

 2

Programmeringsspråket C# (uttalat ”si sharp”) bygger på allt som är bra i C, C++

och Java och lägger till en hel del nytt. Tillägget ++ (ökning med 1) i C++ betyder

att man lagt till 1 utvecklingssteg till C, men behållit den gamla kärnan C. Tillägget

i C# däremot står för en ny- och vidareutveckling som inte längre bär på ballas-

ten från C och bjuder på en högre programmeringsupplevelse. I musiken är C#

(eng. C sharp, sv. Ciss) en halv ton högre än tonen C, vilket har inspirerat namn-

givningen av programmeringsspråket C#, där man med tillägget # syftar på att man

”höjt” språket C till C#.

Koden är enkelt att lära sig. Har man kommit över en viss tröskel – vilket denna

bok hjälper dig att göra – blir det roligt att skriva program som kan lösa praktiska

problem och förenkla människans arbete – allt för att ha mer tid över för annat i li-

vet. Det är just det IT och programmering handlar om. Dessutom får man genom

att lära sig programmering, en bättre förståelse för hemligheterna bakom IT.

Andra programmeringsböcker publicerade i samma förlag:

 Programmering 2 med C# – En fortsättning på denna bok.

 Programmering 3 med C# – En fortsättning på Programmering 2 med C#.

 Programmering 1 med C# – En lightversion av denna bok.

 Programmering 1 med Java – En introd. till programmeringens grunder.

 Programmering för nybörjare med C++ – Introd. till programmering.

 Koda matte med Python.

 Programmering i matematik – Tio lektioner (under bearbetning).

Alla böcker innehåller övningar, projektuppgifter och fullst. lösningar till alla övn.

Tacksam för kritik, synpunkter, påpekande av fel och förslag om korrektur eller

förbättringar av innehåll eller form till info@techpages.se .

Printed in Sweden

Published by TechPages Förlag AB

ISBN 9789197420471

www.techpages.se

3

Programmering 1+

med C#

Täcker Skolverkets ämnesplan för kursen Programmering 1

www.techpages.se TechPages Förlag

Med övningar,
fullständiga lösningar

&

projektuppgifter

 4

Titel: Programmering 1+ med C#

ISBN 9789197420471

Förlag: TechPages Förlag AB
 info@techpages.se

Copyright © 2022 TechPages Förlag AB, Danderyd.

All rights reserved.
www.techpages.se

Skrivet av TechPages Förlagets författarkollektiv.

Tryckeri: Eprint, Stockholm

Februari 2022

Kopieringsförbud!

Denna bok är skyddad av Lagen om upphovsrätt. Kopiering är förbjuden. Förbudet inkluderar översätt-

ning, tryckning, stencilering, kopiering, lagring i elektroniska och digitala media, visning på bildskärm
eller via projektor, bandinspelning osv. Dessa förbud gäller även för koden i alla programexempel samt

övningarnas lösningar som finns i boken. Den som bryter mot lagen om upphovsrätt kan åtalas av all-

män åklagare och dömas till böter eller fängelse i upp till två år samt bli skyldig att erlägga ersättning
till upphovsman/rättsinnehavare.

5

Vad boken handlar om

Välkommen till programmeringens spännande värld! När man tröttnat på att bara

använda program som andra skrivit, är det dags att börja programmera själv. Visst

är det roligare att köra en bil än att bara åka med. Det är kreativiteten och det fria

skapandet som lockar. Programmering kan vara en naturlig fortsättning för dig som

hittills endast har mailat, surfat eller lyssnat på musik på datorn och nu vill veta

mer om vad som händer bakom kulisserna i en dator. Man lär sig nämligen på ett

helt nytt plan hur datorer fungerar när man programmerar själv. Dessutom kan man

testa sina egna, nya idéer.

Programmering är ett av de mest spännande kapitlen i teknologihistorien. Inte bara

därför att den har lagt grunden till den moderna IT-industrin. Den har också bidra-

git till att förverkliga den urgamla mänskliga drömmen att förenkla mödosamma

arbeten. Istället för att plåga sig kodar man en maskin med idéer, för att ha mer tid

över för annat i livet.

Meningen med boken är att lära ut programmering. Detta kan dock praktiskt åstad-

kommas endast genom att skriva och testa program, dvs använda ett programme-

ringsspråk. I denna bok används C# som medel, verktyg och medium för att pre-

sentera programmering. Men medlet är av underordnad betydelse. Målet är att för-

medla tankesättet och tekniken att programmera, oberoende av språk. Har man en

gång förstått de grundläggande principer som är gemensamma för alla programme-

ringsspråk, blir det närmast en teknikalitet att på egen hand lära sig ett nytt språk.

Denna bok är en introduktion till programmering som inte bara täcker Skolverkets

kursplan för Programmering 1 utan innehåller även en hel del annat smått och gott

från datalogin för att göra pliktlektyren mer intressant, därför 1+. Några förkunska-

per inom ämnet förutsätts dock inte.

Vi som skrivit boken har många års erfarenhet av undervisning i programmering,

databaser, matematik, numerisk analys och andra ämnen både på skol- och högsko-

lenivå i olika länder. I vårt material eftersträvar vi enkelhet och klarhet som resul-

terar i strukturerade och logiska program så att man lätt kan se idén och förstå tan-

ken bakom koden.

I början av våra banor som pedagoger antog vi att vissa begrepp, sammanhang och

förutsättningar var självklara, men den dagliga undervisningen i klassrum fick oss

snart på andra tankar. Våra elevers frågor, kritik och kommentarer fick oss att för-

stå var de begreppsmässiga luckorna i våra resonemang fanns. De var våra elever i

programmering, matematik osv. men blev våra lärare i pedagogik.

Röda trådens pedagogik

Böcker i tekniska ämnen är ofta rena faktasamlingar vilket kan vara en konsekvens

av ämnenas komplexitet. När de är skrivna för experter behöver det inte heller vara

 6

av nackdel. Men när nybörjare ska introduceras till ett ämne blir det problem om

boken inte kombinerar kunskap med pedagogik. Då blir läroböcker ofta en ambiti-

ös samling fakta som inte framhäver det väsentliga. Oftast handlar det om elemen-

tär kunskap som experten tar för given, men blir den bristande länken i förståelse-

kedjan hos nybörjaren. Bokens ambition är att förverkliga den röda trådens peda-

gogik genom att stiga ned till nybörjarens kunskapsnivå och steg för steg bygga

upp kunskapens hus av små lösa, logiskt härledbara pusselbitar så att till slut allt

faller på plats.

Learning by doing – teaching by example

Programmering är i allra högsta grad ett praktiskt ämne. Därför är Learning by do-

ing det enda sättet att lära sig det. I detta avseende liknar programmering bilkör-

ning. Du kommer aldrig att lära dig programmering enbart genom att läsa böcker.

Men att bara ”pröva sig fram” räcker inte heller. Ämnet är alltför omfattande. En

handledning behövs, inte minst i början, som kombinerar sakkunskap med pedago-

gik, belyser det väsentliga och tillämpar ett helhetskoncept.

Boken håller inga abstrakta lektioner utan använder teaching by example dvs

exempelorienterad teoriundervisning i kombination med praktiska övningar: All

teori, även de mest abstrakta begreppen åskådliggörs med enkla praktiska exempel.

Fullständiga små program med körexempel gås igenom i detalj för att förmedla

viktiga koncept inom programmering. Ännu mer material presenteras i övningarna

inkl. praktiska programmeringsprojekt. Fullständiga lösningar till alla öningsupp-

gifter finns i slutet av boken.

Gör så här:

 Ladda ned och installera programvaran Visual Studio (sid 12-13).

 Gå igenom boken avsnitt för avsnitt, program för program. En full-

ständig programförteckning finns i slutet av boken (sid 253).

 Gör övningarna i slutet av varje kapitel. Kolla lösningarna (sid 219).

 Genomför programmeringsprojekt som finns bland övningarna.

 Pröva dina idéer i egna program och återvänd till teorin.

All form av kritik, korrekturanmärkningar såväl som förslag till förbättringar av

både form och innehåll tas tacksamt emot på adressen info@techpages.se.

Stockholm februari 2022 TechPages Förlag

7

Innehållsförteckning

 Ämne Sida Program

Kapitel 1 C# programmeringens miljö 11

1.1 Installation av Visual Studio 12

1.2 Konfiguration och användning av Visual Studio 13

­ Två olika typer av applikationer 13

­ Projekt i Visual Studio 14

1.3 C# Console Applications 15 First

­ ETT projekt för alla konsolapplikationer 20

1.4 C# Windows Forms Applications 22 Interaction

1.5 Utskrift till en grafisk miljö 28 MessageBox

Övningar till kapitel 1 30

Kapitel 2 Programmeringsspråket C# 33

2.1 Integrated Development Environment (IDE) 34

­ Visual Studio – en IDE 34

­ Vad är .NET? 34

2.2 Vad är C# ? 35

2.3 Kompilering och exekvering 37

Kapitel 3 Att komma igång med C# 41
3.1 Vårt första C# program 42 First

­ Metoden Main() 44

3.2 God programmeringsstil 47 First_bad

3.3 Radbyte och tabulator 49 LineBreak

­ Metoden Write() 50 Output

3.4 Konkatenering med + 51 Concat

Övningar till kapitel 3 53

Kapitel 4 Grundbegrepp i programmering 55
4.1 Datatyper 56 Datatype

4.2 Deklaration och initiering av variabler 59 Variable

­ Deklaration vs. definition 64

­ Vad händer när en variabel definieras? 65 DefInit

4.3 Inläsning av data 66 Input

4.4 Överskrivning eller kan x = x + 1 vara sant? 68 Overwrite

4.5 Operatorer och uttryck 71 Operator

­ Inmatning – Bearbetning – Utmatning 72
4.6 Överlagring av operatorer 74 OverloadOp

4.7 Ökningsoperatorn ++ 77 Increment

4.8 Sammansatta tilldelningar 80 CompAssign

Övningar till kapitel 4 83

 8

 Ämne Sida Program

Kapitel 5 Enkla datatyper 85
5.1 Kan datorn lagra hur stora tal som helst? 86 Primitives

­ Overflow 89 Limits

5.2 Datatypen char 91 Char

5.3 ASCII-tabellen 93 Int2char

­ Explicit typkonvertering 94 Char2int

5.4 Escapesekvenser 97 Escape

5.5 Unicode 99 Unicode.java

5.6 Decimaltalstyperna 101 Decimal

5.7 Automatisk typkonvertering 104 AutoConv

Sammanfattning av kapitel 4 och 5 108

Övningar till kapitel 5 109

Kapitel 6 Kontrollstrukturer 111

6.1 Vad är kontrollstrukturer? 112
6.2 Enkel selektion: if-satsen 113 SimpleIf

­ Jämförelseoperatorer 115

­ Algoritm för platsbyte 116 MiniSort

­ Villkorlig initiering 118 (Un)CondInit

6.3 Tvåvägsval: if-else-satsen 121 IfElse

6.4 Flervägsval: switch-satsen 123 Switch

6.5 Spelserien Gissa tal 128

­ med nästlad if-else 128 GuessIfElse

­ med kombination av switch och if-else 129 GuessSwitch

6.6 Efter-testad repetition: do-satsen 131 GuessDo

­ Hantering av slumptal 134 DoRand

­ Gissa tal med slumptal 135 GuessDoRand

­ Evighetsloop 138
6.7 För-testad repetition: while-satsen 139

­ ASCII-tabellen med while 140 Ascii

6.8 Bestämd repetition: for-satsen 142 ForRandom

­ Räckvidden av for-satsens räknare 145

6.9 Nästlade for-satser 147 NestedFor

­ Multiplikationstabellen 149 MultipTab

Övningar till kap. 6 (Proj. Labyrinten, Löp. texten & Pyramiden)151

Kapitel 7 Metoder 157

7.1 Vad är en metod? 158

­ Modularisering eller Lego-principen 159

7.2 Metoder med returvärde 161 ReturnMethod

­ Definition av metoder 162

­ Anrop av metoder 164

9

 Ämne Sida Program

7.3 Externlagrade metoder 169 TotalTest

7.4 Metoder utan returvärde 171 VoidMethod

Övningar till kapitel 7 (Projekten Collatz probl. & Kalkylatorn) 174

Kapitel 8 Klasser, objekt och referenser 179

8.1 Vad är en klass? 180 Password

­ Testa lösenord som klass 181 PasswordTest

8.2 Klass som egendefinierad datatyp 185

­ Vad är en referens? 186

8.3 Gissa tal som klass 188 GuessNo

Övningar till kapitel 8 (Projekt Automaten) 191

Kapitel 9 Arrays 196

9.1 Vad är en array? 197

­ Deklaration och initiering av en array 199 Array

­ foreach-satsen 201

­ Hakparentesernas tre olika betydelser 202
9.1 Arrayens initieringslista 204 ArrayInit

9.2 Texthantering med array av char 206 ArrayChar

­ Slumplösenord 207

Övningar till kapitel 9 (Projekt Master Mind) 209

Appendix Vad är objektorienterad programmering? 212

Fullständiga lösningar till alla övningar (Facit) 219

Projektuppgifter

 Labyrinten 152

 Löpande texten 154

 Pyramiden 155

 Collatz problemet 175

 Automaten 192

 Kalkylatorn 176

 Mater Mind 209

Programförteckning 253

Register 256

 10

11

Kapitel 1

C# programmeringens

miljö

 Ämne Sida Program

1.1 Installation av Visual Studio 12

1.2 Konfiguration och användning av Visual Studio 13

­ Två olika typer av applikationer 13

­ Projekt i Visual Studio 14

1.3 C# Console Applications 15 First

­ ETT projekt för alla konsolapplikationer 20

1.4 C# Windows Forms Applications 22 Interaction

1.5 Utskrift till en grafisk miljö 28 MessageBox

 Övningar till kapitel 1 30

 12

1.1 Installation av Visual Studio

1) Gå till webbadressen: https://visualstudio.microsoft.com/vs/

Webbsidan Visual Studio 2019 visas. Gå med musen över den lila knappen:

 Download Visual Studio

En dropplista dyker upp. Välj Community 2019 .

2) Installationsfilen vs_community__12….exe laddas ner. Strunta i resten på den

nya webbsidan. Dubbelklicka på den just hämtade installationsfilen. Svara Ja

på frågan om du ska tillåta att den här appen får göra ändringar på din dator.

Klicka på Continue om det dyker upp rutan Visual Studio Installer.

3) Det tar ett tag tills Visual Studio Installer öppnar ett stort vitt fönster dyker upp

med den lilla rubriken Installing – Visual Studio Community 2019 … och den blå-

markerade fliken Workloads. I den finns till vänster ett antal rutor. Leta efter

följande ruta:

4) Markera rutan med rubri-

ken ..NET desktop deve-

lopmentt genom att bocka

den lilla blå rutan i det övre

högra hörnet.

5) Klicka sedan i det stora vita fönstret Installing – Visual Studio Community 2019 …

på knappen Install i det nedre högra hörnet. Detta kan ta ett tag, ev. ganska

länge – beroende på din dators prestation. Du kan själv avgöra om du under

tiden vill besvara några frågor av mindre intresse för installationen. Eller välj

t.ex. Do’nt show … resp. Not now. Starta om din dator om du uppmanas till det.

6) När du lyckats med installationen startas Visual Studio antingen automatiskt

eller du kan göra det själv från Start-knappen. Stäng rutan Visual Studio

Installer. Följande eventualiteter kan dyka upp:

 Om du uppmanas att skapa ett Microsoft-konto (Sign in), gör det. Det är

gratis, går fort och är inte problematiskt. Anteckna ditt lösenord för senare

uppdateringar.

 Om du får upp en ruta med bl.a. dropplistan Development Settings välj

C#. Om alternativet inte finns låt General stå där. Klicka sedan på knap-

pen Start Visual Studiot.

7) Beroende på vilken typ av applikation du vill skapa fortsätt enligt instruktio-

nerna på sid 15 för Console Application eller sid 23 för Windows Forms Appli-

cation.

13

1.2 Konfiguration och användning

av Visual Studio

Efter lyckad installation av Visual Studio enligt anvisningarna i förra avsnitt – eller

om du har tillgång till en redan färdiginstallerad version av Visual Studio – kan du i

detta avsnitt läsa hur man använder programvaran. För att kunna göra det, närmare

bestämt kompilera och exekvera C#- program krävs nämligen en korrekt konfigu-

ration av Visual Studio, vilket i början kan verka lite invecklad. Anledningen till

det är att Visual Studio är en integrerad programutvecklingsmiljö (IDE) som är

skapad för professionella utvecklare och därför är ganska stor och komplex. Därför

vill vi i denna beskrivning hålla oss till det absolut minimala som är nödvändigt för

att klara av miljön och kunna koncentrera oss på själva språket C#. De viktigaste

momenten är följande:

 Att välja rätt typ av applikation

 Att skapa ett projekt (helst endast ett till alla C# program)

 Att lägga till en C#-källkodsfil till projektet

 Att kompilera och exekvera C#-koden i projektet

Det finns olika typer av C# program, även kallat applikation.

Två olika typer av applikation

I Visual Studio finns det många olika typer av applikation. Av dessa behandlas en-

dast två här:

1. Console Application är ett C# program vars körresultat är en utskrift i textform

som hamnar i Windows Kommandotolk, den s.k. konsolen, ett svart fönster, ibland

även kallat för DOS-fönstret. Ett sådant program har inga grafiska komponenter.

Programexemplen i denna bok domineras av Console Applications.

2. Windows Forms Application involverar både text och grafik och producerar

fönster samt dialogrutor av olika slag. Med sådana program kan användaren kom-

municera via grafiska gränssnitt. I denna bok introduceras de på sid 23. Fler Pro-

gramexempel av typ Windows Forms Applications finns i boken Programmering 2

med C#.

Följande tre steg måste alltid tas för att kunna köra ett program i Visual Studio –

vare sig det är en Console Application eller en Windows Forms Application:

1. Att skapa eller öppna ett befintligt projekt

2. Att lägga till en C#-källkodsfil till projektet

3. Att kompilera och exekvera

 14

För program av typ Console Application går vi igenom dessa tre steg på nästa sida.

Men först: Vad exakt är ett projekt i Visual Studio och varför behöver vi det?

Projekt i Visual Studio

För att kunna köra ett C# program i Visual Studio måste koden infogas i ett s.k.

projekt. Ett projekt är en samling filer – alltid själva C#-källkoden, men också

andra relaterade filer inkl. ev. bilder – som sammanlagt utgör ett C# program.

Denna samling filer bildar både en fysisk mapp på hårddisken och en virtuell ar-

betsplats i Visual Studio. De kommunicerar med varandra hela tiden när vi utveck-

lar och testar våra program. Visual Studio kan endast kompilera och köra C# pro-

gram som är inbäddade i projekt, även om det är det enklast tänkbara program som

består av endast en fil. Det är inte möjligt att kompilera C#-källkod utanför ett Vi-

sual Studio-projekt. Så, innan vi kan börja skriva C#-kod måste vi antingen skapa

ett nytt eller öppna ett befintligt projekt.

Den övergripande termen till projekt i Visual Studio är solution. Dvs flera projekt

kan samlas i en solution. Självklart kan en solution även bestå av ett enda projekt.

Vi kommer till att börja med inte att använda flera projekt i en solution utan endast

ett projekt. Ändå kommer vårt projekt att automatiskt vara paketerat i en solution.

15

1.3 C# Console Applications

Starta Visual Studio från Windows Start-meny genom att klicka fram dig till:

Start  Visual Studio 2019

Ett vitt fönster öppnas med rubriken Visual Studio 2019. I kolumnen till höger un-

der rubriken Get started finns ett antal rutor.

1. Att skapa eller öppna ett befintligt projekt: Beroende på om vi vill skapa

ett nytt eller öppna ett befintligt projekt, tar vi ett av följande alternativen a) el-

ler b):

a) Om vi vill skapa ett nytt projekt – och det vill vi nu – klickar vi i det vita

Visual Studio 2019-fönstret på rutan

 Create a new project

En ny dialogruta dyker upp med rubriken Create a new project. Scrolla

ned den högra kolumnen i dialogrutan Create a new project och leta efter

en ruta med rubriken Console App (.NET Framework) som ser ut så här:

OBS! Det kan vara lite svårt att hitta denna ruta, eftersom det finns många

alternativ och många rutor som ser likadana ut. Det är lättgjort att man

väljer fel ruta. Var extra noga med att du har C# ikonen och den exakta

rubriken:
Console App (.NET Framework)

Och inget annat! Annars kommer våra program inte kunna köras med de

instruktioner som ges i boken. Och då kommer hela installation av Visual

Studio att behöva göras om.

Markera rutan ovan. Klicka sedan på knappen Next.

En ny dialogruta dyker upp med rubriken Configure your new project.

Fyll i den uppgifterna enligt följande:

 16

Dvs i den övre delen av dialogrutan döper vi vårt projekt till MyConsole-

Project. I textrutan Location anger vi den fullständiga sökvägen till den

mapp vi vill placera vårt projekt i. Låt oss säga vi vill samla våra C# pro-

gram i en mapp som vi kallar C# och placerar i enheten C:\ på vår dator. I

så fall anger vi som Location C:\C#. I denna mapp kommer nu projekt-

mappen MyConsoleProject placeras. Visual Studio skapar automatiskt

både den nya mappen och projektfilen. Bocka för den lilla rutan Place so-

lution and project in the same directory. Klicka på knappen Create. Gå till

punkt 2.

b) Om vi vill öppna ett redan befintligt projekt – det gör vi kanske senare –

klickar vi i det vita Visual Studio 2019-fönstret på rutan

 Open a project or solution

Vi får upp dialogrutan Open Project/Solution. För att öppna det projekt vi

vill jobba med, navigerar vi i datorns filsystem till projektmappen och

öppnar där filen med ändelsen .csproj. Gå till punkt 2.

2. Att lägga till en C#-källkodsfil till projektet: Efter att ha lämnat dialogru-

tan Configure your new project med Create-knappen enligt 1. a) eller dialo-

grutan Open Project/Solution med Open-knappen enligt 1. b) öppnas projektet.

Ett grafiskt gränssnitt kommer upp som liknar en webbsida bestående av en

massa menyer, flikar, länkar och fönster som ser ut så här:

17

Man ser ett antal fönster: till höger ovan fönstret Solution Explorer där projek-

tets innehåll visas med ett antal automatiskt skapade filer, bl.a. filen Pro-

gram.cs som vi har markerat i bilden ovan. Till vänster ser man det stora kod-

fönstret som visar denna fils innehåll som är en mall för ett C# program. Den

är lämplig för dem som vill använda mallen för att snabbt kunna utveckla en

applikation. Vi däremot ska lära oss C# från grunden och vill inte använda kod

som vi inte skrivit själva. Därför: Markera Program.cs, högerklicka och välj:

Exclude From Project

Därmed har vi avlägsnat denna fil från projektet för att kunna infoga vårt eget

C# program i projektet. Det finns två alternativ att göra det: Antingen vill vi

skapa ett helt nytt program, skriva in koden, spara den i en fil och infoga den i

projektet eller vi vill lägga till en redan befintlig fil som innehåller ett C# pro-

gram, som vi kanske har skrivit tidigare. Vi ska behandla båda varianter och

börjar med den första:

a) Att skapa en ny fil och infoga det i projektet:

Markera i Solution Explorer projektnamnet MyConsoleProject, högerklicka

på det och välj:
Add  New Item…

Dialogrutan Add New Item – MyConsoleProject dyker upp. Scrolla ner fön-

stret i mitten tills du ser filtypen Code File. Markera Code File i mittfönstret:

 18

Ange i den undre delen av dialogrutan i textrutan Name: First.cs. Därmed

har du skapat en fil av typ Code File och döpt den till First.cs. Klicka på

Add-knappen. Så snart du gjort det läggs den tomma filen First.cs till projek-

tet. Samtidigt skapas denna fil i projektmappen MyConsoleProject. Och när

du i Solution Explorer markerar filen visas till vänster ett stort vitt fönster

som du kan använda som en editor för att skriva C#-kod i. Skriv in där t.ex.

följande kod:

using System;

class First

{
 static void Main()

 {
 Console.WriteLine("\n\tMitt första C#

program!\n");

 }
}

Det rekommenderas att bibehålla kodens layout, för att följa God programme-

ringsstil, se sid 47. Visual Studio har stöd för detta. Koden kan sparas och lag-

ras t.ex. i filen First.cs så snart du kompilerar projektet, se punkt 3. Vi kom-

mer att referera till den med programmet First som samtidigt är klassnam-

net i koden, vilket dock inte är obligatoriskt utan en konvention vi följer.

b) Att lägga till en befintlig fil till projektet:

Har du redan en C#-källkodsfil bland dina filer på hårddisken, markera i

Solution Explorer projektnamnet MyConsoleProject, högerklicka och välj:

19

Add  Existing Item…

 Dialogrutan Add Existing Item – MyConsoleProject dyker upp som tillåter

dig att navigera genom datorns filsystem för att ladda en existerande C#-

källkodsfil. Gå till den fil du vill ladda, markera den och klicka på knappen

Add i dialogrutan Add Existing Item – MyConsoleProject. I Solution Explorer

kan du konstatera att den fil du valde har kommit till projektet MyConso-

leProject. Markera den för att se innehållet i kodfönstret till vänster som nu

kan användas som en editor.

3. Att kompilera och exekvera: Nu när projektet är skapat och innehåller en

C#-källkodsfil kan man kompilera det vilket innebär att även källkoden ovan

kompileras. Om det inte redan finns ett Output-fönster längst ned på sidan un-

der kodfönstret, klicka i menyraden längst upp på menyn:

View  Output

Du får ett nytt Output-fönster för att kunna se resultatet av kompileringen och

även se eventuella kompileringsfel. Akta på vad som skrivs i det när du kom-

pilerar koden från menyraden längst upp med:

Build  Build Solution

 Om du får följande meddelande i Output-fönstret har kompileringen gått bra:

 1>------ Build started: Project: MyConsoleProject, Configuration: Debug
Any CPU ------

 1> MyConsoleProject ->
C:\C#\MyConsoleProject\bin\Debug\MyConsoleProject.exe

 ======== Build: 1 succeeded, 0 failed, 0 up-to-date, 0 skipped =========

 Meddelandet ovan säger att koden inte innehåller några kompileringsfel. Har

du syntaxfel i koden kommer du att få felmeddelanden i Output-fönstret. Åt-

gärda alltid endast det allra första kompileringsfelet och kompilera om med

kommandot ovan, eftersom de andra kan innehålla följdfel. Ett möjligt

kompileringsfel kan vara att du glömt att exkludera filen Program.cs från pro-

jektet, se sid 17.

 För att exekvera koden, klicka i menyraden längst upp på menyn:

Debug  Start Without Debugging

 Om allt har gått bra bör det se ut så här på din skärm:

 20

Får du detta på skärmen har du lyckats med att kompilera och exekvera den kod du

matade in på sid 18 och skapa en C# Console Application: Programmet First

finns nu lagrad i filen First.cs och i projektet MyConsoleProject.csproj.

Grattis!

Vill du skapa nya konsolapplikationer behöver du inte göra om hela proceduren.

Du behöver bara ladda projektet MyConsoleProject i Visual Studio, exkludera filen

First.cs från det och infoga nya filer resp. skriva ny kod, spara och köra enligt in-

struktioner på sid 17-18. Ett projekt räcker för alla konsolapplikationer. Så det var

värt mödan.

ETT projekt för alla konsolapplikationer

Det är jobbigt att behöva skapa ett separat projekt varje gång man vill testa ett litet

program. Och vi kommer att hela tiden skriva och testa små program. Av dessa

kommer många – speciellt i början – bestå av endast en fil där skapandet av ett nytt

projekt varje gång kan uppfattas som overkill. Det finns följande möjlighet att slip-

pa detta och ändå uppfylla Visual Studios krav på att utveckla program endast

inom ett projekt:

För att underlätta arbetet och inte behöva skapa för varje program ett nytt projekt,

kommer vi att skapa ett enda projekt dvs ta steg 1 (sid 15) bara en gång i början och

i fortsättningen endast upprepa stegen 2a (sid 17) och 3 (sid 19). Dvs vi kommer att

skapa ett projekt i vilket vi sedan lägger en aktuell C#-källkodsfil, jobbar med den

och avlägsnar den från projektet när vi är klara. Nästa gång öppnar vi samma

projekt, lägger till en annan källkodsfil i det, jobbar och tar bort filen från projektet

osv. För alla C# program används ett och samma projekt.

Så här kan man realisera detta förfarande:

I fortsättningen, när du vill testa ett annat C# program, laddar du det redan skapade

projektet MyProject, markerar först den gamla källkodsfil som finns i projektet från

tidigare, exkluderar den från projektet genom att högerklicka på filnamnet i Solu-

tion Explorer och välja:
Exclude From Project

21

Filen tas bort och är inte längre med i Visual Studio-projektet, men finns kvar på

hårddisken i projektmappen.

Sedan fortsätter du så här: För att ladda och testa nästa program markerar du i So-

lution Explorer projektnamnet MyProject, högerklicker och väljer:

 Add  New Item…

Här följer du instruktionerna i stegen 2a (sid 17) och 3 (sid 19). Så kan du hela

tiden använda samma projekt för att kompilera alla dina C# program, så länge de

är av typ Console Application. På så sätt slipper vi att skapa ett separat projekt för

varje C# program.

Detta förfarande rekommenderar vi dock endast så länge som vi arbetar med

konsolapplikationer (kap. 3, avsn. 3.1 – 3.3 & kap. 4-11).

Organisera dina C#-kodsfiler

Det är upp till dig hur du organiserar dina filer. Men för att underlätta arbetet

rekommenderas följande förfarande:

Du kan samla och spara alla dina C# program tillhörande kapitel 3 Att komma

igång med C# genom att skapa en undermapp som heter 03 KomIgång i en valfri

mapp, t.ex. i C:\C# och spara filen First.cs i mappen C:\C#\03 KomIgång. Detta kan

göras från Visual Studios FILE-huvudmeny med:

 FILE  Save First.cs As…

Anledningen till denna rekommendation är följande: Har du fått körresultatet på

förra sidan efter flera försök där du rättat till kompileringsfel och kompilerat om

och därmed ändrat C#-kodsfilen, har alla dina ändringar sparats i filen First.cs som

tillhör projektet MyProject. Men eftersom vi enligt instruktioner nedan kommer att

exkludera filen First.cs från projektet för att sedan kunna infoga och köra nästa

program i samma projekt är det bra för säkerhets skull att ha alla sina testade pro-

gram samlade i en egen mapp som ligger utanför projektmappen. På liknande sätt

kan du spara dina efterföljande C#-kodsfiler i mappar du skapar under C:\C# och

betecknar enligt bokens kapitelindelning.

Självklart fungerar bokens alla programexempel även i alla tidigare versioner av

Visual Studio än 2019 vars installation beskrevs på sid 12.

 22

1.4 C# Windows Forms Application

Ett grafiskt användargränssnitt, på eng. Graphical User Interface (GUI), är en yta

som kan användas för att kommunicera med programmet när det körs. Och detta i

båda riktningar, dvs från användaren till programmet och tvärtom. Det är ett slags

användarvänligt mellanskikt (gräns) mellan användaren och den icke-användar-

vänliga koden. För att kunna kommunicera måste vi väcka de grafiska komponen-

terna till liv och interagera med dem, när applikationen körs, vilket kräver att vi

förser dem med egenskriven kod och/eller med komponenter som är förprogram-

merade i Visual Studio. I regel ingår i sådana program mer grafik än kod. En kon-

sekvens av denna nya form av program blir att körningen till skillnad från konsol-

applikationer inte längre till 100% är förbestämd av utvecklarens kod utan kan även

styras – åtminstone delvis – av användaren under programkörningen genom mus-

klickningar och tangenttryckningar, s.k. händelser. Exekveringen startar i ett fön-

ster med grafiska komponenter, som visas när programmet körs. Efter en händelse

återgår kontrollen till operativsystemet, vilket dock inte betyder att körningen är

avslutad, utan att programmet är redo att ta emot nästa händelse osv. – därför: hän-

delsestyrd programmering.

I detta avsnitt vill vi bygga en Windows Forms Application som genererar nedan-

stående två fönster. Till vänster har vi det s.k. formfönstret, kort kallat formen, som

i sin tur innehåller en knapp (Button). Först när man klickar på knappen (händelse)

får man en meddeladeruta (MessageBox), avbildad till höger:

Controls

Knappen i formfönstret är en s.k. Control i Visual Studio. Den ingår i en stor grupp

av återanvändbara grafiska komponenter i verktygslådan Toolbox. Ett exempel på

en sådan Control är Button – en klickbar knapp som finns i Toolbox och som man

med musen kan placera i formfönstret. För att få fram rutan till höger måste vi skri-

va kod ”bakom” Button och lägga den i applikationen. Vilken kod och framför hur

23

denna kombination av grafik och kod är organiserad i Visual Studio, ska vi nu gå

igenom. Om projekt i Visual Studio läs på sid 14.

C# Windows Forms Application

Starta Visual Studio från Windows Start-meny: Start  Visual Studio 2019. Ett vitt

fönster öppnas med rubriken Visual Studio 2019. I kolumnen till höger under rubri-

ken Get started finns ett antal rutor. Klicka på rutan Create a new project .

En ny dialogruta dyker upp med rubriken Create a new project. Markera i den ru-

tan med rubriken Windows Forms App (.NET Framework) som ser ut så här:

Klicka på knappen Next. Dialogrutan Configure your new project dyker upp:

.

Fyll i den uppgifterna enligt ovan. Dvs i den övre delen av dialogrutan döper vi

vårt projekt till Interaction. I textrutan Location anger vi den fullständiga sökvägen

till den mapp vi vill placera vårt projekt i. Låt oss säga vi vill samla våra C# pro-

gram i en mapp som vi kallar C# och placerar i enheten C:\. I så fall anger vi som

Location C:\C#. I denna mapp kommer nu projektmappen Interaction placeras.

 24

Visual Studio skapar automatiskt både den nya mappen och projektfilen. Bocka för

den lilla rutan Place solution and project in the same directory. Klicka på Create.

Ett grafiskt gränssnitt kommer upp som liknar en webbsida bestående av en massa

menyer, flikar, länkar och fönster som ser ut så här:

Huvudingrediensen i denna samling av komponenter är fliken Form1.cs [Design]

som i sin tur visar ett fönster med rubriken Form1. Detta fönster är en s.k. Windows

Form, kort kallad för form – ett grafiskt användargränssnitt som kommer att utgöra

den visuella delen av vår grafiska applikation. Denna form – ibland även kallad

formfönstret – är huvudfönstret (en slags Container) till alla grafiska applikationer

som vi kommer att placera i den och som visas när programmet körs.

Markera formfönstret, gå med musen till Properties-fönstret i formfönstrets nedre

högra hörn, markera egenskapen Text och ändra dess värde från Form1 till Interac-

tion. Observera att formfönstrets rubrik nu ändrats till Interaction. Scrolla ner Pro-

perties-fönstret till egenskapen Size och sätt dess värde till 930; 660. Därmed har

vi gett vårt formfönster en ny rubrik och en ny storlek.

Gå till menyraden längst upp och välj menyn: View  Toolbox

Expandera Common Controls och dubbelklicka på kontrollen Button, så att den

hamnar i formfönstret. När du flyttar markören till formen stängs Toolbox-fönstret.

Markera den nya kontrollen button1 på din form för att få fram dess egenskaper i

Properties-fönstret.

25

Egenskaperna i Properties-fönstret är by default grupperade i kategorier (Catego-

rized). Ändra detta genom att i Properties-fönstrets lilla menyrad strax under but-

ton1 klicka på ikonen (Alphabetical) för att lättare kunna hitta de egenskaper angiv-

na i tabellen nedan. Ändra button1-egenskapernas värden enligt följande:

 button1:

Egenskap Värde
AutoSize True

Font Tahoma; 12pt; style=Bold

Location 110; 100

Text Detta är en Button. Klicka på den!

Markera knappen med texten Detta är en Button. Klicka på den! och dubbelklicka

på den. En ny flik Form1.cs uppstår till vänster om den gamla fliken Form1.cs [De-

sign]. Den nya fliken visar kod som lagras i filen Form1.cs. Impandera den första

raden som inleds med using. Skriv på det stället där markören står och blinkar, de

tre rader kod som är markerade på denna bild (raderna 20-22):

Kompilera med Build  Build Solution och kör med Debug  Start Without Debug-

ging applikationen Interaction. Klicka på knappen för att få fram detta:

 26

Nedan följer den fullständiga koden i filen Form1.cs samt kodens förklaring:

// Form1.cs

using System;

using System.Windows.Forms;

namespace Interaction // Namnutrymme

{
 public partial class Form1 : Form // Form1 ärver Form

 {
 public Form1() // Klassens konstruktor

 {
 InitializeComponent();

 }

 private void button1_Click(object sender, EventArgs e)

 {
 MessageBox.Show("Texten till en MessageBox som " +

 "visas varje gång man klickar på Button i formen.",

 "Det här är en egenvald rubrik till MessageBox") ;

 }
 }
}

I C# är namespace ett reserverat ord som skapar ett namnutrymme, en slags be-

hållare för klasser. C#:s programbibliotek är organiserat i sådana namnutrymmen

som innehåller fördefinierade klasser. Dessa placeras i namnutrymmen som får

samma namn som projektet. T.ex. kan man komma åt klassen Form1 med Inter-

action.Form1 osv. De using-direktiven i början inkluderar två namnutrymmen

ur C#:s programbibliotek som behövs för att kompilera denna enkla grafiska appli-

kation. Ursprungligen genererar Visual Studio några onödiga using-direktiv till

som vi tagit bort.

Klasshuvudet public partial class Form1 : Form säger för det första att ko-

den är en del av klassdeklarationen (partial). För det andra säger det att klassen

Form1 som vi skapar, ärver biblioteksklassen Form. I C# är : koden för arv
*
. Klas-

sen Form i sin tur är deklarerad i namnutrymmet System.Windows.Forms. Där

* Läs om metoder på sid 61 och om arv och konstruktorn på sid 63.

27

finns en hel del fördefinierad kod som behövs för att skapa formfönstret. Alla klas-

ser som skapar formfönstret måste ärva denna fördefinierade kod. Den del av klas-

sen Form1 som deklareras här, innehåller endast två metoder. Den första är klas-

sens konstruktor Form1(). Den andra metod i vilken vi lade tre rader egen kod,

heter button1_Click(). Denna kod gör att MessageBoxen visas vid musklick-

ning när man kör programmet. Medan konstruktorn Form1() är en automatisk

metod för att initiera klassen Form1:s egenskaper, är button1_Click() en helt

ny typ av metod som kallas för händelsemetod. Den förekommer inte i konsol-

applikationer utan är ett verktyg för händelsestyrd programmering och därför ty-

pisk för interaktiva grafiska applikationer.

Händelsemetoder

Vanliga metoder definieras först och anropas sedan. Både definitionen och anropet

sker med kod. En händelsemetod (eng.: event handler) definieras också precis som

en vanlig metod, men anropas inte explicit med en vanlig anropskod utan genom

en s.k. händelse. En händelse är en aktion som utförs antingen av användaren eller

av ett program, vare sig en applikation eller datorns operativsytem. Exempel på

händelser är musklickning, musdragning eller tangenttryckning. Men även en kod

kan utlösa en händelse. När händelsen inträffar, anropas metoden som är associe-

rad med händelsen. Metoden button1_Click() är associerad med musklickning

på button1, en kontroll av typ Button. Så snart vi skapar en sådan kontroll i formen,

t.ex. button1 (sid 24), genereras kod: Huvudet till metoden button1_Click() i

klassen Form1 (filen Form1.cs). Med dubbelklick på den nya kontrollen (i design-

läge) får vi fram denna kod i editfönstret och kan skriva kroppen till metoden. Vi är

fria att skriva där vilken kod som helst, för att få den exekverad när man i körläge

klickar på knappen button1. Eftersom vi vill få ut ett meddelande i ett fönster,

skriver vi ett anrop av metoden MessageBox.Show() som vi stiftade bekantskap

med tidigare. Händelsemetoden button1_Click() har två parametrar som vi

dock inte använder i kroppen i just denna applikation. Ändå måste vi ha dem med i

metodens huvud, för huvudet är fördefinierat i superklassen Form.

