varfér ger féljande program kompileringsfel? Atgdrda felet!
using System;

class Ovn_4 8

{

static void Main()

{

int a, sum = 9; // sum mdste initieras innan den anvidnds

// I fragestdllningen var sum inte initierad
Console.Write ("\n\tMata in ett heltal:\t");
a = int.Parse (Console.ReadLine()) ;

sum += a; // Samma som: sum = sum + a; Hir anviands
// sum pa héger sidan av tilldelningen
Console.WriteLine ("\n\tsum = " + sum + '\n');

}

Sk ok

Ovningarna 4.9 och 4.10 ar projektuppgifter, se fotnoten pa sidan 219.

ok ok

Kapitel 5 Enkla datatyper, sid 109:

Ovn_5 1l.cs

Skriv ett program som ldser in tre tecken och skriver ut dem
i omvdnd ordning.

using System;

class Ovn_5 1

{

static void Main()

{
char chl, ch2, ch3;
Console.Write("\nMata in tre tecken skilda med mellanslag:\t");
string text = Console.ReadLine() ;
chl = text[0];
ch2 = text[2];
ch3 = text[4];
Console.WriteLine ("\nOmvidnd ordning:\t\t\t\t\t" +
ch3 + " "+ ch2+" " +chl +" " + "\n");
}

Sk Kk ok b b ok ok ok ok ok ok b b b b b b b b b b b ok

Ovn_5 2.cs
Skriv ett program som ldser in en gemen och skriver ut dess

227

versal och sedan ldser in en versal och skriver ut dess gemen.

using System;
class Ovn_5 2

{

static void Main()
{
Console.Write("\nMata in en gemen:\t");
String str = Console.ReadLine() ;
Console.Writeline ("\nDess versal &r:\t\t" + str.ToUpper()) ;

Console.Write("\nMata in en versal:\t");
str = Console.ReadLine() ;
Console.WritelLine ("\nDess gemen &r:\t\t" + str.ToLower() + '\n');

}

Sk ok b ok ok ok ok ok ok ok ok ok o ok

Ovn_5 3.cs

Experimentera med programmet Int2char (sid 95) fér att ta reda pa
ASCII-koden till datorns ljudsignal. Dvs kér s& ldnge tills du vid
inmatning av ett heltal hér ett pip frdn datorn. Andra datatypen
till variabeln kod fradn int till char. Atgidrda kompileringsfelet.
H6r du fortfarande pipet ndr du matar in ASCII-koden fér ljudsignal?
Férklara.

using System;
class Ovn_5 3

{

static void Main()
{
Console.Write("\nMata in en siffra: ");
char kod = Convert.ToChar (Console.ReadLine()) ;

Console.WriteLine ("\nDet inmatade talet " + kod +
" &r ASCII-koden till tecknet " + kod + '\n');

}

ASCII-koden till datorns ljudsignal dr 7 som man far med programmet
Int2char (sid 95). Programmet ovan genererar inte ljudsignalen utan
ldser in och skriver bara ut det inmatade tecknet 7. Bara om man
ldser in ASCII-koden som int och explicit omvandlar den till char

fdr man ut ljudsignalen.
AAA A

Ovn_5 4.cs

Kryptering av tecken: Skriv ett program som ldser in ett tecken
och férskjuter det i teckentabellen med ett visst antal steg som en
slags krypteringsnyckel. Skriv ut bade det inldsta och det
férskjutna tecknet pd ett anvdndarvdnligt sdtt. Bdorja med att
hdrdkoda krypteringsnyckeln och fortsdtt med att ldsa in den.

using System;
class Ovn_5 4

{

static void Main()

{

Console.Write("\nMata in ett tecken: ");
char letter = Convert.ToChar (Console.ReadLine());

228

Console.Write("\nMata in ett heltal (krypteringsnyckel): ");
int steg = int.Parse(Console.ReadLine()) ;

String output = "\nDet inldsta tecknet " + letter;
letter += (char) steg; // Kryptering av letter

Console.WriteLine (output+ " har forskjutits med " +
steg + " steg och &r nu: " + letter + '\n');

}

Sk ok b ok ok ok ok ok ok ok b ok ok ok ok ok ok ok ok ok o ok

Ovn_5 5.cs

Kryptering av ord: Skriv ett program som ldser in fem tecken
och skriver ut dem férskjutna med ett steg i ASCII-tabellen sa
att t.ex. inmatningen Kalle ger utskriften Lbmmf. Aterstdll
sedan det krypterade ordet. Vidareutveckla programmet genom att
utéka och ldsa in antalet steg (krypteringsnyckeln).

using System;
class Ovn_5 5

static void Main()

{

String encrypt = "";

Console.Write("\nMata in 5 tecken utan mellanslag: "),
String word = Console.ReadLine() ;

Console.Write("\nMata in ett heltal (krypteringsnyckel): ");
int key = int.Parse (Console.ReadLine()) ;

encrypt += (char) (Convert.ToChar (word.Substring(0, 1)) + key);
encrypt += (char) (Convert.ToChar (word.Substring(1l, 1)) + key);
encrypt += (char) (Convert.ToChar (word.Substring(2, 1)) + key);
encrypt += (char) (Convert.ToChar (word.Substring(3, 1)) + key);

encrypt += (char) (Convert.ToChar (word.Substring(4, 1)) + key);
Console.WriteLine ("\nDet krypterade ordet:\t\t\t" + encrypt);

word = "" ;
word += (char) (Convert.ToChar (encrypt.Substring(0, 1)) - key):;
word += (char) (Convert.ToChar (encrypt.Substring(l, 1)) - key);
word += (char) (Convert.ToChar (encrypt.Substring(2, 1)) - key);
word += (char) (Convert.ToChar (encrypt.Substring(3, 1)) - key);
word += (char) (Convert.ToChar (encrypt.Substring(4, 1)) - key):;
Console.WriteLine ("\nDet aterstdllda ordet:\t\t\t" +word + '\n');

}

Sk Sk Sk ok b ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok b b ok ok b b b b b b b b b b b b b b b ok

Ovn_5 6.cs

Ersdtt i féljande program satsen letter++; med letter = letter + 1;
Varfér far du kompileringsfel? F6rsék att dtgdrda felet utan att
anvédnda letter++;

using System;

229

class Ovn_5 6

{

static void Main()

{

char letter = 'Y';
String output =
"Tecknet " + letter + " har koden " + (int) letter;

letter = (char) (letter + 1);

Console.WriteLine (output +
"\nTecknet " + letter + " har koden " + (int) letter);

}
}
letter = letter + 1; ger kompileringsfelet: "possible loss of
precision" eftersom letter + 1 automatiskt konverteras till int, men
vid tilldelningen (=) inte automatiskt kan omvandlas till

vidnstersidans char eftersom char har mindre plats (2 bytes) &n int
(4 bytes). Lésningen dr explicit typkonvertering.

ok ok

Ovning 5.7 &r en projektuppgift, se fotnoten pa sidan 219.

ok ok

Kapitel 6 Kontrollstrukturer, sid 151:

Ovn_6_1l.cs

Skriv ett program som ldser in tva tal och skriver ut OK om de
matats in 1 rdtt ordning, dvs om det férsta dr mindre &n det
andra. Vad hdnder om de dr lika stora?

using System;
class Ovn_6_1

{
static void Main()
{
Console.Write ("\n\tMata in nol:\t");
int nol = int.Parse(Console.ReadLine()) ;
Console.Write ("\n\tMata in no2:\t");
int no2 = int.Parse(Console.ReadLine()) ;
if (nol < no2)
Console.WriteLine ("\n\tOK. Talen matades in i ratt " +
"ordning.\n") ;
}
}

Bade om talen &dr lika stora eller det fOrsta dr stérre &n det andra,
avslutas programmet utan utskrift eftersom alternativ (else) saknas.