Metoden MessageBox.Show()

Till skillnad från button1_Click() är metoden Show() ingen händelsemetod,

utan en vanlig metod, fördefinierad i klassen MessageBox. Därför anropas den

med kod, inte med en händelse (musklickning). Den anropande koden står i hän-

delsemetoden button1_Click(). Musklick på knappen med texten Detta är en

Button. Klicka på den! (i körläge) anropar händelsemetoden och den i sin tur meto-

den Show(). I den version som används här har metoden MessageBox.Show()

två parametrar: Den första står för själva meddelandet som ska visas i den lilla ru-

tan, den andra för rubriken som ska stå på rutans ram. Att vi i koden med + konka-

tenerar två strängar på den 1:a parameterplatsen, beror på att meddelandet vi vill

skriva ut, inte ryms på en rad i editfönstret resp. på sidan i boken. I koden är det

som vanligt kommat som skiljer åt metodens två parametrar.

 28

1.5 Utskrift till en grafisk miljö

Alla våra program hittills har varit C# Console Applications (sid 15). De skriver ut

sina körresultat till konsolen. Det är det svarta fönstret som i Windows kallas för

Kommandotolken. Konsolen är en ren textmiljö som är uppbyggd av små rutor. I

varje ruta hamnar ett tecken, antingen bokstav, siffra eller specialtecken. Till

skillnad från en textmiljö är en grafisk miljö uppbyggd av små pixlar, där en pixel

(picture element) är bildskärmens minsta ljuspunkt – mycket mindre än en textruta.

I en grafisk miljö ”ritas” t.o.m. bokstäver och siffror med pixlar.

I avsnitt 1.4 C# Windows Forms Application hade vi behandlat ett exempel på in-

teraktion (sid 22). Här ska vi med enkla medel skriva ut till en grafisk miljö, en

meddelanderuta som heter MessageBox. Till skillnad från konsolen är Message-

Box en grafisk miljö, dock utan möjligheten till interaktion. Gör så här:

Skapa enligt instruktionerna på sid 23 en Windows Forms Application och döp pro-

jektet till Messagebox. Beakta att du stavar rätt, speciellt det lilla b. Vi åter-

kommer till det på nästa sida. Ett nytt fönster liknande på sid 24 dyker upp med en

ny flik: Form1.cs [Design] som i sin tur visar det lilla formfönstret.

Markera formfönstret och dubbelklicka på det. En ny flik Form1.cs innnehållande

kod uppstår som lagras i filen Form1.cs. Skriv på det stället där markören står och

blinkar, de två rader kod som är markerade på denna bild:

Ta koden från nedan om den markerade koden på bilden ovan inte är tydlig nog.

29

Kompilera pro-

jektet Message-

box. Exekverin-

gen ger medde-

landerutan till

höger. Ett klick

på OK stänger

rutan, och pro-

gramflödet går

tillbaka till det tomma formfönstret. Den fullständiga koden i filen Form1.cs som

utgör koddelen av programmet Messagebox ser ut så här:

// Form1.cs

using System;

using System.Windows.Forms;

namespace Messagebox

{
 public partial class Form1 : Form

 {
 public Form1()

 {
 InitializeComponent();

 }

 private void Form1_Load(object sender, EventArgs e)

 {
 MessageBox.Show("Hälsningar från Windows MessageBox " +

 "som visas när formen laddas.");

 }
 }
}

Anledningen till att vi döpte vårt projekt till Messagebox och stavade det med ett

litet b är att MessageBox med stort B är en klass i biblioteket System.Win-

dows.Forms som är fördefinierad där och som vi använder för att kunna anropa

metoden Show(). Klassen MessageBox har därmed samma status som ett reserve-

rat ord som vi inte får använda som namn för våra egna variabler, klasser, projekt

osv., se namngivningsreglerna på sid 59. Hade vi döpt projektet till MessageBox

med stort B hade vi fått kompileringsfel.

För alla andra frågor angående koden ovan och projektets egenskaper hänvisas till

förklaringarna i nästa avsnitt som behandlar en Windows Forms Application med

interaktion (sid 26). Där tas bl.a. upp metoden MessageBox.Show() samt hur en

ny typ av metoder kallade händelsemetoder fungerar. Metoden Form1_Load() i

koden ovan är en sådan hädelsemetod som automatiskt anropas när formen laddas

vid exekvering, vilket i sin tur gör att MessageBox visar sin text.

 30

Övningar till kapitel 1

1.1 Modifiera programmet MessageBox (sid 29) så att meddelanderutan får

rubriken ”Övning 1.1”. Hur man skriver ut en MessageBox med en egen-

vald rubrik har vi lärt oss i programmet Interaction (sid 26).

1.2 Skapa en Windows Forms Application (sid 23) och döp den till Windows-

Form. Utveckla den med förprogrammerade grafiska komponenter i Vi-

sual Studio (Controls, sid 22) till ett grafiskt program utan att skriva nå-

gon kod. När man exekverar programmet ska följande bild genereras:

För att få tag i den färgglada bilden ovan med texten Välkommen till Win-

dows programmering! ladda ner bildfilen så här:

a) Gå till webbsidan www.taifun.se, klicka

på bokomslaget Programmering 2 med C# .

Scrolla ner och klicka på länken Välkomst.gif. Extrahera gif-filen från

zip-filen.

b) Lägg gif-bilden i en Control som heter PictureBox som du kan hämta

från Toolbox. Sätt värdet StrechImage till PictureBoxens egenskap Si-

zeMode, för att få in gif-bilden i PictureBoxen.

Förse din applikation med en Label med den text du ser över bilden.

1.3 Modifiera programmet WindowsForm från övn 1.2 så här: Rita i något av

dina favoritritprogram en bild efter egen smak och spara den i en bild-

31

format. Alternativt kan du med din mobilkamera ta ditt porträtt och över-

föra det till datorn i gif- eller jpg-format. Skapa sedan en Windowsappli-

kation i Visual Studio, infoga din bild i den och förse den med en förkla-

rande text med en Label under bilden. Se till att layouten blir så snygg

som möjligt.

1.4 Modifiera din lösning från övn 1.3 genom att ändra formens storlek och

bakgrundsfärg. Dessutom ska Labeln få en annan bakgrundsfärg än for-

men.

 32

33

Kapitel 2

Programmeringsspråket C#

 Ämne Sida

2.1 Integrated Development Environment (IDE) 34

­ Visual Studio – en IDE 34

­ Vad är .NET? 34

2.2 Vad är C# ? 35

2.3 Kompilering och exekvering 37

 34

2.1 Integrated Development Environment (IDE)

Visserligen är ”Programmering är i allra högsta grad ett praktiskt ämne.” (sid 6).

Dvs du kommer aldrig lära dig programmering genom att endast läsa böcker. Men

lika sant är att du inte kan fortsätta programmera utan att känna till de mest grund-

läggande begreppen. Utan denna kunskap blir det inte särskilt roligt att koda. Det

roliga är just att förstå vad man gör när man skriver och testar sina program.

I detta kapitel tar vi upp några begrepp om både programmeringsmiljön och -språ-

ket C#. Ett av dem är kompilering. En kompilator är en programvara som över-

sätter källkod (som vi förstår) till maskinkod (som endast datorn förstår). För att

köra C# kod måste en C# kompilator vara installerad på datorn. Har du redan till-

gång till en sådan programvara kan du gå vidare till nästa kap 3, mata in vårt första

C# program First (sid 42) och fortsätta. Annars borde du installera och konfigure-

ra C# kompilatorn, som ingår i Visual Studio, enligt anvisningarna i förra kap 1.

Mer om detta kommer vi att ta upp i avsn. 2.3 Kompilering och exekvering (sid 37).

Visual Studio – en IDE

För att underlätta utvecklingsarbetet har Microsoft integrerat C#-kompilatorn i sin

programvara Microsoft Visual Studio, en s.k. Integrated Development Environment

(IDE), en integrerad programutvecklingsmiljö. En IDE är ett grafiskt gränssnitt som

inkluderar en editor, en kompilator och andra verktyg för programutveckling i en

samlad miljö. Fördelen med en IDE är att man slipper byta miljö mellan editering

och kom-pilering, när man utvecklar kod. Man behöver inte bry sig om sökvägar i

systemet. Dessutom har IDEn stödverktyg för språket osv. Vi kommer att använda

Visual Studio för att skriva, kompilera och exekvera alla våra programexempel i

C#. Programvaran som även har kompilatorer för ytterligare språk som Python, Vi-

sual Basic, C++, F# och andra verktyg, är väldigt stor och komplex – ett verktyg

för professionella utvecklare. Den är inte gjord för nybörjare. För att kunna kon-

centrera oss på själva språket C#, som är vårt egentliga mål, kommer vi att endast

ta upp den delen av miljön som just behövs för att kunna testa våra C# program.

Vad är .NET?

För att integrera de fyra programmeringsspråken C#, Python, Visual Basic, C++

och F# i en enda miljö, nämligen i IDEn Visual Studio, så att deras koder enkelt kan

bytas ut mot varandra och bli portabla på olika plattformar, har Microsoft utvecklat

ett speciellt språk som kallas Common Intermediate Language (CIL). Vid kompile-

ringen översätts alla koder i Visual Studio först till CIL. CIL-koden tolkas sedan till

maskinkod – kallad bytecode eller object code – när programmet exekveras.

Kombinationen av datortypen (hårdvara) och operativsystemet (mjukvara) kallas

plattform. Medan CIL är plattformsoberoende och kan fortfarande läsas och förstås

av människan, är object code plattformsberoende och kan endast tolkas av datorns

CPU. För att realisera CIL-konceptet behöver Windows ett tillägg till operativsy-

stemet som heter Microsoft .NET Framework, även kallat .NET-plattform.

35

2.2 Vad är C# ?

C# är ett modernt universellt programmeringsspråk som används för att skriva pro-

gram för datorer. Modernt därför att man – lite förenklat – kan säga att Pascal och

C var 70-talets, C++ 80-talets, Java och Python 90-talets och C# 2000-talets pro-

grammeringsspråk. Universellt därför att C# har obegränsade tillämpningsmöjlig-

heter, från spel till webbapplikationer, från text- eller databasrelaterade program till

interaktiva grafiska gränssnitt. Det finns inga applikationer på datorn som inte

skulle kunna skrivas i C#. Den allra första versionen av C# släpptes år 2000.

C# har sina rötter i programmeringsspråken C, C++ och Java. Man har byggt på

det gamla, beprövade och välkända, tagit över allt som var bra i de äldre språken

och samtidigt tagit bort allt som var lite krångligt, ibland t.o.m. instabilt. Samtidigt

har man försett det hela med en ny överordnad struktur vars objektorientering re-

dan var renodlad hos C++. På så sätt behövde man inte ta hänsyn till rötterna från

C. Men det mest intressanta i C# är att det är utvecklat för en plattform där man

bjuder på en programutvecklingsmodell som tillåter olika språk att kommunicera

med varandra – den s.k. .NET-plattformen (sid 34). Tillägget # till C har tagits från

musikvärlden där tonen C# (eng. C sharp, sv. Ciss) är en halv ton högre än C, vil-

ket syftar på att man ”höjt” språket C till C# (uttalat ”si sharp”).

C# är objektorienterat

C#:s viktigaste programmeringstekniska egenskap är att det från början är konstru-

erat som ett renodlat objektorienterat språk. Allt i C# är objekt. Ett C# program,

även det minsta, är inget annat än en samling av objekt som ”pratar” med varandra

när programmet körs. Man kan även säga att de skickar meddelanden (messages)

till varandra. I själva verket anropar de varandras metoder. Hela programbibliote-

ket är skrivet på objektorienterat sätt. Så det består i stort sett av tusentals klasser

som är organiserade i ett antal namnutrymmen (namespaces). Vill man använda

dem inkluderar man dem i sitt program och skapar objekt av dem. Självklart kan

man även skriva egna klasser. Minst en sådan måste man t.o.m. skriva för att däri-

från starta programkörningen. Man lagrar i regel varje klass i en separat fil för att

kunna använda den även i andra program. Så ett C# program består ofta av ett antal

filer. Varje fil innehåller en modul som återanvänds i olika sammanhang, se Ap-

pendix Vad är objektorienterad programmering.

Reserverade ord

Dagens version av C# som denna bok bygger på, är i skrivande stund Visual C#
som ingår i Visual Studio 2019. Denna programvara behövs för att kunna utveckla

och testa C#-kod. Som alla programmeringsspråk är även C# definierat av ett antal

nyckelord, även kallade reserverade ord, eftersom de inte får användas som namn

för programmets andra komponenter. De är reserverade av och för själva språket

och bildar språkets ordförråd. Denna kärna i C# består av 78 reserverade nyckelord

och är samlade i följande tabell som vi kommer ofta att referera till:

 36

Reserverade ord i C# (Sök kolumnvis!)
abstract do in protected true

as double int public try

base else interface readonly typeof

bool enum internal ref uint

break event is return ulong

byte explicit lock sbyte unchecked

case extern long sealed unsafe

catch false namespace short ushort

char finally new sizeof using

checked fixed null stackalloc using static

class float object static virtual

const for operator string void

continue foreach out struct volatile

decimal goto override switch

default if params this

delegate implicit private throw

Observera följande allmän regel som gäller för all C#-kod:

Dvs C# skiljer på gemener och versaler. Om vi t.ex. skriver det reserverade ordet

new som New, kommer C#-kompilatorn generera ett felmeddelande. Den skiljer på

new och New men känner bara till new. Alla reserverade ord är giltiga endast med

små bokstäver. Denna regel får beaktas när man är van vid Windows som inte är

case sensitive.

C# har ett stort programbibliotek

Om man nu tittar på ett C# program, kommer man att upptäcka flera ord som inte

finns i ovanstående tabell. T.ex. WriteLine() är ett sådant i vårt första program

First (sid 42). Detta beror på att C# dessutom har ett s.k. bibliotek av fördefiniera-

de program (klasser) som man använder i sina egna program för att utföra rutin-

mässiga uppgifter som t.ex. in- och utmatning. C#:s kärna innehåller inga instruk-

tioner för t.ex. att skriva ut data till bildskärmen eller läsa in data från tangentbor-

det. Man måste använda biblioteksprogram för det. WriteLine() är en metod för

utskrift till konsolen som är definierad i klassen Console som i sin tur finns förde-

finierad i biblioteket System. Men även andra instruktioner för vissa ofta använda

standardrutiner är redan kodade i biblioteksprogram: T.ex. att rita geometriska fi-

gurer, att bestämma längden på en text eller generera slumptal osv. är rutiner som

man inte ska behöva skriva kod för när man behöver dem. C#:s programbibliotek

ligger som ett skal kring den inre kärnan av reserverade ord. Om vi vill använda

dem i våra egna program, måste vi anropa dem med deras namn. Vi måste därför

tala om för kompilatorn vilka fördefinierade program vi tänker att använda och i

vilka bibliotek de ligger, t.ex. genom att inleda med using System; .

C# är case sensitive (skiftlägeskänslig).

37

2.3 Kompilering och exekvering

Innan vi ger oss i kast med själva C#-kodningen ska vi på ett mera detaljerat sätt gå

igenom hur programkoden hamnar i datorn och hur den körs där. I de första

datorerna var den enda möjligheten att skapa ett ”program”, att lägga in instruk-

tionerna i hårdvaran – ett väldigt osmidigt förfarande. Först 1944 lyckades John

von Neumann att konstruera en dator som kunde lagra både indata och program-

instruktionerna i minnet:

 Program

Arbetssättet används än idag: Programmet laddas från hårddisken till datorns pri-

märminne, även kallat RAM-minne (Random Access Memory) när ett program körs.

På hårddisken finns bara filer och mappar. Vi måste alltså se till att vårt program

hamnar i en fil som vi placerar i en mapp på hårddisken. En sådan fil heter käll-

kodsfil eftersom den innehåller källkoden till det körbara programmet. Följande

steg måste tas för att få in källkoden i och köra programmet på datorn:

 Editering

 Kompilering

 Exekvering

Editering

Eftersom programmet ska översättas av en kompilator till maskinkod, måste vi vid

skapandet av källkodsfilen se till att den endast innehåller tecken resp. teckenkom-

binationer som kompilatorn förstår. Om det ska bli ett C# program får källkods-

filen endast innehålla de reserverade ord som definierar språket (sid 36) samt bib-

lioteksnamn men inget annat. Därför måste vi skriva programkoden i en texteditor,

ordbehandlare eller annat skrivverktyg som sparar källkodsfilen som oformaterad

textfil. I praktiken måste man ha tillgång till Visual Studio som är en integrerad pro-

gramutvecklingsmiljö (IDE, se sid 34) för att utveckla och testa C# kod. Med integ-

rerad menar man att flera verktyg är samlade i Visual Studio, bl.a. en texteditor.

Fördelen med en IDE är att man inte behöver bry sig om sökvägen till C#-installa-

tionen i systemet, att den har olika stödverktyg för språket och att man slipper byta

miljö mellan editering och kompilering. Längre fram i boken ges anvisningar om

hur man laddar ner och installerar Visual Studio (sid 12) samt hur man konfigurerar

och använder denna miljö för att testa sina C# program (sid 13).

Dator

RAM-minnet

Utdata
Indata

 38

Regeln för filändelsen

Har du skrivit din programkod t.ex. i Notepad eller en annan editor och sparat filen

som *.txt eller med en annan ändelse, kommer du att få kompileringsfel även om

din kod är felfri. Boven i dramat är filändelsen: kompilatorn accepterar den inte.

Kompilatorn måste nämligen kunna identifiera de filer som innehåller C#-kod via

filändelsen. Därför kräver C#-kompilatorn filändelsen cs på källkodsfilen. Antin-

gen måste du spara din källkodsfil med korrekt filändelse eller ge den korrekt än-

delse i efterhand. Denna enhetliga regel för filändelsen gäller självklart även om du

arbetar i Visual Studio där den väljs automatiskt.

Kompilering av C#-källkod

Kompilering innebär översättning av källkod till maskinkod. Har du skrivit din

programkod i en texteditor och sparat den som ren textfil med filändelsen cs,

måste du kompilera din källkod innan du kan köra programmet. Anledningen är att

datorns processor inte förstår källkod, endast maskinkod. För att kunna kompilera

måste C#-kompilatorn vara installerad på din dator. C#-kompilatorn är själv ett

program som lagras i filen csc.exe där det andra c står för compile och exe vi-

sar att det är en exekverbar dvs körbar fil. Denna fil ingår i Visual C# 2019. Kom-

pilering innebär att köra programmet csc.exe som översätter C#-kod till .NET-

plattformens ”mellan”språk Common Intermediate Language (CIL) (sid 34):

 C#-källkod CIL

 (*.cs)

När du har installerat Visual Studio (sid 12) kan du hitta filen csc.exe i mappen

C:\Windows\Microsoft.NET\Framework\v2.0.50727. Du kan, om du vill,

t.o.m. köra från Kommandotolken kommandot csc First.cs, dvs kompilera in-

nehållet i filen First.cs, om du ställer dig i mappen ovan och om även filen

First.cs finns där. Då kompileras vårt första C# program (sid 42) som lagras i

filen First.cs. Kompilatorn skapar då den exekverbara filen First.exe. Sam-

ma kompilator ingår i Visual Studio och körs när man kör Build Solution (sid 19).

Hur C#-kompilatorn åstadkommer denna översättning vet vi inte och behöver vi

inte heller veta när vi programmerar. Det enda vi behöver veta är hur man använ-

der kompilatorn och hur man skriver C#-kod så att kompilatorn accepterar den.

C#-kompilatorn producerar samma CIL-kod från en källkod oavsett datortyp. Om

vi alltså preciserar C#:s plattformsoberoende måste vi säga: Kompileringen av C#-

källkod är plattformsoberoende. Däremot är CIL fortfarande i textform. Koden

översätts i en ytterligare process till en slags maskinkod som kallas Byte Code.

Exekvering av Byte Code

Det som ”förstår” CIL är ett program som kallas Virtual Machine (VM). Detta pro-

gram ingår i Visual Studio. Vad det gör är också en slags översättning, fast man

kallar det snarare för en interpretering dvs en tolkning. Skillnaden i begreppen är

att en översättning (kompilering) lämnar ifrån sig ett nytt dokument medan en si-

Kompilator

39

multan tolkning inte gör det. C#-interpretatorn tolkar Byte Code och omvandlar

denna speciella typ av maskininstruktioner till ettor och nollor som datorns proces-

sor förstår och kan utföra. Detta kallas exekvering. Till skillnad från C#-kompila-

torn finns för varje plattform en speciell C#-interpretator som exekverar Byte Co-

de. Detta sista extrasteg som måste tas för att köra ett C# program är alltså beroen-

de av datortyp och operativsystem. För att precisera C#:s plattformsoberoende

måste man lägga till: C#-interpretatorn (VM) är plattformsberoende.

C#-interpretatorn måste alltså vara kompatibel med datortypen och ingå i operativ-

systemet för att kunna köras. Det räcker att den kompilerade filen lagras. Källko-

den behöver inte lagras alls.

Fel

kan uppstå i alla ovan beskrivna steg. Därför skiljer vi mellan olika typer av fel:

 Kompileringsfel som kan uppstå pga att vi har brutit mot språkets regler. Dvs

i kod som vi själva skrivit finns ”ortografiska” fel, något felstavat nyckelord

eller ett utelämnat semikolon osv. Det kan även handla om ”grammatiska” fel,

även kallade syntaxfel som t.ex. en felanvänd kod eller fel struktur i koden.

Kompileringsfel innebär tvärstopp dvs man kan inte gå vidare till nästa steg

utan måste först hitta och korrigera felet samt kompilera om.

 Exekveringsfel uppstår endast om processorn inte kan utföra dina

instruktioner. Ett typiskt exempel på exekveringsfel i program som involverar

beräkningar är division med 0. Ett annat exempel är användningen av minnes-

utrymme som är redan upptaget av ett annat program i datorn. Ett tredje

exempel är skadade eller obefintliga filer som det hänvisas till i den egna pro-

gramkoden.

Vid felsökning är det avgörande att man först identifierar typen av fel innan man

vidtar någon åtgärd.

Observera även att man som nybörjare ofta får inte ett – utan en hel samling av

felmeddelanden. Bli inte desperat! Det är helt normalt. Glöm alla felmeddelanden

utom det allra första. De kan nämligen vara följdfel orsakade av första felet. Åtgär-

da endast det första och kompilera om. Om några fel är kvar, upprepa förfarandet.

Du kommer att se: efter två tre gångar har du blivit av med alla fel.

 40

41

Kapitel 3

Att komma igång

med C#

 Ämne Sida Program

3.1 Vårt första C# program 42 First

­ Metoden Main() 44

3.2 God programmeringsstil 47
3.3 Radbyte och tabulator 49 LineBreak

­ Metoden Write() 50 Output

3.4 Konkatenering med + 51 Concat

Övningar till kapitel 3 53

 42

3.1 Vårt första C# program

Efter de inledande kapitlen om programmeringsmiljön och -språket är det dags för

praktik – att skriva och testa vårt första C# program. För att göra det behöver du ha

installerat Visual Studio enligt instruktionerna på sid 12. Så, låt oss sätta igång!

// First.cs Filnamnet

// Skriver ut text till konsolen (svarta fönstret)

// Metoden Main() anropas automatiskt när programmet körs

// Den i sin tur anropar metoden WriteLine() i klassen

Console

// Klassen Console finns förprogrammerad i biblioteket System

using System; // Krävs för klassen Console

class First // Klassnamnet

{
 static void Main() // Metoden Main()

 {
 Console.WriteLine("\n\tMitt första C# program!\n");

 }
}

En körning visar följande utskrift i konsolen (Windows Kommandotolk-fönstret):

 Mitt första C# program!

I själva verket ser utskriften ut så som är avbildad på sid 19. Dvs konsolen visar

dessutom meddelandet Press any key to continue ... som dock inte producerats

av C#-koden utan av Kommandotolken, för att hålla kvar fönstret. Därför visar vi i

fortsättningen inte detta meddelande när vi avbildar programmens körresultat. Vi

kommer i fortsättningen att referera till programmet ovan med klassnamnet First.

Liknande konvention använder vi i bokens alla program: Ett program Abc skrivs i

klassen Abc och lagras i filen Abc.cs.

Kommentar i C#

De första raderna börjar med två snedstreck (eng. slash) //. Detta teckenpar bety-

der kommentar, närmare bestämt radkommentar. En radkommentars giltighet bör-

jar med // och sträcker sig till slutet av raden. // kan stå i början av en rad, men

också någonstans mitt på raden. En blockkommentar kan gå över flera rader och

ska inledas med /* och avslutas med */. Alla kommentarer kommer att ignore-

ras av kompilatorn. De är endast till för att förklara koden. I den första kommentar-

raden står alltid i vilken fil koden lagras, här First.cs. I den andra raden brukar

stå vad programmet gör. Sedan följer kommentar om de olika programmerings-

tekniska koncept som behandlas i programmet. I följande ska vi reda ut några be-

grepp:

43

Ett C# program är en samling av klasser, av vilka en

och endast en måste innehålla metoden Main().

När programmet körs startar exekveringen i Main().

Sats

Termen instruktion kommer i fortsättningen att ersättas av programmeringstermen

sats (eng. statement). Innehållet är samma sak: ett kommando till datorn att utföra

något. En sats i C# måste avslutas med semikolon. Det lilla tecknet ; är ett av de

vanligast förekommande tecknen i C#-kod och samtidigt det oftast glömda tecknet

vid kodningen. Semikolonet är en obligatorisk del av en C#-sats, det allra sista

tecknet i satsen. Semikolonet är C#-språkets satsavslutningstecken vars utelämnan-

de leder till kompileringsfel. I First avslutas alla satser – det finns endast två –

med semikolon, även satsen strax före klammern } . Klammern ersätter inte semi-

kolonet utan avslutar Main()-metodens kropp.

using-direktivet

Programmet First:s första sats efter kommentarerna är ett s.k. using-direktiv:

using System;

System är ett s.k. namnutrymme (eng. namespace), en slags behållare för klasser.

C#:s programbibliotek är organiserat i sådana namespaces som innehåller fördefi-

nierade klasser, paketerade i namnutrymmen. Här ges kompilatorn direktivet att

ladda namnutrymmet System till vårt program så att vi kan använda klasser som

finns där och anropa metoder som är definierade i dem, här klassen Console och

metoden WriteLine(). Alternativt skulle man kunna slippa using-direktivet och

istället anropa metoden WriteLine() med System.Console.WriteLine(...)

vilket man dock i regel inte gör eftersom det gör koden onödigt tung. Speciellt när

man anropar metoder flera gånger ur samma klass eller använder flera klasser i

samma namnutrymme, är det bättre att skriva using-direktivet en gång för alla i

början. Men det gäller att placera det rätt: using-direktiv måste alltid skrivas utan-

för klassen, närmare bestämt före klassen eftersom informationen behövs i klassen.

Att placera ett using-direktiv i en klass ger kompileringsfel. Man kan inte inklu-

dera flera namnutrymmen med ett using-direktiv. För varje namnutrymme krävs

ett separat using-direktiv. Dessa särregler gör att using-satsen kallas för direktiv.

Vad är ett C# program?

Alla C# program måste innehålla metoden Main() för att kunna exekveras, annars

har exekveringen ingen startpunkt. För att exekveringen ska automatiskt kunna

börja i Main() måste namnet vara känt för C#-interpretatorn och därmed obligato-

riskt. Det är nämligen C#-interpretatorn (Virtual Machine, sid 38), som automatiskt

anropar metoden Main() när vi exekverar programmet. First är det enklast

 44

tänkbara C# program därför att det består av en klass som innehåller Main(). Men

Main() kan aldrig skrivas fristående dvs utanför en klass utan måste alltid inbäd-

das i en klass. Det beror på att klasser är C# programmens primära byggstenar,

medan metoder inkl. Main() är delar av dessa klasser. I andra programmerings-

språk som C++ finns även funktioner som är fristående. En metod gör samma sak

som en funktion, men är placerad i en klass. Därför finns det i C# inga funktioner

utan endast metoder: I vårt första C# program är Main() en metod i klassen First

vars huvud är föreskriven för att kunna kännas igen av C#, men vars innehåll vi

kan bestämma själva. Mer om Main() följer längre fram.

Klassen First

Efter kommentarerna och using-direktivet följer i programmet First (sid 42):

class First

som är rubriken – man säger också huvudet – till en klass. En klass i C# är en kod-

modul som man bygger programmet med, jämförbar med en Legobit eller en tegel-

sten som man bygger ett hus med. Klasser är C# programmens minsta bestånds-

delar. Den allmänna strukturen hos en klass i C# ser ut så här:

class className

{
 ...
 ...

}

Första raden är klassens huvud och resten är klassens kropp. Det avgörande nyckel-

ord som gör den här biten kod till en klass är class som vi kan hitta bland C#:s

reserverade ord i tabellen på sid 36. Sedan står First i klassens huvud. Till skill-

nad från class är First inget reserverat ord utan ett namn som vi själva hittat på.

Dock har namngivningen vissa enkla regler som vi så småningom kommer att ta

upp. En av dem känner vi redan till: Det valda namnet får inte vara ett reserverat

ord. Namnet måste direkt följa nyckelordet class. I vårt program är First nam-

net på klassen som vi också använder som programnamn. Men klassnamnet

className behöver inte vara relaterat till filnamnet. Klassens kropp består av kod

inom klammerparet { } där den inledande klammern { markerar början och den av-

slutande klammern } slutet på klassen. Klamrarnas uppgift är att avgränsa klassen

från andra delar av programmet. Vi kommer att använda ordet klammer som be-

teckning för tecknen { eller } på engelska curly brackets till skillnad från []

som kallas hakparenteser, på eng. brackets.

Metoden Main()

Efter den inledande klammern { som öppnar klassen First:s kropp (sid 42) står:

static void Main()

45

Det är huvudet till en metod vars namn är Main(). Vi kommer att ägna ett helt

kapitel åt metoder. Just nu räcker det att känna till att en metod är kod som skrivs

inuti kroppen av en klass. Metoden Main() har följande allmänna struktur:

static void Main()

{

 statement(s);

}

Första raden är metodens huvud och resten är metodens kropp. I kroppen skrivs en

eller flera satser som gör någonting, i vårt exempel skriver ut text till konsolen på

skärmen. Alla metoder i C# innehåller satser som utför vissa instruktioner.

Metodens huvud består av de reserverade orden static och void, metodens

namn Main och parentesen () som är tom. Allmänt kan en metod ha ingen, en

eller flera s.k. parametrar. Därför kallas parentesen parameterlistan. I vårt exem-

pel har Main() ingen parameter. Vi får inte ändra Main()-metodens huvud därför

att den inte är en egendefinierad metod. Vi har ju inte ens fått välja namnet, till

skillnad från klassen First. Närmare bestämt är det huvudet till metoden Main()

som vi inte har någon frihet att bestämma över. Huvudet är fördefinierat av syste-

met och måste skrivas som ovan, fast det finns lite andra varianter också. I kroppen

däremot kan vi skriva vilken kod som helst.

En detaljerad förklaring till de reserverade orden static och void skjuter vi upp

till senare. Här ska det räcka att bara kort nämna följande:

static innebär att den kan anropas utan att skapa objekt av klassen

First,

void innebär att metoden Main() inte returnerar något värde.

Det är Virtual Machine (VM) som exekverar vårt program First genom att anropa

metoden Main(). För att detta anrop ska kunna utföras behövs modifieraren sta-

tic i metodens huvud. Även om det känns lite tråkigt att inte kunna säga mycket

mer måste vi, för att inte tappa den röda tråden, rekommendera att du i alla dina

egna program helt enkelt skriver av huvudet till metoden Main() precis som det

står ovan. Medan static är en modifierare som reglerar reserveringen av minnes-

utrymme, är void en s.k. returtyp dvs en datatyp till metodens returvärde. void

betyder ”inget returvärde” dvs metoden Main() returnerar inget värde när den an-

ropas. Vad den gör är att den utför koden som står i dess kropp.

Liknande klassens kropp består även en metods kropp av ett antal satser inom

klammerparet { } där den inledande klammern { markerar början och den avslu-

tande klammern } slutet på metoden. Klamrarnas uppgift är att gruppera satserna

och avgränsa dem från andra delar av programmet. I kroppen till Main()-metoden

kan vilka satser som helst stå. Satserna innehåller instruktioner till datorn. I

programexemplet First står endast en sats som skickar text till konsolen.

 46

Metoden WriteLine()

Körresultatet av programmet First dvs utskriften Mitt första C# program!

har producerats av följande sats som står i klassen First:s Main()-metod:

Console.WriteLine("\n\tMitt första C# program!\n");

Detta är ett anrop av metoden WriteLine() som är fördefinierad i C#:s klassbib-

liotek, närmare bestämt i klassen Console som i sin tur finns i biblioteket System.

För att kompilatorn ska kunna hitta metoden WriteLine() måste vi ange dess

klass med sedvanlig punktnotation: Console.WriteLine(). Vad den gör är att

skriva till konsolen och därefter byta rad pga tillägget Line. Det finns även meto-

den Write() som skriver ut text utan radbyte, vilket kommer att visas i program-

met Output i nästa avsnitt (sid 49). Koderna \n och \t behandlas i nästa avsnitt.

Texten Mitt första C# program! som ska ska skickas till konsolen skrivs inom

citationstecken – även kallade ”dubbelfnuttar” i populär svenska – eftersom all text

i C#-kod måste sättas inom citationstecken. I utskriften kommer texten självfallet

att visas utan citationstecken. Citationstecknet är koden för strängar:

En sträng som är datatermen för text består av ett antal tecken där antal kan vara 0,

1, 2, Ett vanligt exempel på sträng är text som består av ett antal bokstäver.

Allmänt kan dock vilka specialtecken som helst ingå i en sträng. När antalet tecken

är 0 talar man om en tom sträng som i kod skulle kunna skrivas som "", medan

koden " " är en sträng som inte är tom utan består av ett tecken, nämligen mellan-

slaget. Det är onödigt att skriva endast ett tecken som sträng eftersom det i C#

finns ett annat, enklare sätt att lagra enstaka tecken. Med onödigt menas inte bara

att det är slöseri med minnet utan att det även programmeringstekniskt sett, är dålig

stil och dålig vana att blanda ihop dessa två olika typer av data. Vi kommer att för-

stå det bättre när vi tar upp datatyper (sid 56). Medan strängar måste specificeras

med citationstecken " ... " används apostrofer '…' för att markera tecken:

Apostroferna kring a – även kallade ”enkla fnuttar” i populär svenska – innebär att

a är ett tecken, i detta fall en bokstav. Observera att det verkligen handlar om apo-

strofer kring a och inte om accent ´ eller ` som används i vissa bokstäver som é el-

ler è. Så, i regel bör det enstaka mellanslaget skrivas som ' ' och inte som " ".

Att " " kompileringsmässigt kan skrivas för mellanslaget beror på att ett tecken

också är en sträng (OBS! Beakta dock vår programmeringstekniska anmärkning i

slutet av förra sidan). Men det gäller inte det omvända: en sträng är inte alltid ett

tecken, t.ex. när den består av flera tecken. Därför får apostrofer endast stå kring

enstaka tecken, inte kring strängar som innehåller fler än 1 tecken.

Strängar omgärdas i C#-kod av citationstecken " " .

Enstaka tecken omgärdas i C#-kod av apostrofer ' ', t.ex. 'a'.

47

3.2 God programmeringsstil

Hur gick det när du kompilerade ditt första C#-program? Om du hade fel märkte du

kanske att felsökning kunde vara jobbigt. Det är den också, speciellt när program-

volymen växer. Innan vi går vidare och utökar våra koder ska vi lära oss en teknik

som gör felsökning enklare. Men vi gör det inte bara för att underlätta felsökning.

Frågan är mer av generell karaktär: Hur skriver man bra strukturerade program och

hur vänjer man sig vid att göra det från början? Att göra det från det allra första

programmet är nämligen avgörande för att utveckla en god programmeringsstil när

man fortsätter skriva kod. Titta på följande kod skriven i filen First_bad.cs.

Känner du igen den?

using System; class First {static void Main() {Console.Write-

Line ("\n\tMitt första C# program!\n"); } }

Det är vårt första program First bortsett från kommentarerna. Koden ovan ”fun-

gerar”, dvs den kan både kompileras och exekveras och producerar exakt samma

utskrift som programmet First (sid 42). Kompilatorn struntar nämligen fullstän-

digt i layouten. Den kontrollerar endast kodens syntax. Men det gör inte en männi-

ska som ska läsa din kod. Skulle du lämna in den till mig som din lösning på en öv-

ningsuppgift skulle du inte bli godkänd. Så här borde koden ovan istället se ut lay-

outmässigt och med kommentarer:

// First.cs Filnamnet

// Skriver ut text till konsolen (svarta fönstret)

// Metoden Main() anropas automatiskt när programmet körs

// Den i sin tur anropar metoden WriteLine() i klassen Console

// Klassen Console finns förprogrammerad i biblioteket System

using System; // Krävs för klassen Console

class First // Klassnamnet

{
 static void Main() // Metoden Main()

 {
 Console.WriteLine("\n\tMitt första C# program!\n");

 }
}

Förutom de krav som kompilatorn ställer för att överhuvudtaget kunna få program-

met i exekverbar form, finns andra krav på vårt sätt att skriva kod. Det handlar om

krav på god programmeringsstil. Dessa krav är minst lika viktiga som kompile-

ringskraven.

God programmeringsstil innebär att man skriver kod så att andra kan använda och

underhålla den. Alla professionella program som du använder på din dator, opera-

tivsystemet, editorer, skriv-, rit-, kalkyl-, spel- och andra applikationer har skrivits

 48

med detta i åtanke. Program måste vara användarvänliga. God programmeringsstil

innebär att vi lämnar ifrån oss kod som andra kan modifiera och vidareutveckla.

Program måste vara lätt ändringsbara. Vi kommer själva att ha glädje av det, om vi

vid ett senare tillfälle vill förbättra våra program. Därför ställs följande krav på god

programmeringsstil:

 Förståelighet

 Användarvänlighet

 Strukturering

 Ändringsbarhet

Och det är därför vi har skrivit vårt första, och kommer att skriva alla våra pro-

gramexempel, med följande stilelement:

1. Indragningar är ett stilelement som används för att uppfylla de ovannämnda

kraven på god programmeringsstil. I programmet First ser man att vissa ra-

der är indragna, närmare bestämt de rader som utgör Main()-metoden. Dessa

indragningar ska markera att raderna tillhör Main(). Ett exempel på dålig

programmeringsstil ser vi på förra sidan där koden komprimerats till tre rader.

Genom att låta koden ta mer plats blir den mer lättläst. Den allmänna regeln är

att indrag ska återspegla programmets logiska struktur. Rekommendationen är

att göra tydliga indragningar dvs inte alltför små. Tumregeln är: mellan tre och

fem mellanslag.

2. Separata rader tillämpas för att öka kodens läslighet. Varje sats ska som re-

gel stå på en separat rad. Men även klamrarna { och } står på egna rader.

Detta markerar klamrarnas utomordentligt stora betydelse för att gruppera vis-

sa satser och avgränsa dem från andra delar av programmet. Klamrarna utgör

alltså gränser som ska vara mycket tydliga. Dessutom står klass- och metod-

huvuden alltid på separat rad, i vårt fall klasshuvudet class First och me-

todhuvudet static void Main().

3. Kommentarer ska förklara koden. Hur mycket och på vilket sätt ska man

skriva dem? Rekommendationen är att kommentarerna ska vara korta och inte

blandas med koden. Detta gäller speciellt radkommentarerna som annars skul-

le göra koden mindre lättläst. Vill man skriva längre kommentarer ska man

helst skriva en dokumentation till programmet. Denna kan antingen ligga helt

separat från koden, t.ex. i en textfil, eller skrivas som blockkommentar i början

eller på andra ställen av programmet. En blockkommentar i C# kan bestå av

flera rader och ska inledas med /* och avslutas med */.

Slutligen ska än en gång påpekas att programfel ur stilsynpunkt inte får bedömas

som mindre allvarliga än kompileringsfel. Attityden ”först ska jag lära mig koda,

god programmeringsstil kan jag lära mig senare” är ett allvarligt misstag som nybör-

jare gör pga oerfarenhet, vilket kan leda till slöseri med tid och energi vid felsökning

och till dåligt strukturerade program i längre perspektiv. Man kan tröttna på pro-

grammering – speciellt vid felsökning – om man inte från början lägger stor vikt vid

god programmeringsstil.

49

3.3 Radbyte och tabulator

I programexemplet First fanns bara en sats i koden. Den resulterade också i en

rad på skärmen. Men en sats i koden kan producera flera rader i utskriften med en

speciell kodsymbol som åstadkommer radbyte i utskriften: \n är en sådan där n

står för newline och \ är ett speciellt styrtecken som kallas escapetecknet och gör

att n tolkas som newline och inte som bokstaven n. Båda tillsammans, \n, är en

escapesekvens. På svenska betyder to escape att fly. Escapesekvenser inleds med

tecknet backslash \ åtföljt av ett tecken. Med \ vill man fly från tecknets vanliga

betydelse och ge det en annan innebörd. Skriver man i koden \n inom en sträng

blir det radbyte i utskriften.

En annan escapesekvens är \t där t står för tabulator där \ gör att t inte tolkas

som bokstaven t utan åstadkommer en horisontell indragning med åtta mellanslag.

Båda escapesekvenserna \n och \t kan bakas in i stränger, men skulle kunna även

kodas som enskilda tecken och skickas separat till utskrift. Samma sak är det med

mellanslag. Skriver man ett mellanslag inom en sträng skickas den med till utskrift,

annars inte. Följande program använder radbyte för att skriva ut på flera rader:

// LineBreak.cs

// Skriver ut text med radbyte och indragning

// FLERA rader utskrift producerad av EN sats i koden

// Radbyte med \n och tabulator med \t

using System;

class LineBreak

{
 static void Main()

 {
 Console.WriteLine("\n\tC#\n\tär\n\tkul !\n");

 }
}

Precis som i programmet First anropas även här metoden WriteLine() endast

en gång. Men i strängen som ska skrivas ut förekommer \n fyra gånger på fyra

ställen: Den första ger en tom rad, den andra radbyte efter C#, den tredje efter är

och den fjärde efter ! vilket man ser när man kör programmet LineBreak:

 C#

 är

 kul !

Den sista tomma raden produceras av WriteLine() som byter rad efter utskrift

pga ln som står för line. Dessutom ingår ett mellanslag i strängen som skickas

till utskrift. Det står inom WriteLine-metodens parentes och kommer i utskriften

 50

att hamna på samma ställe som i koden, innan ordet är. Utskriften visar också att

\n åstadkommer samma sak som en tryckning på Enter-tangenten. \n är kod-

symbolen för Enter.

Metoden Write()

Medan programmet LineBreak producerar flera rader utskrift med en sats i ko-

den, skriver följande program ut en enda sammanhängande rad med flera satser i

koden. På så sätt visar programmet även skillnaden mellan WriteLine() och

Write().

// Output.cs

// Två utskriftssatser, men endast EN rad utskrift

// Metoden Wrtite() skriver ut text utan radbyte efteråt

using System;

class Output

{
 static void Main()

 {
 Console.Write("\n\tDetta är EN rad text produc");

 Console.WriteLine("erad av två utskriftssatser.\n");

 }
}

Här finns 2 satser som skriver ut till konsolen. Men de producerar en rad utskrift,

vilket beror på att det inte finns något \n i slutet av den första utskriftssatsen. Det

ser man när man kör programmet ovan:

 Detta är EN rad text producerad av två utskriftssatser.

Observera också att utskriften blir ... producerad ... och inte ... produc

erad ... vilket beror på att inget mellanslag skrivs i kodens första utskriftssats ef-

ter produc och inte heller i andra före erad. Man får intrycket att det endast är en

utskrift på skärmen. Och intrycket är rätt: Hur många utskriftssatser man än skri-

ver, det handlar om en enda utskrift som initieras av metoden Write() som skri-

ver ut utan att göra radbyte efteråt. Metoden WriteLine() fortsätter sedan exakt

där Write() slutat, men gör radbyte efteråt.

Men vad gör man om en sträng är för lång och inte ryms på en rad i koden. Lösnin-

gen är att dela upp strängen i två eller flera delsträngar, bryta rad på ett lämpligt

ställe och använda symbolen + för att slå ihop delsträngarna. Självklart kommer

tecknet + i detta sammanhang inte längre att ha betydelsen som addition utan en

annan, vilket tas upp i nästa avsnitt.

51

3.4 Konkatenering med +

// Concat.cs

// Ritar en hjärtlig hälsning

// Anropar metoden Write() utan radbyte

// Slår ihop strängar med konkateneringsoperatorn +

using System;

class Concat

{
 static void Main()

 {
 Console.Write("\n\t * * " +

 "\n\t * * * * " +

 "\n\t * * * " +

 "\n\t* * " +

 "\n\t* * " +

 "\n\t* Grattis * " +

 "\n\t * * " +

 "\n\t * * " +

 "\n\t * * " +

 "\n\t * * " +

 "\n\t * " +

 "\n\n");

 }
}

Här finns endast en utskriftssats med Write()-metoden och vi använder oss av +

för att bryta rad i koden. Operatorn + betyder här inte addition av tal utan samman-

slagning av strängar. Konceptet kallas överlagring av operatorer och förekommer

ofta i programmering: Symbolen + har flera olika betydelser. Vilken betydelse som

gäller aktuellt beror på sammanhanget. Finns det tal på båda sidor av operatorn +

tolkas den som vanlig addition. Står det däremot en sträng på någon sida av opera-

torn tolkas + som sammanslagning av strängar. Concat ger följande utskrift:

 * *

 * * * *

 * * *

 * *

 * *

 * Grattis *

 * *

 * *

 * *

 * *

 *

 52

Concatenation

betyder sammanslagning och förekommer i olika sammanhang inom datalogin, in-

te bara i C#
*
. När tecknet + sätts mellan strängar eller där bara en sida är en sträng,

tolkas det som konkateneringsoperator. T.ex.: Console.Write(25 + " kat-

ter"); ger utskriften 25 katter. Det räcker att någon sida av + är en sträng.

Konkateneringsoperatorn + omvandlar även automatiskt den andra operanden till

en sträng om endast en operand en sträng. Dvs i satsen ovan omvandlas talet 25 till

strängen "25" och slås ihop med strängen " katter". Däremot ger Console.-

Write(25 + 5); utskriften 30 eftersom båda operander tolkas som tal och + som

additionsoperatorn. Mer om skillnaderna mellan tal, tecken och sträng kommer att

behandlas senare när vi lär oss datatyper (sid 56).

I programmet Concat slås ihop flera strängar till en och skrivs som en enda lång

sträng. Metoden Write() anropas endast en gång, istället upprepas konkatene-

ringsoperatorn + mellan de olika delar som ska skrivas ut. Den allmänna struktur-

en kan se ut så här:

Console.Write(... + "..." + ... + "...");

där ... står för de delar – text eller tal – som ska skrivas ut. Koden ovan kan

sträcka sig över flera rader men måste avslutas med ett enda semikolon då det är en

enda sats. Glöm inte heller att stänga parentesen. Radbrytningar i koden får inte

göras mitt i en sträng eller i mitt i ett ord. Det gäller regeln:

Mitt i en sträng eller ett ord får man inte bryta raden i C#-kod.

T.ex. ger följande radbrytning i koden kompileringsfel:

Console.Write("Detta är en

utskriftsrad.");

Även detta ger kompileringsfel:

Console.Write("Detta är en"

 "utskriftsrad.");

Lösningen är konkatenering med + :

 Console.Write("Detta är en " +

 "utskriftsrad.");

* T.ex. i Java finns metoden concat() som konkatenerar strängar. I C++ finns metoden

strcat() som står för string catenation och gör samma sak. I Unix, finns kommandot

cat som konkatenerar data från olika filer och slår ihop dem till en fil. T.ex. kopierar

kommandot
cat file1 file2 file3 > nyfil

de tre filerna till filen nyfil.

53

Övningar till kapitel 3

3.1 Mata in koden till programmet First (sid 42), kompilera och kör.

a) Skriv om programmet First genom att ta bort using-direktivet och

modifiera istället utskriftssatsen så att den kan kompileras och ger

samma resultat som programmet First.

b) Undersök skillnaderna mellan apostrof, citationstecken och accent.

3.2 Sätt in följande kod i ett C# program för att testa vad den ger för utskrift:

 Console.Write ("**\n");

 Console.WriteLine("***");

 Console.WriteLine("****");
 Console.Write ("*****\n");

 Console.WriteLine("******");
 Console.WriteLine("*****");
 Console.Write ("****\n");
 Console.WriteLine("***");
 Console.WriteLine("**\n");

a) Ersätt alla anrop av Console.Write() med Console.Write-

Line() och ändra lite i koden utan att utskriften ändras.

b) Lägg till lite kod i varje sats så att hela den utskrivna figuren hamnar

lite längre bort från konsolfönstrets vänstra och övre rand.

3.3 Skriv ett program och testa vilken utskrift följande utskriftssatser ger:

 Console.Write ("Jag");

 Console.Write ("heter");

 Console.WriteLine("K.\n Vad heter du?\n");

Lägg till resp. ta bort mellanslag, radbyte och tabulator på lämpliga stäl-

len för att få en snygg utskrift, utan att slå ihop de tre satserna till en.

3.4 Skriv ett C# program som en gång skickar till WriteLine()koden:

 "Resultatet är " + 8 + 3

 och en annan gång: "Resultatet är " + (8 + 3)

Förklara skillnaden i utskrifterna. Hur måste + tolkas på de olika ställena?

3.5 Vilka utskrifter ger följande satser? Sätt in dem i ett program och testa.

Console.WriteLine("*\n**\n***\n****\n*****");
Console.WriteLine("*****\n****\n***\n**\n*");

Skriv om koden så att du får samma utskrift med en enda utskriftssats i

koden.

 54

3.6 Skriv in koden till programmet Concat (sid 51), kompilera och kör det.

Modifiera det till att skriva ut en oval byggd av stjärnor (*).

3.7 Skriv ett program som skri-

ver ut en triangel byggd av

stjärnor (*).

3.8 Rita figuren till höger i kon-

solen med en enda utskrifts-

sats genom konkatenering:

 Se upp för skillnaden mel-

lan slash / och backslash \.

Använd två backslash \\ i

koden – som en escapese-

kvens inbakad i den konka-

tenerade strängen – för att

åstadkomma en backslash \

i utskriften (Läs om escape-

sekvenser på sid 97).

55

Kapitel 4

Grundbegrepp
i

programmering

 Ämne Sida Program

4.1 Datatyper 56 Datatype

4.2 Deklaration och initiering av variabler 59 Variable

­ Deklaration vs. definition 64

­ Vad händer när en variabel definieras? 65 DefInit

4.3 Inläsning av data 66 Input

4.4 Överskrivning eller kan x = x + 1 vara sant? 68 Overwrite

4.5 Operatorer och uttryck 71 Operator

­ Inmatning – Bearbetning – Utmatning 72

­ Nästlat anrop av metoder 73
4.6 Överlagring av operatorer 74 OverloadOp

4.7 Ökningsoperatorn ++ 77 Increment

4.8 Sammansatta tilldelningar 80 CompAssign

 Övningar till kapitel 4 83

 56

4.1 Datatyper

Hittills har vi i våra program skrivit ut endast text eller tecken. Datatermen för text

är sträng, ett antal tecken. Det vanligaste exemplet är ett antal bokstäver. Men även

alla möjliga specialtecken kan ingå i en sträng. I koden har vi avgränsat tecken

med apostrofer ' ' och strängar med citationstecken " " (sid 46). Mer exakt

handlar det om tecken- och strängkonstanter. Data som inte kan ändras kallas kon-

stanter. De skickas som de är, från programkod till bildskärm. T.ex. 'a' är en tec-

kenkonstant. Apostroferna kring a talar om att a ska tolkas som tecken. Men hur är

det med siffror? De kan vara tal, tecken eller sträng. T.ex. 9 är en talkonstant. I kod

måste den skrivas utan apostrofer för att tolkas som tal. Utan apostrofer tolkar

kompilatorn 9 som tal. Med apostrofer '9' tolkas '9' som ett tecken. Ytterligare

en tolkning är "9" som sträng. På skärmen ser man ingen skillnad. Alla dessa tre

koder 9, '9' och "9" skriver ut en 9 på skärmen.

Meningen med att skilja åt dem är att kan man räkna med tal, inte med tecken eller

strängar. Strängar kan man konkatenera , vilket resulterar i text. Konkatenering av

siffror däremot ger tal som av människan tolkas enligt det decimala talsystemet, men

av datorn som en sträng bestående av siffror. Apostrofer, citationstecken eller ingen-

ting kring 9 leder till att datorn tolkar data på det sätt som vi menar.

Följande program demonstrerar skillnaderna mellan olika typer av data, närmare be-

stämt mellan tal, tecken och sträng för att introducera begreppet datatyp:

// Datatype.cs

// Utskrift av olika typer av data: tal, tecken och text

// I kod skrivs talkonstanter så här: 9

// teckenkonstanter inom apostrofer: '9'

// strängkonstanter inom citationstecken: "9"

using System;

class Datatype

{
 static void Main()

 {
 Console.WriteLine(

 "Detta är talet " + 9 + '\n' +

 "Talet 9 + talet 9 ger " + (9 + 9) + "\n\n" +

 "Detta är tecknet " + '9' + '\n' +

 "Tecknet 9 + tecknet 9 ger " + ('9' + '9') + "\n\n" +

 "Detta är stängen " + "9" + '\n' +

 "Strängen 9 + tecknet 9" +

 " + talet 9 ger " + ("9" + '9' + 9) + '\n');

 }
}

En körning av programmet Datatype ger följande utskrift:

57

Detta är talet 9

Talet 9 + talet 9 ger 18

Detta är tecknet 9

Tecknet 9 + tecknet 9 ger 114

Detta är stängen 9

Strängen 9 + tecknet 9 + talet 9 ger 999

Koden 9 + 9 ger utskriften 18. Det är självklart: Talet 9 adderas med talet 9 och

resultatet 18 skrivs ut. Men koden ('9'+'9') ger utskriften 114, vilket beror på

att '9' inte är tal utan tecken. Hur lagras tecken i datorn? När vi trycker på en tan-

gent överförs en kod i form av ett binärt heltal – en sekvens av ettor och nollor –

till datorn. Varje tecken har sin speciella kod, s.k. ASCII-kod. ASCII är en standard

för omvandling mellan tecken och heltalskoder. Vi kommer att ta upp detta mer de-

taljerat senare (sid 93). Tecknet '9' har ASCII-koden 57 som adderas med 57, så att

('9'+'9') blir 114. Här tolkas nämligen plustecknet som vanlig addition. Saker

och ting sker i följande ordning: Först tolkas '9' som ASCII-koden 57, sedan ad-

deras båda tecknens ASCII-koder vilket resulterar i 114, sist skrivs ut resultatet. Fa-

cit: Det är en väsentlig skillnad mellan talet 9 och tecknet '9'.

Varför gäller inte samma resonemang i koden "Detta är tecknet " + '9' dvs

varför resulterar utskriften av '9' inte i 57 så att det skrivs ut Detta är tecknet

57? Här tolkas plustecknet inte som vanlig addition utan som konkatenering (sid

52). Anledningen är att före + står strängen "Detta är tecknet " dvs operationen

är initierad av en sträng. Därfö omvandlas även '9' till en sträng. Alltså skrivs ut

hela den konkatenerade strängen Detta är tecknet 9. När det gäller ('9'+'9')

står både till vänster och höger om plustecknet ASCII-koderna till tecknen '9'.

Alltså bildas summan av dem som är ett tal. Då summan bildas före utskriften, står

i parentesen redan talet 114 innan det skrivs ut.

Även plustecknet i "9" + "9" är till skillnad från 9 + 9 och '9'+'9' inte vanlig

addition utan konkatenering av strängarna 9 och 9. Därför sätts dessa strängar me-

kaniskt ihop till strängen 99 innan den skrivs ut. Här är det citationstecknen som

talar om vilken typ av data det är, nämligen sträng.

Anledningen till skillnaden mellan talet 9 och tecknet '9' är att de lagras i datorn

på olika sätt och har olika stora minnesutrymmen. Tal lagras direkt medan tecken

måste kodas först. Tal omvandlas till ettor och nollor med hjälp av olika algoritmer

beroende på om det är heltal eller decimaltal. Datorn måste ha informationen om

vilken typ av data det handlar om, för att kunna välja rätt algoritm. Allt som kan

göras med tal kan inte göras med tecken och omvänt: T.ex. kan tal adderas medan

tecken inte kan det. Samma sak är det med strängar som inte heller kan adderas, de

kan däremot konkateneras. De tillhör en tredje typ av data som varken är tal eller

tecken, fast de är sammansatta av tecken. Det finns ännu fler typer av data som vi

inte lärt känna ännu.

 58

En datatyp är en föreskrift om

1. hur en viss typ av data ska lagras i datorn,

2. hur mycket minne denna typ av data tar och där-

med hur stora värden den kan lagra (det tillåtna
värdeområdet),

3. vilka operationer man får utföra med denna typ av data.

För att internt kunna skilja mellan olika typer av data, digitalisera dem och åter

presentera dem i ursprungligt skick har man i programmering begreppet datatyp.

Vad är en datatyp?

Olika programmeringsspråk behandlar sina datatyper på lite olika sätt. C# är ett

strikt typbestämt språk (eng. strongly typed language) vilket innebär att kontrollen

över datatyper är väldigt hård. All data som behandlas i ett C# program måste utan

undantag vara typbestämd. Man måste explicit ange datatypen till alla värden man

arbetar med. Data utan uppgift om datatypen kan inte bearbetas.

Redan våra C# program i förra kapitel innehöll symboler som gav information om

datatypen: Tecken avgränsas med apostrofer ' ' och strängar avgränsas med cita-

tionstecken " ". Dvs ' ' är symbolen för datatypen tecken och " " symbolen för

datatypen sträng. T.o.m. avsaknaden av dessa symboler är själv en symbol:

Förekommer varken apostrofer eller citationstecken, t.ex. hos 9, anses 9 vara av

datatypen tal. Denna symbolik används så länge vi har att göra med konstanter,

närmare bestämt med tal-, tecken- eller strängkonstanter.

Skriver vi däremot en bokstav utan apostrofer i koden, t.ex. a blir det kompi-

leringsfel. Orsaken är att C#-kompilatorn inte kan bearbeta a då den inte kan iden-

tifiera a:s datatyp. Satsen Console.Write('a'); kan kompileras och ger

utskriften a eftersom 'a' tolkas som tecken. T.o.m. Console.Write("a"); kan

kompileras och ger samma utskrift eftersom "a" tolkas som sträng. Även en bok-

stav eller ett tecken kan anses som sträng, den minsta möjliga. Men a utan apostro-

fer eller citationstecken är i C# varken en tecken- eller en strängkonstant. Talkon-

stant kan det inte heller vara. Ja, a är ingen konstant alls. Vad är a i så fall? Satsen

Console.Write(a); kan inte kompileras och ger kompileringsfelet The name 'a'

does not exist in the current context, dvs a är ett okänt namn. Okänt därför att det

inte har definierats ett sådant namn med hjälp av datatypen. Namn därför att kom-

pilatorn i det enklaste fallet förväntar sig här namnet på en variabel. Det som

förorsakar kompileringsfelet är att datatypen saknas: a tolkas som en variabel vars

datatyp inte är specificerad. Därför anses den som odefinierad. Men varför måste

en variabels datatyp vara specificerad? Vad exakt är en variabel och hur definieras

en sådan i C# dvs hur specificeras dess datatyp? Kort sagt, en variabel behövs för

att lagra data i datorns RAM-minne som ska sedan användas i programmet. Nästa

avsnitt berättar i detalj hur man gör det.

59

En variabel är en platshållare (minnescell) för ett värde (data).

I koden får variabeln ett namn som används för att komma åt värdet.

I ett program kan variabelns värde ändras, men inte namnet.

4.2 Deklaration och initiering av variabler

C# är ett s.k. strikt typbestämt programmeringsspråk, vilket innebär att alla varia-

blers datatyp måste explicit anges i programmet före användningen. Kod som inne-

håller variabler utan uppgift om datatypen kan inte kompileras. Det finns flera

goda skäl för det här kravet. Det viktigaste är att kompilatorn måste reservera plats

för variabelns värde. En variabel är en platshållare för ett värde. För att kunna lagra

detta värde behövs information om platsens storlek, om sättet att omvandla värdet

till ettor och nollor och om vilka operationer man får utföra med värdet. All denna

information finns samlad i datatypen. Först ska vi precisera begreppet variabel.

Vad är en variabel?

Man kan jämföra en variabel med en låda och variabelns värde med lådans

innehåll. Variabelns namn är då lådans etikett. Värde är data i största allmänhet,

dvs kan vara – beroende på datatypen (sid 58) – tal, tecken, men även ett sannings-

värde, en sträng, längre text, en fil, ja t.o.m. en bild, … . Till skillnad från en kon-

stant som inte kan ändra sitt värde (sid 56) kan en variabels värde ändras under en

programkörning. För att kunna göra det måste variabeln ha ett namn i programmet.

Hos en variabel måste man alltid skilja mellan namnet och värdet. Men vilka namn

får vi ge till våra variabler? Vi har en ganska stor frihet för detta val. Dock är som

vanligt friheten relativ och vi måste följa vissa enkla regler som gäller för all

namngivning i C# och som vi tar upp här.

Regler för namngivning:

Ett namn, även kallat identifierare, kan bestå av ett eller flera tecken och

får endast innehålla

1. Alla bokstäver (inkl. svenska specialtecken)

2. Alla siffror

3. Understreck (underscore _)

4. Tecknet @

Men: Namnets första tecken får inte vara en siffra.

 C#:s reserverade ord (sid 36) får inte användas.

Exempel på identifierare är namn på variabler, konstanter, metoder, klasser, objekt

osv. Bland alla specialtecken får endast understreck (underscore _) och tecknet @

användas. Självklart får en identifierare inte innehålla mellanslag för då tolkas de

inte som en utan flera identifierare. Mellanslag är avskiljare mellan två ord. T.ex.

 60

är number1 och numberOne giltiga variabelnamn, men inte 1number eller num-

ber one. Däremot går det bra med number_one eller number_1, ja t.o.m. _num-

ber. Svenska specialtecken är inte förbjudna. Följer man inte reglerna ovan får

man kompileringsfel. Men för att göra program lättare att läsa och förstå, finns det

också anledning att följa följande

Rekommendation för namngivning:

Välj namn som är beskrivande dvs beskriver identifierarens roll i pro-

grammet. Bibliotekens klassnamn bör inte användas som identifierare.

Denna rekommendation baseras på de krav som god programmeringsstil ställer (sid

48). För att göra våra program lättare att läsa, förstå och göra ändringar i, måste

namnen vara beskrivande. I programet Variable nedan har vi valt number1 och

number2 som namn för programmets variabler. Namnen kan i princip väljas god-

tyckliga, dvs skulle lika bra kunna vara t.ex. a, b, x, no, account eller vad som

helst – upp till reglerna för namngivning. Men vårt val grundas även på rekommen-

dationen ovan: Vi ska lagra tal i variablerna number1 och number2.

Att definiera eller skapa en variabel innebär att reservera plats i datorns RAM-

minne åt dess värde. Det gör man i koden genom att ange variabelns datatyp. Att

endast ange datatypen kallas även deklaration, man det är definitionen som reser-

verar minne. Med tilldelning menar man att ge en variabel ett värde. Initiering är

den allra första tilldelningen dvs att ge variabeln ett startvärde som sedan kan än-

dras. Följande program demonstrerar deklaration och initiering samt tilldelning

(eng. assignment) av variabler. Även tilldelningsoperatorn (=) introduceras:

// Variable.cs

// Operationerna + och - som är definierade för tal. Defini-

// tion och initiering av variabler med datatypen int. Varia-

// namn står för värdet variabeln har vid aktuell tid

using System;

class Variable

{
 static void Main()

 {
 int number1, number2, sum, diff; // Deklaration och

 number1 = 9; // initiering av variabler

 number2 = 3;

 sum = number1 + number2;

 Console.WriteLine("\n\tAddition definierad för int:\t" +

 number1 + " + " + number2 + " ger " + sum);

 number1 = 11; // Ändring av variabelns värde

 diff = number1 - number2;

 Console.WriteLine("\tSubtraktion definierad för int:\t" +

 number1 + " - " + number2 + " ger " + diff + '\n');

 }
}

61

I programmet Variable anropas metoden WriteLine() två gånger. Vid första

anropet har variabeln number1 värdet 9 medan variabeln number2 har värdet 3.

Vid andra anropet har number1:s värde ändrats till 11 medan number2:s värde

fortfarande är 3. Det är därför vi har 9 och 3 inblandade i additionen medan 11 och

3 ingår i subtraktionen vilket bekräftas av körresultatet:

 Addition definierad för int: 9 + 3 ger 12

 Subtraktion definierad för int: 11 - 3 ger 8

Men låt oss följa koden från början. I programmet Variable förekommer fyra

variabler number1, number2, sum och diff. De behövs för att kunna lagra fyra

värden. Namnen har vi hittat på, men enligt rekommendationen för namngivning

(sid 59) ska man för läslighetens skull välja beskrivande namn. I Main() definieras

variablerna genom att inleda med datatypen int följd av en kommaseparerad lista:

int number1, number2, sum, diff;

En sådan konstruktion är endast tillåten om alla variabler är av samma datatyp. int

är ett reserverat ord som står för integer number, heltal på engelska och symbolise-

rar den i C# fördefinierade datatyp som kan lagra heltal. Man skulle kunna även

dela upp satsen ovan i fyra separata satser som är helt likvärdiga med den:

 int number1;

 int number2;

 int sum;

 int diff;

Generellt kan deklaration av en variabel i C# beskrivas så här:

Tilldelningsoperatorn

Tilldelning betyder att ge variabeln ett värde. I programmet Variable tilldelas va-

riabler värden med en symbol som till synes är likhetstecknet vilket är missledande

då symbolen = i C# inte betyder likhetstecknet. I själva verket representerar = i C#

en operator som utför tilldelning och därför heter tilldelningsoperator. Den första

sats i programmet Variable där tilldelningsoperatorn används är

number1 = 9;

vars innebörd man skulle kunna beskriva med följande pseudokod:

Variabel Värde

Variabeln number1 får värdet 9 dvs minnescellen number1 får innehållet 9. Till-

delning med = kan snarare jämföras med en pil som går från höger till

vänster. Vi måste därför fortsättningsvis vara vaksamma på att vi inte av gammal

datatyp variabel;

 62

vana tolkar likhetstecknet som likhet utan som tilldelning. I C# finns en annan

symbol för likhet (==) som används i villkor för att jämföra två värden med avse-

ende på likhet. Efter tilldelningen av variabeln number1 ser RAM-minnet ut så här:

number1 9

 4 bytes

I minnescellen hamnar värdet 9 – omvandlat till ettor och nollor förstås – och vi

kan sedan komma åt detta värde genom att referera till number1 eftersom variabel-

namnet är för oss den logiska (mjukvarumässiga) adressen till den fysiska minnes-

cellen. Om vi nu efter tilldelnigen skriver satsen Console.WriteLine(num-

ber1); får vi variabelns värde 9 utskrivet i konsolen.

Samma sak är det förstås med variabeln number2 som i programmet Variable

får värdet 3. Efter tilldelningen av variablerna number1 och number2 utförs addi-

tionen number1 + number2. Här adderas värdena (innehållet) lagrade i variabler-

na number1 och number2. Resultatet tilldelas variabeln sum. Vi refererar till vär-

dena med hjälp av variablerna. Att additionen + görs först och tilldelningen = se-

dan beror på parenteserna i satsen sum = (number1 + number2); Men även utan

parenteser hade vi fått samma resultat då + binder starkare än = . Slutligen skrivs i

utskriftssatsen alla tre variablers värden ut, konkatenerade med lite text för att göra

utskriften användarvänlig.

Initiering av variabler

Den allra första tilldelningen av en variabel efter definitionen kallas initiering. Det

kan ske på olika sätt. I programmet Variable har vi gjort det med tilldelnings-

operatorn.

Vad händer om man definierar en variabel men glömmer initieringen? Vad händer

t.ex. om vi försöker att skriva ut eller på något annat sätt komma åt värdet på en

oinitierad variabel genom att referera till den? Man skulle kunna tänka sig att det

går bra – i alla fall kompileringsmässigt – då vi åtminstone definierat variabeln och

på så sätt skapat minnesutrymme för den. Så är det nämligen i andra språk, t.ex. i

C++. Men C# sätter stopp för detta och bannlyser därmed oinitierade variabler från

alla C# program:

Fördelen med denna strikta regeln är att man undviker förekomsten av s.k.

”skräpvärden” – godtyckliga slumptal som rent fysiskt råkar finnas på de platser

kompilatorn reserverar minne. Detta är möjligt i C++, men C# har stoppat denna

möjlighet och tillfört därmed språket mer säkerhet och stabilitet. Vi är alltså tvung-

na att arbeta med variabler som är både definierade och initierade, s.k. väl definie-

rade variabler. En bra vana att initiera sina variabler är att tilldela dem ett värde di-

rekt i samband med deklarationen. En bra teknik för det är följande:

Variabler som inte initieras innan de används leder till kompileringsfel.

63

Deklaration och initiering i samma sats

Ett bra medel mot att glömma variabelinitieringen är att inte avsluta deklarations-

satsen förrän man gett variabeln ett värde. Följande program visar att C# tillåter att

definiera och initiera variabler i en och samma sats:

// DefInit.cs

// Deklaration och initiering i samma sats

// Summan bildas direkt i utskriftssatsen: Sparar en variabel

// Vid utskrift konkateneras vanlig text, variabler & uttryck

using System;

class DefInit

{
 static void Main()

 {
 int number1 = 9; // Deklaration och initiering

 int number2 = 2; // Initiering vid deklarationen

 Console.WriteLine("\n\t" + "Summan av " + number1 +

 " och " + number2 + " är " + (number1 + number2) + '\n');

 }
}

Programmet ovan producerar denna utskrift:

 Summan av 9 och 2 är 11

Medan i programmet Variable (sid 60) deklarationen och initieringen av variabler

gjordes i separata satser har dessa satser i programmet DefInit slagits ihop: Va-

riabeln number1 har blivit definierad och initierad i en och samma sats:

int number1 = 9;

Samma sak kan man göra med number2. Detta är möjligt, för man måste inte defi-

niera alla variabler i början av programmet. Man kan göra det när det behövs, bara

man definierar en variabel innan man initierar den. Det går t.o.m. att slå ihop de

två första satserna i DefInit till en:

int number1 = 9, number2 = 2;

De två variablers deklaration och initiering kan separeras med komma, vilket en-

dast är möjligt om variablerna har samma datatyp, som då skrivs en gång i början

av satsen. Ska båda variablerna ha samma värde kan man göra en dubbelinitiering:

 int number1, number2; // Separat deklaration

 number1 = number2 = 2; // Dubbelinitiering

Men då måste deklarationen stå separat innan. Kom ihåg att tilldelningsoperatorn

alltid tilltilldelar som en pil från höger till vänster. Därför får variabeln number2

 64

först värdet 2. Variabeln number1 får samma värde, dvs variabeln number2:s vär-

de som redan är 2.

Deklaration vs. definition

I litteraturen används ofta begreppet deklaration istället för definition av variabler.

Orsaken är att de skrivs i en och samma sats. Så är det också i våra egna program-

exempel: Alla variabeldefinitioner är samtidigt variabeldeklarationer. Ändå kan

det vara av intresse att uppmärksamma deras begreppsmässiga skillnad, speciellt

när man tillämpar begreppen på objekt, klasser och metoder. C#:s föreskrivna pro-

gramarkitektur har eliminerat den praktiska relevansen av denna skillnad – åtmin-

stone när det gäller variabler.

Vad är deklaration?

Vad gör man när man deklarerar skatt? Man anger att det finns en inkomst att be-

skatta. Deklarationen skapar inte inkomsten utan hänvisar bara till den. Själva

inkomsten har skapats i en helt annan process som inte har det minsta att göra med

skattedeklarationen. Samma sak är det när man deklarerar en vara hos tullen. De-

klarationen producerar inte varan utan ger endast information om dess existens.

Man kan deklarera en sak – vare sig inkomst eller vara – endast om saken redan

finns, har skapats eller kommer att skapas. Deklarationen kan inte ersätta skapan-

deprocessen. Men skapandet kan inkludera deklarationen: Man kan t.ex. ha det

som rutin att deklarera vid skapandet.

När det gäller variabler talar deklarationen om för kompilatorn att det i program-

met finns en variabel som t.ex. heter number1 och att den är av datatypen int.

Deklarationen är en hänvisning till variabelns existens och dess datatyp. När man

däremot pratar om definition menar man alltid skapandet av en variabel dvs re-

servering av minnesutrymme för variabeln. Endast deklarationen skapar inte min-

nesutrymme utan gör bara att kompilatorn kan tolka informationen. Deklarationen

gör att kompilatorn förstår vad ordet number1 är för någonting, nämligen ett namn

till en variabel. Uppgiften om datatypen int ger kompilatorn möjligheten att han-

tera informationen.

Vad är definition?

Definition skapar en sak – variabel eller objekt – från scratch. I vårt fall skapar den

en variabel dvs reserverar minnesutrymme i datorns RAM för lagring av ett värde.

Namnet till variabeln används i programmet för att komma åt minnesutrymmets

innehåll, för att skriva, läsa eller ändra värdet. Datatypen till variabeln används för

att informera kompilatorn om minnesutrymmets storlek, om sättet (algoritmen) att

digitalisera data och för att definiera de operationer som får utföras med variabelns

värde. I C# inkluderar definitionen deklarationen av variabler så att de sammanfal-

ler i en och samma sats. När vi kommer till objektorienterad programmering blir

det relevant att skilja mellan deklaration av en klass som inte reserverar minne och

definition av ett objekt som reserverar minne. Det gäller att använda en konsistent

terminologi som man inte behöver revidera.

65

number1

Vad händer när en variabel definieras?

Genom att besvara denna fråga kommer vi att förstå varför man i C# måste definie-

ra variabler. Vad händer när t.ex. variabeln number1 definieras till int?

1. En minnescell reserveras i datorns RAM-minne för lagring av

int-värden. Namnet på minnescellen blir number1. Storleken på

minnescellen bestäms av datatypen int som i vår C# installation

är föreskriven till 4 bytes dvs 4 x 8 = 32 bitar. (En bit kan lagra en 0

eller en 1). Detta sker vid kompileringen och upprätthålls tills exe-

kveringen är avslutad. Detta kallas statisk minnesallokering i den

bemärkelse att den inte kan ändras under exekveringen. Allokering

är bara ett annat ord för reservering. Faktiskt är det definitionen

som allokerar minne. Följande figur visar förenklat vad som sker i

datorns RAM när 4 bytes minne reserveras för variabeln number1:

 4 bytes

2. Specificieringen av datatypen gör att programmet kan tolka inne-

hållet i minnescellen ovan när den fylls med ett värde. Det är 32

ettor och nollor som måste tolkas som ett heltal. Olika datatyper

har olika algoritmer för omvandling av data till ettor och nollor

och omvänt. Decimaltal omvandlas på ett annat sätt än heltal eller

tecken osv. Datatypen är avgörande: Heltalet 1 t.ex. består av en

annan följd av ettor och nollor än decimaltalet 1.0. En annan di-

gital sekvens har tecknet '1' för att inte tala om strängen "1".

3. Namngivning har med adressering att göra. Minnescellens fysiska

adress i RAM kopplas till det logiska namn number1 vi valt i ko-

den för att kunna komma åt minnescellen genom att referera till

variabelnamnet. Med andra ord, variabler gör minnescellerna i

RAM adresserbara och därmed åtkomliga via programmet.

Dessa tre punkter borde man ha klart för sig när man använder variabler. De för-

klarar också varför C# som de flesta programmeringsspråken, är strikt typbestämta

språk och varför vi måste definiera alla variabler innan vi använder dem.

Det finns ingen regel som säger att alla variabeldeklarationer måste stå i början av

programmet. Man kan definiera sina variabler när de behövs, bara man gör det in-

nan man ger variabeln ett värde, sätter in den i ett aritmetiskt uttryck eller använder

den på ett annat sätt. Att vi ändå placerar variabeldeklarationerna i början av våra

program har ofta att göra med strukturering, läslighet och god programmeringsstil.

Variabler som inte definieras innan de används ger kompileringsfel.

 66

4.3 Inläsning av data

Våra C# program har hittills bara haft utdata, inga indata. Det var utdata som

skrevs ut från programmet till bildskärmen, närmare bestämt med metoden Write-

Line() till konsolen. Men hur gör man när man vill skicka indata till ett program?

Följande program visar hur man kan göra det med metoden ReadLine():

/* Input.cs

 Programmet för en dialog med användaren, läser in text med

 ReadLine() som sedan skrivs ut. Inläsningen föregås av en

 ledtext för att instruera användaren. ReadLine() är en me-

 tod definierad i klassen Console och returnerar den inma-

 tade strängen som lagras i variabler av typ string.

*/

using System;

class Input

{
 static void Main()

 {
 string name, course; // Datatypen string

 Console.Write("\n\tVad heter du?\t\t"); // Ledtext

 name = Console.ReadLine(); // 1:a inläsning

 Console.Write("\n\tHej på dig, " + name + ',' +

 "\n\tvilken kurs läser du? ");

 course = Console.ReadLine(); // 2:a inläsning

 Console.WriteLine("\n\tVälkommen till " + course +

 "-kursen!\n");

 }
}

Programmet ovan producerar en dialog i två delar. Den första frågar efter name, lä-

ser in det och ger svar, efter att användaren matat in ett namn och tryckt på Enter.

Den andra delen gör samma sak med inläsning av course:

 Vad heter du? Peter

 Hej på dig, Peter,

 vilken kurs läser du? C#

 Välkommen till C#-kursen!

Data som matas in från tangentbordet eller läses in från filer, är indata. Till skillnad

från utdata som inte behöver mellanlagras, måste indata lagras i minnet. Hur man

får indata in i datorn visar bilden på sid 37: Både indata och programkod måste

lagras i RAM-minnet. Programkoden laddas från hårddisken till RAM-minnet när

maskinkoden i den exekverbara filen körs. Indata däremot måste matas in under

67

programmkörning och mellanlagras i en minnescell i RAM-minnet innan den kan

vidarebearbetas av programmet. Mjukvarumässigt innebär detta att indata måste tas

emot och lagras i en variabel – ytterligare ett skäl till att variabeln måste vara

definierad, dvs vara associerad med en minnescell av en viss storlek som är

reserverad i datorns RAM-minne. Variabelns namn blir en referens till minnesad-

ressen som sedan kan användas för att komma åt data. Medan allokeringen av min-

nesutrymme i regel sker under kompilering via variabeldefinition, måste inmatnin-

gen göras under exekveringen. Därför avbryts exekveringen när en inmatning ska

ske. I koden förorsakas detta temporära avbrott av anropet av metoden Read-

Line() som vi ska nu förklara närmare.