Sk Sk ko ok b b ok ok ok ok ok ok b b b b b b b b b b b ok

Ovn_6_2.cs

Modifiera din 16snig frdn d6vn 6.1 genom att ldsa 1in tva tecken
istdllet foér tal. Skriv ut OK om de matats in i ordning. Annars ska
programmet skriva ut ett meddelande om att tecknen matades in i fel
ordning

230

using System;
class Ovn_6_2

static void Main()
{
Console.Write ("\n\tMata in charl:\t");
String temp = Console.ReadLine() ;
char charl = Convert.ToChar (temp.Substring(0, 1))
Console.Write ("\n\tMata in char2:\t");
temp = Console.ReadLine() ;
char char2 = Convert.ToChar (temp.Substring(0, 1))

if (charl < char2)

Console.WriteLine ("\n\tOK. Du matade in i rdtt ordning.\n");
else

Console.WritelLine ("\n\tDu matade in i fel ordning.\n");

}

AAA A A A A A A A A A

Ovn_6_3.cs
Skriv ett program som ldser in tre tal, hittar och skriver ut det
stérsta av dem. Vilken dndring 1 koden leder till det minsta talet?

using System;
class Ovn_6_3

{

static void Main()

{
int max;
Console.Write("\n\tMata in nol:\t");
int nol = int.Parse(Console.ReadLine()) ;
Console.Write ("\n\tMata in no2:\t");
int no2 = int.Parse(Console.ReadLine()) ;
Console.Write ("\n\tMata in tal3:\t");
int tal3 = int.Parse(Console.ReadLine()) ;
max = nol
if (no2 > max)
max = no2;
if (no3 > max)
max = no3;
Console.WriteLine ("\n\tDet stdrsta talet &r " + max + '\n');
}

Genom att byta ut alla > mot < far man det minsta talet.
Sk Sk ko ok b ok ok ok ok ok ok ok ok ok o ok ok ok ok ok ok b ok ok ok o ok b o b b b b b b b b b b b ok

Ovn_6_4.cs

Skriv ett program som ldser in begynnelsebokstaven till en veckodag,
med en switch-sats bestdmmer vilken veckodag det dr och skriver ut
den. Fixa problemet med tisdag/torsdag genom att ndstla en
if-else-sats 1 switch-satsen fér att ldsa in och bearbeta den

andra bokstaven. Ta hand om felaktig inmatning.

using System;

231

class Ovn_6_4

{

static void Main()
{
char bokstavl, bokstav2;
String temp, veckodag;
Console.Write("\n\tMata in en veckodags begynnelsebokstav:\t");
temp = Console.ReadLine() ;
bokstavl = Convert.ToChar (temp.Substring(0, 1))
switch (bokstavl)
{
case 'm':
veckodag = "mandag.";
break;
case 't':
Console.Write("\n\tMata in veckodagens andra bokstav:\t");
temp = Console.ReadLine() ;
bokstav2 = Convert.ToChar (temp.Substring(0, 1))
if (bokstav2 == 'i')
veckodag = "tisdag.";
else
veckodag = "torsdag.";
break;
case 'o':
veckodag = "onsdag.";
break;
case 'f':
veckodag = "fredag.";
break;
case 'l':
veckodag = "lordag.";
break;
case 's':
veckodag = "so6ndag.";
break;
default:
veckodag = "?";
break;
}
if (veckodag !'= "?")
Console.WriteLine ("\n\tDet &r " + veckodag + '\n');
else
Console.WriteLine ("\n\tDetta &r ingen veckodag! + '\n'");
}

Sk ok ok ok ok ok ok ok ko ok A ok ok ok ok ok ok A ok ok ok ok A ok ko

Ovn_6_5.cs

Vidareutveckla 6vn 6.2 sa att anvdndaren far flera chanser att
mata in tva tecken 1 rdtt ordning sa& ldnge han/hon matar in
dem i fel ordning. Du kan géra det genom att bygga in
inmatningen, bearbetningen och utmatningen i en do-loop.

using System;
class Ovn_6_5

{
232

static void Main()

{
char charl, char2;
String temp;
do
{
Console.Write("\n\tMata in charl:\t");
temp = Console.ReadLine() ;
charl = Convert.ToChar (temp.Substring(0, 1)),
Console.Write("\n\tMata in char2:\t");
temp = Console.ReadLine() ;
char2 = Convert.ToChar (temp.Substring(0, 1))
if (charl < char2)
Console.WriteLine ("\n\tOK. Du matade in i ratt " +
"ordning.\n") ;
else
Console.WriteLine (
"\n\tDu matade in i fel ordning. " +
"Fdérsoék igen!\n");
} while (charl >= char2);
}

ok ok

Ovn_6_6.cs

Skriv ett program som ldser in ett heltal och anvdnder det som
stegvariabel fO6r att skriva ut talen fran 1 till 5000.

Om steget dr t.ex. 5 skrivs var femte tal ut.

using System;
class Ovn_6_6

{

static void Main()

{
Console.Write("\n\tMata in ett heltal fdr steget:\t");
int steg = int.Parse(Console.ReadLine())
Console.WriteLine() ;
for (int i = 0; i <= 5000; i += stegq)

Console.Write (i + "\t");

Console.WriteLine() ;

}

Sk Sk ko ok b ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok b ok ok ok b ok b b b b b b b b b b b ok ok ok

Ovn_6_7.cs
Férbdttra (effektivisera) 1&sningen till &vn 5.5 (sid 109) med for-satser.

using System;
class Ovn_6_7
{

static void Main()

{

String encrypt = "";

233

}

Console.Write("\nMata in 5 tecken utan mellanslag: ") ;
String word = Console.ReadLine() ;

Console.Write("\nMata in ett heltal (krypteringsnyckel): ");
int nyckel = int.Parse(Console.ReadLine()) ;

for (int i = 0; 1 < 5; i++)
encrypt += (char) (Convert.ToChar (word.Substring(i, 1)) + key):
Console.WritelLine ("\nDet krypterade ordet:\t\t\t" + encrypt);

word = "";
for (int i = 0; 1 < 5; i++)

word += (char) (Convert.ToChar (encrypt.Substring(i, 1)) - key);
Console.WriteLine ("\nDet Aterstidllda ordet:\t\t\t" + word+ '\n');

KA A KA A A A KA XA A A A A A A A A A KA A A A A A KA I A A A A KA A A A A A KA A A A A A KA A A A A A A A Ak A A A A

Kapitel 7 Metoder, sid 174:

Ovn_7 la.cs
Modularisera l&sningen (sid 225) till &vn 4.4 (sid 83) som l&dser in

tva

heltal, gér berdkningar med dem och skriver ut resultaten.