Metoden Console.ReadLine()

Vad metoden gör kan vi se när programmet Input exekveras: Första gången anro-

pas metoden i satsen
name = Console.ReadLine();

Anropet sker med punktnotation eftersom metoden ReadLine() är definierad i

klassen Console. Men varför bakas metodens anrop in i en tilldelningssats: name

= ... ? Så är det inte med utskriftsmetoden WriteLine(). Dess anrop står fritt i

en självständig sats (jfr. sid 42). Detta beror på att WriteLine() läser in data som

måste lagras för att vidarebearbetas. Denna lagring görs i en variabel, i exemplet

ovan i variabeln name som tar emot och lagrar den inmatade texten. Vi har i Read-

Line() för första gången att göra med en metod som returnerar ett värde, det s.k.

returvärdet. ReadLine() är en metod med returvärde. Sådana metoder kan man

jämföra med en låda i vilken man stoppar in parametrar och får ut ett returvärde:

 Parametrar Returvärde

ReadLine() har ingen parameter och returnerar en sträng, nämligen den av an-

vändaren inmatade texten. Denna sträng hamnar i variabeln name när användaren

trycker på Enter. Därför står anropet i en tilldelningssats, just för att ta hand om

den returnerade strängen (returvärdet). Att en sträng dvs vanlig text kallas här för

returvärde är inte något anmärkningsvärt. All form av data betecknas som värde

som lagras i form av en sekvens av ettor och nollor i en minnescell.

För ett korrekt anrop av en fördefinierad metod är det dessutom avgörande att veta

vilka datatyper metodens parametrar och returvärde har. Dessa är nämligen också

fördefinierade och kan inte väljas fritt. Vi måste deklarera variabeln som lagrar re-

turvärdet med just den datatyp som metoden föreskriver för sitt returvärde. Faktum

är att returvärdet till ReadLine() är av datatypen string. Alltså, för att lagra re-

turvärdet i variabeln name och sedan course måste dessa variabler deklareras till

datatypen string.

Mer om metoder kommer du att lära dig i kap 7, sid 157.

Metod

 68

4.4 Överskrivning eller kan x = x + 1 vara sant?

I C# har tilldelningsoperatorn (=) följande betydelse:

variabel = värde ;
 variabel värde

T.ex. i satsen a = 9; tilldelas variabeln a värdet 9. Eller i satsen sum = r + t;

där r och t måste ha väl definierade värden, bildas först summan r + t som sedan

tilldelas till variabeln sum. Den gemensamma strukturen hos båda satser är att de

tilldelade variablerna a och sum inte förekommer på båda sidor av = utan endast

till vänster av den. Nu ska vi studera en annan struktur där den tilldelade variabeln

finns på båda sidor av = :
 x = x + 1 ;

x x + 1

Här måste variabeln x till höger redan ha ett väl definierat värde. Det som denna

sats gör är att ändra variabeln x:s värde – en grundläggande teknik inom program-

mering som kallas för överskrivning och demonstreras i följande program:

// Overwrite.cs

// Demontrerar skillnaden mellan likhet och tilldelning

using System;

class Overwrite

{
 static void Main()

 {
 int x;

 string xAsText;

 Console.Write("\n\tMata in ett heltal:");

 xAsText = Console.ReadLine(); // Inläsning

 x = int.Parse(xAsText); // Omvandling till int

 Console.Write("\nDet inmatade talet " + x);

 x = x + 1; // Överskrivning

 // x++;

 Console.WriteLine(" har ökats med 1 och är nu " + x +

 "\n");

 }
}

Så här kan en dialog se ut:

 Mata in ett heltal: 5

Det inmatade talet 5 har ökats med 1 och är nu 6

69

I programmet ovan läses det inmatade värdet 5 in av ReadLine() och returneras

som en sträng, tilldelas strängvariabeln xAsText, omvandlas till heltal av metoden

int.Parse() och tilldelas heltalsvariabeln x. Låt oss återkomma till denna typ-

omvandlingsmetod och utskriftstekniken lite senare och titta först på progammets

centrala sats:
x = x + 1;

som gör att x-värdet ökar till 6 och överskriver det gamla inmatade värdet 5. Har x

värdet 5 före denna sats, innebär satsen att 5 ska adderas med 1 och att det ny-

bildade värdet 6 ska tilldelas variabeln x på nytt dvs:

x 5 + 1

Flöjaktligen har x värdet 6 efter satsen. Det nya värdet 6 skriver över det gamla

värdet:

x 5 6

Detta kallas överskrivning av variabelvärdet och baseras på egenskapen av varia-

beln x som platshållare vars värde kan ändras medan namnet bibehålls (sid 59).

Vi har i satsen ovan att göra med två olika värden till en och samma variabel x,

men vid två olika tidpunkter. Det gamla värdet 5 finns i variabeln x före satsen och

det nya värdet 6 finns i variabeln x efter satsen. Det beror på likhetstecknets (=)

betydelse som tilldelning till skillnad från dess matematiska betydelse som likhet.

Matematiskt är det fel att skriva 1x x  , en ekvation som leder till motsägelsen

0 1 . I programmeringen däremot är det helt OK att skriva så, eftersom det inte

handlar om en ekvation, utan snarare om en instruktion om att ge variabeln x) ett

nytt värde genom att öka det gamla värdet med 1. I matematiken borde detta for-

muleras med två variabler:
nytt gammalt

1x x  . I programmeringen däremot är x

endast en variabel – vars värde byts ut medan namnet bibehålls. Därför används i

satsen x = x + 1; en variabel på båda sidor av tilldelningstecknet och inte två.

I själva verket handlar det om den klassiska, filosofiska skillnaden mellan att vara

och att bli, mellan tillstånd och handling, mellan den statiska likheten och den dy-

namiska tilldelningen. Vid tilldelning relateras sanningen till tiden. Dvs frågan är

inte om utan när x = 5. Jo, precis när variabeln x tilldelas värdet 5. Inte innan och

inte heller efteråt, för redan i nästa sats kan ju x tilldelas ett annat värde. Man kan

man säga: Tilldelning är likhet relaterad till tiden, därför är den dynamisk.

Att satsen x = x + 1; utför additionen först och tilldelnigen sedan beror på att ope-

ratorn + binder starkare dvs har en högre prioritet än tilldelningsoperatorn = . Där-

för slipper vi att skriva parenteser: x = (x + 1); vilket vi hade varit tvungna att

göra om = hade samma prioritet som + eller högre.

 70

I programmet Overwrite (sid 68) kan man ersätta satsen x = x + 1; med satsen

x++; som är bortkommenterad. De gör samma sak: att öka x med 1. Testa gärna

genom att aktivera satsen x++; och kommentera bort x = x + 1; Symbolen ++

(OBS! Utan mellanslag) kallas ökningsoperatorn och kommer att behandlas senare

(sid 77). Den härstammar från C++ och har en gång gett namnet till språket C++:

Tillägget ++ ska antyda att man har lagt till 1 utvecklingssteg till C och därigenom

fått fram C++.

Metoden int.Parse()

Har man vid exekveringen av programmet Overwrite matat in t.ex. 5, lagras detta

värde nu i variabeln xAsText. Men pga denna variabels datatyp lagras 5 som

sträng, inte som heltal. Så vi kan inte räkna med det, vi kan inte addera eller mul-

tiplicera det med ett annat heltal. För att kunna göra det måste vi omvandla det till

en int. Just detta gör den fördefinierade metoden int.Parse() åt oss. Den tar

emot i sin parentes en parameter som är av typ String, omvandlar den till heltal

och returnerar den som en int.

Satsen x = int.Parse(xAsText);

utför denna omvandling och lagrar resultatet i variabeln x som är deklarerad som

int. Även här är anropet av metoden int.Parse() inbakat i en tilldelningssats

för att ta hand om metodens returvärde, i det här fallet 5 som heltal.

71

4.5 Operatorer och uttryck

De fyra grundräknesätten +, – , *, / är exempel på aritmetiska operatorer. Symbo-

len * står för multiplikation och / för division. De objekt som en operator tilläm-

pas på, kallas operander. I uttrycket a + b – 4 t.ex. är a, b och 4 operander. Ett ut-

tryck är en kombination av variabler, konstanter, operatorer och vanliga parenteser

som till slut, när uttrycket beräknas, returnerar ett värde. På så sätt definierar ett ut-

tryck en föreskrift för beräkning av ett värde. När värdet är ett tal, pratar man om

aritmetiska uttryck eller räkneuttryck. Exempel på aritmetiska uttryck är:

 no1 * no2

 a + 6*b – 4/(c+1)

Ett annat exempel på ett aritmetiskt uttryck visas i följande program:

// Operator.cs

// Läser in tiden i år, månader och veckor, omvandlar den

// till dagar med ett aritmetiskt uttryck och skriver ut dem

// Strukturen Inmatning - bearbetning – utmatning

using System;

class Operator

{
 static void Main()

 {
 int year, months, weeks, days, totalDays;

 /* I n m a t n i n g */

 Console.Write("\n\tAnge antal år:\t\t"); // Ledtext

 year = int.Parse(Console.ReadLine()); // Inläsning

 Console.Write("\n\tAnge antal månader:\t");

 months = int.Parse(Console.ReadLine());

 Console.Write("\n\tAnge antal veckor:\t");

 weeks = int.Parse(Console.ReadLine());

 Console.Write("\n\tAnge antal dagar:\t");

 days = int.Parse(Console.ReadLine());

 /* B e a r b e t n i n g */ // Aritm. uttryck

 totalDays = 365*year + 30*months + 7*weeks + days;

 /* U t m a t n i n g */

 Console.WriteLine("\n " +

 year + " år, " + months + " månader, " +

 weeks + " veckor och " + days + " dagar är " +

 totalDays + " dagar totalt.\n");

 }
}

 72

En körning av programmet Operator ger följande dialog:

 Ange antal år: 2

 Ange antal månader: 11

 Ange antal veckor: 3

 Ange antal dagar: 6

 2 år, 11 månader, 3 veckor och 6 dagar är 1087 dagar totalt.

Det aritmetiska uttryck som åstadkommer resultatet i ovanstående program, är:

365*year + 30*months + 7*weeks + days

Uttrycket använder sig av de aritmetiska operatorerna + och *. Inmatningen i kör-

exemplet ovan leder till följande beräkning enligt uttryckets föreskrift:

365*2 + 30*11 + 7*3 + 6

Om year är antalet år, months antalet månader, weeks antalet veckor och days

antalet dagar, beräknas här det totala antalet dagar. Här har man förutsatt att ett år

har 365 dagar, en månad 30 och en vecka 7 dagar. Ingen hänsyn har tagits till skott-

år osv. Att * görs först och + sedan beror på att i C# multiplikationsoperatorn * –

precis som i matematiken – har en högre prioritet än additionsoperatorn +. Därför

behövs inga parenteser.

Inmatning – Bearbetning – Utmatning

Vid sidan om aritmetiska uttryck, introducerar programmet Operator ett koncept

inom programmering som kan bidra till att uppfylla de krav på förståelighet, an-

vändarvänlighet, strukturering och ändringsbarhet som vi ställde upp för god pro-

grammeringsstil (sid 48). Det handlar om strukturering av programkod.

Det enklast tänkbara sättet att strukturera ett program är att dela in det i de tre na-

turliga stegen inmatning – bearbetning – utmatning som man kanske helt spontant

tar när man utvecklar ett program. I programmet Operator matas in först indata:

år, månader och veckor. Sedan bearbetas dessa data genom att beräkna det totala

antalet dagar och lagra resultatet i en ny variabel. Slutligen matas ut bearbetnin-

gens resultat genom att skriva ut den nya variabelns värde. Man borde hålla sig till

denna ordning om man inte har någon speciell anledning att avvika från den. Det

finns i regel ingen anledning att t.ex. splittra utmatningen och skriva en del av den

före och en annan del efter bearbetningen. Inte minst när koden växer rekommen-

deras att utnyttja åtminstone denna naturligt givna struktur i sina program.

Struktureringen inmatning – bearbetning – utmatning kommer vi att ha stor nytta

av när vi modulariserar våra program dvs skriver metoder. Då kommer vi nämligen

att separera dessa tre delar, skriva dem i var sin metod och sedan anropa dem från

main(). Därför kan det vara bra att vänja sig vid denna goda sed redan nu. I fort-

73

sättningen kommer vi att hålla oss i våra programexempel till konventionen att i re-

gel strukturera programkoden i dessa tre delar utan att explicit nämna det.

Nästlat anrop av metoder

Ett nästlat anrop är ett anrop i ett annat anrop. Låt oss ta som exempel den sats

som står i programmet Operator för att läsa in ett heltal:

int.Parse(Console.ReadLine())

Här anropas metoden ReadLine() i anropet av metoden int.Parse(), närmare

bestämt i dess parameterlista dvs på en plats där en parameter förväntas. Därmed

kommer ReadLine():s returvärde, dvs den inlästa strängen, att skickas till int.-

Parse(). Det nästlade anropet ovan är helt identiskt med följande två anrop:

string yearAsText = Console.ReadLine();

int.Parse(yearAsText);

Som man redan ser behöver man två satser för att åstadkomma samma sak. Des-

sutom behövs en variabel (yearAsText) som måste definieras. Vid nästlingen

slipper man detta merarbete. Anledningen till att två anrop är nödvändiga, är att

man med metoden ReadLine() inte kan läsa in heltal eftersom dess fördefinierade

returvärde är en string. Vi måste sedan konvertera till int med int.Parse().

Nästlade anrop av metoder är mycket vanliga inom programmering därför att man

spar kod. Självklart går det på bekostnad av läsligheten vilket gör att man måste

avväga rimligheten. I vårt fall är det försvarbart med tanke på att vi i programmet

Operator måste läsa in tre heltal så att både inläsningen och omvandlingen till

heltal måste ske tre gånger. Man spar alltså här en hel del kod. Använder man sig

av nästlade anrop måste följande regel beaktas:

Nästlade anrop av metoder exekveras inifrån.

Detta innebär i vårt exempel ovan att ReadLine() anropas först och int.Par-

se() sedan. Dvs inläsningen görs först och konverteringen till int sedan vilket

har betydelse för i vilken ordning vi skriver koden. En annan praktisk detalj är att

man måste hålla ordning på parenteserna. Just nu när vi har två anrop är det inte så

farligt, men flera nivåer av nästling är både tänkbara och möjliga. Dock, som sagt,

sätter avvägningen mot läslighet gränser på antalet nivåer.

 74

4.6 Överlagring av operatorer

Programmet Operator i förra avsnitt använde sig av aritmetiska operatorer och ett

enkelt uttryck för att omvandla inmatad tid i antal år, månader, veckor och dagar,

till antal dagar (sid 71). I körexemplet matade vi in 2 år, 11 månader, 3 veckor, 6

dagar och fick 1087 dagar. Lite svårare är det att lösa det omvända problemet dvs

att dela upp ett inmatat antal dagar i antal år, månader och veckor, t.ex. att mata in

1087 dagar och få ut av programmet uppdelningen i 2 år, 11 månader, 3 veckor

och 6 dagar. Nyckeln till lösningen är två nya aritmetiska operatorer – heltals-

division och modulooperatorn – varav den första är en s.k. överlagrad variant av

den vanliga divisionsoperatorn och den andra besläktad med den första. Behandlin-

gen av det omvända problemet introducerar oss till ett viktigt koncept i program-

mering som tillämpas här på operatorer, men kann även generaliseras till metoder.

Överlagring

När två eller flera operatorer betecknas med samma symbol, men ändå betyda oli-

kakallas det överlagring av operatorerb. Vi har redan sett ett exempel på det när vi

gick igenom konkatenering: Symbolen + betyder både addition och konkatenering

(sid 51). Det är sammanhanget där symbolen används, som bestämmer symbolens

aktuella betydelse. Ett annat exempel på att operatorer kan vara överlagrade är

slashtecknet / som används en gång som symbol för heltalsdivision, en annan gång

för vanlig division. Vi har i den överlagrade operatorn / att göra med en ny typ av

division. För att förstå det bättre, ska vi lösa

Det omvända problemet

Vänd på problemet i programmet Operator (sid 71). Dvs Omvandla en tid som är

angiven i dagar till år, månader, veckor samt resterande dagar. Skriv ett program,

som frågar efter en tid i antal dagar, läser in den, och sedan beräknar samt skriver

ut resultatet i antal år, månader, veckor samt resterande dagar. I själva verket hand-

lar det om en omvandling av det decimala systemet till kalenderns system med år,

månader, veckor och dagar. För denna omvandling används följande algoritm:

Algoritmen

1. Kalla den givna tiden i dagar för totaldagar.

2. Dividera totaldagar med 365 och strunta i resten, så får du det sökta antalet år.

3. Ta resten vid divisionen ovan. Dividera denna rest med 30 och strunta i resten

så får du det sökta antalet månader.

4. Ta resten vid divisionen i punkt 3. Dividera denna rest med 7 och strunta i

resten så får du det sökta antalet veckor.

5. Resten vid divisionen i punkt 4 är det sökta antalet resterande dagar.

Operationen ”Dividera och strunta i resten” kallas i fortsättningen för heltalsdivi-

dera och operationen ”Ta resten vid heltalsdivision” för modulo. Algoritmen ovan

skrivs nu som pseudokod:

75

Pseudokoden

Antal år = totaldagar heltalsdividerad med 365

Antal månader = (totaldagar modulo 365) heltalsdividerad med 30

Antal veckor = ((totaldagar modulo 365) modulo 30) heltalsdividerad 7

Resterande dagar = ((totaldagar modulo 365) modulo 30) modulo 7

Programmet OverloadOp implementerar ovanstående algoritm och pseudokod. I

C# är / operatorn för heltalsdivision, om båda operander är heltal. Symbolen % är

operatorn för modulo. Pseudokoden ovan återfinns översatt till C# kod i bearbet-

ningsdelen av programmet OverloadOp.

Heltalsdivision

Det finns två olika typer av division, vanlig division och heltalsdivision. Vanlig di-

vision räknar med decimaltal, heltalsdivision bara med heltal. I C# är slashtecknet

/ symbolen för båda. Vilken av dem som ska gälla i en aktuell situation, avgörs på

följande sätt av sammanhanget där / används: Om heltal finns på bägge sidor av

symbolen / utförs heltalsdivision. Finns heltal på den ena sidan av tecknet / men

decimaltal på den andra, utförs vanlig division. C#-koden 9/2 ger inte 4.5 utan 4

vilket beror på att 9 och 2 båda är heltal. Vill man få den vanliga divisionens resul-

tat 4.5 måste man i C# skriva 9.0/2 eller 9/2.0 eller 9.0/2.0 dvs minst en ope-

rand måste vara decimaltal. Heltalsdivision däremot, dvs 9/2, trunkerar (klipper

av) alla decimaler och returnerar endast heltal – och detta utan någon avrundning.

Man dividerar utan att gå vidare till decimaler. Man kan också säga: Divisionens

heltalsdel tas, resten ignoreras: 9 dividerat med 2 ger 4 och resten 1. Men resten

ignoreras vid heltalsdivision: 9 heltalsdividerat med 2 ger därför 4. En annan arit-

metisk operation tar hand om resten som heter modulo och är besläktad med hel-

talsdivision. Vi kommer att använda båda i vårt nästa program.

Modulooperatorn %

% har i C# ingenting med procenträkning att göra utan är symbolen för ett räkne-

sätt som kallas modulo och innebär resten vid heltalsdivision. Man dividerar två

heltal utan att gå vidare till decimaler, tar resten och ignorerar resultatet. T.ex. 16

% 5 ger 1, därför att 16 heltalsdividerat med 5 ger 3 och en rest på 1 blir kvar.

Modulooperatorn % ignorerar 3 och returnerar resten 1. Resten vid heltalsdivision

kallas modulo: 9 modulo 2 ger 1. Man kan uppfatta räknesättet modulo även som

en upprepad subtraktion: Man drar av 2 från 9 så många gånger det bara går och

tar det som blir kvar. Fyra gånger går det att ta bort 2 från 9, kvar blir 1. Därför är

9 % 2 = 1. Generellt innebär att räkna modulo a helt enkelt att man bortser från

alla multipler av heltalet a, att man kastar bort alla multipler av a och behåller

resten. Räknesättet modulo har många tillämpningar, speciellt vid övergång mellan

två talsystem, t.ex. mellan det decimala och binära talsystemet. En rolig använd-

ning av denna räkneoperation är följande exempel:

 76

Idag är fredag och du vill träffa din kompis om 11

dagar.

Vilken veckodag är det?

Om vi numrerar veckodagarna stigande från 1 med början på måndag så att fredag

blir den 5:e veckodagen, får du svaret på frågan ovan genom att räkna modulo 7:

(5 + 11) % 7 = 2

Dvs veckodagen i frågan är tisdag. Med andra ord man lägger till aktuell veckodag,

antalet dagar och räknar modulo 7. I själva verket handlar det om en omvandling

av det decimala talsystemet med basen 10 och siffrorna 0-9 – det system vi är vana

vid – till veckodagarnas system dvs till talsystemet med basen 7 och siffrorna 0-6.

Programmet

// OverloadOp.cs

// Omvandlar dagar till år, månader, veckor och restdagar

// Överlagring av operatorn / som heltalsdivision

// Modulooperatorn %

using System;

class OverloadOp

{
 static void Main()

 {
 int year, months, weeks, restDays, totalDays;

 /* I n m a t n i n g */

 Console.Write("\n\tAnge antal dagar:\t\t");

 totalDays = int.Parse(Console.ReadLine());

 /* B e a r b e t n i n g */

 year = totalDays / 365;

 months = (totalDays % 365) / 30;

 weeks = ((totalDays % 365) % 30) / 7;

 restDays = ((totalDays % 365) % 30) % 7;

 /* U t m a t n i n g */

 Console.WriteLine("\n\t" + totalDays + " dagar är " +

 year + " år, " + months + " månader, " + weeks +

 " veckor och " + restDays + " dagar.\n");

 }
}

En körning av programmet OverloadOp ger följande dialog:

 Ange antal dagar: 1087

 1087 dagar är 2 år, 11 månader, 3 veckor och 6 dagar.

77

4.7 Ökningsoperatorn ++

Denna operator härstammar från programmeringsspråket C++ där den gett namnet

till språket. Det finns två varianter av ökningsoperatorn: Man kan skriva den före

operanden, så här ++a, eller efter operanden, så här a++. Sätts den efter operanden

talar man om ökningsoperatorns postfixvariant. Skrivs den före operanden blir det

prefixvarianten. Följande program demonstrerar skillnaden mellan dessa två:

// Increment.cs

// Skillnaden mellan a++ och ++a

using System;

class Increment

{
 static void Main()

 {
 int a, b;

 a = 0;

 b = a++;

 // Samma som:

 // b = a;

 // a = a + 1;

 Console.Write("\n\t a = 0: Efter b = a++; blir b = " +

 b + " och a = " + a + '\n');

 a = 0;

 b = ++a;

 // Samma som:

 // a = a + 1;

 // b = a;

 Console.WriteLine("\t a = 0: Efter b = ++a; blir " +

 "b = " + b + " och a = " + a + '\n');

 }
}

En körning av programmet Increment resulterar i följande utskrift:

 a = 0: Efter b = a++; blir b = 0 och a = 1

 a = 0: Efter b = ++a; blir b = 1 och a = 1

Här jämförs a och b:s värden efter b = a++ och efter b = ++a med varandra. An-

märkningsvärt i båda fallen är att det inte blir någon skillnad mellan ökningsopera-

torns post- och prefixvariant när det gäller själva operanden a som ++ tillämpas på.

I båda fallen ökar operanden a:s värde med 1. Efteråt är a = 1 i båda fall. Skill-

naden påverkar snarare miljön dvs det som finns kring ökningsoperatorn, i vårt

exempel variabeln b: Efter postfixvarianten är b = 0 medan efter prefixvarianten är

b = 1. För att förklara varför måste vi precisera dessa två varianternas betydelse:

 78

Postfixvarianten a++; betyder:

”Utför satsen med det aktuella värdet på variabeln a och öka den därefter med 1”.

Närmare bestämt ökar a:s värde efter satsen dvs efter semikolonet. Satsen a++; är

en kompakt kod för ökning med 1 genom överskrivning, dvs:

 a++; gör samma sak som a = a + 1;

Nu ser man att ökningsoperatorn består av två operationer, addition och tilldelning.

Observera att a++; inte gör samma sak som a + 1; I a++; ingår även en tilldel-

ning medan a + 1; endast innehåller en addition. Ökningsoperatorn tar hänsyn till

att det vid överskrivning endast finns en variabel vars värde överskrivs. Därför fö-

rekommer i a++; variabeln a bara en gång.

Prefixvarianten ++a; betyder:

”Öka först variabeln a:s värde med 1 och

utför därefter satsen med det nya ökade värdet på a”.

Även satsen ++a; gör samma sak som a = a + 1; Skillnaden med prefixvarianten

blir påtaglig först när det finns något som händer innan och/eller efteråt, dvs när

sammanhanget man använder ökningsoperatorn i är lite mer komplex. Programmet

Increment på förra sidan visar ett enkelt exempel på ett sådant sammanhang.

För att kunna jämföra post- och prefixvarianten och se deras skillnad behöver vi i

Increment samma utgångssituation dvs en variabel som har samma initierings-

värde. Därför tilldelas variabeln a värdet 0. Detta för att en gång använda post-

fixvarianten och en annan gång prefixvarianten på ett och samma värde. I det första

fallet görs det i satsen b = a++; där tilldelningen utförs innan a:s värde ökar. Dvs

först får b värdet 0, sedan ökar a med 1 och blir 1. I det andra fallet utförs till-

delningen i satsen b = ++a; efter att a:s värde ökar. Dvs först ökar a med 1 och

blir 1, sedan får b detta nyökade värde 1.

Att det inte blir någon skillnad mellan ökningsoperatorns post- och prefixvariant på

själva operanden a som ++ tillämpas på utan snarare på miljön dvs variabeln b be-

ror på att skillnaden inte ligger i att operandens värde ökar med 1 utan när detta

händer. Skillnaden ligger i saker och tings ordning, i vårt fall:

 b = a++; gör samma sak som b = a;

 a = a + 1;

och

 b = ++a; gör samma sak som a = a + 1;

 b = a;

Man kan faktiskt i programmet Increment ersätta satserna till vänster med

satserna till höger och får samma resultat. Testa gärna!

Varför, kan man undra, ska man använda a++; eller ++a; istället för a = a + 1;

om de åstadkommer samma sak nämligen att öka a:s värde med 1? Faktum är att

79

ökningsoperatorn skapar maskinkod som är mycket snabbare och effektivare än

maskinkod som skapas av tilldelningssatsen.

Det finns i C# även minskningsoperatorn –- som fungerar på liknande sätt. Istället

för ökning med 1 görs minskning med 1. Även minskningsoperatorn kan sättas

antingen efter (postfix) eller före en variabel (prefix):

a--; eller --a; gör samma sak som a = a - 1;

Båda operatorer kan endast öka eller minska med 1, inte med något större värde.

 80

4.8 Sammansatta tilldelningar

Sammansatta operatorer är dubbeloperatorer och består av två operatorer varav en är

tilldelning: Ökningsoperatorn ++ t.ex. består av ökning med 1 och tilldelning,

minskningsoperatorn –- av minskning med 1 och tilldelning. Öknings- och

minskningsoperatorn används så här: a++ eller a–- där a är en operand. De kallas

för unära operatorer, därför att de endast tar en operand. En annan grupp av

sammansatta operatorer är de som står mellan två operander (binära):

 += –= *= /= %=

Eftersom tilldelning förekommer hos alla dessa operatorer pratar man om samman-

satt tilldelning. De är sammansatta av tilldelning och en operation till. Därför

består deras symbol av två tecken. Observera att alla dessa operatorer (inkl. ++ och

–-) skrivs utan mellanslag. Med mellanslag tappar de sin speciella betydelse och

känns inte igen av kompilatorn. De sammansatta operatorerna är binära dvs de har

två operander, eftersom de används så här: a += b. Även de aritmetiska operatorer-

na +, -, *, / och % är binära.

Operatorn +=

är sammansatt av de två operatorerna addition och tilldelning och betyder:

Addera först båda sidor av += med varandra och

tilldela sedan resultatet till variabeln som står till

vänster om += .

Beräkningen utförs helt enkelt från vänster till höger, t.ex.:

 sum += a; gör samma sak som sum = sum + a;

Dvs addera först sum med a och tilldela resultatet till sum. Operatorn += över-

skriver variabeln sum:s värde direkt. Om a = 1 gör båda satserna ovan samma sak

som sum++; vilket visar att ökningsoperatorn ++ är ett specialfall av +=. På lik-

nande sätt fungerar de andra: -=, *=, /=, %=. De utför först en aritmetisk opera-

tion och sedan en tilldelning.

Programmet CompAssign på nästa sida demonstrerar alla binära sammansatta till-

delningsoperatorer. Användaren matar in ett värde till variabeln a via tangent-

bordet som kombineras via tilldelningsoperatorerna +=, -=, *=, /= med de redan

initierade variablerna sum, diff, prod och div. Dessa namn utför förstås i sig in-

ga aritmetiska operationer, utan är bara valda för att vara beskrivande. Deras initie-

ring är avgörande, annars kan vi inte kompilera eftersom oinitierade variabler leder

till kompileringsfel (sid 62).

Operatorn += fungerar på samma sätt även om + tolkas som konkatenering när den

initieras med en sträng. Sista exemplet i programmet CompAssign demonstrerar

detta:

81

// CompAssign.cs

// Sammansatta tilldelningsoperatorer: +=, -=, *=, /= och %=

// Utför FÖRST operationen +, -, *, / och SEDAN tilldelningen

// Gäller även för konkateneringsoperatorn +

using System;

class CompAssign

{
 static void Main()

 {
 int a = 8, sum = 10, diff = 20, prod = 30, div = 40;

 string s = "Slut på", t = " kapitel 4";

 sum += a; // Samma som sum = sum + a;

 diff -= a; // diff = diff - a;

 prod *= a; // prod = prod * a;

 div /= a; // div = div / a;

 s += t; // + här konkatenering:

 // Samma som s = s + t;

 Console.WriteLine(

 "sum = 10 och a = " + a + ": \nEfter sum += a; " +

 "blir sum = " + sum + "\n\n" +

 "diff = 20 och a = " + a + ": \nEfter diff -= a; " +

 "blir diff = " + diff + "\n\n" +

 "prod = 30 och a = " + a + ": \nEfter prod *= a; " +

 "blir prod = " + prod + "\n\n" +

 "div = 40 och a = " + a + ": \nEfter div /= a; " +

 "blir div = " + div + "\n\n" +

 s + '\n');

 }
}

Här ska de binära operatorerna testas genom att kombinera variabeln a via +=, -=,

*= och /= med andra, redan initierade variabler sum, diff, prod och div. Dessa

namn är förstås godtyckligt valda och har inget att göra med själva aritmetiska ope-

rationer som endast utförs pga sina resp. operatorer +, -, * och /. Vi har bara för-

sökt att välja beskrivande namn. Satsen sum += a; gör exakt samma sak som sat-

sen sum = sum + a; dvs adderar först sum med a och tilldelar sedan resultatet

till sum igen. Med andra ord, variabeln sum:s värde överskrivs av sum + a. Samma

sak är det med de övriga dubbeloperatorerna.

En körning av programmet CompAssign ger följande utskrift:

 82

sum = 10 och a = 8:

Efter sum += a; blir sum = 18

diff = 20 och a = 8:

Efter diff -= a; blir diff = 12

prod = 30 och a = 8:

Efter prod *= a; blir prod = 240

div = 40 och a = 8:

Efter div /= a; blir div = 5

Slut på kapitel 4

83

Övningar till kapitel 4

4.1 Satsen Console.WriteLine(a); ger kompileringsfel till skillnad från

Console.WriteLine('a'); Sätt in båda i ett C# program och testa. Ger

även Console.WriteLine(6); kompileringsfel? Testa vilka utskrifter

följande satser ger:
 Console.WriteLine(6 + 6);

 Console.WriteLine('6' + '6');

 Console.WriteLine("6" + "6");

 Console.WriteLine(6.6 + 6.6);

 Console.WriteLine("6.6" + "6.6");

 Förklara resultaten.

4.2 Komplettera programmet Variable (sid 60) så här: Definiera ytterligare

variabler, säg diff, prod, div, mod, tilldela till dem uttryck (sid 71) bilda-

de med de andra räknesätten -, *, / och %. Skriv ut resultaten med me-

ningsfulla utskrifter. Bibehåll ändringen av variabeln number1:s värde

mellan de två utskrifterna.

4.3 Vidareutveckla din lösning till övn 4.2 genom att ersätta den hårdkodade

initieringen av variablerna no1 och no2 med en initiering genom inläsning

som t.ex. kan göras med en ReadLine()-sats samt ledtext. Stryk ändringen

av variabeln no1:s värde.

4.4 Skriv ett program som läser in två heltal, multiplicerar dem med varandra

och skriver ut resultatet blandat med förklarande text. Om du t.ex. matar in

3 till det första och 4 till det andra heltalet, ska programmet skriva ut: 3

gånger 4 är 12. Utveckla programmet vidare med ytterligare räkneopera-

tioner, kanske så småningom till en liten kalkylator.

4.5 Ersätt i programmet DefInit (sid 63) de två satser som definierar och

initierar variablerna number1, number2 med satsen int number1 = 9,

number2 = 2;.

4.6 Modifiera programmet Overwrite (sid 68) så att variabeln x:s gamla värde

skrivs ut, medan dess nya ökade värde visas senare. Ersätt satsen x = x +

1; med x++; Blir det samma resultat om du ersätter den med x + 1;

istället? Förklara!

 84

4.7 Skriv ett program som läser in tre heltal till timmar, minuter och sekunder.

Beräkna och skriv ut sedan hur många sekunder det blir totalt. Gör utskrif-

ten användarvänlig.

4.8 Varför ger följande program kompileringsfel? Åtgärda felet!

using System;

class ExInit

{
 static void Main()

 {
 int a, sum;

 Console.Write("Mata in ett heltal:\t");

 a = int.Parse(Console.ReadLine());

 sum += a;

 Console.WriteLine("sum = " + sum + "\n\n");

 }
}

4.9 Vänd på problemet från övn 4.7: Skriv ett program som läser in ett antal

totalsekunder, omvandlar det till antal timmar, minuter och sekunder och

skriver ut resultatet. Använd för denna omvandling följande algoritm:

timmar = totalsekunder DIV 3600

minuter = (totalsekunder MOD 3600) DIV 60

sekunder = ((totalsekunder MOD 3600) MOD 60) MOD 60

där DIV betyder heltalsdivision och MOD modulooperation. Om dessa två

aritmetiska operationer läs på sid 75.

4.10 Skriv ett program som modifierar algoritmen ovan för att omvandla ett gi-

vet belopp i ören till 10-kronor, 5-kronor, 1-kronor och 50-öringar. Pro-

grammet ska läsa in ett givet belopp i ören som kan vara växeln efter inköp

av en vara i en automat. Sedan ska programmet skriva ut antalet 10-kronor,

5-kronor, 1-kronor och 50-öringar som automaten ska spotta ut. Om 50-

öringar läs fotnoten på sidan 193.

85

Kapitel 5

Enkla

datatyper

 Ämne Sida Program

5.1 Kan datorn lagra hur stora tal som helst? 86 Primitives

­ Overflow 89 Limits

5.2 Datatypen char 91 Char

­ Teckenaritmetik 92
5.3 ASCII-tabellen 93 Int2char

­ Explicit typkonvertering 94 Char2int

5.4 Escapesekvenser 97 Escape

5.5 Unicode 99
5.6 Decimaltalstyperna 101 Decimal

5.7 Automatisk typkonvertering 104 AutoConv

Sammanfattning av kapitel 4 och 5 108

Övningar till kapitel 5 109

 86

5.1 Kan datorn lagra hur stora tal som helst?

Man har ju hört talas om datorernas obegränsade möjligheter. Deras kraft och ka-

pacitet växer med teknikens snabba utveckling. Men hur avancerade de än blir

kommer de alltid att ha ett begränsat utrymme för lagring av data. Därför har man i

alla programmeringsspråk vissa fördefinierade datatyper för att bl.a. ekonomisera

och effektivisera minneshanteringen när ett program körs. Datatyperna int och

string har vi redan stiftat bekantskap med. I detta kapitel ska vi studera kategorin

enkla datatyper i C# (eng. primitive types). Andra kategorier är sammansatta data-

typer och objekt som behandlas senare. I C# finns 13 fördefinierade datatyper av

kategorin enkel: bool, sbyte, byte, char, short, ushort, int, uint, long,

ulong, float, double och decimal. De kallas enkla datatyper därför att de re-

presenterar endast ett värde, dvs ett heltal, ett decimaltal, ett tecken eller ett

sanningsvärde. De kan inte lagra mer invecklade data som objekt. De är inte heller

sammanatta som t.ex. datatypen string som lagrar flera tecken och därför inte är

en enkel datatyp.

I definitionen av datatyp (sid 58) sa vi att en datatyp var en föreskrift om bl.a.

” hur mycket minne den tar och därmed hur stora värden

 den kan lagra (dvs det tillåtna värdeområdet) … ”

Det tilldelade minnesutrymmet är förbestämt i datatypens definition. De enkla da-

tatypernas fastlagda minnesstorlekar kan man se i följande utskrift som är produce-

rad av programmet Primitives på nästa sida:

bool representerar sanningsvärdena sant eller

falskt. char lagrar tecken. sbyte, byte,

short, ushort, int, uint, long, ulong är

enkla datatyper för representation av heltal.

Prefixet u som inleder några av dem betyder

unsigned och innebär att dessa endast kan

lagra positiva heltal, medan prefixet s står för

signed som tillåter även negativa heltal. De

enkla datatyperna float, double, decimal

representerar decimaltal. Alla enkla datatyper

hittar man i tabellen över reserverade ord (sid

36). I denna tabell finns också det reserverade

ordet sizeof som används för att mäta min-

nesstorleken av varje datatyp i antal bytes. 1

byte består av 8 bitar där 1 bit är den minnesatom som kan lagra endast en nolla el-

ler en etta. Som man ser har vi ordnat de enkla datatyperna efter det minnesutrym-

me som är tilldelat och förbestämt i deras definition. Det tillåtna värdeområdet

ligger inom ett intervall som direkt kan härledas från minnesstorleken som varje

datatyp har till förfogande.

87

Egentligen är programmet Primitives ur programmeringsteknisk synpunkt inte

särskilt intressant och består av en enda utskriftssats. Vi återger den ändå, inte

minst för att visa hur man använder operatorn sizeof:

// Primitives.cs

// Visar alla enkla datatyper i C# och deras minnesstorlekar

// Operatorn sizeof mäter minnesstorleken i antal bytes

using System;

class Primitives

{
 static void Main()

 {
 Console.WriteLine("De enkla datatyperna i C#:\n" +

 "--------------------------\n" +

 "Datatypen bool tar " + sizeof(bool) + '\n' +

 " sbyte " + sizeof(sbyte) + '\n' +

 " byte " + sizeof(byte) + '\n' +

 " char " + sizeof(char) + '\n' +

 " short " + sizeof(short) + '\n' +

 " ushort " + sizeof(ushort) + '\n' +

 " int " + sizeof(int) + '\n' +

 " uint " + sizeof(uint) + '\n' +

 " long " + sizeof(long) + '\n' +

 " ulong " + sizeof(ulong) + '\n' +

 " float " + sizeof(float) + '\n' +

 " double " + sizeof(double) + '\n' +

 " decimal " + sizeof(decimal) + " bytes\n");

 }
}

Operatorn sizeof

sizeof är en operator i C# som endast har en operand och mäter storleken på ope-

randens minnesutrymme. Närmare bestämt returnerar sizeof antalet bytes ope-

randen tar i minnesutrymme. Operanden som står i parentes kan vara en datatyp:

sizeof(datatyp)

sizeof returnerar minnesstorleken i antalet bytes för datatypen. C#:s egenskap

som ett plattformsoberoende språk medför att de enkla datatypernas minnesstorle-

kar och därmed deras gränser är enhetligt fastlagda i C#-kompilatorn för alla

plattformar (datortyp & operativsystem), vilket är av stor fördel för språkets porta-

bilitet. Så, du kommer att få precis samma värden för de enkla datatypernas gränser

på vilken dator än du kör C#, vilket t.ex. inte är fallet i C++.

 88

De enkla datatypernas gränser

De enkla datatypernas gränser som vi egentligen är ute efter i detta avsnitt, kan nu

lätt härledas från deras minnesstorlekar. Ett exempel är heltalsdatatypen short

som enligt ovan har 2 bytes dvs 2x8 = 16 bitar till förfogande. Därför reserverar

varje variabel definierad som short 16 bitar i minnesutrymme. Ett värde till en

sådan variabel kan alltså inte lagras i datorn om det överstiger det största binära tal

som kan lagras i 16 – 1 = 15 bitar. 15 därför att en bit behövs för att lagra själva tec-

knet + eller – därför att en short-variabel kan även anta negativa värden. Det stör-

sta binära heltal som kan lagras i 15 bitar består av 15 ettor dvs 111 1111 1111 1111.

I det decimala talsystemet blir det 32 767. Därför är den positiva gränsen för data-

typen short 32 767. På samma sätt kan de andra datatypernas gränser härledas från

deras resp. minnesutrymme. Ingen panik! Vi kommer inte att göra det. Dessa grän-

ser är lagrade i vissa namngivna konstanter. Här skrivs ut dem för alla enkla data-

typer som ett körresultat av programmet Limits på nästa sida:

Enkla datatypernas gränser:

sbyte finns mellan -128 och 127

byte 0 255

char 0 65535

short -32768 32767

ushort 0 65535

int -2147483648 2147483647

uint 0 4294967295

long -9223372036854775808 9223372036854775807

ulong 0 18446744073709551615

float -3,402823E+38 3,402823E+38

double -1,79769313486232E+308 1,79769313486232E+308

decimal -79228162514264337593543950335 och

 79228162514264337593543950335

bool tar endast värdena True och False

Till skillnad från de andra datatyper som kan anta både positiva och negativa vär-

den, kan de teckenlösa datatyperna (u = unsigned dvs utan tecken + eller -)

endast anta positiva värden: De heter så därför att deras värden varken behöver ha

plus- eller minustecknet framför talet. Dessa enkla datatyper har precis lika mycket

minnesutrymme till förfogande som sina motsvarande vanliga datatyper med tec-

ken. Detta innebär att nödvändigheten att lagra tecknet faller bort hos unsigned-

typerna. Om vi resonerar vidare i exemplet med short skulle datatypen ushort

ha alla 16 bitar till förfogande för själva positiva heltalet. Det största binära heltal

som kan lagras i 16 bitar består av 16 ettor dvs 1111 1111 1111 1111. I det decimala

talsystemet blir detta 65 535. Därför är gränsen för datatypen ushort dubbelt så

stort (fast +1 pga nollan) som för short. Och så är det med alla unsigned-typer:

deras gränser är dubbelt så stora fast de har lika stort minnesutrymme till förfogan-

de, därför att de inte behöver lagra tecknet och därmed har 1 bit mer för att lagra

själva positiva heltalet. Av samma anledning har byte en dubbelt så stor övre

gräns som sbyte fast båda tar endast 1 byte minne. Decimaltalstyperna float och

double:s gränser visas i utskriften ovan i s.k. Exponentiellt format, även kallat

89

grundpotensform (eng.: Scientific notation) vilket innebär att t.ex. float:s positiva

gräns 3.4028235E38 är lika med 3,4028235 gånger 10 upphöjt till 38 dvs

38
3,4028235 10 .

Overflow

Vad händer nu om man överskrider de ovan angivna gränser dvs om man tilldelar

ett värde till en variabel som överskrider det maximalt tillåtna värdet för dataty-

pen? Fenomenet kallas overflow. Ja, vad händer om man försöker att hälla mer vat-

ten i ett glas än det ryms? I vissa miljöer blir det exekveringsfel och program-

krasch. I C# fortsätter programmet: Det överskridna värdet ”slår runt” och hamnar

på andra ändan av det tillåtna talområdet. Overflow innebär förlust eller förfalsk-

ning av information. Beroende på datatypen kan det bli felaktigt resultat samt

följdfel som är svårt att spåra, om man räknar vidare utan att upptäcka felet. Ett

exempel på overflow visas senare i programmet AutoConv (sid 106). Det enda sät-

tet att undvika overflow är att utveckla en medvetenhet om fenomenet overflow

och känna till när det kan inträffa. Programmet nedan som skriver ut de enkla data-

typernas gränser (förra sida), kan hjälpa i sådana situationer. Dessutom bekantar vi

oss med nya klasser som är associerade till enkla datatyper:

// Limits.cs

// Visar enkla datatypernas gränser som är lagrade i

// konstanter definierade i datatypklasserna

using System;

class Limits

{
 static void Main()

 {
 Console.WriteLine("Enkla datatypernas gränser:\n" +

 "---------------------------\n" +

 "sbyte finns mellan " + sbyte.MinValue +

 " och " + sbyte.MaxValue +

 "\nbyte " + byte.MinValue +

 " " + byte.MaxValue +

 "\nchar " + (int) char.MinValue +

 " " + (int) har.MaxValue +

 "\nshort " + short.MinValue +

 " " + short.MaxValue +

 "\nushort " + ushort.MinValue +

 " " + ushort.MaxValue +

 "\nint " + int.MinValue +

 " " + int.MaxValue +

 "\nuint " + uint.MinValue +

 " " + uint.MaxValue +

 "\nlong " + long.MinValue +

 " " + long.MaxValue +

 90

 "\nulong " + ulong.MinValue +

 " " + ulong.MaxValue +

 "\nfloat " + float.MinValue +

 " " + float.MaxValue +

 "\ndouble " + double.MinValue +

 " " + double.MaxValue +

 "\n\ndecimal\t " + decimal.MinValue +

 " och \n\t\t " + decimal.MaxValue +

 "\n\nbool tar endast värdena " + true +

 " och " + false + '\n');

 }
}

Inte heller programmet Limits är ur programmeringsteknisk synpunkt särskilt in-

tressant, men har fördelen att låta datorn göra jobbet och lista upp ett antal intres-

santa värden – de enkla datatypernas gränser. Värdena hämtas från lagrade kon-

stanter som är definierade i klasser som är identiska med C#:s enkla datatyper.

91

5.2 Datatypen char

I våra programexempel hittills förekom endast datatyperna int och string. Nu

ska vi lära oss att använda ytterligare en datatyp nämligen char som står för cha-

racter, tecken på engelska (uttalas därför ”kar”). I en variabel av typ char kan en-

dast ett tecken lagras. Därför är char en enkel dataytyp. Fler än ett tecken bildar en

sträng (= text) som då inte längre får tilldelas en variabel av typ char utan måste

lagras i en variabel av den sammansatta datatypen string. Datatypen char repre-

senterar alltså tecken och används i första hand för att definiera teckenvariabler.

Men det är bara halva sanningen:

Hur lagrar datorn tecken? All data, även tecken, måste ju slutligen omvandlas till

ettor och nollor. Därför måste alla tecken omvandlas till tal. Varje tecken har sin

heltalskod enligt ett visst kodsystem, en överenskommen teckenuppsättning eller

teckentabell. Det är dessa heltalskoder som omvandlas till ettor och nollor. Boksta-

ven a t.ex. har enligt den rådande teckentabellen koden 97 som är 1100001 binärt.

Redan när man trycker på tangenten a överförs sekvensen 1100001 via tangent-

bordssladden till datorn. Därför representerar datatypen char även dessa koder.

Hela sanningen är alltså att char är en datatyp som representerar både tecken och

sådana heltal som är koder till tecken dvs tal som ryms i char-värdenas minnes-

storlek på 2 bytes (enligt förra avsnitt). Följande program introducerar datatypen

char genom att definiera en variabel av typ char och initiera den till bokstaven a.

I själva verket kommer koden 97 i binär form att lagras i RAM-minnet.

// Char.cs

// Datatypen char för tecken och tal (mellan 0 och 65535)

// Tolkas som tecken i strängsammanhang (konkateneringar)

// tal i räknesammanhang (aritmetiska uttryck)

using System;

class Char

{
 static void Main()

 {
 char letter = 'a';

// char letter = (char) 97 ; // Gör samma sak

 string concat = " " + letter + letter; // Konkatenering

 int add = letter + letter; // Addition

 Console.WriteLine("\n\tEn char-variabel har " +

 "initierats till " + letter + "\n\tTecknet " +

 letter + " konkatenerat med tecknet " + letter +

 " ger " + concat + "\n\tMen tecknet " + letter +

 " adderat med tecknet " + letter + " ger " +

 add + "\n");

 }
}

 92

En testkörning av programmet Char ger följande utskrift:

 En char-variabel har initierats till a

 Tecknet a konkatenerat med tecknet a ger aa

 Men tecknet a adderat med tecknet a ger 194

I programmet Char definieras variabeln letter, deklareras till datatypen char

och initieras till a. Observera att teckenkonstanten a måste i C#-kod skrivas inom

apostrofer (sid 46). Annars kommer den att tolkas av kompilatorn som ett nytt

variabelnamn och leda till kompileringsfel då en sådan variabel inte är definierad.

Teckenkonstanten a lagras i teckenvariabeln letter i form av koden 97 (fast bi-

närt). Därför är det även möjligt att initiera letter med heltalet 97 efter att ha om-

vandlat det till char. Den möjligheten är bortkommenterad i programmet ovan just

nu. Men testa gärna genom att aktivera den bortkommenterade raden och kommen-

tera bort raden ovan istället. I raden som följer konkateneras variabeln letter

med sig själv genom att initiera konkateneringen med en tom sträng och tilldela

resultatet till String-variabeln concat. Vid denna konkatenering omvandlas

tecknet a automatiskt till strängen a. Därför får vi ut aa när den konkatenerade

strängen skrivs ut med concat.

Teckenaritmetik

Sedan adderas a med sig själv utan initiering till sträng. Resultatet tilldelas int-va-

riabeln add. Vid (och pga) additionen tolkas char-variabeln letter som tal. Där-

för får vi ut 194 när summan 97 + 97 skrivs ut med add. Att kunna addera två tec-

kenvariabler med varandra är ett exempel på teckenaritmetik – att kunna ”räkna”

med tecken, i själva verket med deras koder.

Avgörande för tolkningen av variabeln letter:s värde a som tecken är deklaratio-

nen till datatypen char och avgörande för dess omvandling till sträng är initierin-

gen till den tomma strängen " " i följande tilldelnings högerled:

concat = " " + letter + letter;

För att vara mer exakt kan man säga att den tomma strängen " " gör att operatorn

+ tolkas som konkatenering och inte som addition. Denna tolkning gör att den ef-

terföljande variabeln letter:s värde a omvandlas till sträng. Samma sak görs i

resten av satsen. Strängen aa bildas och tilldelas strängvariabeln concat.

Avgörande för tolkningen av char-variabeln letter:s värde a som tal i nästa sats

är att det inte görs någon initiering till sträng i följande tilldelnings högerled:

add = letter + letter;

Här tolkas operatorn + som addition, inte som konkatenering. Därmed tas heltals-

värdet 97 från variabeln letter:s minnescell och adderas med sig själv. Resultatet

blir talet 194 som tilldelas int-variabeln add.

93

5.3 ASCII - tabellen
I förklaringen till programmet Char i förra avsnitt har vi hela tiden lite halvmys-

tiskt talat om ”koder” eller ”den rådande teckentabellen” utan att säga vad det

egentligen är för koder och hur de bestäms. Varför är just 97 teckenkoden till bok-

staven a? En fördjupad insikt i datorns hantering av tecken får vi när vi tar upp da-

torns teckenuppsättning. Den vanligaste teckenuppsättningen är ASCII-tabellen.

ASCII (uttalas ”aski”) står för American Standard Code for Information Inter-

change och är en standard för kodning av tecken skapad av det amerikanska stan-

dardiseringsorganet ANSI. Innan man hann sätta igång något standardiserings-

arbete på internationell nivå, hade ASCII redan erövrat världen. Så idag är ASCII

den de facto-standard som används på alla persondatorer, både PC och Mac.

Teckenstandarden ASCII omfattar alla engelska bokstäver, siffrorna 0-9, de vanli-

gaste specialtecknen och en del styr- och kontrolltecken. ASCII använder sig av s.k.

7-bitars kodning vilket innebär att heltalskoden till ett tecken placeras som ettor

och nollor i 7 bitar av en byte. Den lediga åttonde biten används för felkontroll och

kan därför inte utnyttjas för representation av data. Exempel: Tecknet a:s ASCII-

kod är 97 vilket omvandlat till ettor och nollor blir 1100001
*
, dvs ett binär tal som

är 7 bitar långt. För att få reda på vilka tal man kan uttrycka med 7 bitar, kan man

titta på det minst möjliga talet – det är 7 nollor 0000000 som är 0 – och det störst

möjliga – det är 7 ettor 1111111 som är 127 (kontrollera med kalkylatorn). Därför

består ASCII-koderna av heltalen mellan 0 och 127 och är definierade enligt:

 0 1 2 3 4 5 6 7 8 9

0 null soh stx etx eot enq ack bel bs ht

1 nl vt ff cr so si dle dc1 dc2 dc3

2 dc4 nak syn etb can em sub esc fs gs

3 rs us sp ! ” # $ % & ’

4 () * + , - . / 0 1

5 2 3 4 5 6 7 8 9 : ;

6 < = > ? @ A B C D E

7 F G H I J K L M N O

8 P Q R S T U V W X Y

9 Z [\] ^ _ ` a b c

10 d e f g h i j k l m

11 n o p q r s t u v w

12 x y z { | } ~ del

* För att verifiera omvandlingen till binärt tal utan att gå in på hur det görs, kan du använda

t.ex. Kalkylatorn som du hittar bland dina appar i Windows (i tidigare versioner: Start 

Program  Tillbehör). Välj i menyn Visa undermenyn Avancerad för att kunna omvandla tal

till och från olika talsystem (Binär: ettor och nollor, Decimal: vanliga tal, Hexadecimal: 0-9

och A-F, Octal: 0-7).

 94

Siffrorna till vänster i tabellens 1:a kolumn anger de två första siffrorna i ASCII-

koden och siffran högt upp i tabellens 1:a rad anger den sista siffran i ASCII-koden.

Söker man ASCII-koden till t.ex. t går man på samma rad längst till vänster och

hittar 11, går sedan från t i samma kolumn högst upp och hittar 6. Alltså har t AS-

CII-koden 116. ASCII-tabellen visar att endast tecknen med koderna mellan 33 och

126 är skriv- och läsbara. De andra består av icke-skriv- och icke-läsbara styr- och

kontrolltecken eller ”vita” tecken. Dessa specialtecken har symboliska namn. T.ex.

kallas mellanslaget för sp = space med ASCII-koden 32 och radbyte har beteck-

ningen nl = newline med ASCII-koden 10 (en äldre beteckning är lf = line feed). Vi

kommer att använda några av dessa specialtecken senare, men en fullständig ge-

nomgång ligger utanför denna boks ramar.

ASCII-tabellen visar också denna teckenstandards begränsningar. Specialtecken i

andra språk än engelskan saknas, t.ex. de svenska tecknen å, ä, ö, Å, Ä, Ö. Rent

tekniskt beror denna begränsning på 7-bitars kodningen. Släpper man kravet på att

använda den åttonde biten för felkontroll och utnyttjar även denna bit för represen-

tation av data, kan man utvidga ASCII-området bortom 127. Det största binära hel-

tal man kan placera i 8 bitar är 8 ettor 11111111 som ger 255. Det har man gjort i

andra teckenuppsättningar och skapat koder mellan 128 och 255. Denna utvidg-

ning är däremot inte en standard, inte ens ”de facto”. Ändå pratar man ofta lite slött

om ”ASCII”-koder. I själva verket tillämpas i kodintervallet 128–255 olika tecken-

uppsättningar inte bara i olika datorer, utan t.o.m. i olika program på samma dator,

t.ex. Windows och Kommandotolken. I C# används teckenstandarden Unicode för

utvidgningen av ASCII-tabellen, även i Kommandotolken. Andra språk som t.ex.

C++ och Java ”förvränger” de svenska tecknen å, ä, ö, Å, Ä, Ö när de skriver ut

dem till konsolen (i Windows: Kommandotolken). Förklaringen är att de skriver till

konsolen med en annan teckenuppsättning än Unicode. C# visar dock de svenska

tecknen korrekt även i konsolen. När det gäller Java kan denna inkonsekvens bero

på konkurrenskampen mellan Microsoft och Oracle (ägaren till Java) som tyvärr

utkämpas på bekostnad av användarna.

Explicit typkonvertering

Explicit betyder uttrycklig och innebär här att man själv – utan någon fördefinierad

metod – omvandlar datatypen. Generellt kan programkoden för explicit typkonver-

tering beskrivas så här:

där uttryck är en kombination av variabler, konstanter, operatorer och vanliga pa-

renteser som i specialfall även kan bestå av en enda variabel eller en enda konstant

(sid 71). Det enklast tänkbara uttrycket – ett specialfall – är en konstant eller en

variabel. För det mesta kommer vi i våra program att ha en variabel som uttryck.

Programmet Int2char på nästa sida använder följande exempel på explicit typk-

onvertering:
 (char) code

(datatyp) uttryck

95

code är en variabel deklarerad som int. Genom att sätta typen char inom paren-

tes och placera den framför variabeln code, omvandlas variabelns värde till char.

Dvs explicit typkonvertering förändrar inte variabelns datatyp, utan ändrar endast

det aktuella värdets datatyp lokalt. När programmet körs och det matas in t.ex. 65

omvandlas 65 som är variabeln code:s värde, till tecknet A. Det är alltså talet 65

som omvandlas till char, inte variabeln code. Den fortsätter att vara av typ int

enligt deklaration i början av programmet:

// Int2char.cs

// Ger tecknet till en inmatad ASCII-kod

// Representation av tecken med ASCII-koder

// Explicit typkonvertering

using System;

class Int2char

{
 static void Main()

 {
 Console.Write("\n\tMata in ett heltal:\t");

 int code = int.Parse(Console.ReadLine());

 Console.WriteLine("\n\t" +

 "Det inmatade talet " + code + " är " +

 "ASCII-koden till tecknet " + (char) code + "\n\n");

 // Explicit typkonvertering: omvandlar till char

 }
}

Den med vit bakgrund framhävda explicita typkonverteringen (char) code är in-

bakad i utskriftssatsen: int-variabeln code:s värde omvandlas till char innan det

skrivs ut. Därför skrivs ut tecknet A tillhörande ASCII-koden 65 när vi matar in 65

till code:

 Mata in ett heltal: 65

 Det inmatade talet 65 är ASCII-koden till tecknet A

Men innan explicit typkonvertering händer följande i programmet Int2char: Siff-

rorna 6 och 5 läses in av metoden ReadLine() och returneras som en sträng då

denna fördefinierade metod alltid returnerar en sträng (sid 67). Strängen i sin tur

omvandlas av metoden int.Parse() till heltalet 65 (sid 70) som tilldelas int-va-

riabeln code. Anropen av dessa två metoder har vi nästlat för att spara en variabel

som skulle mellanlagra den returnerade strängen. Därför utförs anropen inifrån dvs

först ReadLine() och sedan int.Parse() (sid 73). Slutligen omvandlar explicit

typkonvertering heltalskoden 65 till char dvs till det tecken vars kod är 65, näm-

 96

ligen bokstaven A. Genom att köra programmet Int2char kan man alltså ta reda

på tecken tillhörande vilken ASCII-kod som helst.

Det omvända problemet

Programmet Int2char gav oss tecknet när vi matade in ett heltal (ASCII-koden).

Programmet Char2int på nästa sida löser det omvända problemet: Det skriver ut

ASCII-koden till tecknet vi matar in. När vi t.ex. matar in bokstaven A läser meto-

den ReadLine() in den som en sträng. Metoden Convert.ToChar() omvandlar

strängen A till ett tecken som tilldelas char-variabeln letter. Slutligen om-

vandlas tecknet A till ASCII-koden 65 med explicit typkonvertering och skrivs ut.

// Char2int.cs

// Ger ASCII-koden till ett inmatat tecken

using System;

class Char2int

{
 static void Main()

 {
 char letter;

 Console.Write("\n\tMata in ett tecken:\t");

 letter = Convert.ToChar(Console.ReadLine());

 Console.WriteLine("\n\t" +

 "Det inmatade tecknet " + letter + " har " +

 "ASCII-koden " + (int) letter + "\n\n");

 }
}

Programmet Char2int kan avslöja datorns alla ASCII-koder när man exekverar

det med dialoger av typ:

 Mata in ett tecken: A

 Det inmatade tecknet A har ASCII-koden 65

Genom att köra programmet Char2int kan man alltså ta reda på ASCII-koden till

vilket tecken som helst. Hur däremot typomvandlingen från den inlästa strängen till

tecken genomförs ska vi titta närmare på:

Programmet Char2int:s mål var ju att till sist få ut tecknets ASCII-kod. Detta sista

steg tas med explicit typkonvertering. Det är generellt så att typomvandlingar inom

enkla datatyper kan genomföras med explicit typkonvertering på ett mycket enkla-

re sätt än omvandlingar från eller till sammansatta datatyper som string. För dem

behövs i regel vissa metoder som måste anropas och som är definierade i klasser

som t.ex. metoden ToChar() i klassen Convert.

97

5.4 Escapesekvenser

Följande frågor är fortfarande obesvarade när det gäller hantering av tecken:

1. Vilka koder gäller för de tecken som inte finns i AS-

CII-standarden dvs utanför kodintervallet 0-127 (sid

93)?

2. Hur kommer vi i C#-kod åt de icke-skriv- och icke-

läsbara styr- och kontrolltecknen med ASCII-koderna

0-32?

3. Hur kodar vi inom en strängkonstant "..." själva

tecknen " eller ' (eller andra) som redan är koder

för att omgärda strängar resp. tecken (eller annat)?

För att kunna besvara dessa frågor behövs kunskap om escapesekvenser och Uni-

code.

Escapesekvenser är kod som inleds med tecknet backslash \ åtföljt av ett tecken

eller tecknets kod i ett visst format (Unicode). På svenska betyder to escape att fly.

Med \ vill man fly från tecknets vanliga betydelse och ge det en annan innebörd.

Med \n t.ex. vill man undvika bokstaven n och åstadkomma radbyte istället:

newline. På samma sätt fungerar andra escapesekvenser. Programmet Escape

(nästa sida) använder denna teknik och visar i följande utskrift några symboliska

och kodade escapesekvenser i Unicode-format. Med symboliska escapesekvenser

menas \n, \r, \t, \b osv. De som inleds med \u är kodade i Unicode som kom-

mer att behandlas i detalj inästa avsnitt.

 98

Den första kolumnen visar några escapesekvenser symboliskt med en bokstav och

andra i hexadecimalt Unicode-format. Den andra kolumnen anger koderna deci-

malt. Den tredje kolumnen skriver ut själva tecknen så länge de är skrivbara. Man

ser att svenska specialtecken återges korrekt både när vi i programmet på nästa sida

anger dem med sina resp. escapesekvenser (3:e kolumnen) och direkt (4:e kolum-

nen). Osynliga och oskrivbara tecken beskrivs. Den fjärde kolumnen skriver ut de

tecken som är skrivbara direkt dvs genom att ange själva tecknen, inte escape-

sekvenserna.

Det är följande C#-kod som producerar utskriften på förra sidan:

// Escape.cs

// Skriver ut både symboliska och kodade escapesekvenser

using System;

class Escape

{
 static void Main()

 {
 Console.WriteLine(

 "\n\tEscapesekvens\tUnicode Tecknet Direkt \n" +

 "\t--- \n" +

 "\t\\0 \t\t" + (int)'\0' + "\t " +

 "nolltecknet\t osynligt\n" +

 "\t\\a \t\t" + (int)'\u0007' + "\t\u0007 " +

 " datorljud\t osynligt\n" +

 "\t\\b \t\t" + (int)'\b' + "\t " +

 " baksteg\t osynligt\n" +

 "\t\\t \t\t" + (int)'\t' + "\t " +

 " tabulator\t osynligt\n" +

 "\t\\n \t\t" + (int)'\n' + "\t " +

 " radbyte\t osynligt\n" +

 "\t\\r \t\t" + (int)'\r' + "\t " +

 " vagnretur\t osynligt\n" +

 "\t\\u0020 \t" + (int)'\u0020' + "\t " +

 " mellanslag\t osynligt\n" +

 "\t\\\" \t\t" + (int)'\"' + "\t\t\" \t \"\n" +

 "\t\\\' \t\t" + (int)'\'' + "\t\t\' \t \'\n" +

 "\t\\\\ \t\t" + (int)'\\' + "\t\t\\ \t \\\n" +

 "\t\\u0061 \t" + (int)'\u0061' + "\t\t\u0061\t a \n" +

 "\t\\u00E4 \t" + (int)'\u00E4' + "\t\t\u00E4\t ä \n" +

 "\t\\u00E5 \t" + (int)'\u00E5' + "\t\t\u00E5\t å \n" +

 "\t\\u00F6 \t" + (int)'\u00F6' + "\t\t\u00F6\t ö \n" +

 "\t\\u00C4 \t" + (int)'\u00C4' + "\t\t\u00C4\t Ä \n" +

 "\t\\u00C5 \t" + (int)'\u00C5' + "\t\t\u00C5\t Å \n" +

 "\t\\u00D6 \t" + (int)'\u00D6' + "\t\t\u00D6\t Ö \n" +

 "\t\\u00FC \t" + (int)'\u00FC' + "\t\t\u00FC\t ü \n" +

 "\t\\u03B2 \t" + (int)'\u03B2' + "\t\t\u03B2 " +

 "oskrivbart\n");

 }
}

99

5.5 Unicode

Hur representeras tecken vars kod överskrider ASCII-standardens övre gräns 127?

Det finns många olika utvidgningar av ASCII-tabellen. I C# har man bestämt sig

för att använda teckenkodningsstandarden Unicode som även används i Windows

och i många andra miljöer. Till skillnad från ASCII som lagrar ett tecken i 1 byte (8

bitar) använder sig Unicode av 2 bytes (16 bitar), varför datatypen char i C# har 2

bytes till förfogande. Därmed kan man koda ett väsentligt större antal tecken, även

sådana från andra språk som arabiska, japanska, kinesiska, hebreiska, kyrilliska

osv. Unicode har plats för över en miljon tecken varav drygt 90 000 tecken redan är

tilldelade. För att vara bakåtkompatibel har man inkluderat ASCII-standarden i

Unicode som en delmängd så att alla tecken upp till koden 127 har samma koder i

Unicode som i ASCII, bara att även dessa tar 2 bytes i Unicode. Utöver koden 127

har man infört nya koder. Vilka koder det är, står i Unicode-tabellen som man t.ex.

kan hitta på Internet under adressen http://unicode.coeurlumiere.com.

Några av dem ser man i följande ruta som

visar bokstäver från tre olika språk som ta-

gits fram med sina resp. koder enligt Uni-

code. Utskriften är resultat av javapro-

grammet på nästa sida.

Unicode anges som escapesekvensen \u

följt av ett fyrasiffrigt hexadecimalt tal,

dvs så här: \uAAAA där u står för unicode

och A för någon hexadecimal siffra. For-

matet är föreskrivet vilket bl.a. innebär att

ett hexadecimalt tal med mindre än fyra

siffror måste inledas med nollor. Alla tec-

ken oavsett skriv- och läsbarhet kan i C#

kod skrivas i detta format. I programmet

på nästa sida initieras char-variabeln al-

pha till tecknet \u03B1 som är angivet i Unicode-format där 3B1 är den hexadeci-

mala motsvarigheten till det decimala talet 945 som enligt Unicode-tabellen är

teckenkoden till den grekiska bokstaven  vilket man kan övertyga sig om med en

sökning på Internet. Vi har ingen chans att få in detta tecken i datorn, då det inte

finns någon sådan tangent på ett svenskt eller amerikanskt tangentbord. Så, den

enda möjligheten att ta fram det är att använda escapesekvensen med Unicode.

Apostroferna kring \u03B1 när det tilldelas char-variabeln alpha visar att koden

\u03B1 symboliserar endast ett tecken – nämligen bokstaven  – och behandlas

som vilket tecken som helst. På den nämnda Internet-länken kan man även se att

det grekiska alfabetet förekommer som ett sammanhängande block i Unicode-

tabellen. Därför kan vi använda teckenaritmetik för att få fram de bokstäver som

följer efter  (sid 92). Samma sak görs i programmet med de arabiska bokstäverna

genom att initiera char-variabeln arab till tecknet \u0635 där 635 är den hexa-

 100

decimala motsvarigheten till det decimala talet 1589, koden till den arabiska

bokstaven ص osv. Anmärkningsvärt är också att programmet automatiskt går över

till att skriva från höger till vänster när Unicodes till de arabiska bokstäverna

skickas till utskrift. För att få ut de svenska specialtecknen behöver vi inte hämta

deras koder från Unicode-tabellen, omvandla dem till hexadecimala och skicka

dem som escapesekvenser, därför att vi direkt kan skriva in dem från våra svenska

tangentbord.

// Unicode.java

 // OBS! Detta är ett javaprogram

Import javax.swing.JOptionPane; // från boken Programmering 1

 // med Java, se www.techpages.se

class Unicode

{
 public static void Main(String[] a)

 {
 char alpha = '\u03B1', arab = '\u0635';

 JOptionPane.showMessageDialog (null,

 "De svenska specialtecknen\nä, å, ö, Ä, Å, Ö" +

 " har Unicodes:\n" +

 (int) 'ä' + ", " + (int) 'å' + ", " + (int) 'ö' + ", "+

 (int) 'Ä' + ", " + (int) 'Å' + ", " + (int) 'Ö' + '\n'+

 "\nDet grekiska alfabetet börjar med\n" + alpha + ", "+

 (char)(alpha+1) + ", " + (char)(alpha+2) + ", " +

 (char)(alpha+3) + ", " + (char)(alpha+4) + ", " +

 (char)(alpha+5) + " som har Unicodes:\n" +

 (alpha+0) + ", " + (alpha+1) + ", " +

 (alpha+2) + ", " + (alpha+3) + ", " +

 (alpha+4) + ", " + (alpha+5) + '\n' +

 "\nDet arabiska alfabetet innehåller\n" + arab + ", " +

 (char)(arab+1) + ", " + (char)(arab+2) + ", " +

 char)(arab+3) + ", " + (char)(arab+4) + ", " +

 (char)(arab+5) + "\nsom har Unicodes:\n" +

 (arab+5) + ", " + (arab+4) + ", " +

 (arab+3) + ", " + (arab+2) + ", " +

 (arab+1) + ", " + (arab+0), "Unicodes", 1);

 }
}

Programmet Unicode använder sig av (char)(alpha+1) för att skriva ut  när

alpha har värdet  fast alpha redan är av typ char. Anledning till den explicita

typkonverteringen till char är att additionen gör om parentesens resultat till en

int så att en explicit omvandling tillbaka till char blir nödvändigt. Omvänt när vi

behöver Unicode-koden utnyttjar vi just den automatiska typkonverteringen t.ex. i

(alpha+0) som förorsakas av additionen, för att få fram koden 945 utan explicit

typkonvertering. Samma teknik används för (alpha+1) osv. för att få koderna till

,  osv. samt för behandlingen av variabeln arab.

101

5.6 Decimaltalstyperna

C# har tre enkla datatyper för lagring av decimaltal: float, double och decimal.

Decimaltal kallas även flyttal därför att deras decimalpunkt ”flyter” dvs varierar

när de lagras i datorn, beroende på storleken. De omvandlas till ettor och nollor på

ett helt annat sätt än heltal och får en form som kallas flyttalsrepresentation. Däri-

från härstammar också namnet på datatypen float. Följande program demonstre-

rar några intressanta egenskaper av decimaltal som delvis är överraskande:

// Decimal.cs

using System;

class Decimal

{
 static void Main()

 {
 // float flyt = 4.5; // Ger kompileringsfel

 float flyt = 4.5f; // 4.5 som float

 int hel = (int) flyt; // Avhuggning till int

 float flo = 1/3f; // 3 som float

 double dou = 1/3d; // 3 som double

 decimal dec = 1/3m; // 3 som decimal

 Console.WriteLine(

 "\n\tHeltalsdivision 9 / 2 ger " + (9/2) + " och " +

 "resten " + (9%2) +

 "\n\tDecimaltalsdivision 9,0 / 2 ger " + (9.0/2) +

 "\n\tHeltalsdelen av " + flyt + " är " + hel +

 "\n\tfloat variabel 1 / 3 ger " + ' ' + flo +

 "\n\tdouble variabel 1 / 3 ger " + ' ' + dou +

 "\n\tKonstanten 1 / 3,0 ger " + ' ' + (1 / 3.0) +

 "\n\tdecimal variabel 1 / 3 ger " + ' ' + dec +

 "\n\tKonstanta decimaltal lagras som double\n");

 }
}

En körning ger följande utskrift:

 Heltalsdivision 9 / 2 ger 4 och resten 1

 Decimaltalsdivision 9,0 / 2 ger 4,5

 Heltalsdelen av 4,5 är 4

 float variabel 1 / 3 ger 0,3333333

 double variabel 1 / 3 ger 0,333333333333333

 Konstanten 1 / 3,0 ger 0,333333333333333

 decimal variabel 1 / 3 ger 0,3333333333333333333333333333

 Konstanta decimaltal lagras som double

 102

En överraskande egenskap av decimaltal i C# är t.ex. att 4.5 inte direkt kan tillde-

las till en float-variabel, därför att konstanta decimaltal lagras som double. En

automatisk typkonvertering nedåt – dvs från double till float – är inte möjligt

(se sid 104), därför att C#-kompilatorn inte tillåter lagringen av ett 8-bytes-värde

(double) i en 4-bytes-minnescell (float) för att undvika overflow (sid 89).

Datatypen float lagrar decimaltal i 4 bytes, double i 8 bytes och decimal i 16

bytes. Därför ser du i körexemplet ovan dubbelt så många siffror i utskriften av

double-variabeln dou jämfört med float-variabeln flo och dubbelt så många

siffror i utskriften av decimal-variabeln dec jämfört med double-variabeln dou.

Kan en decimaltalstyp inte specificeras via deklarationen – som är fallet för kon-

stanta decimaltal, så blir datatypen automatiskt double. Vill man inte ha det så,

utan vill man att det lagras som float, måste man använda explicit typkonverte-

ring: (float) 4.5 eller sätta ett f som står för float utan mellanslag direkt i slu-

tet av värdet: 4.5f som är bara en kortform för explicit typkonvertering. Även ett

heltal med f t.ex. 3f blir omvandlat till float. Först float-värdet 4.5f kan till-

delas till float-variabeln flyt. I nästa sats omvandlas detta float-värde till int

och tilldelas en int-variabel:
 int hel = (int) flyt;

Variabeln hel ger 4 (se utskriften ovan) vilket visar att typkonverteringen till int

inte avrundar decimaltalet utan endast tar heltalsdelen dvs trunkerar eller avhuggar

decimalerna. På liknande sätt som det lilla f kännetecknar det som float kan ett d

i slutet av ett tal karakterisera det som double. T.ex. blir 3d ett double-värde så

att 1/3d utförs som en vanlig division mellan två decimaltal som ger ett double-

värde. 1/3 skulle utföra heltalsdivision och resultera i 0. Därför ger också 9/2

heltalet 4 och 9%2 resten 1 (sid 75). På samma sätt som suffixet m karakterisera ett

värde som decimal. T.ex. blir 3m ett decimal-värde

I början av kapitlet hade vi skrivit ut de enkla datatypernas gränser (sid 88). Det

som hos heltalen är konsekvensen av det begränsade minnesutrymmet – nämligen

heltalstypernas gränser – är för decimaltalen deras precision vid den decimala

framställningen dvs noggrannheten uttryckt i antal siffror. Vad vi menar är antalet

siffror man kan lita på vilket har att göra med den för decimaltal typiska egenska-

pen att de kan ha oändligt många decimaler. Därför måste de förr eller senare av-

rundas i alla fall. Det är endast heltal som representeras exakt inom det värdeom-

råde som föreskrivs av datatypen, medan decimaltal representeras i regel bara

approximativt (ungefärligt) även om de håller sig inom det tillåtna värdeområdet.

Sedan tillkommer avrundningsfelen vars fortplantning vid komplexa beräkningar

kan vara förödande, men är relevanta redan vid enkel räkning. T.ex. vid multiplika-

tion av två decimaltal fördubblas antalet decimaler, medan man i regel har samma

minnesutrymme för resultatet som för operanderna.

De enkla datatypernas gränser – både för hel- och decimaltal – bestäms av den till-

delade minnesstorleken. Men för att kunna ta reda på decimaltalstypernas

noggrannhet behöver man veta hur decimaltal förvandlas till ettor och nollor, vilket

103

är mer komplicerat än hos heltal. Utan att behöva gå in närmare på detta kan vi

konstatera att man vid representation av decimaltal i datorn kan lita på 7 siffror om

man definierar sina variabler som float. Utför man inga eller ganska enkla beräk-

ningar borde detta räcka. Är däremot variablerna involverade i lite mer komplexa

beräkningar bör man snarare hålla sig till double där man kan lita på 15 siffror

vid den interna binära representationen vilket i de flesta praktiska sammanhang är

en tillräcklig noggrannhet. Högst noggrannhet har datatypen decimal med 28 siff-

rors precision. Observera att noggrannheten gäller antal (signifikanta) siffror och

inte antal decimaler.

 104

5.7 Automatisk typkonvertering

C# är ett strikt typbestämt programmeringsspråk vilket innebär att alla värden mås-

te ha en datatyp. Data utan datatyp kan inte bearbetas i ett C# program. Detta gäller

även för värden som är resultat av ett uttryck. I ett uttryck finns som regel flera

värden inblandade både som variabler och konstanter. Man kan inte utesluta att de

har olika datatyper. Om flera olika datatyper är inblandade i ett uttryck vilken data-

typ ska då beräkningen slutligen resultera i? Vilken datatyp ska t.ex. a+b få om a

är av typ int, men b av typ double? För att lösa problemet tillämpar C#-kompi-

latorn automatiskt vissa regler som är begränsade till enkla datatyper, med undan-

tag för datatypen bool vars värden aldrig kan omvandlas till andra typer.

I avsnitt 5.3 behandlades explicit typkonvertering (sid 94) där programmeraren själv

uttryckligen kan bestämma när och hur ett värde ska byta datatyp. Vi använde ex-

plicit typkonvertering ofta för att få reda på tecknens ASCII-koder genom att om-

vandla värden av typ char till värden av typ int och omvänt. Men typkonverte-

ringar kan även ske automatiskt (implicit) och utan vårt uttryckliga medgivande i

aritmetiska uttryck eller vid tilldelningar. Vid tilldelningar därför att tilldelnings-

tecknet = också är en operator precis som de aritmetiska operatorerna +, -, *,

/ eller % .

Regeln för automatisk typkonvertering

Automatisk typkonvertering kan förekomma vid användning av tilldelningsopera-

torn eller i aritmetiska uttryck enligt följande regel:

Är olika enkla datatyper involverade vid en tilldelning, konverteras

till den datatyp som står till vänster om tilldelningstecknet, endast

om denne står högre i de enkla datatypernas hierarki:

sbyte  byte  char  short  ushort  int  uint

 long  ulong  float  double  decimal

Är olika enkla datatyper involverade i ett aritmetiskt uttryck, kon-

verteras till den högsta förekommande datatypen enligt hierarkin.