Separera en av berdkningarna, t.ex. multiplikationen fran kodens

andra delar inmatning och utmatning.

a) Flytta multiplikationen till en metod med returvdrde med huvudet
static int Mult(int a, int b) 1 samma klass som Main().
Anropa metoden Mult () fran Main(). Bibehdll alla andra
berdkningar. Se upp med att inte placera den nya metoden i Main(),
utan fore eller efter.

using System;

class Ovn_7_la

{

static void Main()

{

Console.Write("\n\tMata in ett heltal:\t\t"); // Ledtext
int nol = int.Parse(Console.ReadLine()) ; // Inldsning
Console.Write("\n\tMata in ett heltal till:\t");

int no2 = int.Parse(Console.ReadLine()) ;

Console.WriteLine ("\n\n\t" +
nol + " plus " + no2 + " & " + (nol + no2) + "\n\t" +
nol + " minus " + no2 + " &r " + (nol - no2) + "\n\t" +

// Anropet:
nol + " gadnger " + no2 + " &r " + Mult(nol, no2) + "\n\t" +
nol + " heltalsdividerad med " +
no2 + " 4&r " + (nol / no2) + "\n\t" +

nol + " modulo " + no2 + " &r " + (nol % no2) + "\n\t");

Metoden Mult () som tar in tva heltal via sina parametrar a och b och
returnerar ett heltal som dr a * b:
static int Mult(int a, int b) // Metoden Mult ()

{
}

return a * b;

234

A A AR A A A AR AR A A A A I A A A A A A I AR A A A A A A A A A A A A A A A A KA A A A A Ak Ak Ak Ak Ak Ak Ak

Ovn_7_1b.cs

Modularisera l&sningen (sid 225) till &vn 4.4 (sid 83) som l&dser in

tva heltal, gbr berdkningar med dem och skriver ut resultaten.

Separera en av berdkningarna, t.ex. multiplikationen frdn kodens

andra delar inmatning och utmatning.

b) Fortsdtt med att flytta metoden Mult() till en annan klass 1 samma
fil. Anropet ska fortfarande géras frdn Main(). Aven hdr: Se upp
med att inte placera den nya klassen i den gamla, utan fére eller
efter.

using System;
class Ovn_7_1b

{
static void Main()
{
Console.Write ("\n\tMata in ett heltal:\t\t"); // Ledtext
int nol = int.Parse (Console.ReadLine()); // Inldsning
Console.Write("\n\tMata in ett heltal till:\t");
int no2 = int.Parse(Console.ReadLine()) ;
Console.WriteLine ("\n\n\t" +
nol + " plus " + no2 + " 4&r " + (nol + no2) + "\n\t" +
nol + " minus " + no2 + " &r " + (nol - no2) + "\n\t" +
nol + " gadnger " + no2 + " &r " + // Anropet:
Multip.Mult(nol, no2) + "\n\t" +
nol + " heltalsdividerad med " +
no2 + " 4&r " + (nol / no2) + "\n\t" +
nol + " modulo " + no2 + " &r " + (nol % no2) + "\n\t"):;
}
}
Ny klass Multip i samma fil som Ovn 7 lb.cs
class Multip // Klassen Multip ()
public static int Mult(int a, int b) // Metoden Mult ()

{
}

ok ok

return a * b;

Ovn_7_lc.cs

Modularisera l6sningen (sid 225) till 6vn 4.4 (sid 83) som ldser in
tva heltal, gbér berdkningar med dem och skriver ut resultaten.
Separera en av berdkningarna, t.ex. multiplikationen fran kodens
andra delar inmatning och utmatning.

c) Flytta den nya klassen samt metoden Mult() till en separat fil.

using System;
class Ovn_7_1c

{

static void Main()
{
Console.Write ("\n\tMata in ett heltal:\t\t");
int nol = int.Parse (Console.ReadLine()) ;
Console.Write ("\n\tMata in ett heltal till:\t");
int no2 = int.Parse(Console.ReadLine()) ;
Console.WriteLine ("\n\n\t" +

235

nol + " plus " + no2 + " &r " + (nol + no2) + "\n\t" +

nol + " minus " + no2 + " &r " + (nol - no2) + "\n\t" +
nol + " ganger " + no2 + " &r " + // Anropet:
Multip.Mult(nol, no2) + "\n\t" +
nol + " heltalsdividerad med " +
no2 + " 4&r " + (nol / no2) + "\n\t" +
nol + " modulo " + no2 + " dr " + (nol % no2) + "\n\t");

Ovn_7_lcd.cs
Separat fil som borde ligga 1 samma projekt som filen Ovn 7 lc.cs och
ndr programmet Ovn 7 1d kdérs, i1 samma projekt som filen Ovn 7 1d.cs

class Multip // Klassen Multip
public static int Mult(int a, int b) // Metoden Mult ()
{

return a * b;

}

ok ok

Ovn_7_1ld.cs

Modularisera l1&sningen (sid 225) till évn 4.4 (sid 83) som ldser 1in
tva heltal, gbr berdkningar med dem och skriver ut resultaten.
Separera en av berdkningarna, t.ex. multiplikationen fran kodens
andra delar inmatning och utmatning.

d) G&r samma sak med alla andra berdkningssdtt. Lagra var och en
klass med resp. metod 1 en separat fil. Anropa alla metoder fran
Main ().

using System;
class Ovn_7_1d

static void Main()

{
Console.Write ("\n\tMata in ett heltal:\t\t");
int nol = int.Parse(Console.ReadLine()) ;
Console.Write("\n\tMata in ett heltal till:\t");
int no2 = int.Parse(Console.ReadLine()) ;
Console.WriteLine ("\n\n\t" + // Anropen:
nol + " plus " + no2 + " &r " + Addit.Add(nol, no2) + "\n\t" +
nol + " minus " + no2 + " & " + Subtr.Sub(nol, no2) + "\n\t" +
nol + " gadnger " + no2 + " &r " + // Anropet:
Multip.Mult(nol, no2) + "\n\t" +
nol + " heltalsdividerad med " +
no2 + " &r " + Div.IntDiv(nol, no2) + "\n\t" +
nol + " modulo " + no2 + " &r " + Modu.Mod(nol, no2) + "\n\t"):;
}

Ovn_7_1dA.cs
Separat fil i1 samma projekt som filen Ovn 7 1d.cs

class Addit // Klassen Addit
{
public static int Add(int a, int b) // Metoden Add()
{

236

return a + b;

Ovn_7_1dS.cs
Separat fil i1 samma projekt som filen Ovn 7 1d.cs

class Subtr // Klassen Subtr
public static int Sub(int a, int b) // Metoden Sub ()
{

return a - b;

Ovn_7_1dD.cs
Separat fil i1 samma projekt som filen Ovn 7 1d.cs

class Div // Klassen Div

{

public static int IntDiv(int a, int b) // Metoden IntDiv()

{

return a / b;

Ovn_7_1dM.cs
Separat fil i samma projekt som filen Ovn 7 1d.cs

class Modu // Klassen Modu
{
public static int Mod(int a, int b) // Metoden Mod ()
{

return a % b;

}

ok ok

Ovn_7_2.cs

Modularisera programmet Operator (sid 71) genom att skriva dess
bearbetningsdel som en ny metod i samma klass. Bibehd&ll in- och
utmatnigsdelen i Main() och anropa den nya metoden fran Main().
Avgdr sjdlv om den nya metoden ska returnera ett vdrde och om den
ska vara statisk. Ge den ett beskrivande namn.

using System;
class Ovn_7_2

{

static void Main()

{
/* ITnmatning?*/
Console.Write("\n\tAnge antal ar:\t\t");
int year = int.Parse (Console.ReadLine()) ; // Ndstlat anrop
Console.Write("\n\tAnge antal manader:\t");
int months = int.Parse (Console.ReadLine());
Console.Write("\n\tAnge antal veckor:\t");
int weeks = int.Parse (Console.ReadLine());
Console.Write("\n\tAnge antal dagar:\t");
int days = int.Parse(Console.ReadLine())

237

/*Utmatning*/

Console.WriteLine ("\n\t" + year + " &r, " +
months + " manader, " + weeks + " veckor och " +
days + " dagar dr " + Total (year, months, weeks, days) +
" dagar totalt." + '\n');

}

static int Total(int y, int m, int w, int d) // Ny metod Total()
{ // med returvdrde
/*Bearbetning?*/
return 365*y + 30*m + 7*w + d;

}

KA A KA A A A KA XA A A A A A A A A A KA A A A A A KA I A A A A KA A A A A A XA A A A A A KA A A A A KA kA Ak Ak A A

Ovn_7 3.cs

vVdnd om problemet fran 6vn 9.2: Modularisera programmet OverloadOp
(sid 76) genom att flytta bearbetnings- och utmatnigsdelen till en
void-metod. Dvs skriv ett program som ldser in tiden i ett antal
dagar, anropar void-metoden som omvandlar tiden till antal &r, ma-
nader, veckor och restdagar och skriver ut resultaten. Anvédnd fér
omvandlingen den algoritm som dr implementerad i programmet Over-—
loadOp. Varfér dr det inte ldmpligt hdr att anvdnda en metod med
returvédrde?

using System;
class Ovn_7_3

{

static void Main()
{
/* ITnmatnding?*/
Console.Write("\n\tAnge antal dagar:\t");
int totalDays = int.Parse (Console.ReadLine()) ;
Conversion (totalDays) ; // Anropet av void-metod

}

static void Conversion(int total) // void-metod

{

int year, months, weeks, restDays;

/* Bearbetning*/

year total / 365;

months = (total % 365) / 30;
weeks ((total % 365) % 30) / 7;
restDays = ((total % 365) % 30) % 7;

/*Utmatning*/
Console.WriteLine ("\n\t" + total +
" dagar &r " + year + " ar, " + months + " manader, " +
weeks + " veckor och " + restDays + " dagar.\n");
}
}
Det dr inte ldmpligt att anvdnda en metod med returvdrde, ddrfér att
en metod med returvdrde endast kan returnera ETT vdrde. Har behdvs
FYRA vdrden som ska skrivas ut. Void-metoden berdknar OCH skriver ut
dem.

Sk Sk ko ok b b ok ok ok ok ok ok b b b b b b b ok b b b ok

238

Ovn_7_4 Test.cs

Skriv forst ett program med endast Main()-metoden som ldser in sida
till en kub samt berdknar och skriver ut kubens volym sida’ och dess
yta 6 x sida ? . Flytta sedan dessa berdkningar till tva metoder, en
for volymen, en fér ytan, badda i1 en separat klass Cube. Definiera
side som en datamedlem i klassen Cube. Avgér om metoderna Volume ()
och Area() ska returnera eller vara av void-typ. Anropa dem fran
Main (). Skriv férst en variant med statiska metoder, byt sedan till
icke-statiska metoder. Testa bada varianter. Avgdr slutligen sjdlv
vilken variant som ska fOredras om 16sningen ska vara
objektorienterad. OBS! Féljande 16sningsférslag visar endast den
optimala varianten.

using System;
class CubeTest

{

static void Main()
{
Cube myCube; // Definierar en referensvariabel
// av typ Cube utan att skapa objektet
myCube = new Cube() ; // Skapar ett objekt av typ Cube och
// tilldelar objektets adress till re-
// ferensen. By default: side = 0.0
// Sedan tilldelas side ett nytt vidrde:
Console.Write("\n\tAnge sidan till en kub:\t");
myCube.side = Convert.ToDouble (Console.ReadLine()) ;

Console.WriteLine ("\n\tEn kub med sidan\t" + myCube.side +
"\n\thar volymen\t\t" + myCube.Volume () +
"\n\toch ytan\t\t" + myCube.Area () + '\n'");

Ovn_7_4 Class.cs
Separat fil i samma projekt som filen Ovn 9 4 Test.cs

class Cube

{

public double side;

public double Volume ()
{

return side * side * side;

}
public double Area()
{
return 6 * side * side;
}

Sk Kk ok b b ok ok ok ok ok ok b b b b b b b b b b b ok

Ovn_7_5.cs
Varfér ger féljande program kompileringsfel? Atgdrda felet
genom att flytta pd kod, utan att ta bort ndgon klammer

239

och utan att ha tomma klamrar:

class Ovn_9 5
{
static void Main ()
{
{
int t = 30;
}

Console.WriteLine ("t = " + t);

}

using System;
class Ovn_7_5

{

static void Main()

{

int t;
{
t = 30;
}
Console.WriteLine("\n\tt = " + t + '\n');

}
}
Kompileringsfelet i programmets férsta variant berodde pa att varia-
beln t var definierad i ett inre block och att programmet refererade
till den utanfdr det inre blocket didr t inte ldngre var giltig.

Sk ok

Ovn_7_6_Test.cs
Modularisera programmet MiniSort frdn kap 6 (sid 116).

using System;
class MiniSortTest

{

static void Main()

{

Console.Write ("\n\tTva osorterade tecken:\n\n\t" +
"Mata in tva tecken skilda med mellanslag:\t");
string str = Console.ReadLine() ;

MiniSort m = new MiniSort(); // Objekt skapas
m.charl = Convert.ToChar (str.Substring(0, 1)); // Objektets data

m.char2 = Convert.ToChar (str.Substring(2, 1)); // initieras
m.sortera() ; // Objektets metod anropas

Console.WriteLine ("\n\tDe tva tecknen sorterade:\t\t\t" +
m.charl + ' ' + m.char2 + "\n\n");

Ovn_7_6_Class.cs
Separat fil i1 samma projekt som filen Ovn 9 6 Test.cs

class MiniSort

240

public char charl, char2;

public void sortera()

{

}

* Ak A

char temp;

if (charl > char2) // Har tolkas tecknen som tal

{
temp = charl; // Algoritm fér platsbyte
charl = char2; // av de tvé teckenvirdena
char2 = temp; // charl, char2

}

A A KA KA A A A A XA A A A A XA A A A A KA A A A KA KA A A A A KA h A A Ak Ak ok Ak Ak h ok Ak Ak ko k

Ovn_7_7_Test.cs

Modu

larisera programmet OverloadOp fréan kap 4 (sid 76).