Hierarkin ovan definieras efter datatypernas tilldelade minnesutrymmen samt av att

decimaltalstyperna står högre än heltalstyperna. Enligt denna regel får endast auto-

matisk typkonvertering uppåt förekomma. Inget värde kan omvandlas automatiskt

nedåt via tilldelning: Kompilatorn sätter stopp för det. Därför leder t.ex. satsen int

a = 3.4; till kompileringsfelet:

Cannot implicitly convert type 'double' to 'int'.
An explicit conversion exists (are you missing a cast?)

Med 'double' menar kompilatorn den decimala konstanten 3.4 som tolkas som

double och därför med 8 bytes minne (sid 86/105) inte kan omvandlas till och lag-

ras som en int med 4 bytes minne pga risken för förlust av noggrannhet dvs trun-

105

Decimaltalskonstanter lagras automatiskt som double.

Heltalskonstanter lagras automatiskt som int.

kering av siffror. Däremot går det bra att kompilera och även köra float b = 3;

därför att 3 som int kan lagras som en float enligt de enkla datatypernas hierar-

ki: Här skulle ske en automatisk typkonvertering uppåt. Med cast menar kompila-

torn explicit typkonvertering och undrar om man har missat en sådan. Det går näm-

ligen lika bra att kompilera och köra int a = (int) 3.4; där vi själva väljer att

trunkera decimaltalet och lagra endast heltalsdelen 3 i variabeln a och ansvara för

förlust av noggrannhet.

Regeln för automatisk typkonvertering motiveras av omsorgen för att inte tappa

eller förfalska information genom att överföra ett värde från en större minnesplats

till en mindre. Vill man ändå ta en sådan risk ska man göra det själv med explicit

typkonvertering vilket alltid är möjligt. C# vägrar göra det automatiskt.

En direkt konsekvens av regeln för automatisk typkonvertering är följande regel

vars verkan vi redan konstaterade i programmet Decimal (sid 101):

Filosofin att inte tappa eller förfalska information leder till att t.ex. den decimala

konstanten 3.4 får den datatyp som står högst i de enkla datatypernas hierarki,

nämligen double. Man kan tolka regeln även så här: Är ingen datatyp specificerad

via deklarationen tas den högsta för att vara på den säkra sidan.

int-regeln

Det är anmärkningsvärt att automatisk typkonvertering även kan ske när samma

datatyper är inblandade i ett uttryck, t.ex.: Summan av två short-variabler om-

vandlas automatiskt till int – ett exempel på int-regeln:

Är endast heltalstyperna inblandade i ett aritmetiskt uttryck,

omvandlas uttryckets värde automatiskt till datatypen int.

int-regeln ska förhindra overflow (sid 89): När t.ex. två short-värden som var

och en ryms i 2 bytes, adderas eller multipliceras med varandra, ska resultatet lag-

ras i en int dvs i 4 bytes eftersom det finns risken att resultatet överskrider short-

gränsen. Därför meddelar också C#-kompilatorn Cannot implicitly convert type 'int' to

'short' … när man försöker att tilldela resultatet av en räkneoperation med short-

variabler till en short-variabel. Ett exempel på det visas i programmet AutoConv

på nästa sida. En direkt konsekvens av int-regeln är följande regel:

Fattas decimalpunkten i en konstant tolkas den inte längre som decimal- utan som

heltal. Men här tas inte den högsta typen bland heltalen som vore long, utan int

 106

enligt int-regeln. Så, det verkar så som att int är en slags favoritdatatyp för heltal

därför att alla rutiner kring int är optimerade så att C# räknar snabbast med int.

En annan sak är det med namngivna (symboliska) konstanter som definieras med

det reserverade ordet const framför datatypen. Deras datatyp specificeras explicit

så att reglerna om konstanter borde preciseras så här: Endast icke-namngivna deci-

maltalskonstanter lagras automatiskt som double och ickenamngivna heltalskon-

stanter lagras automatiskt som int. Följande program demonstrerar automatisk

typkonvertering samt int-regeln:

// AutoConv.cs

// int-regeln gör att summan av 2 shortvariabler blir automa-

// tiskt int och ger kompileringsfel när den tilldelas till

// en short. Automatisk typkonvertering uppåt: från short

// till int. Explicit typkonvertering kan leda till felaktigt

// resultat pga overflow

using System;

class AutoConv

{
 static void Main()

 {
 short s1 = 1;

 short s2 = 2;

 // short not_ok = s1 + s2; // Ger kompileringsfel:

 // Cannot implicitly convert

 // type 'int' to 'short'

 short ok = (short) (s1 + s2); // int-regeln gör explicit

 // typkonvertering nödvändig

 short max = Int16.MaxValue; // short-gränsen

 int hel = max; // Automatisk typkonvertering

 // från short till int

 short fel = (short) (hel+1);// Overflow: hel+1 över-

 // skrider short-gränsen

 Console.WriteLine("\n\t" +

 "Rätt short-värde = " + ok + "\n\t" +

 "short-gränsen = " + max + "\n\t" +

 "Overflow: Fel short = " + fel + ": slår runt!\n\t" +

 "Rätt int-värde = " + (hel + 1) + '\n');

 }
}

En körning visar följande utskrift:

 Rätt short-värde = 3

 short-gränsen = 32767

 Overflow: Fel short = -32768: slår runt!

 Rätt int-värde = 32768

107

Programmet AutoConv på förra sidan är ett exempel på hur mycket man kan lära

sig av sina misstag: Den bortkommenterade satsen

short not_ok = s1 + s2;

ger kompileringsfel av följande skäl: För det första bildas uttrycket s1 + s2 dvs

summan av två short-variabler med värdena 1 och 2. Resultatet 3 omvandlas en-

ligt int-regeln automatiskt till en int. Så långt förekommer inget fel. Men när

satsen sedan försöker att tilldela detta int-värde till short-variabeln not_ok blir

det fel eftersom short står lägre än int i de enkla datatypernas hierarki: Automa-

tisk typkonvertering vid tilldelning kan i C# aldrig göras nedåt utan endast uppåt i

hierarkin. Additionsoperatorn + i uttrycket s1 + s2 är orsaken till att uttryckets

resultat omvandlas till int. För att kunna kompilera blir det nödvändigt att explicit

typkonvertera ”tillbaka” så att säga till short för att kunna tilldela summan till en

short-variabel:
 short ok = (short) (s1 + s2);

Först nu är det möjligt att skriva ut rätt short-värde med variabeln ok. Sedan tar

programmet AutoConv fram övre gränsen till datatypen short med hjälp av den

lagrade konstanten Int16.MaxValue och tilldelar den till short-variabeln max

som sedan skrivs ut korrekt: 32 767 – samma värde vi hade i utskriften av de enkla

datatypernas gränser (sid 88) och största värdet som (med tecknet) fortfarande ryms

i 2 bytes dvs värdet fyller utrymmet med 16 ettor, 1 för tecknet och 15 för värdet 32

767. I nästa sats vidarebefordras detta värde till en int-variabel:

int hel = max;

Vid denna tilldelning sker nu en automatisk typkonvertering från short till int

och det går bra eftersom det är uppåt: int står i de enkla datatypernas hierarki hög-

re än short. 32 767 lagras nu både i max och hel, med skillnaden att det lagras i 2

bytes i max, men i 4 bytes i hel. När vi bildar hel+1 är det ok så länge vi lagrar

det i en int. Men i satsen short fel = (short) (hel+1); görs försöket att ex-

plicit omvandla det till short för att lagra det i en short-variabel. Utan den expli-

cita typkonverteringen hade ju koden inte kunnat kompileras därför att C# vägrar

att automatisk typkonvertera nedåt från int till short. Men även om den explicita

typkonverteringen kan kompileras genererar den det felaktiga resultatet -32 768

som utskriften av variabeln fel visar: hel+1 dvs 32 768 ryms inte i 2 bytes – ett

exempel på overflow (sid 89). Det överskridna värdet ”slår runt” och hamnar på den

negativa sidan av short-datatypens tillåtna talområdet. Programmet räknar modu-

lo 2
n
 där n är antalet bitar i minnesutrymme som står till förfogande för den aktuel-

la datatypen. Här är n pga short 2 bytes dvs 16 bitar. Det blir alltså modulo 2
16

 där

2
16

 = 65 536. Värdet ”slår runt” och hamnar på andra ändan av short:s talområde

innebär här: 32 768 – 65 536 = -32 768. Om modulo läs på sid 75. Det farliga med

overflow är att kompilatorn inte ger något felmeddelande, inte ens en varning, och

att exekveringen av programmet inte påverkas. Om man inte skriver ut värdet till

fel märker man inte ens felet. Programmet ”fungerar”, men producerar ett felak-

tigt resultat.

 108

Sammanfattning av kapitel 4 och 5

 Variabel = platshållare (minnescell) för ett värde (minnescellens innehåll).

 Datatyp = föreskrift om hur en viss typ av data ska lagras i datorn, hur

mycket minne den tar och därmed hur stora värden den kan lagra samt vilka

operationer man får utföra med denna typ av data.

 Definition innebär att skapa en variabel genom allokering av minnes-

utrymme för variabeln. Det görs genom att ange variabelns datatyp.

 Deklaration innebär att ange en variabels namn och datatyp.

 Tilldelning innebär att ge en variabel ett värde (att placera data i en

minnescell) och kan göras med tilldelningsoperatorn eller via inläsning.

 Initiering innebär att tilldela en variabel första gången ett värde.

 Regler för användning av variabler:

 En variabel måste definieras dvs skapas med en datatyp innan den kan

initieras. Skälet är att C# är ett strikt typbestämt programmeringsspråk.

 En variabel måste vara definierad och initierad innan den får användas.

 Enkla datatyper representerar endast ett värde åt gången dvs ett heltal, ett

decimaltal, ett tecken eller ett sanningsvärde.

Följande enkla datatyper är fördefinierade: bool för sanningsvärden; char

för tecken; sbyte, byte, short, ushort, int, uint, long, ulong för

heltal samt float, och double och decimal för decimaltal .

 Varje enkel datatyp har en tilldelad storlek på minnesutrymme som i C# är

enhetlig för alla plattformar. Överskridandet av de föreskrivna gränserna le-

der till overflow (sid 89).

 När olika enkla datatyper är inblandade i en tilldelning eller i ett aritmetiskt

uttryck utför kompilatorn automatisk typkonvertering enligt följande regler:

1. Vid tilldelningar omvandlas till datatypen till vänster om tilldelnings-

tecknet endast om denne står högre i de enkla datatypernas hierarki.

2. Vid aritmetiska uttryck omvandlas till den högsta i uttrycket inblanda-

de datatypen enligt datatyphierarkin. Decimaltalskonstanter lagras som

double.

3. int-regeln: Är endast heltal inblandade i ett aritmetiskt uttryck, om-

vandlas uttryckets värde automatiskt till int. Heltalskonstanter lagras

som int.

 Explicit typkonvertering kan göras med koden: (datatyp) uttryck

109

Övningar till kapitel 5

5.1 Skriv ett program som läser in 3 tecken och skriver ut dem i omvänd ordning.

Tips: I Python kan detta problem lösas med följande kod:

text = input('\nMata in tre tecken skilda med mellanslag:\t')

tecken1 = text[0]
tecken2 = text[2]
tecken3 = text[4]

print('\nTecknen i omvänd ordning:\t\t ',
 tecken3, tecken2, tecken1, '\n')

 Försök att hitta en egen lösning, annars översätt pythonkoden ovan till C#.

5.2 Skriv ett program som läser in en gemen och skriver ut dess versal och se-

dan läser in en versal och skriver ut dess gemen.

5.3 Experimentera med programmet Int2char (sid 95) för att ta reda på ASCII-

koden till datorns ljudsignal. Dvs kör så länge tills du vid inmatning av ett

heltal hör ett pip från datorn. Ändra datatypen till variabeln code från int till

char. Åtgärda kompileringsfelet. Hör du fortfarande pipet när du matar in

ASCII-koden för ljudsignal? Förklara.

5.4 Kryptering av tecken: Skriv ett program som läser in ett tecken och förskju-

ter det i teckentabellen med ett visst antal steg som en slags krypterings-

nyckel. Skriv ut både det inlästa och det förskjutna tecknet på ett användar-

vänligt sätt. Börja med att hårdkoda krypteringsnyckeln och fortsätt med att

läsa in den.

5.5 Kryptering av ord: Skriv ett program som läser in fem tecken och skriver ut

dem förskjutna med ett steg i ASCII-tabellen så att t.ex. inmatningen Kalle

ger utskriften Lbmmf. Återställ sedan det krypterade ordet. Vidareutveckla

programmet genom att utöka och läsa in antalet steg (krypteringsnyckeln).

5.6 Om ökningsoperatorn ++ (sid 77) har vi lärt oss:

 letter++; gör samma sak som letter = letter + 1;

 Åndå ger programmet Ovn_5_6 kompileringsfel om vi ersätter satsen

letter++; med letter = letter + 1; Varför? Förklara! Försök att åt-

gärda felet genom att ersätta letter++; med en modifikation av letter =
letter + 1;

 110

using System;

class Ovn_5_6

{
 static void Main()

 {
 char letter = 'Y';

 Console.Write('Tecknet " + letter + " har koden " +

 (int) letter);

 letter++;

 Console.WriteLine("\nTecknet " + letter +

 " har koden " + (int) letter);

 }
}

5.7 Ta reda på vilka escapesekvenser som gäller för de svenska specialtecknen

genom att köra programmet Escape (sid 98) och skriv ut de sammanhängan-

de strängerna äåöÄÅÖ och ä å ö Ä Å Ö med de hexadecimala escape-

sekvenserna istället för direkt. Gör samma sak med de decimala Unicode-

koderna.

111

Kapitel 6

Kontrollstrukturer

 Ämne Sida Program

6.1 Vad är kontrollstrukturer? 112
6.2 Enkel selektion: if-satsen 113 SimpleIf

­ Jämförelseoperatorer 115

­ Sortering med flera satser i if 116 MiniSort

­ Villkorlig initiering 118 (Un)CondInit

6.3 Tvåvägsval: if-else-satsen 121 IfElse

6.4 Flervägsval: switch-satsen 123 Switch

6.5 Spelserien Gissa tal 128

­ med nästlad if-else 128 GuessIfElse

­ med kombination av switch och if-else 129 GuessSwitch

6.6 Efter-testad repetition: do-satsen 131 GuessDo

­ Hantering av slumptal 134 DoRand

­ Gissa tal med slumptal 135 GuessDoRand

­ Evighetsloop 138
6.7 För-testad repetition: while-satsen 139

­ ASCII-tabellen med while 140 Ascii

6.8 Bestämd repetition: for-satsen 142 ForRandom

­ Räckvidden av for-satsens räknare 145

6.9 Nästlade for-satser 147 NestedFor

­ Multiplikationstabellen 149 MultipTab

 Övningar till kapitel 6 (Projekt Pyramiden) 151

 112

 6.1 Vad är kontrollstrukturer?

Kontrollstrukturer är algoritmers byggstenar – programmeringens mest grundläg-

gande verktyg. Det finns generella strukturer i alla algoritmer som är oberoende av

det aktuella problemet. Därför kan de användas som byggstenar vid beskrivning av

alla algoritmer som i sin tur ligger till grund för alla datorprogram, oberoende av

programmeringsspråk.

Kontrollstrukturer består av tre grundläggande typer:

 Sekvens (följd)

 Selektion (val)

- Enkel selektion

- Tvåvägsval

- Flervägsval

 Repetition (upprepning)

- Förtestad repetition

- Eftertestad repetition

- Bestämd repetition

Alla datorprogram är kombinationer av dessa tre typer av kontrollstrukturer. I detta

kapitel ska vi gå igenom alla tre och lära oss hur de kodas i C#. Kontrollstrukturer

används och är i princip uppbyggda enligt samma logik i alla programmeringsspråk.

Både Javas och C#:s kontrollstrukturer har – när det gäller syntaxen – tagits över

från och är i princip identiska med C/C++ bortsett från några detaljer. Ännu längre

tillbaka i historien kan man hitta deras spår i de första strukturerade språken som Al-

gol, Simula och Pascal.

Sekvens (följd)

Redan i algoritmdefinitionen förekommer begreppet följd:

 ”En algoritm är en följd av precisa anvisningar, s.k. ele-

 mentära instruktioner, som löser ett givet problem . . . ”

En sekvens är alltså en följd av instruktioner (bilden till höger)

– den enklast möjliga strukturen som tänkas kan. Alla våra

program hittills består endast av sekvenser. Varje instruktion

kan i sin tur innehålla andra kontrollstrukturer. Så även om se-

kvensen är en enkel struktur, kan nästlade sammansättningar av .

den med sig själv (underinstruktioner) och andra kontrollstruk- .

turer ändå ge en ganska invecklad bild. .

Selektion (val)

Kontrollstrukturen selektion är mer komplex än sekvens. Beroende på antalet alter-

nativ man kan välja mellan tre olika varianter: Enkel selektion, två- eller flervägsval.

Vi börjar med den första.

Instruktion 1

Instruktion 2

113

6.2 Enkel selektion: if-satsen

Enkel selektion är ett val utan alternativ dvs valet mellan att göra något eller ingen-

ting. Det som avgör valet är ett villkor. Är villkoret sant, utförs en eller flera instruk-

tioner. Är villkoret falskt, görs ingenting.

 Pseudokod Flödesschema

 OM villkor uppfyllt sant

 instruktion(er)

 falskt

I C# kallas den enkla selektionen för if-sats och kodas generellt på följande sätt:

if (condition)

{

 statement(s);

}

Första raden kallas huvudet, resten är kroppen som omsluts av klamrarna { och }.

Består kroppen endast av en sats kan klamrarna utelämnas:

if (condition)

 statement;

// SimpleIf.cs

// Förhindrar division med 0 (& därmed programavbrott) med if

using System;

class SimpleIf

{
 static void Main()

 {
 Console.Write("\n\tMata in ett heltal: ");

 int no1 = int.Parse(Console.ReadLine());

 Console.Write("\n\tMata in ett heltal till: ");

 int no2 = int.Parse(Console.ReadLine());

 if (no2 != 0)

 Console.WriteLine("\n\t" + no1 + " heltalsdividerad" +

 " med " + no2 + " blir " + no1/no2 + '\n');

 if (no2 == 0)
 Console.WriteLine("\n\tOBS!\n\t" +

 "Du har matat in 0 för det andra talet.\n\t" +

 "Det går inte att dividera med 0.\n");

 }
}

Villkor Instruktion(er)

 114

Programmet läser in två heltal och dividerar dem med varandra. if-satserna gör att

division endast sker om det andra talet no2 (det som ska divideras med) inte är 0,

för att förhindra den matematiskt odefinierade divisionen med 0. Följande dialog

får man när man matar in ett värde skilt ifrån 0 till det andra talet:

 Mata in ett heltal: 19

 Mata in ett heltal till: 5

 19 heltalsdividerad med 5 blir 3

P.g.a. datatypen int till no1 och no2 blir det heltalsdivision: 19/5 ger 3 hela, res-

ten skrivs inte ut här. Matas in däremot 0 till det andra talet uppstår följande dia-

log:

 Mata in ett heltal: 8

 Mata in ett heltal till: 0

 OBS!

 Du har matat in 0 för det andra talet.

 Det går inte att dividera med 0.

Inmatning av 0 till det andra talet genererar ett ”felmeddelande”, annars får man ut

från programmet SimpleIf resultatet av divisionen för vilka heltal som helst. Låt

oss nu titta närmare på if-satserna som åstadkommer distinktionen mellan dessa

två alternativ: Det finns två if-satser i programmet SimpleIf. Den första if-sat-

sens huvud
 if (no2 != 0)

betyder i termer av pseudokod: OM no2 är skilt ifrån 0

Huvudet inleds med det reserverade ordet if utan att avsluta raden med semiko-

lon. Utan semikolon, därför att if-satsen inte är avslutad än i slutet av denna rad.

Sedan ska ju kroppen följa. Efter if skrivs ett villkor (condition) inom parentes.

Observera att parenteserna tillhör syntaxen och inte får under några omständighe-

ter utelämnas. Men hur skriver man villkor i C#? Vi blir påminda om algoritmer

när vi hör begreppet villkor.

Villkor

Det är viktigt att skilja mellan begreppen villkor och instruktion. Enklast kan ett

villkor förklaras som en fråga som endast kan besvaras jakande eller nekande: är

no2 skilt ifrån 0, ja eller nej? Närmare bestämt är ett villkor en utsaga som endast

kan vara sann eller falsk. Medan en instruktion är en handling som ska utföras kan

ett villkor endast testas för att få ut svaret ja eller nej, sant eller falskt. if (no2 !=

0) testar om no2 är skilt ifrån 0 eller ej. Variabeln no2:s värde jämförs med 0.

Finns icke-likhet mellan dessa värden är villkoret sant, annars är villkoret falskt.

115

Dubbeltecknet != (utan mellanslag) är en s.k. jämförelseoperator. Det är vanligt

att formulera villkor med jämförelseoperatorer. Icke lika med med symbolen != är

en av dem. Det finns fler som används i if-satsers villkor. Därför ska vi titta när-

mare på sådana operatorer.

Jämförelseoperatorer

 < mindre än

 <= mindre än eller lika med

 > större än

 >= större än eller lika med

 == lika med

 != icke lika med

De jämför två talvärden med varandra och returnerar jämförelsens resultat som ett

s.k. sanningsvärde dvs sant eller falskt, true eller false som är reserverade ord.

 2 talvärden 1 sanningsvärde: true eller false

Sanningsvärdena true och false är de enda värden som villkor kan anta varför

jämförelseoperatorer används för att skriva villkor. Exempel:

 number == 0
 number != 0

 7 > 5

 guessedNo <= 17

Observera att de jämförelseoperatorer som är dubbeltecken, inte får innehålla mel-

lanslag, annars tolkas de som respektive tecken och inte som jämförelseoperatorer.

T.ex. är == symbolen för lika med. Redan på sid 69 pratade vi om skillnaden

mellan likhet och tilldelning och poängterade att = i C# inte betyder likhet utan

tilldelning. Här har vi symbolen == för likhet. Medan tilldelningsoperatorn = före-

kommer i instruktioner (satser) används jämförelseoperatorn == i villkor, t.ex. i

villkoret till den andra if-satsen.

Så långt om if-satsens huvud. Sedan kommer if-satsens kropp som i programmet

SimpleIf består av en enda utskriftssats. Därför kan klamrarna { } kring kroppen

utelämnas. Men det vore inte heller fel att skriva dem. Villkorets sanningsvärde

avgör nu om kroppen dvs utskriftssatsen utförs eller ej. Är variabeln no2:s värde

icke lika med 0, utförs kroppen. Observera också att hela utskriftssatsen är indra-

gen för att markera att denna tillhör if-satsen och att den bildar if-satsens kropp

– en kodstil som hör till god programmeringssed och höjer kodens läslighet.

Den andra if-satsens huvud i programmet SimpleIf:

 if (no2 == 0)

betyder i termer av pseudokod: OM no2 är lika med 0

Jämförelse-

operator

 116

Precis som != är även dubbeltecknet == (utan mellanslag) en jämförelseoperator,

men står för lika med. Dvs värdet i variabeln no2 jämförs med 0. Finns likhet mel-

lan dem är if-satsens villkor sant, annars är villkoret falskt. Observera skillnaden

mellan likhet som kodas med två likhetstecken == och tilldelning vars kod är ett

likhetstecken =. Även den andra if-satsens kropp är en utskriftssats som skriver ut

ett felmeddelande om värdet 0 matas in som andra tal. På så sätt utförs inte divi-

sion med 0, för divisionen förekommer endast i den första if-sats som inte utförs

eftersom dess villkor blir falskt, när man matar in 0 som andra tal.

Flera satser i if

I programmet SimpleIf (sid 113) består båda if-satsers kroppar av en enda sats.

Därför räcker det med satsens semikolon för att avskilja kroppen från programmets

efterföljande satser. Men om if-satsens kropp består av flera satser måste klamrar-

na { och } markera kroppen. Hur ska annars kompilatorn skilja mellan if-kroppens

och de efterföljande satserna? I programmet MiniSort (sid 116) finns ett exempel

på detta. Men först ska vi titta på programmets algoritm som handlar om sortering:

Algoritm för platsbyte

Låt oss anta vi har två tecken char1 och char2 som vi vill byta pltas på. För att

kunna göra det behövs en tredje, temporär plats. Vi börjar med att lägga undan

char1 på den temporära platsen temp (steg 1). Sedan byter vi plats på char2 och

lägger det i char1 som tömdes i steg 1 (steg 2). Och slutligen, i steg 3, lägger vi

char1 som under tiden mellanlagrats i temp, in i char2 som tömdes i steg 2:

 1

 2 3

 char1 char2 temp

Illustrationen ovan är en grafisk beskrivning av algoritmen där 1, 2 och 3 anger

ordningen i den. Den tredje platsen temp, behövs, för att temporärt lägga undan det

felplacerade tecknet. I följande program inplementerar vi algoritmen ovan:

// MiniSort.cs

// Läser in 2 tecken och sorterar dem i teckentabellens ord-

// ning med hjälp av en algoritm för platsbyte av två objekt

using System;

class MiniSort

{
 static void Main()

 {
 char char1, char2, temp;

117

 Console.Write("\n\tTvå osorterade tecken:\n\n\t" +

 "Mata in två tecken skilda med mellanslag:\t");

 string text = Console.ReadLine();

 char1 = text[0]; // Första tecknet tas ut

 char2 = text[2]; // Andra tecknet tas ut

 if (char1 > char2) // tecknens ASCII-koder jämförs

 {
 temp = char1; // Algoritm för platsbyte

 char1 = char2; // av två tecken

 char2 = temp; // Flera satser i if

 }

 Console.WriteLine("\n\tDe två tecknen sorterade:\t\t\t"

 + char1 + ' ' + char2 + "\n");

 }
}

I följande körexempel byts plats på de inmatade tecknen Z och A som har blivit in-

matade i fel ordning. De sorteras enligt teckentabellens ordning:

 Två osorterade tecken:

 Mata in två tecken skilda med mellanslag: Z A

 De två tecknen sorterade: A Z

Algoritmens kärna ligger i if-satsen med sina tre satser. I den första satsen lägger

vi undan char1:s värde i temp (steg 1 i bilden ovan). I den andra satsen byter vi

plats på char2:s värde och lägger det i char1 (steg 2). Och slutligen läggs temp

som under tiden har mellanlagrat char1:s värde, in i char2 (steg 3). Platsbytet på

char1 och char2 äger endast rum om de inmatade teckenvärdena är felplacerade

dvs endast om char1 > char2. Annars behåller de sina platser.

I körexemplet ovan jämför if-satsens villkor char1 > char2 värdena Z och A

med varandra. Men tecken kan inte sättas i en relation av typ ”större än” till varan-

dra. I själva verket är det Unicode-koderna till Z och A som jämförs med varandra.

Det är endast tal som kan jämföras med varandra. Jämförelseoperatorn > behandlar

char-variablerna char1 och char2 som tal precis som aritmetiska operatorer gör.

Block

I C# kallas ett antal satser som omsluts av klamrarna { och } för ett block. Blockets

uppgift är att gruppera satserna inom klamrarna och avgränsa dem från andra delar

av programmet. Klamrarna är gränser mellan programmets olika delar. De sätter

gräns för variablers räckvidd. För att överskrida dem måste vissa regler om block-

struktur beaktas. Ibland kan blockets avslutande klammer t.o.m. ersätta ett ev. ef-

terföljande semikolon. Exempel på block fanns redan i vårt allra första program.

 118

Main()-metodens kropp bildar ett block, det s.k. Main()-blocket. För läslighetens

skull brukar blockets satser skrivas indragna. Dessutom placerar man blockets

klamrar på separata rader. Alternativt kan man placera den inledande klammern i

slutet av huvudets rad och den avslutande i blockets slut på separat rad. Jag väljer

dock att använda den förstnämnda stilkonventionen då denna ger en mer lättläst

kod: Man kan lättare para ihop de inledande och avslutande klamrarna.

I programexemplet MiniSort kodas sorteringsalgoritmen i de tre tilldelningssatser

som finns i if-satsens kropp. Avgränsningen innebär här att alla tre satser hör till

if-satsen och att alla tre ska utföras i fall att if-satsens villkor är sant. Om block-

markeringen med klamrarna fattades, skulle endast den första av de tre satserna

utföras, vilket skulle innebära att sorteringsalgoritmen inte utförs i sin helhet, dvs

ingen sortering sker.

Tomma if-satser

Vad händer om man av misstag skriver ett semikolon i slutet på if-satsens huvud?

Dvs så här: if (no2 == 0); Kompilatorn kan tolka koden endast som en tom if-

sats dvs OM no2 lika med 0 gör ingenting! Semikolonet avslutar if-satsen då det

inte finns någon sats mellan villkoret och semikolonet, dvs kroppen är tom. Krop-

pen som följer kommer i alla fall att utföras och inte bara om no2 är lika med 0.

Genom att skriva semikolonet i slutet på if-huvudet, kopplar man bort kroppen

från if-satsen och dess villkor. Tomma if-satser är i regel meningslösa även om

de kan kompileras. Se därför upp för regeln vi nämnde inledningsvis: if-satsens

huvud får inte avslutas med semikolon om man inte uttryckligen vill ha en tom if-

sats.

Villkorlig initiering

Även om man i C# har tagit över kontrollstrukturers syntax från C++ förekommer

små skillnader. En av dem är villkorlig initiering av variabler som inte får göras i

C#, men är tillåten i C++. Det handlar inte om kontrollstrukturers syntax utan om

behandlingen av variabler där C# har en striktare policy än C++ som syftar åt mer

stabilitet av koden. Variabler deklarerade till enkla datatyper i en metod – och detta

gäller förstås även för Main()-metoden – måste initieras innan (om) de används. I

C# får initieringen inte vara villkorlig dvs stå i en if-sats. Närmare bestämt får ini-

tieringen inte skrivas i kroppen till en if-sats vars villkor involverar variabler. Det-

ta gäller oavsett villkorets sanningsvärde. Även om villkoret är sant kan koden inte

kompileras om variabeln initieras i if-satsen och villkoret är formulerat med varia-

bler. I följande program står initieringen av variabeln letter i en if-sats och är

därmed beroende av if-satsens villkor i vilket variabeln i är involverad. Därför

kan koden inte kompileras fast villkoret i == 0 är pga i:s initiering sant:

119

// CondInit.cs

// Ger kompileringsfel pga villkorlig initiering

// av variabeln tecken i if-satsen

using System;

class CondInit

{
 static void Main()

 {
 char letter;

 int i = 0;

 if (i == 0)
 letter = 'a'; // Villkorlig initiering

 Console.WriteLine(letter);

 }
}

Kompilatorn genererar felmeddelandet: Use of unassigned local variable 'letter'

Dvs C#-kompilatorn anser variabeln letter som icke-tilldelad. Samma felmedde-

lande får man om man missar att tilldela en variabel. Problemets lösning är att helt

och hållet koppla bort tilldelningen från villkoret och skriva den fristående:

// UncondInit.cs // Kan kompileras

using System;

class UncondInit

{
 static void Main()

 {
 char letter;

 int i = 0;

// if (i == 0)
 letter = 'a'; // Ovillkorlig initiering

 Console.WriteLine("\n " +

 "Nu när if är bortkommenterad är variabeln letter " +

 "initierad\ntill " letter + "\n utan villkor!\n");

 }
}

Istället för kompileringsfel får vi nu följande utskrift när vi kör:

 Nu när if är bortkommenterad är variabeln letter initierad

 till a

 utan villkor!

 120

I programmet UncondInit är initieringen av letter helt oberoende av något vill-

kor. Raden som inleder if och därmed hela if-satsen är bortkommenterad. Även

om initieringen av letter fortfarande står indragen, är den en fristående sats utan

villkor.

Anmärkningsvärt är att programmet CondInit skulle kunna kompileras om man

byter ut if-satsens huvud mot if (1 == 1) eller if (true) dvs om endast kon-

stanter är involverade i villkoret. Endast ’variabelt’ formulerade villkorliga ini-

tieringar sätter C#-kompilatorn stopp för. Därför måste regeln om villkorlig initie-

ring formuleras så här:

i == 1 är ett icke-konstant villkor, därför att dess sanningsvärde är beroende av va-

riabeln i:s värde.

Förbudet mot villkorlig initiering är inte begränsad till if-satser utan gäller även i

andra kontrollstrukturer där villkor är inblandade. T.ex. använder även programmet

Switch i övernästa avsnitt ovillkorlig initiering (sid 125). Ett annat exempel kan

man hitta i programmet NestedFor (sid 142).

Variabler vars initiering är beroende av icke-konstanta villkor leder

i C# till kompileringsfel.

121

6.3 Tvåvägsval: if-else-satsen

Tvåvägsval är ett val mellan två alternativ. Precis som i if-satsen görs valet pga

ett enda villkor. Är villkoret sant, utförs en eller flera instruktioner. Låt oss kalla

dessa alternativ 1. Är villkoret falskt, utförs en annan uppsättning instruktioner

som vi kallar alternativ 2. OM-ANNARS-satsen är ett exempel på tvåvägsval. All-

mänt kan tvåvägsvalet beskrivas så här:

 Pseudokod Flödesschema

 OM villkor uppfyllt sant

 alternativ 1

 ANNARS

 alternativ 2 falskt

där

alternativ 1 och

alternativ 2 är två olika instruktioner

eller uppsättningar av instruktioner.

Endast ett av de två alternativen kommer att utföras, beroende på villkorets san-

ningsvärde. Då sanningsvärdena sant och falskt utesluter varandra, utesluter även

de båda alternativen varandra. Därför går flödet (pilen i flödesschemat) efter alter-

nativ 1 till flödet efter alternativ 2. Det vore logiskt fel att leda pilen till ett ställe

före alternativ 2. if-else-sats kodas generellt på följande sätt:

if (condition)

{

 statement(s)1;

}
else

{

 statement(s)2;

}

Om if- eller else-blocket består endast av en sats kan klamrarna { och } ute-

lämnas. Anta att båda block består bara av en sats, då förenklas formen avsevärt:

if (condition)

 statement1;

else

 statement2;

Observera att varje sats i if-else-satsen måste avslutas med semikolon enligt

semikolonets roll i C# som satsavslutningstecknet. Detta gäller även för den allra

Villkor Alternativ 1

Alternativ 2

 122

sista satsen i ett block och för statement1 ovan strax före else. Därför förekom-

mer flera semikolon – minst två – även om vi pratar om en if-else-sats, vilket

beror på att if-else-satsen är en huvudsats som innehåller flera delsatser, minst

två. Jämför detta med huvud- och underinstruktioner i algoritmer. Följande exem-

pel visar if-else-satsen med endast en sats i respektive if-else-del:

// IfElse.cs

// Läser in ett heltal och avgör om det är jämnt eller udda

// Tvåvägsval: if-else-satsen med EN sats i resp. if-else-del

using System;

class IfElse

{
 static void Main()

 {
 Console.Write("\n\tMata in ett heltal:\t");

 int number = int.Parse(Console.ReadLine());

 if (number % 2 == 0)
 Console.WriteLine("\n\t" +

 "Det inmatade talet " + number + " är jämnt.\n");

 else

 Console.WriteLine("\n\t" +

 "Det inmatade talet " + number + " är udda.\n") ;

 }
}

Körexempel av programmet IfElse med ett udda tal som inmatning ger:

 Mata in ett heltal: 5

 Det inmatade talet 5 är udda.

Med ett jämnt tal som inmatning får vi följande dialog:

 Mata in ett heltal: 6

 Det inmatade talet 6 är jämnt.

Det egentliga jobbet – nämligen att avgöra mellan jämnt och udda – har gjorts med

hjälp av modulooperatorn % som används i if-satsens huvud:

 if (number % 2 == 0)

och betyder: OM resten vid heltalsdivision av number med 2 är lika med 0

9 % 2 t.ex. ger 1 dvs inte 0, därför är 9 udda. 8 % 2 däremot ger 0, därför är 8 ett

jämnt tal. Alla jämna tal ger resten 0 vid heltalsdivision med 2. Alla udda tal ger

resten 1 vid heltalsdivision med 2. Om modulooperatorn läs på sid 75.

123

6.4 Flervägsval

Flervägsval – valet mellan fler än två alternativ – kan programmeras på olika sätt.

Det enklaste sättet är att beskriva flervägsval med flera tvåvägsval som antingen

följer efter varandra eller är nästlade i varandra. Att rada upp flera if- eller if-

else-satser efter varandra är inget fel, men kan i praktiken ha sina begränsningar.

När du kommit så här långt i boken bör du klara av det på egen hand. Lite svårare

är det att nästla if- eller if-else-satser vilket vi kommer att ta upp lite längre

fram (sid 128). En annan möjlighet att programmera flervägsval är sammansatta

villkor. Standard-kontrollstrukturen däremot som ofta används för flervägsval och

har motsvarigheter i så gott somm alla programmeringsspråk, är den s.k. switch-

satsen. Vi börjar med den och kommer att fortsätta med de andra alternativen.

switch-satsen

En nästlad if-else-sats kan bli komplicerad och oöverskådlig när antalet al-

ternativ man ska välja emellan, växer. För att strukturera komplexiteten vid stora

antal alternativ har man i C# tagit fram kontrollstrukturen switch för flervägsval

som i vissa fall är enklare och mer överskådlig och i de flesta fall bättre struktu-

rerad än ett antal nästlade tvåvägsval, även om också den har vissa begränsningar

vilket kommer att diskuteras senare. Så här ser switch-satsens flödesschema och

pseudokod ut:

 Pseudokod Flödesschema

 ja

 VÄLJ fall ur nej

 Fall 1: Alternativ 1

 Fall 2: Alternativ 2 ja

 .

 .
 . nej

 Annars: Alternativ x .

 .
 .

Alternativ 1, 2, … innebär olika instruktioner eller olika uppsättningar instruk-

tioner och Fall 1, 2, … motsvarar olika villkor.

I C# kodas switch-satsen på följande sätt:

Alternativ 1 Fall 1

Alternativ 2 Fall 2

Alternativ x

 124

switch (expression)

{
 case constant1 :

 statement(s)1;
 break;

 case constant2 :

 statement(s)2;
 break;
 .

 .

 .

 default:

 statement(s)x;
 break;

}

Första raden är switch-satsens huvud och får inte avslutas med semikolon. Resten

är switch-satsens kropp som består av ett block. Kroppens avslutande klammer

ersätter här det semikolon som skulle avsluta hela switch-satsen. expression i hu-

vudet är en slags väljare, ett uttryck (sid 71) som kan innehålla variabler och vars

värde får vara av typ int, char eller string. I det enklaste fallet – i våra exem-

pel förekommer bara det enklaste fallet – kan expression vara en int- eller char-

variabel. constant1, constant2 osv. däremot måste vara konstanta uttryck som inte

får innehålla variabler. När switch-satsen exekveras, jämförs expression i huvudet

en i taget med alla konstanter som står efter case. Jämförelsen innebär:

if (expression == constant1)

if (expression == constant2)
 .

 .

 .

Då blir villkoren som är dolda i switch-satsen avslöjade: Man ser att de är hård-

kodade med operatorn == och inte kan ersättas med andra jämförelseoperatorer.

Två enskilda värden kan jämföras med varandra endast på likhet. För att testa om

ett värde ligger i ett intervall (olikheter) kan nästlad if-else användas. Två iden-

tiska konstanter i en switch-sats leder till kompileringsfel.

Om likhet föreligger mellan expression och en konstant, så kommer man in i

switch-satsens kropp och utför alla satser som följer case tills break bryter

switch-satsen eller kroppen slutar. Programmet utför alltså inte bara de satser som

omedelbart följer det case där likheten inträffar, utan alla satser som följer ända

tills en break-sats kommer. switch-satsen väljer endast ett fall bland flera, så att

varje case måste avslutas med break. Till skillnad från C++ och Java är break-

satsen i C# obligatorisk. Det finns inte möjligheten att utelämna break eller skriva

”tomma” case-satser. Inte ens det allra sista break i default-satsen får inte ute-

lämnas. Gör man det ger kompilatorn felmeddelandet: Control cannot fall through

from one case label ('default:') to another.