using System;

clas

{

st

{

s TidTest
atic void Main()

/* ITnmatning?*/
Console.Write ("\n\tAnge antal dagar:\t");
int totalDays = int.Parse (Console.ReadLine()) ;

Tidomvandling t = new Tidomvandling(); // Objekt skapas
t.Conversion (totalDays) ; // Objektets metod anropas

/* Utmatning*/
Console.WritelLine ("\n\t" + totalDays + " dagar &r " +
t.year + " ar, " + t.months + " manader, " +
t.weeks + " veckor och " + t.restDays +" dagar.\n");

Ovn_7_7_Class.cs
Separat fil i samma projekt som filen Ovn 9 7 Test.cs

class Tidomvandling

{

public int year, months, weeks, restDays;

public void Conversion (int total)

{

}

/* Bearbetning*/

year = total / 365;

months = (total % 365) / 30;
weeks = ((total % 365) % 30) / 7;
restDays = ((total % 365) % 30) % 7;

Sk ok ok ok ok ok ok ok k ok A ok ok ok ok ok A ok K ok

241

Kapitel 8 Klasser, objekt och referenser, sid 191:

Ovn_8 l.cs

Skriv ett program som bestdr endast av klassen All in Main som i sin
tur innehdller endast Main()-metoden. Lds in radien r till en cirkel
och berdkna samt skriv ut cirkelns area pi*r*r och dess omkrets
2*pi*r, didr pi=3.14159. Du kan anvdnda konstanten Math.PI fran C#:s
klassbibliotek fér pi. Programmet ska inte vara objektorienterat
eftersom du inte skapar ndgra objekt, utan endast lokala variabler
(radie, area, omkrets). Programmet ska inte heller vara
modulariserat eller proceduralt eftersom all kod (Input-Bearbetning-
Output) finns i en enda metod Main() som definieras 1 en klass.
Dessa steg ska tas 1 de efterfdljande tvd Svningarna. Deklarera alla
variabler till double.

using System;
class All_in Main

static void Main()

{

double radius, area, circumference; // Lokala variabler

Console.Write("\n\tAnge radien till en cirkel:\t");
radius = Convert.ToDouble (Console.ReadlLine()); // Input

area = Math.PI * radius * radius; // Bearbetning
circumference = 2 * Math.PI * radius;

Console.WriteLine (// Output
"\n\tEn cirkel med radien " + radius +
"\n\thar arean " + area +
"\n\toch omkretsen " 4+ circumference + '\n');

}

AAA &K
Ovn_8 2.cs

Modularisera programmet All in Main frdn évn 8.1 pa metodniva, dvs:
Flytta bearbetningsdelen dvs berdkningen av area och omkrets ur
Main() till separata metoder Area () och Circumference (), men stanna
i samma klass. DOp om klassnamnet till Procedural. I Main() ska
finnas kvar variabeln f6r radien, inmatning, utmatning och anropet
av Area () och Circumference (). FOrse de nya metoderna med en
parameter som Sverfdr radiens vdrde frdn Main() till dem. V&lj olika
namn fOr den aktuella dn fOr den formella parametern.Dessutom ska
Area () och Circumference () returnera ett double-vdrde och vara
statiska. For att testa mata in 1 fér radien.Da ska arean bli pi pga
pi*r*r = pi och omkretsen bli 2*pi.

using System;

class Procedural

{

static void Main()
double radius; // Lokal variabel

Console.Write("\n\tAnge radien till en cirkel:\t");
radius = Convert.ToDouble (Console.Readline()); // Input

242

Console.WriteLine (// Output

"\n\tEn cirkel med radien " + radius +
"\n\thar arean " + Area(radius) +
"\n\toch omkretsen " + Circumference (radius) + '\n');
} // aktuell parameter
static double Area(double r) // Metoden Area () med formell
{ // parameter r som tar emot
return Math.PI * r * r; // aktuell parameter radius

static double Circumference (double r) // Metoden Circumference ()

{
}

Sk ok b ok ok ok ok ok ok ok ok ok ok ok

return 2 * Math.PI * r;

Ovn_8_ 3 Class.cs

Modularisera programmet All in Main frdn évn 8.1 pa klassniva, dvs:
Dela upp programmet i tvd klasser, lagrade i1 tva separata filer.
Kalla den ena klassen fér Circle, den andra fér CircleTest.

Samla all information om begreppet cirkel i klassen Circle, dvs:
Deklarera radien r som datamedlem samt Area () och Circumference ()
som metoder. Ta bort fran metoderna bdde static och parametern for
radien.

using System; // Krdvs fér Math
class Circle

{

public double radius; // Publik datamedlem
public double Area () // Publik metod

{ return Math.PI * radius * radius;

}

public double Circumference () // Publik metod

{ return 2 * Math.PI * radius;

}

}

Datamedlemmen radius och metoderna Area() och Circumference() mdste
vara publika fér att den externa klassen CircleTest ska kunna komma &t
dem.

Ovn_8_ 3 Test.cs

Den andra klassen CircleTest ska endast innehdlla metoden Main().
Ska-

pa 1 den ett objekt av klassen Circle. Lds in ett vdrde till
objektets

datamedlem r och anropa samt skriv ut returvdrdena till objektets

me-

toder Area () och Circumference (). Bdada klassfiler borde ligga 1

samma

243

projekt.

using System;
class CircleTest

{
static void Main()
{ Circle myCircle; // Definirerar endast en
referensvariabel
// av typ Circle wutan att skapa
objekt
myCircle = new Circle(); // Skapar ett objekt av typ Circle
// och tilldelar objektets adress
till
// referensvariabeln.
Console.Write("\n\tAnge radien till en cirkel:\t");
myCircle.radius = Convert.ToDouble (Console.ReadLine()) //
Input
Console.WriteLine (//
Output
"\n\tEn cirkel med radien " + myCircle.radius +
"\n\thar arean " + myCircle.Area() +
"\n\toch omkretsen " + myCircle.Circumference() +
"\n');

}

AAA A A A A A A A A A

Ovn_8 4 Class.cs
Skriv en klass Fish som beskriver en fisk med datamedlemmarna sort,
weight och size. Borde ligga 1 samma projekt som filen Ovn 8 4 Test.

class Fish
{
public string sort;
public double weight, size;

Ovn_8 4 Test.cs

Testa din klass 1 en annan klass FishTest 1 en separat fil som
endast

innehdller metoden Main() ddr tva objekt av klassen Fish skapas.
Till-

dela det fOrsta objektets datamedlemmar vdrdena Laxforell, 719
(gram)

och 38.5 (cm). Enheterna gram och cm behéver inte anges. Vdlj sjdlv
andra vdrden till det andra objektets datamedlemmar. Skriv ut dessa
vdrden till konsolen 1 en tabell av typ:

Fisksort Vikt i g Ldngd i cm
Laxforell 719.0 38.5
Torsk 423.0 28.7

using System;

244

class FishTest

{

static void Main()

Fish fl1 = new Fish(); // Objekt skapas (definieras)
// och initieras by default

fl.sort = "Laxforell"; // Objekt tilldelas varden
fl.weight = 719;
fl.size = 38.5;