125

Följande program demonstrerar switch-satsen:

// Switch.cs

// En enkel kalkylator: Flervägsval med switch-satsen

using System;

class Switch

{
 static void Main()

 {
 char op;

 double no1, no2, answer = 0;

 Console.Write("\n\tMata in no1:\t");

 no1 = Convert.ToDouble(Console.ReadLine());

 Console.Write("\n\tMata in en " +

 "operator +, -, *, / eller ^ :\t");

 op = Convert.ToChar(Console.ReadLine());

 Console.Write("\n\tMata in no2:\t");

 no2 = Convert.ToDouble(Console.ReadLine());

 switch (op) // switch börjar

 {
 case '+':

 answer = no1 + no2;

 break;

 case '-':

 answer = no1 - no2;

 break;

 case '*':

 answer = no1 * no2;

 break;

 case '/':

 answer = no1 / no2;

 break;

 case '^':

 answer = Math.Pow(no1, no2);

 break;

 default:

 Console.WriteLine("\n\tOBS! Felaktig inmatning:" +

 "\n\tDu får mata in endast +, -, *, / eller ^ " +

 "som operator.\n\n");

 op = '?';

 break;

 } // switch slutar

 if (op != '?')

 Console.WriteLine("\n\tResultat:\t" + no1 + " " +

 op + " " + no2 + " = " + answer + "\n\n");

 }
}

 126

Vi matar in först ett tal, sedan ett av tecknen +, -, *, / eller ^ och sist ett tal till, där

^ ska utföra operationen upphöjt till. Resultatet av resp. räkneoperation skrivs ut

om man följer instruktionerna. I switch-satsen väljs det inmatade alternativet

bland de fem symbolerna för räknesätten och räkneoperationen utförs. Medan talen

deklareras som double är symbolen för räknesättet en char-variabel som kallas

op och används i switch-satsen som väljare och ska stå för operator. Valet av det

mer beskrivande namnet operator var inte möjligt eftersom operator är ett reser-

verat ord i C# (sid 36). En körning med korrekt inmatning ger följande dialog:

 Mata in no1: 24,5

 Mata in en operator +, -, *, / eller ^ : ^

 Mata in no2: 7,8

 Resultat: 24,5 ^ 7,8 = 68469232237,5913

Här har operatorn ^ valts dvs upphöjt till (exponentiering). I programmet Switch

har operationen utförts med metoden Pow() som är fördefinierad i klassen Math

som i sin tur ligger i C#:s namnutrymme System – det bibliotek som inkluderas

med using-direktivet. Metoden Pow(a, b) tar in två double-parametrar a och b

och returnerar double-värdet a upphöjt till b enligt en inbyggd matematisk formel.

Matar man in trots instruktion en felaktig operator dvs något annat tecken än +, -,

*, / eller ^, får man ut en dialog av typ:

 Mata in no1: 3

 Mata in en operator +, -, *, / eller ^ : \

 Mata in no2: 5

 OBS! Felaktig inmatning:

 Du får mata in endast +, -, *, / eller ^ som operator.

Anledningen är att satsen för den här utskriften är placerad i switch-satsens

default-del som är motsvarigheten till else i de andra varianterna av selektion.

Om ingen likhet påträffats i någon case-sats mellan op och tecknen +, -, *, /, ^

utförs istället de satser som följer efter default. På så sätt har man möjligheten att

skriva kod som dokumenterar det just inträffade. Ofta väljer man att skriva ut nå-

gon form av felmeddelande. Användningen av default-satsen är frivillig. Den

kan utelämnas i switch-satsen, men rekommendationen är att ha den kvar.

case

I varje case testas ett villkor på likhet mellan expression och en konstant. Men vad

menas med likhet i case-satserna? Där står ju ingen likhet. Jo, det är därför att den

127

är gömd, den ingår implicit där. Som vi redan nämnde, görs i själva verket jämfö-

relsen på likhet vilket man ser när man översätter den första case-satsen till if:

if (op == '+')

{
 answer = no1 + no2;

 break;

}

break

är ett reserverat ord i C# som bryter programflödet i switch-satsen och i loopar

och skickar programflödet till den första satsen efter det block där break skrivs.

Alla satser mellan break och blockets avslutande klammer } hoppas över. I det här

fallet gör alltså break att programflödet lämnar switch-satsen. Detta garanterar

ett entydigt val mellan flera alternativ. break-satsen är som sagt obligatorisk.

Variabeln op läses in med: op = Convert.ToChar(Console.ReadLine());

som är ett nästlat anrop av två metoder: Först anropas ReadLine() som returnerar

tecknet vi matar in som ett String-objekt. Sedan anropas ToChar() för att om-

vanbdla strängen till char som tilldelas op. Sedan jämför switch-satsen variabeln

op:s värde med de fem teckenkonstanterna '+', '-', '*', '/' och '^'. Hittar den

likhet med någon av dem, utförs de satser som följer efter resp. case tills break

bryter switch-satsen. På så sätt träffas ett entydigt val mellan de fem alternativen.

Hittas ingen likhet, har användaren matat in ett tecken som inte är en räkneopera-

tion. Default-satsen skriver ut meddelandet OBS! Felaktig inmatning: …

Två frågor är kvar att besvara innan vi lämnar switch-satsen:

1. Varför är variabeln answer initierad till 0 direkt vid deklarationen före och

inte i switch-satsen där den används? Vi har redan sett att switch-satsen är

en strukturerad samling av if-satser. Och i if-satser är villkorlig initiering in-

te möjligt (sid 118). När regeln formulerades sades också att förbudet gällde

även för andra kontrollstrukturer. Faktiskt skulle en initiering av variabeln an-

swer i switch-satsen räknas som en villkorlig initiering och leda till kompi-

leringsfel därför att switch-satsens väljare är en variabel dvs en sådan initie-

ring vore då beroende av t.ex. villkoret op == '+' osv. Testa gärna!

2. Varför har variabeln op tilldelats ? i default-delen av switch-satsen? Det

har att göra med den if-sats som följer efter switch-satsen som har villkoret

op != '?' och skriver ut resultatet. Denna kombination ska förhindra att re-

sultatet dyker upp i fall och efter att felmeddelandet har skrivits ut. Resultatet

ska endast visas när variabeln op verkligen fått ett av värdena +, -, *, /, ^.

Den ska inte visas vid felaktig inmatning. Testa gärna genom att kommentera

bort op = '?'; i default-satsen.

 128

6.5 Spelserien Gissa tal

Här introduceras ett litet enkelt spel som i fortsättningen kommer att utvecklas steg

för steg över flera kapitel. I varje version av det kommer vi att lära oss ett nytt

koncept. Låt oss kalla det för Gissa tal: Användaren ska gissa fram ett hemligt tal

inom ett visst intervall. Talet är hårdkodat i de första och slumpat i de senare

versionerna av spelet. Som hjälp får användaren reda på inom vilket intervall talet

ska ligga samt om det gissade talet var mindre än, större än eller lika med det

hemliga talet. För att kunna ge den hjälp användaren behöver för sina gissningar,

måste programmet vid varje gissning avgöra vilket fall bland dessa tre alternativ

föreligger. Därför är Gissa tal-spelet programmeringstekniskt ett exempel på ett

trevägsval. Tänkbara utvecklingssteg är: Till att börja med kan det hemliga talet

vara en hårdkodad konstant. Sedan kan man gå över till att använda C#:s

slumptalsgenerator för att förse hemliga talet med slumptal i ett önskat intervall. Så

lär vi oss på köpet hanteringen av slumptal i C#. Önskemålet att kunna upprepa

gissningarna tills man gissat rätt och genomföra flera spelomgångar leder till att

skriva repetitioner (loopar) i C#. För att kontrollera loopars korrekta avslutning be-

höver man kunskaper i logik som vi ägnar oss åt i nästa kapitel. Slutligen kommer

vi att skriva spelet som en klass. Vi börjar med att lösa problemet med:

Nästlad if-else

Denna nästlade kontrollstruktur kan tänkas både som alternativ och komplement

till switch-satsen för att koda flervägsval. Vi kommer att lära oss båda möjlig-

heter. Men först ska vi använda den för att få fram Gissa tal-spelet, version 1:

// GuessIfElse.cs

// Flervägsval med nästlad if-else-sats

using System;

class GuessIfElse

{
 static void Main()

 {
 Console.Write("\n\tGissa ett tal mellan 1 och 20:\t");

 int guessedNo = int.Parse(Console.ReadLine());

 if (guessedNo <= 17)

 if (guessedNo == 17)
 Console.WriteLine("\u0007\n\tGrattis, du har " +

 "gissat rätt!\n");

 else

 Console.WriteLine("\n\tFör litet!\n");

 else

 Console.WriteLine("\n\tFör stort!\n");

 }
}

129

Programmet ovan läser in ett tal, avgör om det är mindre, lika med eller större än

17 och skriver ut det. Så här kan körningar se ut för de tre olika alternativen:

 Gissa ett tal mellan 1 och 20: 15

 För litet!

 Gissa ett tal mellan 1 och 20: 19

 För stort!

 Gissa ett tal mellan 1 och 20: 17

 Grattis, du har gissat rätt!

Samtidigt kommer programmet GuessIfElse producera datorljudet när man gis-

sat rätt pga escapesekvensen \u0007 skickas till konsolen om det inmatade tal som

läses in till variabeln guessedNo, är 17. Men låt oss titta hur den nästlade struk-

turen ser ut:
if (guessedNo <= 17)

 if (guessedNo == 17)
 ...

 else

 ...

else

 ...

Vi har en inre if-else-sats som är nästlad i if-delen av en yttre if-else-sats.

Den yttre if-else-satsen behandlar de två grupperade alternativen <= 17 i if-de-

len och alternativet > 17 i else-delen. Den inre if-else-satsen tar hand om

”gruppen”, splittrar upp den i sina beståndsdelar < 17 och == 17, behandlar == 17 i

if-delen och < 17 i else-delen. På så sätt återförs trevägsvalet till två tvåvägsval

som var och en löses med en if-else-sats. Man anar hur komplexiteten växer

med större antal alternativ. För att inte råka ut för det s.k. luriga-else-fenomenet –

så kallas det när något else paras med ”fel” if – låter vi alla else hitta ”rätt” if

genom att skriva if-else alltid som par och inte hoppa över något else. Regeln

är att else automatiskt paras till närmaste if. Man kan jämföra det med pa-

renteser.:Öppnar man en parentes måste man även stänga den.

Kombination av switch och if-else

Även om tomma case-satser löser trevägsvalet med olikheter, är det ju inte precis

någon elegant lösning att rada upp en massa case utan innehåll, särskilt om man

Yttre
Inre

 130

skulle vilja utvidga gissningsintervallets storlek. Alternativt kan problemet lösas

med en kombination av switch för if-else. Då det gäller att skilja mellan de tre

alternativen lika med, större än och mindre än 17 kan switch-satsen testa likheten

i en case-sats. När det är gjort, har man reducerat trevägsvalet till ett tvåvägsval

mellan större än och mindre än. Tvåvägsvalet tar sedan hand om fallen större än

och mindre än i en vanlig if-else-sats som kan placeras i switch-satsens de-

fault-del. case-satsen behandlar alltså ett fall och default de två andra fallen:

// GuessSwitch.cs

// Gissa tal-spelet med switch kombinerad med if-else

// Reduktion av trevägsval till tvåvägsval

using System;

class GuessSwitch

{
 static void Main()

 {
 Console.Write("\n\tGissa ett tal mellan 1 och 20:\t");

 int guessedNo = int.Parse(Console.ReadLine());

 Console.Write("\n\t");

 switch (guessedNo)

 {
 case 17:

 Console.Write("\aGrattis, du gissade rätt!\n\n");

 break;

 default:

 if (guessedNo < 17)

 Console.Write("För LITET, försök igen!\n");

 else

 Console.Write("För STORT, försök igen!\n");

 break;

 }
 }
}

Programmet ovan ger exakt samma resultat (sid 129) som programmet Guess-

IfElse. Kombinationen av de två kontrollstrukturerna switch och if-else le-

der till en avsevärt förenkling och klarhet av koden. Även denna kombination är

förstås en slags nästling: if-else-satsen är nästlad i switch-satsen. Men nästlin-

gen här innebär mindre komplexitet än hos den nästlade if-else-satsen. Enkelhe-

ten och klarheten i strukturen motiverar användningen av default-satsen på ett

okonventionellt sätt.

Den egentliga fördelen med den här lösningen är att man tillämpat idén att bryta

ned ett stort, svårt problem (trevägsval) till ett mindre, enklare problem (tvåvägs-

val) vars lösning redan är känd – en metodik som med fördel kan användas även i

andra sammanhang. I matematiken är det vanligt att bevisa nya satser (stora, svåra

problem) med hjälp av redan kända satser (mindre, enklare problem). I program-

meringen används idén om modularisering på ett mer genomgripande sätt när man

skriver metoder och klasser.

131

6.6 Efter-testad repetition: do-satsen

Datorn har några egenskaper som är helt överlägsna motsvarande egenskaper hos

människan: snabbheten, noggrannheten och förmågan att effektivt lagra och hante-

ra stora datamängder samt förmågan att inte bli trött. Datorn kan upprepa en sak

miljardtals gånger utan att tappa i noggrannhet. Denna förmåga utnyttjas i stor

skala av alla möjliga datorprogram. Och därför har man en speciell kontrollstruk-

tur i algoritmer som beskriver den: repetitionen. ”Att låta datorn göra grovjobbet”

innebär att låta datorn utföra en repetition. Beroende på hur repetitionens avslut-

ningsvillkor formuleras och var det placeras skiljer man mellan:

Tre typer av repetition*

Efter-testad repetition

För-testad repetition

Bestämd repetition

Efter-testad repetition

När avslutningsvillkoret till en upprepningsslinga – även kallad loop – testas efter

loopens instruktioner dvs efter det som egentligen ska upprepas, kallas den för do-

satsen. Så här kan den formuleras i pseudokod och som flödesschema:

 Pseudokod Flödesschema

 REPETERA

 instruktion(er)

 SÅ LÄNGE villkor uppfyllt

 sant

 falskt

I C# inleds den efter-testade repetitionen med det reserverade ordet do:

do

{

 statement(s);

} while (condition);

* Ibland används istället för repetition det synonyma begreppet iteration som är en fackterm

även i andra sammanhang, t.ex. i numerisk analys. Ett besläktat koncept är rekursion som är

ett alternativ till repetition, men har en annan logisk struktur. Alla rekursiva algoritmer kan

skrivas som iterativa.

Villkor

Instruktion(er)

Loop

 132

Första raden är do-satsens huvud och får inte avslutas med semikolon. Resten är

do-satsens kropp som består av ett block (sid 117). Om kroppen består endast av en

sats kan klamrarna { och } utelämnas. Till skillnad från if-satsen kan här kroppens

avslutande klammer inte ersätta do-satsens avslutande semikolon, då do-satsen inte

är komplett utan fortsätter med villkoret. Och villkoret kan bara testas när det som

vanligt skrivs inom vanliga parenteser som följer det reserverade ordet while. Ef-

ter villkoret är do-satsen komplett vilket bekräftas med det avslutande semikolonet.

Med hjälp av den nya kontrollstrukturen efter-testad repetition ska vi nu skriva en

do-sats. Som applikation tar vi Gissa tal för att vidareutveckla det. Den stora

nackdelen av alla tre versioner hittills var att man inte kunde gissa flera omgånger

utan var tvungen att köra om programmet för att gissa vidare. Följande program

använder en do-loop för att kunna köra programmet tills man gissat rätt:

// GuessDo.cs

// Gissa tal-spelet i dialog med do-loop

using System;

class GuessDo

{
 static void Main()

 {
 int guessedNo;

 do

 {
 Console.Write("\n\tGissa ett tal mellan 1 och 20:\t");

 guessedNo = int.Parse(Console.ReadLine());

 Console.Write("\n\t");

 switch (guessedNo)

 {
 case 17:

 Console.Write("\aGrattis, du gissade rätt!\n\n");

 break;

 default:

 if (guessedNo < 17)

 Console.Write("För LITET, försök igen!\n");

 else

 Console.Write("För STORT, försök igen!\n");

 break;

 }
 } while (guessedNo != 17);

 }
}

do-satsen är en lämplig variant av repetition när det gäller att åstadkomma en

dialog mellan datorn och användaren. I GuessDo inleds dialogen med inläsning av

guessedNo. Sedan tar switch-satsen hand om valet mellan tre alternativ, nämli-

gen om det gissade talet är lika med, mindre än eller större än spelets hemliga tal

17. I slutet testas om guessedNo är skilt från 17. Om så är fallet, återvänder pro-

133

gramflödet till början av do-blocket och allt upprepas tills guessedNo någon gång

blir lika med 17. Nu kan vi göra flera gissningar vid endast en körning. Program-

met avslutas först när vi hittat det hemliga talet. En körning av programmet

GuessDo kan t.ex. ge följande dialog:

Gissa ett tal mellan 1 och 20: 5

 För LITET, försök igen!

Gissa ett tal mellan 1 och 20: 15

 För LITET, försök igen!

Gissa ett tal mellan 1 och 20: 19

 För STORT, försök igen!

Gissa ett tal mellan 1 och 20: 17

 Grattis, du gissade rätt!

I do-satsen utförs satserna första gången oavsett om villkoret är sant eller falskt.

Sedan testas villkoret: är det sant upprepas satserna. Sedan testas villkoret igen: är

det fortfarande sant, fortsätts repetitionen osv. Är villkoret falskt, stoppas repetitio-

nen. Man kan alltså säga: dörrvakten (villkoret) står vid utgången till lokalen (loo-

pen). Konsekvensen blir att, när villkoret är falskt från början, kommer satserna i

alla fall att utföras åtminstone en gång. I nästa avsnitt behandlas en annan variant

av repetition, den för-testade repetitionen där dörrvakten så att säga står vid ingån-

gen till lokalen och inte tillåter att någon sats exekveras när villkoret är falskt från

början. Är villkoret sant hela tiden, kommer loopen att snurra i all evighet. Därför

kallas den evighetsloop (sid 138).

Det är avgörande att skilja mellan repetition och selektion. I selektionens pseudo-

kod har vi nyckelordet OM och i C# det reserverade ordet if, vilket innebär ett val

en enda gång, dvs ingen upprepning alls. I repetitionens pseudokod har vi SÅ LÄN-

GE och i C# det reserverade ordet while, vilket innebär att villkoret testas uppre-

pade gånger. I selektionens flödesschema går allt flöde endast framåt dvs alla pilar

nedåt, se sid 113, 121 och 123. I repetitionens flödesschema ovan går pilen efter in-

struktionerna tillbaka till villkoret för att testa det igen. Orsaken till att program-

flödet går tillbaka är att det finns en hoppats inbyggd i alla repetitioner som skickar

programflödet tillbaka till loopens villkor. Ett annat sätt att se på efter-testad

repetition är att i pseudokoden (sid 131) använda nyckelordet TILLS istället för SÅ

LÄNGE. Så kan logiken ibland uppfattas enklare:

 REPETERA

 instruktion(er)

 TILLS villkor inte uppfyllt

Om man väljer samma villkor som i formuleringen med SÅ LÄNGE, dvs bibehåller

villkorets formulering, måste man negera villkoret när man går över till TILLS. Det

 134

beror på skillnaden i den logiska innebörden av SÅ LÄNGE och TILLS. I flödes-

schemat av den efter-testade repetitionen blir det ingen strukturell ändring, bara

man sätter sant och falskt på de logiskt korrekta utgångarna av villkoret.

Hantering av slumptal

En nackdel av programmet GuessDo är att det hemliga talet är hårdkodat som 17.

Det skulle innebära en väsentlig förbättring av Gissa tal om programmet kunde

generera ett slumptal mellan 1 och 20 som hemligt tal varje gång man körde det.

Därför öppnar vi här en liten parentes om slumptal av typ int och deras hantering.

Generellt kan man med datorn som en deterministisk maskin som datorn är, inte

producera äkta slumptal utan endast simulera dvs på något sätt beräkna s.k. pseu-

doslumptal enligt en viss algortim. Överallt vi pratar om slumptal menar vi egent-

ligen pseudoslumptal. I C# kan man simulera slumptal på olika sätt, bl.a. med

klassen Random och dess metod Next() som returnerar slumptal av typ int mel-

lan 1 och int.MaxValue, om den anropas utan parameter. En annan variant av

Next() returnerar slumptal mellan sina parametrar, närmare bestämt:

a <= r.Next(a, b) < b

där r är ett objekt klassen Random. För att skräddarsy metoden Next(a, b) till att

få slumptal mellan 1 och 20 måste vi anropa r.Next(1, 21). Följande program

testar båda varianter av Next():

// DoRand.cs

// Skriver ut 5 slumptal mellan 1 och int.MaxValue samt

// 20 mellan 1 och 20

// Anropar två varianter av Random-metoden Next() en gång

// med ingen parameter, en gång med två paramtrar

using System;

class DoRand

{
 static void Main()

 {
 int i = 1, j = 1;

 Random r = new Random(); // Objekt av klassen Random

 Console.WriteLine("Slumptal mellan 1 & int.MaxValue:\n");

 do // do-loop

 Console.WriteLine("\t" + r.Next());

 while (i++ < 5); // i testas först, ökar sedan

 Console.WriteLine("\nSlumptal mellan 1 och 20:\n\t");

 do // do-loop

 Console.Write(r.Next(1, 21) + "\t");

 while (j++ < 20); // j testas först, ökar sedan

 Console.WriteLine('\n');

 }
}

135

En körning av DoRand ger följande resultat:

Slumptal mellan 1 & int.MaxValue:

 1460841191

 225482400

 1438321568

 1700127070

 1513406452

Slumptal mellan 1 och 20:

7 20 2 12 12 14 3 16 3 15

2 15 12 9 1 10 14 15 1 2

För det första ser man att vi får endast heltal vilket beror på att båda metoderna

Next() och Next(a, b) returnerar int. Vill man ha decimalslumptal finns det en

annan metod i klassen Random som heter NextDouble(). För det andra har vi fått

i intervallet [1, 20] även randvärdena 1 och 20. Hade vi anropat r.Next(1, 20)

hade vi fått slumptal mellan 1 och 19 eftersom den andra parametern inte ingår i

slumptalsgenereringen. Så, anropet r.Next(1, 21) ger slumptal mellan 1 och 20.

När det gäller de båda varianterna av metoden Next() ger den ena utan parameter

de stora slumptalen i utskriften ovan mellan 1 och int.MaxValue och den andra

med två parametrar de små slumptalen mellan 1 och 20. Två olika do-satser i Do-

Rand tar hand om slumptalen i dessa två olika intervall. I den första do-satsen

anropas Next() utan parameter, i den andra med två parametrar. Vi har här att gö-

ra med ett koncept i programmering som kallas överlagring av metoder som är en

generalisering av överlagringen av operatorer som vi behandlat tidigare (sid 74).

Innebörden är att det är två olika metoder med samma namn, men olika parameter-

listor. I anropet avgörs vilken av dem det gäller därför att parameterlistan avslöjar

identiteten – både för oss och kompilatorn. C#-biblioteket är fullt med överlagrade

metoder. De flesta biblioteksklasserna har t.o.m. flera överlagrade metoder dvs

flera olika metoder med samma namn.

Gissa tal med slumptal

Resultatet från DoRand kan vi nu använda i nästa version av Gissa tal för att slum-

pa fram det hemliga talet varje gång vi kör och kunna spela tills vi gissat rätt (sid

128).

Spelet har förbättrats i två avseenden: För det första bestäms programmets hemliga

tal inte längre redan i koden utan slumpas fram med Random-metoden Next() en-

ligt ovan. För det andra behöver man inte vänta tills man gissat rätt för att avsluta

programkörningen, utan kan avsluta innan man hunnit gissa rätt: Man matar in 0

och får samtidigt reda på spelets hemliga tal som är olika för varje körning pga

användningen av slumptal.

 136

Följande program implementerar Gissa tal-spelet med slumptal:

// GuessDoRand.cs

// Gissa tal-spelet med slumptal i dialog med do-loopen

using System;

class GuessDoRand

{
 static void Main()

 {
 int guessedNo;

 Random r = new Random();

 int secretNo = r.Next(1, 21);

 do

 {
 Console.Write(

 "\n\tGissa ett tal mellan 1 och 20" +

 " (Avsluta med 0):\t");

 guessedNo = int.Parse(Console.ReadLine());

 Console.Write("\n\t");

 if (guessedNo == 0)

 {
 Console.WriteLine("Avbrott: Programmets " +

 " hemliga tal var " + secretNo + '\n');

 break; // Bryter do-loopen

 }

 if (guessedNo == secretNo)

 {
 Console.Write("\aGrattis, du har gissat " +

 "rätt!\n\n");

 break; // Bryter do-loopen

 }
 if (guessedNo < secretNo)

 Console.Write("För LITET, försök igen!\n");

 else

 Console.Write("För STORT, försök igen!\n");

 } while (guessedNo != secretNo);

 }
}

Programmets första if-sats bryter då do-loopen med hjälp av break. När vi

behandlade switch-satsen sade vi att break är ett reserverat ord som bryter

programflödet även i loopar (sid 127). Och det är precis vad den gör här. break

bryter do-satsen utan att testa do-satsens avslutningsvillkor (guessedNo != sec-

retNo) som i regel – dvs när break inte utförs – kommer till användning och

avslutar dialogen när man gissat rätt. Annars fortsätter dialogen så länge man gis-

sar fel.

137

Frågan som dyker upp när man tittar på koden i programmet GuessDoRand, är:

Varför används inte längre switch i kombination med if-else som i den senaste

versionen av Gissa tal hade gett bra resultat. Vi hade helst velat göra det. Men

övergången till slumptal gör att slumptalet måste lagras i en variabel – i det här

fallet secretNo – och switch-satsen inte tillåter jämförelse med en variabel. I

spelets första versioner var programmets hemliga tal hårdkodat som konstanten 17

och switch kunde jamföra expression guessedNo med denna konstant. Men nu

lagras det hemliga talet i variabeln secretNo. Den allmänna strukturen:

switch (expression)

{
 case constant1 :
 .

 .

sätter stopp för användningen av switch i GuessDoRand därför att expression kan

vara en variabel av typ int eller char – i vårt fall är guessedNo en int-variabel

(det är ok) – medan constant1 måste vara ett konstant uttryck, annars kan man inte

kompilera. I vårt fall är secretNo som skulle skrivas efter case, inget konstant

uttryck utan en int-variabel, vilket inte är ok. Vi stöter här på switch-satsens

begränsningar. Därför används i GuessDoRand en enkel if- samt en if-else-

sats för att avgöra trevägsvalet ”guessedNo lika med, mindre eller större än se-

cretNo”. En körning ger:

 Gissa ett tal mellan 1 och 20 (Avsluta med 0): 10

 För LITET, försök igen!

 Gissa ett tal mellan 1 och 20 (Avsluta med 0): 15

 För STORT, försök igen!

 Gissa ett tal mellan 1 och 20 (Avsluta med 0): 12

 För LITET, försök igen!

 Gissa ett tal mellan 1 och 20 (Avsluta med 0): 13

 För LITET, försök igen!

 Gissa ett tal mellan 1 och 20 (Avsluta med 0): 14

 Grattis, du har gissat rätt!

Har man efter ett tag ingen lust att gissa vidare och vill avsluta, kan man mata in 0.

Man får då reda på programmets hemliga slumptal vid just den aktuella körningen:

 Gissa ett tal mellan 1 och 20 (Avsluta med 0): 0

 Avbrott: Programmets hemliga tal var 20

 138

do-satsen är en lämplig variant av repetition för dialoger mellan dator och använ-

dare. Frågan om vilken variant av repetition man ska välja, kan inte besvaras gene-

rellt, eftersom det är det konkreta problemet som avgör valet.

Innan vi avslutar do-satsen vill vi nämna en företeelse som man kan råka ut för när

man jobbar med loopar:

Evighetsloop

I det inledande exemplet DoRand är den första do-satsens avslutningsvillkor i++ <

5. Detta innebär att det egentliga villkoret är i < 5 och att efter villkorets test, i:s

värde ökas med 1. Ersätts avslutningsvillkor med i < 5 avslutas loopen och

därmed programmet aldrig: Man har råkat ut för en s.k. evighetsloop. Orsaken är

att villkoret är sant från början – i har ju initierats till 1 – och förblir sant hela

tiden, så loopen fortsätter i all evighet. Generellt innehåller en loop alltid möjlig-

heten till en evighetsloop. För att undvika den, måste villkoret och satserna i krop-

pen formuleras på ett sådant sätt att villkorets sanningsvärde ändras, så att

villkoret blir falskt efter några varv. Detta krav har realiserats i programmet Do-

Rand genom att använda i++. Dvs, har man med en lämplig initiering av i kom-

mit in i do-satsen, kommer i att öka med 1 i varje varv så att det någon gång blir =

5. Då stoppas loopen. Glömmer man ökningen ++ och initierar i med ett värde

mindre än 5 blir do-satsen en evighetsloop. Omvänt: Är do-villkoret falskt från

början, görs ingenting. Initieras i till ett värde >= 5, blir villkoret falskt från början

och man kommer aldrig in i kroppen (”aldrigloop”). Programflödet fortsätter vid

första satsen efter do-loopen. Testa gärna dessa möjligheter.

139

6.7 För-testad repetition: while-satsen

while-satsen är en upprepningsloop där avslutningsvillkoret testas före loopens

instruktioner dvs innan det som ska upprepas. Enda skillnaden gentemot den efter-

testade repetitionen är ordningen mellan villkor och instruktioner. Denna ordning

blir omvänd:

 Pseudokod och ritas som Flödesschema

 SÅ LÄNGE villkor uppfyllt

 instruktion(er) sant

 falskt

I C# inleds för-testad repetition med det reserverade ordet while och skrivs så här:

while (condition)

{

 statement(s);

}

Första raden är huvudet och får inte avslutas med semikolon, om man inte vill ha

en tom while-sats. Resten är while-satsens kropp som omsluts av klamrarna {

och }. Om kroppen består endast av en sats kan klamrarna utelämnas.

// Ascii.cs

// Skriver ut en del av teckentabellen med en while-loop

using System;

class Ascii

{
 static void Main()

 {
 int code = 33;

 while (code <= 256)

 {
 Console.Write(code + " " + (char) code + '\t');

 if (code % 8 == 0) // Var 8:e utskrift:
 Console.WriteLine(); // Radbyte

 code++;

 }
 Console.WriteLine("\nEfter while-satsen är code = " +

 code + '\n');

 }
}

Villkor Instruktion(er)

 Loop

 140

Programmet Ascii visar ett exempel på while-satsen med tre satser i kroppen

som skriver ut följande del av Ascii-tabellen till konsolen. Kroppens avslutande

klammer kan ersätta det semikolon som skulle avsluta hela while-satsen.

ASCII-tabellen med while

När vi i kapitel 5 tog upp ASCII-tabellen kunde vi i programmen Int2char,

Char2int och Unicode med hjälp av explicit typkonvertering få reda på enskilda

teckens koder och omvänt. Nu när vi kan hantera loopar kan vi skriva ut delar av

teckentabellen i ett sammanhängande kodintervall. Programmet Ascii skriver ut i

en for-loop både tecken och tillhörande kod genom att använda en int-variabel

code som räknare och få ut resp. tecken genom explicit typkonvertering från int

till char: Variabeln code initieras till 33. while-satsen börjar med att testa vill-

koret code <= 256. Är det sant utförs kroppens satser. Därför hamnar 33 ! som

allra första i utskriften ovan. Sedan testas villkoret igen: Är det fortfarande sant,

utförs satserna igen osv. Detta upprepas gång på gång. Sist skrivs ut 256 ? därför

att 256 är variabeln code:s sista värde som fortfarande uppfyller villkoret code

<= 256. I nästa varv då code hunnit bli 257 är villkoret inte längre uppfyllt och

while-loopen stoppas. När vi efter while-satsen skriver ut code får vi 257.

141

En jämförelse av Ascii-programmets utskrift på förra sidan med ASCII-tabellen

på sid 93 visar överensstämmelse i standard ASCII-koderna upp till 127. Resten är

icke standardiserade koder. Men hur åstadkommer while-satsen utskriften? Låt

oss gå igenom det varv för varv.

Då code i första varvet är 33 och därmed mindre än 256, kommer vi in i while-

satsen och får utskriften 33 ! följd av en tabultaor. Att det blir ! och inte 33 beror

på att vi i utskriftssatsen med explicit typkonvertering omvandlat int-variabeln

code:s värde till char (sid 94). Sedan följer if-satsen med villkoret code % 8 ==

0. Det här villkoret är falskt då code:s värde 33 modulo 8 ger 1 dvs inte 0 (sid 75).

Därför utförs inte if-satsens kropp dvs inget radbyte skrivs ut. Efter if-satsen

utförs uppdateringen code++ så att code blir 34.

Efter while-satsens första varv går programflödet tillbaka till villkoret code <=

256. Då är code:s värde 34 som jämförs med 256. Då 34 är mindre än 255,

kommer vi igen in i while-satsens andra varv. 33 " skrivs ut följt av en tabultaor.

Då if-satsens villkor fortfarande är falskt – 34 modulo 8 ger 2 som inte är 0 – ut-

förs kroppen inte heller den här gången: inget radbyte. I slutet av loopens andra

varv uppdateras code:s värde till 35.

Allt detta upprepas på samma sätt även i while-satsens 3:e, 4:e, 5:e, 6:e och 7:e

varv. Vi kommer så långt då även 38 och 39 är mindre än 256. I det 8:e varvet har

code hunnit bli 40. Då skrivs ut 40 (följt av en tabultaor. Men nu är för första

gången if-satsens villkor code % 8 == 0 sant, eftersom code:s värde, 40 modulo

8 ger 0. Därför utförs if-satsens kropp: Console.WriteLine() vilket innebär

radbyte. Observera också att utskrifterna längs en rad görs med

Console.Write() vilket innebär utskrift utan radbyte. I slutet på loopens 8:e

varv uppdateras code:s värde till 41.

På den nya, andra raden i utskriften – i loopens 9:e varv – skrivs ut 41) följt av en

tabulator. Därefter inget radbyte då, pga 41 modulo 8 är 1. Utskriften fortsätter på

den andra raden utan radbyte tills code:s värde nått 48. För andra gången blir if-

satsens villkor sant, när code är 48 för 48 modulo 8 ger 0. Mönstret har klarnat:

if-satsens roll är att producera radbyte när code:s värde är jämnt delbart med 8

dvs var åttonde utskrift. Detta är just innebörden i villkoret code % 8 == 0. Vi har

gjort så för att få en tabellartad utskrift.

while-satsen avslutas när villkoret code <= 256 blivit falskt dvs när code nått

257 som är varken mindre eller lika med utan större än 256. Därför stoppas repeti-

tionen. Efter det skrivs code:s sista värde 257 ut för kontroll.

 142

6.8 Bestämd repetition: for-satsen

for-satsen är en upprepningsloop där antalet repetitioner är känt i förväg. I de

hittills behandlade varianterna – för- och efter-testad repetition – styr endast vill-

koret antalet repetitioner och man kan få reda på antalet repetitioner efter att ha

kört programmet dvs i efterhand. I den bestämda repetitionen kan programmeraren

redan vid kodningen bestämma antalet repetitioner. Det är användbart i de fall då

man vet hur många gånger en sak ska upprepas. Visserligen finns även i den be-

stämda repetitionen ett villkor som testas i varje varv av loopen, men det finns

även en inbyggd möjlighet att styra villkoret och därmed antalet repetitioner med

hjälp av en räknare, även kallad styrvariabel.

Räknaren sätts före repetitionen till ett önskat startvärde, för det mesta något

heltal, ofta 1. Detta kallas initiering av räknaren dvs den allra första tilldelningen

av ett värde till räknaren. Sedan testas ett villkor där man brukar lägga in ett öns-

kat slutvärde på räknaren. Därmed är antalet repetitioner fastlagt, t.ex. till slut-

värde minus startvärde om räknaren ökar med 1. Om villkoret är uppfyllt, t.ex. om

räknaren är mindre än slutvärdet, utförs ett antal instruktioner. Sedan görs en upp-

datering av räknaren, ofta en ökning med 1, men det är möjligt att räkna nedåt el-

ler välja ett annat steg än 1. Allt detta händer i varje varv av repetitionen. Sä här

ser den bestämda repetitionens flödesschema ut:

 sant

 falskt

Flödesschemat åskådliggör den logiska strukturen av problemet. Den bestämda

repetitionens pseudokod blir enligt flödesschemat ovan:

 Initiera räknaren

 SÅ LÄNGE villkor är uppfyllt

 utför instruktion(er)

 uppdatera räknaren

I några äldre programspråk som t.ex. Basic, Fortran och Pascal, finns endast det-

ta specialfall, där villkoret implicit (dvs underförstått) är inbyggt och räknarens

uppdatering sker automatiskt. Detta specialfall kan beskrivas med följande pseu-

dokod:

Villkor Instruktion(er) Uppdatera räknaren

Initiera räknaren

Loop

143

 STEGA räknaren FRÅN startvärde TILL slutvärde (med STEG)

 instruktion(er)

Då det inbyggda villkoret räknare ≤ slutvärde inte syns i pseudokoden – därför

implicit – kan det inte heller ändras. I flödesschemat blir det ingen strukturell än-

dring om man tar över detta villkor.

Nyckelordet SÅ LÄNGE i pseudokoden på förra sidan visar att den bestämda repeti-

tionen alltid kan översättas till en while-sats om man själv tar hand om räknaren.

Längre fram ska vi ge exempel på översättningar från do och while till for.

Precis som i while-satsen har man i princip friheten att formulera villkoret hur

som helst. Men då räknaren är inbyggd i for- till skillnad från while-satsen, kan

man i villkoret jämföra räknaren med något slutvärde, t.ex. så här: ”räknare är

mindre än eller lika med slutvärde”. Detta ger ett specialfall av den bestämda

repetitionen.

I C# inleds bestämd repetition med det reserverade ordet for och skrivs så här:

for (initiering; villkor; uppdatering)

{

 sats(er);

}

Första raden är for-satsens huvud och får inte avslutas med semikolon. Resten är

for-satsens kropp som omsluts av klamrarna { och }. Kroppens avslutande klam-

mer kan ersätta det semikolon som skulle avsluta hela for-satsen. Om kroppen

endast består av en sats kan klamrarna utelämnas. Jämför man C#-koden med flö-

desschemat på förra sidan kan man konstatera att koden är lite kryptisk i den

bemärkelsen att den inte följer flödesschemats struktur initiering – villkor –

sats(er) – uppdatering. Därför har vi i koden ovan numrerat for-satsens olika de-

lar för att visa i vilken ordning de utförs. Pilarna markerar loopens förlopp. Initie-

ringen görs endast en gång och ingår ej i loopen. Både initieringen och uppdaterin-

gen, avser räknaren som är en vanlig variabel och därför måste definieras precis

som vilken variabel som helst.