Fish £f2 = new Fish(); // 2:a objekt skapas
£f2.sort = "Torsk\t"; // \t fér layoutens skull
£f2 .weight = 423;

f2.size = 28.7;

Console.WriteLine ("\n\tFisksort\tVikt i g\tLingd i cm" +

"\n\t-—m e e \n\t" +
fl.sort + "\t " + fl.weight + "\t\t " + fl.size + "\n\t" +
f2.sort + "\t " + f£2.weight + "\t\t " + f2.size + "\n\n");

}

AAA A A A A A A A A A

Ovn_8 5 Class.cs

Ta klassen Fish fran évn 8.4. Férse den med en metod som
berdknar priset pa fisken oberoende av sort, t.ex. 7.25 kr per
hekto. Ldgg till dven en metod som berdknar och returnerar
frakten utifran fiskens vikt och genom att t.ex. multip-
licera en viss kostnadsfaktor, sdg 0.02, med vikten, en annan,
sdg 0.1, med ldngden och addera dem. Metoderna ska returnera
priset och frakten i hela kronor utan J&ren.

using System;
class Fish

{
public string sort;
public float weight, size;

public int Price()

{
}

public int shipping()
{

return (int) Math.Round(weight * 7.25 / 100);

return (int) Math.Round(weight * 0.02 + size * 0.1);

Ovn_8_ 5 Test.cs

Anropa metoderna frdn klassen FishTest:s Main()-metod fér de tva
Fish-objekten. Ldgg till nya rubriker Pris och Frakt i tabellen ovan
och skriv ut deras vidrden till tabellens tva rader

using System;

245

class FishTest

{

static void Main()

Fish fl = new Fish{(); // l:a objekt skapas (definieras)
// och initieras by default

fl.sort = "Laxforell"; // l:a objekt tilldelas varden
fl.weight = 719;
fl.size = 38.5f;

Fish £f2 = new Fish(); // 2:a objekt skapas
£f2.sort = "Torsk\t"; // \t fér layoutens skull
£f2.weight = 423; // 2:a objekt tilldelas védrden

f2.size = 28.7f;
// Metoderna anropas 1 utskriften:

Console.WritelLine ("\nFisksort\tVikt i g\tLingd i cm"

"\tPris\tFrakt\n"

I e e e e \n"
fl.sort + "\t " + fl.weight + "\t\t "+ fl.size + "\t\t "
£1.Price() + "\t " + fl.shipping() + "\n"
+ +
+ +

+ 4+ o+ o+

£2.sort +"\t " £2 .weight "\t\t " + f2.size + "\t\t "
£2.Price() + "\t " £2.shipping() "\n\n") ;

AAA A A A A A A A A A

Ovn_8 6 Test.cs

Modifiera programmet fran &dvn 8.5 sd att datamedlemmarnas vdrden
inte hdrdkodas utan ldses in. Utskriften ska skickas till konsolen
och ldggas till tabellen ovan. Skriv din kod sa att den 1l&tt kan
generaliseras sa att man kan mata in flera fisksorter med hjdlp av
en loop och en array av referenser till Fish-objekt som vi kommer
att ldra oss senare. Dessutom ska programmet kunna modifieras till
att skriva ut till en tabell i en fil eller en databas istdllet fér
att skriva till konsolen.

using System;
class FishTest

{
static void Main()
{
Fish f1 = new Fish(); // l:a objekt skapas
Fish £2 = new Fish(); // 2:a objekt skapas

Console.Write("\n\tMata in sorten till fiskl:\t");

fl.sort = Console.ReadLine() ; // Inputs:
if (fl.sort. Length < 6) f2.sort += '\t';

Console.Write("\tMata in vikten till fiskl:\t");

fl.weight = (float) Convert.ToDecimal (Console.ReadLine()) ;
Console.Write("\tMata in ldngden till fiskl:\t");

fl.size = (float) Convert.ToDecimal (Console.ReadLine()) ;

Console.Write ("\n\tMata in sorten till fisk2:\t");

f2.sort = Console.ReadLine() ; // Input
if (f2.sort.Length < 6) f2.sort += '\t';
Console.Write("\tMata in vikten till fisk2:\t");

f2 .weight = (float) Convert.ToDecimal (Console.ReadLine()) ;

246

Console.Write("\tMata in en till fisk2:\t"):;
f2.size = (float) Convert.ToDecimal (Console.ReadLine()) ;

Console.WriteLine ("\n\nFisksort\tVikt i g\tLingd i cm" +

"\tPris\tFrakt\n" +

Tl e e e e e e e e o e o \nll +

fl.sort + "\t " + fl.weight + "\t\t " + fl.size + "\t\t " +

£f1.Price() + "\t " + fl.shipping() + "\n" +

f2.sort + "\t " + f2.weight + "\t\t "4+ £2. 4+ "\t\t " +
£2.Price() + "\t " + £2.shipping() + "\n\n");

Sk ok b ok ok ok ok ok ok ok b ok ok ok ok ok ok ok ok ok o ok

Ovn_8_7_Class.cs

Deklarera en klass Triangle med datamedlemmarna side a, side b,
side c, height b av typ int och metoderna Area(), Circumference().
class Triangle

{
public int side_a, side b, side_c, height b;
public int Area()
{
return side b * height b/2;
}
public int Circumference ()
{
return side a + side b + side c;
}
}

Ovn_8 7 Test.cs

Skapa i1 en annan klass som innehdller Main(), ett objekt av klassen
Triangle och tilldela datamedlemmarna vdrden. Anropa metoderna och
skriv ut denna triangels area och omkrets. Skapa en andra referens
som pekar pa samma objekt och anropa metoderna samt skriv ut deras
returvdrden med denna referens. Du borde fa samma resultat som med
den férsta referensen. Anropa sedan metoderna Area () och
Circumference () med tvd anonyma objekt (utan referenser). Kolla om
du fdr de férvdntade resultaten som 4r baserade pd objektens
default-initiering. Sist, peka om Triangle-objektets fdrsta referens
till null och férsék att anropa metoderna med denna referens. Vad
hédnder?

using System;
class TriangleTest

{

static void Main()

{
Triangle tri = new Triangle(); // Skapar ett objekt med en

// férsta referens tri

tri.side a = 4;
tri.side b = 6;
tri.side_c = 5;
tri.height b = 3;

247

Console.WriteLine ("\n\tMed den férsta referensen:\n" +

"\tArea = " + tri.Area() + '\n' +
"\tOmkrets = " + tri.Circumference() + '\n');
Triangle t = tri; // Ny referens till samma objekt

Console.WriteLine ("\n\tMed den andra referensen:\n" +
"\tArea =" + t.Area() + '\n' +
"\tOmkrets = " + t.Circumference() + '\n');

Console.WriteLine
("\n\tAndra, anonyma objekt som default-initieras:\n" +

"\tArea = " + new Triangle() .Area() + '\n' +
"\tOmkrets = " + new Triangle() .Circumference() + '\n');
tri = null; // Ompekning till null: tri

// pekar pa inget objekt ldngre
Console.WriteLine ("Anvdndning av null-referens ger " +
"exekveringsfel:\n") ;
Console.WriteLine (tri.side_a);
}
}
Det som hdnder, dr att ett objekt skapas med referensen tri som
overférs till en ny referens t, sa att bade tri och t pekar pa samma
objekt. Men sedan gérs en ompekning av tri till null, dvs tri
kopplas bort fran objektet. Programmets sista sats forséker att med
tri referera till objektet vilket leder till ett s.k.
NullReferenceException.

KA KAk kb bbb bbb bbb bbb bbbk bbb bbb bbbk bbb bbb bbb bbbk bbbk kbbb A A A A A A A A A A A A A K

Kapitel 9 Array, sid 209:

Ovn_9 1l.cs
Skriv ett program som ldser in 10 heltal frdn konsolen, lagrar dem 1
en array och skriver ut dem i omvdnd ordning.

using System;
class Ovn_9 1

{

static void Main()
int[] no = new int[10];

Console.WriteLine ("\n\tSkriv in 10 heltal:\n");
for (int i = 0; 1 <= 9; i++)
{
Console.Write("\tTal nr " + (i+1) + ":\t");
no[i] = int.Parse(Console.ReadLine()) ;

}

Console.WritelLine ("\nDina tal i omvdnd ordning:\n");
for (int i = 9; i >= 0; i--)
Console.Write(no[i] + "\t");

Console.WriteLine () ;

248

Sk ok b ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok b ok ok ok b ok ok b ok b b b oF b ok b ok ok ok

Ovn_9 2.cs

Skriv ett program som slumpar fram 1000 heltal mellan 60 och 140
(tdnkbara hastigheter pd en motorvdg), lagrar dem i en array kallad
hastighet, berdknar och skriver ut deras medelvdrde med férklarande
text.

using System;
class Ovn_9 2

{

static void Main()
{
Random r = new Random() ;
int[] hastighet = new int[1000];
RandArray.Rand(r, hastighet, 60, 140);
int sum = 0;
for (int i = 0; i <= 999; i++)
sum += hastighet[i];
Console.WritelLine ("\tMedelvirdet av 1000 mdjliga hastigheter " +
"mellan 60 och 140 &r: " 4+ sum/1000 + '\n');

RandArray.cs

Separat fil i samma projekt som filen Ovn 9 2.cs

Ny metod Rand() slumpar fram en array av heltal mellan
a och b, lagrar dem i arrayen no och skriver ut dem
Anropar biblioteksmetoden Next () i en loop

fér att fa ETT slumptal mellan a och b i varje varv

using System;
class RandArray

public static void Rand(Random r, int[] no, int a, int b)
{
Console.Write("\n\t" + no.Length + " heltal mellan " +
a+ " och " + b + " slumpas fram:\n\n\t");
for (int i=0; i < no.Length; i++)

{
no[i] = r.Next(a, b);
Console.Write(no[i] + " "),
if ((i % 16 == 0) && (i '= 0))
Console.Write ("\n\t") ;
}

Console.WriteLine ("\n\n") ;

Ovn_9 3.cs

Skriv ett program som ldser in en strdng, lagrar den 1 en array
av char och skriver ut den bakldnges.

Anvidnd tekniken 1 programmet EncryptCharTest fér att omvandla

249

den inldsta strdngen i en array av char.

using System;
class Ovn_9 3

{

static void Main()
{
Console.Write ("\n\tSkriv in text:\t\t");
char[] text = Console.ReadLine() .ToCharArray() ;

Console.Write ("\n\tTexten bakldnges:\t");

for (int i = text.Length-1; i >= 0; i--)
Console.Write (text[i]) ;

Console.WriteLine('\n');

}

Sk ok b ok ok ok ok ok ok ok ok ok o ok

Ovn_9 4.cs
Skriv ett program som ldser in text i1 gemener, lagrar den 1 en array
av char och skriver ut den framhdvd i versaler och med mellanslag

mellan varje tecken.

using System;
class Ovn_9 4

{

static void Main()
{
Console.Write ("\n\tSkriv in text:\t\t"):;
char[] text = Console.ReadLine () .ToCharArray() ;

Console.Write ("\n\tTexten framhavd:\t"):;

for (int i = 0; i < text.Length; i++)
Console.Write("" + (char) (text[i] - 32) + ' '");

Console.WriteLine('\n');

}

AA A

Ovn_9 5.cs

Skriv ett program som fragar efter anvidndarens fér- och efternamn,
hédlsar sedan anvdndaren i en utskrift med fullstdndiga namnet, foér-
namnets 1ldngd samt efternamnets fOrsta och sista bokstav. L&s upp-
giften generellt utan att anvdnda information om nagot speciellt
foér- och efternamn.

using System;

class Ovn_9 5

{

static void Main()

{

char surnameO = '0'; // Undviker villkorlig initiering
Console.Write ("\n\tSkriv in ditt £6r- och efternamn:\t");
string input = Console.ReadLine() ;

char[] name = input.ToCharArray() ;

int i = 0;
while (name[i] !'= ' ') // Gar igenom endast férnamnet

{

i++;

250

}

if (name[i] == ' ") // Hittar namnens avskiljare
surname0 = name[i+l]; // Hittar efternamnets 1l:a bokstav

}

Console.WriteLine ("\n\tHej, " + input +
"\n\tDitt férnamns lidngd &r " + i +
"\n\tDitt efternamns férsta bokstav &r " + surname0 +
"\n\tDitt efternamns sista bokstav &r " +

name [name .Length-1] + '\n');

Sk o ok

Ovn_9_6.cs

Skriv ett program ddr Main () ldser in en persons fullstdndiga namn
och hdlsar tillbaka med namnets initialer. Dessa ska bestdmmas och
skrivas ut i en annan metod - med huvudet static void
Initials(char[] name) som anropas i Main().

using System;

class Ovn_9 6

{

static void Main()

{

}

Console.Write ("\n\tSkriv in ditt £6r- och efternamn:\t"):;
string input = Console.ReadLine() ;
char[] dittNamn = input.ToCharArray() ;

Console.Write("\n\tHej, " + input +
"\n\n\tDina initialer ar\t\t\t");

Initials(dittNamn) ; // Anropet

Console.WriteLine('\n"');

static void Initials(char[] name) // Metoden

{

}

int 1 = 0;

Console.Write (name[i]) ; // Férsta initialen
while (name[i] !'= ' ') // Ga&r igenom endast fdérnamnet
{
i++;
if (name[i] == ' ") // Hittar fér—- och efternamnets
// avskiljare

Console.Write(name[i+l]); // Andra initialen

Sk Sk ko ok b ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok b ok ok ok b ok b ok b b b b b b b b b b ok oF

251

252

Programférteckning

Program Amne Sida

Kapitel 1 C# programmeringens miljo

First Textbaserad utskrift: Ex. pa en Console Application 18
Interaction Graf. granssnitt: Ex. pa en Windows Forms Application 26
MessageBox Utskrift av text till en grafisk meddelanderuta 29

Kapitel 3 Att komma igdng med C#

First Utskrift av text fran C# till konsolen 42
LineBreak Utskrift av text med radbyte och indragning 49
Output Metoderna write () och WriteLine () 50
Concat Konkatenering: Sammanslagning av flera utskriftssatser 51

Kapitel 4 Grundbegrepp i programmering

Datatype Begreppet datatyp hos tal-, tecken- och strangar 56
Variable Definition och initiering av variabler 60
DefInit Dekl. och initiering av variabler i en och samma sats 63
Input Inl&sning av data med metoden ReadLine () 66
Overwrite Overskrivning av variabelvirdet, skillnaden mellan lik-

het och tilldelning, omvandling av string till int

med metoden int.Parse () 68
Operator Aritmetiska operatorer och uttryck

Inmatning — Bearbetning — Utmatning

Nastlat anrop av metoder 71
OverloadOp Overlagring av divisionsoperatorn, modulooperatorn 76
Increment Okningsoperatorn ++ med post- och prefixvarianten 77
CompAssign Sammansatta tilldelningar med +=, -=, *=, /= 81

Kapitel 5 Enkla datatyper

Primitives De enkla datatyperna i C# och deras minnesstorlekar

Operatorn sizeof 87
Limits De enkla datatypernas granser 89
Char Kodrepresentation av tecken med ASCII

Datatypen char , teckenaritmetik 91
Int2char Tecken till inmatad kod: Explicit typkonvertering 95
Char2int ASCII-kod till inmatat tecken, omvandling av string

till char med metoden Convert. ToChar () 96

253

Program Amne Sida
Escape Escapesekvenser, bade symboliska och i Unicode 98
Unicode Teckenstandarden Unicode (Javaprogram) 100
Decimal Decimaltalstyperna float och double 101
AutoConv Automatisk typkonvertering 106
Kapitel 6 Kontrollstrukturer
SimpleIf Enkel selektion: i £-satsen, jamforelseoperatorer 113
MiniSort Sortering av tva objekt med flera satser i if 116
CondInit Villkorlig initiering av variabler ger kompileringsfel 119
UncondInit Ovillkorlig initiering av variabler 119
IfElse Tvavagsval: if-else-satsen 122
Switch Flervagsval: switch-satsen 125
GuessIfElse Gissa tal med néstlad i£-else (trevagsval) 128
GuessSwitch med kombination av switch och if-else 130
GuessDo i dialog med do-loop 132
DoRand Utskrift av slumptal med do-satsen (loop) 134
GuessDoRand Gissa tal med slumptal i dialog med do 136
Ascii Utskrift av ASClI-tabellen med while 139
ForRandom Utskrift av slumptal med for-satsen 144
NestedFor Nastlad for-sats skriver ut tabell dver slumptal 147
MultipTab Multiplikationstabellen med nastlad £or-sats 149
Kapitel 7 Metoder
ReturnMethod Definition och anrop av en metod med returvérde 161
Tva metoder i en klass: Main () och TotalDays ()
Placering av metoder, villkorlig return-sats
Total Klass som externlagrar metoden TotalDays () 169
TotalTest Test av klassen Total med anrop av TotalDays () 169
Modularisering av programmet ReturnMethod
VoidMethod Klass med metod utan returvérde: void-metod 171
VoidMethodTestJ Testav VoidMethod: anrop av void-metoden 172
Kapitel 8 Klasser, objekt och referenser
Password Var forsta klass: Testa I6senord som klass 181
PasswordTest Ett program i tva filer: Test av klassen Password 182
GuessNo Gissa tal som klass med def. av metoden Play () 188
GuessNoTest Test av GuessNo med anrop av metoden Play () 189

254

Program

Amne

Sida

Kapitel 9 Array

Array

ArrayInit
Foreach
ArrayChar
RandPasswd

Deklaration och initiering av en array

Datatypen array av int, default-initiering av en array
Initieringslista: Kortform f&r definition och initiering
Introducerar foreach-satsen

Texthantering med datatypen array av char
Slumpvis genererade I6senord med array av char

255

199

204
204
206
207

Register

Abstraktion

Argument

Array
Default-initiering
Definition
Hakparenteser
Indexering
Indexregeln
Initiering

Arv

ASCII

ASCll-tabellen
med while

Attribut

Automaten (projekt)

B
Bibliotek
Block
Button

C
C# 35
CH-program

C#-programvara
konfiguration

Case sensitive

Console Application

Convert.ToInt32()

D

Datamedlem
Datatyp
Enkel
Sammansatt
Decimaltal
Deklaration vs. definition
do-sats
Programexempel

214
165
197
203
199
202
198
198
199
217

93

93
140
214
192

36
117
22

43

13
36
13
70

216
58
86
86

101
64

131

132

256

E
Editering
Element
Escapesekvenser
Exekveringsfel

F

Filandelse
Formell parameter
for-sats
Nastlad
Flodesplan
Programexempel
Racknarens rackvidd
Funktion
Definition

G

Gissa tal-spel
Gissa tal-spel som klass
Grafiskt granssnitt

Heltalsdivision
Handelsemetoder

IDE
if-else-sats
Néstlad
Programexempel
Programexempel
if-sats
Nastlad
Programexempel
Indata
Index
Indexregeln
Indragningar
Inmatning

37
197
49,97
39

38
163

149
149
145

161

132,135
188
22

75
27

34
121
128
128
122
113
128

113,116

66
197
198

48

66

Inmatning — bearbetning — utmatning 72

Instans
Interaktion

Javaprogram
Jamférelseoperator

K

Kalkylatorn (projekt)
Klass

Varfor klasser?
Kommentar
Kompilering
Kompileringsfel
Konkatenering
Konstant

Namngiven
Kontrollstruktur
Kallkod

Labyrint | (projekt)
Loopar

M

Main ()
Master Mind (projekt)
MessageBox
Metod
Anrop
Nastlat
Begreppet
Externlagrad
Programexempel
Placering
Utan returvarde
Modularisering

Namngivning
Regler

184
22

100
115

176
180
159, 180
42
37,38
39

51

56
106
112
37

152
131

44

209

27

158, 216
164

73

158

169
164
171
159

59
59

257

new

(0

Objekt

Objektorienterad design
Objektorienterad programmering

Operand

Operator
Aritmetisk

Overflow
Exempel

Paradigmskifte
Parameter

Aktuell och formell
Parameterlista
Program i C#
Programmeringsstil
Punktnotation

Radbyte med \n
Referens
Repetition
Efter-testad
Reserverat ord
return-sats
Villkorlig
Returtyp
Returvarde

Sekvens
Selektion
Enkel
Flervagsval
Tvavagsval
Slumplésenord
Slumptal
Sortering
Platsbyte
Strikt typbestamt

185

214
213
213
71
71
71
89
106

213
158
165
162

43

47
215

49
186
131
131

35

167
163
158

112
112
113
123
121
207
134

116
58

Strang
Svenska specialtecken
switch-sats
Kombination med if-else
Programexempel

T

Teckenaritmetik

Textbehandling

TILLS

Toolbox

Typkonvertering
Automatisk

int-regeln

Explicit

UML
Unicode

46
59
123
130
126

92
206
133

22
104
104
105

94

213,216

99

258

using-direktivet
Uttryck
Aritmetiskt

V,W

Variabel
Initiering
Tilldelning
Villkorlig initiering
void-metoder
while-sats
Programexempel
Windowsprogrammering

&

Okningsoperator
Postfixvariant
Prefixvariant

Overskrivning

43
71
71

59
62
61
118
171
139
139
28

77
77
77
68