I följande program har vi modifierat programmet DoRand genom att skriva om do-

satserna till for-satser (sid 134):

 1 2 4

3

 144

// ForRandom.cs

// Skriver ut 4 slumptal mellan 1 och int.MaxValue samt

// 19 mellan 1 och 20

using System;

class ForRandom

{
 static void Main()

 {
 Random r = new Random();

 Console.WriteLine("Slumptal mellan 1 och " +

 " int.MaxValue:\n");

 for (int i = 1; i < 5; i++) // i gäller bara i

 Console.WriteLine("\t" + r.Next()); // denna for-

 // sats

 Console.WriteLine("\nSlumptal mellan 1 och 20:\n\t");

 for (int i = 1; i < 20; i++) // Ny lokal var. i

 Console.Write(r.Next(1, 21) + "\t");

 Console.WriteLine('\n');

 }
}

Frågan är nu: Blir det samma resultat som i programmet DoRand? Gör de två do-

saterna där samma sak som motsvarande for-satserna här? En körning av pro-

grammet ovan producerar följande resultat vilket visar att det finns en viktig skill-

nad till DoRand-utskriften på sid 135 bortsett från de annorlunda slumptalsvärdena:

Slumptal mellan 1 och int.MaxValue:

 3107148

 735561933

 153248854

 1692537805

Slumptal mellan 1 och 20:

1 7 10 10 7 4 8 19 6 10

18 20 14 3 7 1 15 17 7

Den avgörande skillnaden är att det nu skrivs ut 4 medan då fanns 5 slumptal mel-

lan 1 och int.MaxValue och att det nu skrivs ut 19 medan då fanns 20 slumptal

mellan 1 och 20. Låt oss nu jämföra looparnas koder lite närmare med varandra för

att få reda på orsaken till denna skillnad. Låt oss ta t.ex. den första do-satsen i Do-

Rand (sid 134) :

145

 do

 Console.WriteLine("\t" + r.Next());

 while (i++ < 5);

Vi jämför denna do-loop med den första for-loopen i programmet ForRandom:

 for (int i = 1; i < 5; i++)

 Console.WriteLine("\t" + r.Next());

Det står exakt samma sats i deras resp. kroppar: Den skriver ut en tabulator samt ett

slumptal genom konkatenering. Men frågan är: hur många gånger sker detta dvs

hur många varv har resp. loop? Frågan besvaras inte av kroppen utan av villkoret

och programflödet, dvs i vilken ordning villkorets test och räknarens uppdatering

genomförs.

I do-satsen testas räknaren i först och ökar sedan pga i++ dvs ökningsoperatorns

postfixvariant, vilket innebär: När räknaren är 4 i loopens 4:e varv, har pga do-loo-

pens efter-testade karaktär, redan fyra slumptal skrivs ut innan villkoret 4 < 5 tes-

tas. Då fortsätter loopen och räknaren uppdateras till 5. Loopen kommer in i sitt 5:e

varv och utför kroppen. Sedan avslutas loopen då 5 < 5 ger false. Alltså genom-

går do-loopen fem varv och skriver ut fem slumptal. I for-satsen däremot händer

pga strukturen initiering – villkor – sats(er) – uppdatering (förra sidan) följande:

När for-loopen inleder sitt 4:e varv med testet 4 < 5 har pga for-loopens för-

testade karaktär skrivits ut först 3 slumptal, vilket förstås även framgår av for-sat-

sens flödesschema (förförra sidan). Då går programflödet först ”ned” till kroppen

och skriver ut det 4:e slumptalet, innan räknaren hinner bli 5. Sedan testas villkoret

5 < 5 som ger false. Därför avslutas loopen. Alltså genomgår for-loopen fyra

varv och skriver ut fyra slumptal. Det är den avgörande skillnaden mellan do- och

for-satserna ovan och därmed mellan programmen DoRand och ForRandom. Där-

för producerar det första fem medan det andra endast fyra slumptal. Vill man att

DoRand producerar fyra utskrifter behöver man bara byta ut postfixvarianterna i++

och j++ mot prefixvarianterna ++i och ++j i do-looparnas avslutningsvillkor.

Omvänt: Vill man att ForRandom producerar fem utskrifter behöver man bara byta

ut i < 5 mot i <= 5 i for-looparnas avslutningsvillkor. Testa gärna! Ganska

liknande resonemang förklarar varför ForRandom skriver ut 19 slumptal medan

mellan 1 och 20, medan DoRand gör det 20 gånger.

Räckvidden av for-satsens räknare

En annan företeelse som man kan observera när man jämför do i DoRand med for

i ForRandom är att vi i första fallet behövde två olika variabler i och j som

räknare, en i varje do-sats, medan det i andra fallet räckte med en variabel i som

räknare i båda for-satserna. Frågan är nu: Är det i fallet for verkligen en och

samma variabel eller är det bara ett och samma namn för två olika variabler? Nästa

fråga: Om det är så, blir det inte namnkonflikt? Får man definiera två olika

variabler med samma namn? Svaret är: För det första är det faktiskt ett namn för

två olika variabler. För det andra, kan man göra så eftersom båda for:s räknare i

 146

for-satsens räknare är odefinierad efter for-satsen

om den definieras inuti for-satsen.

programmet ForRandom är definierade inuti for-satserna. Det gäller nämligen i

C# följande regel:

Variabeln i är definierad så att säga lokalt i for-satsen:

for (int i = 1; i < 5; i++)

 Console.WriteLine("\t" + r.Next());

Variabeln i är inte definierad och gäller därför inte i hela programmet utan endast i

for-satsen, därför lokalt. Efter for-satsen ”dör” variabeln i. Varje försök att refe-

rera till den efter for-satsen kommer att leda till kompileringsfel. Därför är det

möjligt att i nästa for-sats definiera räknaren med samma namn i. for-satsens in-

re variabler är inte synliga utåt i enlighet med C#:s generella regler om lokala va-

riabler. Vill man inte ha det så, måste man definiera räknaren före for-satsen:

int i;

for (i = 1; i < 5; i++)

 Console.WriteLine("\t" + r.Next());

Eller:
int i = 1;

for (; i < 5; i++)

 Console.WriteLine("\t" + r.Next());

Då kommer i vara även giltig efter for-satsen och vi skulle kunna referera till

den, t.ex. skriva ut värdet. Då kommer det inte längre vara möjligt att använda

namnet på nytt i resten av programmet.

147

6.9 Nästlade for-satser

Nästlade for-satser är ett viktigt verktyg i alla programmeringsspråk för att

bearbeta ordnade tvådimensionella strukturer. Tabeller och rektangulära scheman

är exempel på sådana 2D-strukturer. Följande program skriver ut tal i en tabell ge-

nom att nästla två for-satser i varandra:

// NestedFor.cs

// Skriver ut en tabell över tal med 6 rader och 8 kolumner

// Nästlad for-sats: En inre for-loop nästlas i en yttre

// Radbyte mellan den yttre och inre loopen

using System;

class NestedFor

{
 static void Main()

 {
 for (int row = 1; row <= 6; row++) // Yttre loop skri-

 { // ver ut 6 rader
 for (int column=1; column<=8; column++) // Inre loop

 Console.Write(" " + row); // skriver ut 8

// Console.Write(" " + column); // tal i en rad

 Console.WriteLine(); // Radbyte mellan

 } // yttre och inre

 }
}

Utskriften till vänster får man när man kör den aktuella koden ovan. Utskriften till

höger fås om man kör koden med den bortkommenterade raden istället för raden

ovanpå.

Med andra ord, satsen Console.Write(" " + row); ger utskriften till vän-

ster. Ersätts däremot variabeln row med column så att den bortkommenterade sat-

sen Console.Write(" " + column); körs istället får man utskriften till hö-

ger. För att förstå varför det blir så, låt oss börja med att undersöka hur den vänstra

utskriften kommer till: När vi nästlade if-else-satser i varandra (sid 128) pratade

vi om en inre if-else-sats som nästlas i en yttre. Samma sak är det i programmet

NestedFor på förra sidan: Den nästlade for-satsen, även kallad dubbel for-sats,

består av två slingor: Vi har en inre for-loop som nästlas i en yttre. Den yttre for-

 148

loopen omfattar två satser, för det första den inre for-loopen och för det andra en

utskriftssats som gör radbyte. Därför är dessa satser omslutna av klamrar. Den inre

for-loopen

for (int column=1; column<=8; column++)

 Console.Write(" " + row);

skriver ut i sina 8 varv den första raden av 1-orna (med två mellanslag däremellan)

som syns i den vänstra utskriften på förra sidan. Variabeln row som är den yttre

for-loopens räknare, har nämligen under alla dessa 8 inre varv, värdet 1 därför att

vi då hela tiden befinner oss i den yttre for-loopens första varv. När alla 8 inre

varv är slutförda och villkoret column<=8 sätter stopp för den inre loopen

fortsätter programflödet till nästa sats som följer i den yttre for-satsen. Det är den

som lägger till radbytet i utskriften. Sedan uppdateras räknaren row till 2 och det

hela upprepas: Raden av 2-orna (med två mellanslag) skrivs ut i den vänstra ut-

skriften på förra sidan osv. Detta pågår tills den yttre for-loopens villkor row<=6

sätter stopp för den. Därför får vi 6 rader utskrivna där i varje rad den yttre räkna-

ren row:s värde syns.

Om vi nu tar den högra utskriften på förra sidan och undersöker hur den kommer

till kan vi konstatera att den är enklare att förstå, för det är den inre for-loopen

for (column=1; column<=8; column++)

 Console.Write(" " + column);

som är ansvarig för den, efter att vi aktiverat den bortkommenterade raden, gjort

den till den inre for-loopens kropp och kommenterat bort raden ovanför. Det blir

enklare då loopens räknare column är samtidigt den variabel vars värde skrivs ut.

Så det är inte några variabler från den yttre loopen som är involverade här: Endast

räknaren column:s värden 1-8 hamnar i den högra utskriften på förra sidan. Rad för

rad kommer de ut skilda med radbyte, 6 gånger sammanlagt pga den yttre loopens

huvud:
for (row=1; row<=6; row++)

I båda utskrifternas fall skriver programmet ut tabellen radvis. På så sätt uppstår en

rektangulär utskrift av tal bestående av 6 rader och 8 kolumner.

Programmet NestedFor är ett exempel på följande generell regel:

 Regel för nästlade for-satser:

 I nästlade for-satser måste den inre for-loopen slutföras

innan den yttre kan varva vidare.

Denna regel är inget principellt nytt utan en direkt konsekvens av for-satsens flö-

desschema när man tillämpar den både på den inre och yttre for-satsen (sid 139).

Sammanfattningsvis kan vi säga att den yttre loopen enligt denna regel låter den in-

149

re loopen konkatenera raderna och göra radbyte, medan den inre loopen konkatene-

rar talen (samt två mellanslag) i varje rad.

Multiplikationstabellen

Nu när vi lärt känna den nästlade for-satsen kan vi använda den för en lite nyttig

applikation, nämligen att skriva ut multiplikationstabellen. Samtidigt kommer vi

genom att rita flödesschemat, att besvara frågan om den nästlade for-satsen är en

ny kontrollstruktur eller en en nästling av den redan kända bestämda repetitionen.

// MultipTab.cs

// Skriver ut multiplikationstabellen med nästlad for-sats

using System;

class MultipTab

{
 static void Main()

 {
 Console.WriteLine("\nMultiplikationstabell:\n");

 for (int a = 1; a <= 9; a++) // Yttre loop skri-

 { // ver ut 9 rader
 for (int b = 1; b <= 9; b++) // Inre loop

 Console.Write(a*b + "\t"); // skriver ut 9

 // tal i en rad

 Console.WriteLine('\n'); // Radbyten mellan

 } // yttre och inre

 }
}

Illustrationen nedan visar flödesschemat till den nästlade for-satsen i MultipTab:

a <= 9 b = 1

a = 1

Yttre loop

b <= 9 a * b b++

Console.WriteLine('\n')

Inre loop

a++
sant

sant

falskt

falskt

 150

Pga platsbrist i flödesschemat står i den inre loopens första ruta, a * b som en slags

symbolisk förkortning för hela den inre loopens kropp i programmet MultipTab

dvs koden:
Console.Write(a*b + "\t");

Detta görs i varje varv av den inre for-loopen. En jämförelse av den nästlade for-

satsens flödesschema på förra sidan med den enkla for-satsens flödesschema på

sid 139 visar att det är en nästling av två enkla for-strukturer i varandra: Den yttre

for-strukturen har efter initiering av sin räknare a = 1 och efter test av sitt villkor

a <= 9 som ”instruktion(er)” en for-struktur till, den inre, följd av en utskriftssats

som konkatenerar radbyte. Den inre for-strukturen har i sin tur sin egen initiering

av räknaren b = 1 och sitt eget villkor b <= 9 och som ”instruktion(er)” de två sat-

ser ovan som lägger till multiplikationernas resultat på en rad med ett avstånd av 8

mellanslag för alla, dessutom 2 till dvs 10 mellanslag för alla tal mellan 0-9. Vi får

följande tabellerad utskrift när vi kör MultipTab:

Multiplikationstabell:

1 2 3 4 5 6 7 8 9

2 4 6 8 10 12 14 16 18

3 6 9 12 15 18 21 24 27

4 8 12 16 20 24 28 32 36

5 10 15 20 25 30 35 40 45

6 12 18 24 30 36 42 48 54

7 14 21 28 35 42 49 56 63

8 16 24 32 40 48 56 64 72

9 18 27 36 45 54 63 72 81

Självklart kan man minska (eller höja) avståndet mellan kolumnerna genom att

skicka mindre (eller större) antal mellanslag istället för en tabulator till utskrift.

Radavståndet som egentligen motsvarar två radbyten pga Console.WriteLine-

('\n'); kan minskas om man skriver Console.WriteLine(); istället.

En kluring:

Byt ut i programmet MultipTab raden:

 Console.Write(a*b + "\t"); // skriver ut 9

Mot följande rad och kör:

 Console.Write(a*b + '\t'); // skriver ut 9

Utsrkiften blir knasig. Förklara varför?

151

Övningar till kapitel 6

6.1 Skriv ett program som läser in två tal och skriver ut OK om de matats in i

rätt ordning, dvs om det första är mindre än det andra. Vad händer om de är

lika stora?

6.2 Modifiera din lösning från övn 6.1 genom att läsa in två tecken istället för

tal. Skriv ut OK om de matats in i ordning. Annars ska programmet skriva ut

ett meddelande om att tecknen matades in i fel ordning.

6.3 Skriv ett program som läser in tre tal, hittar och skriver ut det största av

dem. Vilken ändring i koden leder till det minsta talet?

6.4 Skriv ett program som läser in begynnelsebokstaven till en veckodag, med

en switch-sats bestämmer vilken veckodag det är och skriver ut den. Fixa

problemet med tisdag/torsdag genom att nästla en if-else-sats i switch-

satsen för att läsa in och bearbeta den andra bokstaven. Ta hand om felaktig

inmatning.

6.5 Vidareutveckla övn 6.2 så att användaren får flera chanser att mata in två

tecken i rätt ordning så länge han/hon matar in dem i fel ordning. Du kan

göra det genom att bygga in inmatningen, bearbetningen och utmatningen i

en do-loop.

6.6 Skriv ett program som läser in ett heltal och använder det som stegvariabel

för att skriva ut talen från 1 till 5000. Om steget är t.ex. 5 skrivs var femte tal

ut.

6.7 Skriv ett program som använder for-satser för att läsa in fem tecken, kryp-

tera dem genom att förskjuta dem med ett steg i ASCII-tabellen och skriva ut

dem. T.ex. ska inmatningen Kalle ge utskriften Lbmmf. Återställ sedan det

krypterade ordet: Lbmmf ska återställas till Kalle. Vidareutveckla program-

met genom att utöka (t.ex. läsa in) antalet steg (krypteringsnyckeln). I övn

5.5 (Kryptering av ord, sid 109) gjordes detta utan for-satser.

6.8 Skriv ett program som läser in ett stort heltal och utgående från det, skriver

ut alla tal baklänges till 1. För att räkna ned i en loop kan du använda

minskningsoperatorn -- som fungerar på liknande sätt som

ökningsoperatorn: Satsen i--; gör samma sak som i = i - 1;

 152

6.9 Labyrinten (projekt) Visst är det roligt att med ett C# program låta da-

torn rita en labyrintartad figur på skärmen som kan se ut så här:

Visserligen är detta ingen riktig labyrint. För en sådan skulle det krävas

mycket mer. En riktig labyrint skulle kunna vara föremål t.ex. för ett spel-

projekt, som underliggande grafik, självklart med lite andra finesser, färg

osv. Bilden ovan visar snarare om en labyrintartad figur som är slump-

mässigt ihopsatt av ett antal tecken som vi kallar för dubbla linjegrafikntec-

ken (LGT). De är tagna ur teckentabellen Unicode som är den gällande tec-

kenstandarden i hela världen. I figuren ovan är de ordnade som en sorts

tabell (50 rader, 20 kolumner). I koden gör man det med en dubbel- eller

nästlad for-loop, som är helt enkelt en (inre) for-loop i en (yttre) for-

loop. Denna nästlade kontrollstruktur används i alla programmeringsspråk

för att åtstadkomma en 2D utskrift – typ tabell – där den yttre loopen skriver

ut raderna och den inre loopen kolumnerna.

Tecknen i figuren ovan är slumpvis valda. Därför borde varje körning av

programmet generera en lite annorlunda labyrintartad figur. Du kan gärna

försöka med en egen algoritm att åstadkomma ett program som ritar en laby-

153

rintartad figur. Men följer du instruktionerna i övningarna har du i alla fall

ett förslag till en algoritm som fungerar.

Gör så här för att rita ”labyrinten”:

 Steg 1 Repetera hantering av tecken inkl. explicit typkonvertering och

Unicode genom att mata in och köra programmet Int2char (sid

95) för koderna 9552-9580. För att se alla tecken till dessa koder i en

översikt genomför Stegen 2-3 :

 Steg 2 Studera programmet NestedFor (sid 147) som visar hur man näst-

lar en inre for-sats i en yttre for-sats. Jämför den nästlade for-

satsens kod med programmets körexempel på samma sida. Använd

idén till nästlade for-satser för att konstruera en egen sådan, som

du kommer att behöva i Steg 3 :

 Steg 3 Skriv ett C# program som producerar följande utskrift:

Dessa tecken finns i den standardiserade teckentabellen Unicode

och används i text mode för att rita raka linjer, ramar osv. i kon-

solen. Vi kallar dem för linjegrafiktecken (LGT). Deras koder som

är angivna ovan, används i Steg 5 där du ska rita den labyrint-

liknande figuren på förra sidan med dessa tecken. Den fullständiga

Unicode-tabellen som är den gällande teckenstandarden i hela

världen, hittar du t.ex. på Internet under adressen: unicode.-

coeurlumiere.com. Jämför gärna koderna ovan med denna tabell

som är den gällande teckenstandarden i hela världen, och konstate-

ra de små skillnaderna. C# följer inte exakt Unicode-standarden.

Steg 4 Bekanta dig med hantering av slumptal i bl.a. programmet DoRand

(sid 134),

 154

Steg 5 Skriv slutligen det program som med hjälp av de dubbla linjegra-

fiktecknen från Steg 3, C#:s slumpgenerator och en dubbel- eller

nästlad for-sats ritar en labyrintliknande figur i konsolen som är

slumpmässigt ihopsatt av de nämnda LGT-tecknen, se projektets

presentation.

6.10 Löpande texten (projekt) Skriv ett program som visar (simulerar)

en löpande text, t.ex.: C# är kul> som horisontellt rör sig i konsolfönstret

tills den ”träffar” på ett hinder, t.ex. ett kryss i form av ett X. Skriv ut först

krysset i slutet av en rad i konsolen, sedan textens initialposition i början av

samma rad. Ta exakt reda på hur många mellanslag krysset har avstånd från

konsolens vänstra rand. För att gå till början av samma rad (utan radbyte)

för att skriva texten initialt, kan escapesekvensen \r (carriage return)

användas. Gör experiment med \r för att bekanta dig med dess funktion.

Rörelsen kan sedan simuleras i en loop genom att i varje varv av loopen

med 10 styck \b ta bort den i förra varvet ritade texten (om den var ritad

med 10 tecken), stega med (dvs skriva ut) kanske ett (eller flera) mellanslag

(rörelsens ”hastighet”) och skriva om texten C# är kul>. Har loopen lika

många varv som krysset X har avstånd från konsolens vänstra rand minus

textens längd – i det föreslagna exemplet 10 – kommer rörelsen att stoppas

strax innan texten ”träffar” på X. Nedan ser du några ögonblicksbilder av

den löpande txten.

Även om du gjort allt rätt kommer du inte se att texten rör sig om du inte

lägger in en fördröjning i loopen, eftersom allt går så fort och man inte

hinner se något förlopp. Det kan du göra genom att i loopen skriva satsen:

System.Threading.Thread.Sleep(100);

155

6.11 Pyramiden (projekt) Slutmålet med detta projekt är att utveckla ett

program som skriver ut en pyramidliknande figur med tal, t.ex. så här:

Programmet ska vara så generellt att det skriver ut talpyramider även om

man matar in mindre antal rader. Uppmana användaren att hålla sig talinter-

vallet [1, 13]. Anledning till denna restriktion är att talpyramiden inte ryms i

konsolen om man överskrider detta intervall . Så här kan det se ut:

Tips till Pyramiden:

För att komma igång börja med ett program som ritar en stjärnpyramid:

Strunta till att börja med även på hanteringen av felinmatning av antal rader och

jobba med ett fast antal rader. Du kan lägga till det senare.

 156

Använd en nästlad for-sats med en yttre loop och tre inre loopar:

 En för de tomma platserna i pyramiden (mellanslagen)

 En för stjärnorna i pyramidens högra halvan (räknat från den ver-

tikala mittlinjen (symmetriaxeln))

 En för stjärnorna i pyramidens vänstra halvan.

Räkna med att du måste använda i de inre looparna den yttre loopens räknare och

slutvärde. T.ex. kan villkoret i den första inre loop som ritar de tomma platserna,

se ut så här:
 column <= numberOfRows - row;

Där column är den inre loopens, row den yttre loopens räknare och number-

OfRows hela pyramidens antal rader, t.ex. 13 som ovan. Då kan den här första inre

loopen skriva ut tre mellanslag i varje varv. I de två andra inre looparna kan två

mellanslag och en * skrivas ut.

Observera att alla dessa tips inte ska förhindra att du använder dina egna idéer för

att lösa projektuppgiften. Det finns inte endast ett tillvägagångssätt. Uppgiften kan

lösas på väldigt många olika sätt.

157

Kapitel 7

Metoder

 Ämne Sida Program

 Vad är en metod? 158

­ Modularisering eller Lego-principen 159

 Metoder med returvärde 161

 ReturnMethod

­ Definition av metoder 162

­ Anrop av metoder 164

 Externlagrade metoder 169 TotalTest

 Metoder utan returvärde 171 VoidMethod

 Övningar till kapitel 7 (Projekt Kalkylatorn) 174

 158

En metod i C# är en namngiven kodmodul (ett antal satser) i en klass

som utförs när metoden anropas. Vid anropet kan den ta emot indata,
s.k. parametrar, bearbeta dem och returnera utdata, s.k. returvärde.

7.1 Vad är en metod?

De flesta känner till begreppet funktion från matematiken. Man tänker först på en

formel som beräknar ett värde utgående från ett annat värde. Även i programme-

ring finns den matematiska synen på funktion som underliggande koncept och

historisk utgångspunkt. Men under tiden har den fått en bredare tolkning då den

tillämpats på all datoriserad problemlösning.

En metod är en funktion som definieras i en klass. I objektorienterade programme-

ringsspråk är metoder inkapslade i klasser. I C# är det obligatoriskt. Därför finns

det i C# inga fristående funktioner utan endast metoder. Bortser man från denna

överordnade struktur och ser på det ”inifrån”, är funktioner och metoder identiska.

Som ”ett antal satser” är en metod en del av en klass som isoleras och skrivs sepa-

rat som en anropbar modul för att kunna användas även i andra klasser.

Ur praktisk synpunkt kan en metod jämföras med en ”svart låda” i vilken man

stoppar in indata och får ut utdata: Indata kallas även parametrar och utdata retur-

värde:

 Parametrar (indata) Returvärde (utdata)

En metod kan ha 0, 1 eller flera parametrar. Den kan ha 0 eller 1 returvärde. En

metod kan alltså inte ha flera returvärden. Både parametrarna och returvärdet kan

vara tal, tecken, strängar, sanningsvärden eller referenser till objekt. Metoden bear-

betar de ev. inkommande parametrarna på ett visst sätt och returnerar ev. ett värde.

Metoder med returvärde behandlas först. Metoder utan returvärde tas upp senare.

Vi har hittills använt några av C#-bibliotekets metoder, t.ex. Console.Write(),

Console.WriteLine(), Console.Read(), Console.ReadLine(), int.-

Parse(), … utan att behöva veta hur de var kodade, därför: ”svarta lådor”. De var

förprogrammerade åt oss och vi använde dem bara för att åstadkomma vissa

funktionaliteter. I detta kapitel ska vi nu lära oss att själva skriva metoder. Men en

metod som vi redan har skrivit själva – och det har vi gjort i alla våra program-

exempel – är metoden Main(), för den är obligatorisk. Så här definierade vi tidi-

gare ett C# program (sid 43):

Ett C# program är en samling av klasser, av vilka en och endast

en måste innehålla metoden Main().

När programmet körs startar exekveringen i Main().

Metod

159

Varför metoder?

Frågan är berättigad för nybörjare: Varför ska man krångla till det hela? Kan man

inte helt enkelt skriva kod rakt ned i Main()? Föreställ dig en verksamhet som

dynamiskt växer med tiden, ett expanderande företag eller en organisation med sti-

gande antal medlemmar. Hur organiserar man jobbet? Man genomför arbets-

delning och delegerar uppgifterna. Var och en får en väl definierad specifik arbets-

uppgift. Annars skulle man inte kunna klara av jobbets komplexitet. Samma sak

gör man med program vars kod växer, vilket händer när man utvecklar program

efter behov och behoven bara blir större och större. Man delar upp det stora pro-

grammet i mindre moduler för att kunna klara av komplexiteten. Hur det görs ska

vi nu diskutera under rubrikerna: Modularisering, återanvändning av kod och

strukturering av program.

Modularisering eller Lego-principen

De flesta har väl någon gång som barn, eller tillsam-

mans med sina barn, byggt ett hus, en bil eller lik-

nande med Lego-bitar. Efter ett tag har huset kanske

rasat och nya tekniska underverk har konstruerats.

Men även de har någon gång plockats isär. Det enda

som blivit kvar är själva Lego-bitarna som man så

småningom samlat i en kartong för att kunna åter-

använda dem senare.

Vill man lösa ett komplext problem, t.ex. bygga ett

hus eller en bil, bryter man ned det i ett antal mindre

problem som är enklare att lösa. Sedan sätter man

ihop de små enkla lösningarna till den stora komplexa lösningen. Principen heter

modularisering och kan användas vid både modellering och problemlösning. Ett

stort komplext problem bryts ned i mindre moduler – motsvarande Lego-bitarna –

och bearbetas en i taget. I traditionell (procedural) programmering är dessa modu-

ler funktioner som blir metoder när de bindas in i klasser.

För att kunna göra det måste varje modul kommunicera med sin omgivning. Även

här kan man lära av Lego: Varje Lego-bit är konstruerad så att den passar in i en

annan Lego-bit. De delar av Lego-biten som tillåter denna passning, kan anses

som Lego-bitens gränssnitt mot andra Lego-bitar. På samma sätt har en metod ett

gränssnitt mot andra metoder för att kunna kommunicera med dem. Även detta

gränssnitt har två delar: För det första metodens parametrar som importerar vär-

den från omgivningen och för det andra metodens returvärde som exporterar ett

värde till omgivningen. Men sedan måste Lego-bitarna ”sättas ihop” vilket i pro-

grammeringstermer innebär att anropa den ena från den andra. Ett anrop av en

metod innebär att aktivera metoden. Detta sker genom att ev. skicka till den para-

metrar, utföra koden som står i metoden och ev. få tillbaka returvärdet. Generellt

finns det i ett program flera metoder som anropar varandra. Det enklast tänkbara

 160

exemplet är att Main() anropar en Method dvs Main() är den anropande och

Method den anropade metoden. Då kan programflödet mellan dem se ut så här:

Återanvändning av kod

är det andra svaret på frågan varför man i programmering sysslar med metoder.

Samma idé finns bakom Lego-biten som minsta återanvändbara modul för att byg-

ga i princip vad som helst. Har man i ett program redan beskrivit en funktionalitet

som även dyker upp i andra sammanhang och vars kod kan vara relevant i andra

program, så vill man ju helst inte satsa tid och resurser för att koda den en gång

till. Man vill undvika att återuppfinna hjulet. Detta är inte bara av teoretiskt-

estetiskt intresse utan även av stort ekonomiskt intresse. Det man gör är att sepa-

rera koden för denna kategori från det aktuella programmet och skriva den som en

klass för att kunna återanvända koden i vilket annat program som helst. Det kräver

att den ursprungliga koden som kanske var skräddarsydd för just det speciella pro-

grammet, nu som klass måste formuleras på ett mer generellt sätt. Hela C#:s klass-

bibliotek bygger på idén om återanvändning av kod.

Strukturering av program

Genom att modularisera ett komplext problem som ska lösas med hjälp av datorn

underlättar man inte bara själva lösningen (innehållet) utan kan även lättare få en

strukturering av programkoden (formen). Beroende på applikationen kan det fin-

nas många olika möjligheter till modularisering.

Det enklast tänkbara sättet att strukturera vilket program som helst är t.ex. att dela

in det i inmatning – bearbetning – utmatning vilket diskuterats tidigare (sid 72).

Dessa tre delar kan skrivas i var sin metod som sedan kan anropas av Main().

Denna huvudmetod kan då bestå av ett få antal satser som endast skapar objekt

och anropar objektens metoder. På så sätt har man från Main() en övergripande

kontroll över hela programflödet. Dessutom kan metoderna placeras i klasser som

lagras i separata filer och importeras som innehåller Main(). Så kan man så små-

ningom bygga upp sitt eget bibliotek av egendefinierade klasser och metoder –

skräddarsydda för det egna behovet.

Method Main()

161

7.2 Metoder med returvärde

Modularisering och strukturering är inga självändamål. Man genomför dem för att

underlätta och effektivisera programutveckling. Endast logiskt sammanhängande

uppgifter som på ett naturligt och meningsfullt sätt kan avgränsas från andra, ska

modulariseras. Som exempel tar vi upp programexemplet Operator (sid 71) där vi

redan hade strukturerat koden enligt mönstret inmatning – bearbetning – utmat-

ning. Nu modulariserar vi programmet genom att skriva bearbetningen i en metod

som vi döper till TotalDays(), placerar den utanför och anropar den i Main().

Fortfarande finns all kod i en fil kallad ReturnMethod.cs.

Den bit av kod som formulerar metoden – längst ned vitmarkerad utanför Main()

– kallas för metodens definition. Metoden TotalDays() har tre parametrar av typ

int och ett returvärde av typ int. Denna bit av kod har hamnat på nästa sida.

Kvar blir i Main() in- och utmatningen samt metodens anrop. Anropet är den bit

av kod som kallar funktionens namn med parametrarna i parentesen – även den

vitmarkerad, men i Main(). Den här biten av kod finns på denna sida.

// ReturnMethod.cs

// Gör samma sak som progr. Operator (sid 71). In- och utmat-

// ning görs i Main(), bearbetningen utanför Main()

using System;

class ReturnMethod

{
 static void Main()

 {
 int year, months, weeks, days;

 /* I n m a t n i n g */

 Console.Write("\n\tAnge antal år:\t\t"); // Ledtext

 year = int.Parse(Console.ReadLine()); // Inläsning

 Console.Write("\n\tAnge antal månader:\t");

 months = int.Parse(Console.ReadLine());

 Console.Write("\n\tAnge antal veckor:\t");

 weeks = int.Parse(Console.ReadLine());

 Console.Write("\n\tAnge antal dagar:\t");

 days = int.Parse(Console.ReadLine());

 /* U t m a t n i n g */

 Console.WriteLine("\n " + year + " år, " +

 " månader, " + weeks + " veckor och " + months +

 days + " dagar är " +

 TotalDays(year, months, weeks, days) +

 " dagar totalt.\n");

 } // OBS! Här slutar Main()

 162

 static int TotalDays(int y, int m, int w, int d)// Metoden

 {
 /* B e a r b e t n i n g */

 return 365*y + 30*m + 7*w + d;

 }

} // OBS! Här slutar programmet (klassen)

En körning av programmet ReturnMethod ger följande utskrift:

 Ange antal år: 2

 Ange antal månader: 11

 Ange antal veckor: 3

 Ange antal dagar: 6

 2 år, 11 månader, 3 veckor och 6 dagar är 1087 dagar totalt.

Självfallet blir det samma utskrift som för programmet Operator (sid 72).

Programmet ReturnMethod består av en klass innehållande två metoder: Först

skrivs Main(), sedan metoden TotalDays(), men det går lika bra att placera

dem i omvänd ordning. Det enda som inte får göras är att placera dem i varandra.

Båda skrivs (just nu) i samma klass och även i samma fil. Metoden TotalDays()

har fyra parametrar y, m, w och d, alla av typ int samt ett returvärde av typ int.

Exekveringen startar i Main() som i sin tur anropar TotalDays(). För att båda

metoderna ska kunna utföras när programmet körs, har anropet av TotalDays()

skrivits i Main(). När Main() anropar TotalDays() överförs de inlästa värdena

till variablerna year, months, weeks, days från Main() till variablerna y, m,

w, d i den ordning som de förekommer i parentesen av metodnamnet. Metoden

beräknar antalet totaldagar och returnerar resultatet till Main() där det skrivs ut

tillsammans med lite användarvänlig text.

Definition av metoder med returvärde

Generellt ser definitionen av metoder med returvärde ut så här:

modifierare returtyp metodnamn(datatyp fpar1, datatyp fpar2, ...)

{
 statement(s);

 return uttryck;

}

Första raden kallas metodens huvud inklusive parentesen (...) som innehåller

listan över alla parametrar, därför kallad parameterlistan. Resten, det som står

inom klamrarna { ... }, är metodens kropp. Huvudet kan inledas med en eller flera

modifierare vilket vi kommer att återkomma till. Med returtyp menas datatypen till

returvärdet. Ordningen är av betydelse: Modifierarna kan utelämnas, men får inte

163

skrivas efter returtypen. fpar står för formell parameter. Så kallas parametrar som

förekommer i metodens definition inom parameterlistan. Den kan innehålla en eller

flera parametrar, men kan även vara tom. Oavsett antalet parametrar inkluderar

man alltid, när man i beskrivande text nämner en metod, parentesen () och lägger

den till metodnamnet vilket man gör för att skilja mellan metoder och variabler.

Parentesen är alltså kännetecknet för en metod.

Observera att metodhuvudet inte avslutas med semikolon. Det är ju inte en sats

utan bara huvudet till en metod vars kropp följer. I programexemplet Return-

Method är metoden TotalDays() definierad på följande sätt:

... int TotalDays(int y, int m, int w, int d)
{
 ...

}

Detta int är returvärdets datatyp, kort kallad returtyp. Metoden returnerar ett

heltal med return-satsen som står i kroppen. Men varför står returtypen framför

metodens namn? Det verkar – om man för ett ögonblick bortser från parameter-

listan – som om int TotalDays vore en deklaration för ”variabeln” TotalDays

till datatypen int. Denna tolkning är korrekt om man vet att TotalDays är både

metodens namn och returvärdets ”variabel”. Denna variabel kan få sitt värde endast

från return-satsen när metoden anropas. Medan returvärdet är metodens output

(utdata) är parametrarna metodens input (indata). TotalDays() har fyra paramet-

rar av typ int. De är definierade i parameterlistan: (int y, int m, int w,

int d). Observera att det inte går att skriva (int y, m, w, d) vilket man kan

göra vid deklaration av vanliga variabler. Visserligen är parametrar också varia-

bler, men när de definieraras i parameterlistan, måste man upprepa deras datatyper

även om de är av samma typ. Det är den enda syntaktiska skillnaden mellan para-

metrar och vanliga variabler. I definitionen heter de formella parametrar därför att

de definieras i parameterlistan som ”tomma” minnesceller i väntan på att bli initie-

rade när metoden anropas. Deras namn saknar betydelse – bara man använder kon-

sekvent samma namn i metodens kropp. De initieras när metoden anropas med To-

talDays(year, months, weeks, days). Då importeras de s.k aktuella para-

metrarna year, months, weeks, days från Main() via de formella

parametrarna y, m, w, d in i metoden TotalDays() där de bearbetas. Sedan ex-

porteras returvärdet från TotalDays() via metodnamnet till Main().

I kroppen till en metod kan ett antal satser stå avgränsade med klammerparet { ...
}. Klamrarnas uppgift är att gruppera satserna under metodhuvudet till ett s.k. block

(sid 117). I metoden TotalDays() består detta block av return-satsen som retur-

nerar ett heltalsvärde till metodnamnet. Men return-satsen gör en sak till: Den

avslutar även metoden. Eventuell kod efter den kommer att inte utföras. Därför ska

return-satsen alltid vara metodens sista sats. Den logiska slutsatsen är att det får

exekveras endast en return-sats i en metod. Då den returnerar ett värde till me-

todnamnet, måste namnet ha beredskapen at ta emot det. Detta innebär att Total-

 164

Days samtidigt som det är metodnamnet, också är en variabel av typ int – med

den begränsningen att den endast kan få sitt värde från return-satsen. TotalDays

kan inte lagra returvärdet som är ett haltal, om det inte är via returtypen deklarerat

till datatypen int.

Placering av metoder

När vi pratar om metoders placering menar vi placeringen av deras definition. Kan

man definiera metoder var som helst i ett C# program? För det första måste meto-

dens definition alltid placeras i en klass. I programexemplet ReturnMethod place-

rade vi metoden TotalDays() i en och samma klass som Main(). Har man dem i

samma klass som Main() spelar inbördesordningen ingen roll. Detta är o.k. så län-

ge man håller på med att utveckla och testa metoden. Men när man är klar med ut-

vecklingsstadiet, ska man helst ha den i en separat klass som då kommer även att

placeras i en separat fil vilket vi kommer att ta upp i nästa avsnitt. Men innan vi går

vidare ska vi konstatera följande absolut förbud när det gäller placering av meto-

der:

Observera att detta förbud endast gäller för definition av metoder, inte för anropet.

Anropen kan vara nästlade i varandra, men inte definitionen.

Anrop av metoder med returvärde

Metodens definition är endast är en mall, en föreskrift om vad som skulle hända om

metoden anropades, jämförbar med ett matrecept som man skriver ned och stoppar

i kökskåpets låda i väntan på att någon gång ta fram det och laga mat. Först när be-

redskapen till matlagning finns – alla ingredienser är handlade och finns på plats –

kan matreceptet komma till användning som en algoritm. Samma sak är det med

metodens definition: den är endast en potentiell eller formell kod. Aktuell blir den

först när vi anropar metoden. Då börjar saker och ting att hända. I programmet Re-

turnMethod anropas metoden TotalDays() från metoden Main() med:

TotalDays(year, months, weeks, days)

Anropet består av att kalla metoden vid namn och i parameterlistan skriva lika

många parametrar som definitionen föreskriver – i det här fallet fyra. Parametrar

som förekommer i metodens anrop – här year, months, weeks, days – kallas

aktuella. Antalet aktuella parametrar måste vara lika med antalet formella paramet-

rar – de som förekommer i metodens definition. Annars blir det kompileringsfel.

Samtidigt borde de aktuella parametrarna ha samma datatyp som de formella. An-

nars försöker kompilatorn att göra automatisk typkonvertering till måldatatypen,

vilket kan vara problematiskt. Dessutom måste vi se till att parametrarnas ordning

stämmer dvs vi måste kontrollera, för exakt i den ordning vi skriver dem i anropet,

kommer deras värden att överföras till de formella parametrarna i metodens defini-

tion.

Metoder får inte definieras inuti en annan metod.

165

Att anropet kan läggas i utskriftssatsen beror på att TotalDays() är en metod med

returvärde – dvs har en return-sats. Därmed bär metodnamnet samtidigt retur-

värdet i sig. I exemplet bakar vi in anropet i utskriftssatsen för att konkatenera det

med förklarande, användarvänlig text:

Console.WriteLine(metodnamn(apar1, apar2, ...));

Ett alternativ är att lägga anropet i en tilldelningssats:

 variabel = metodnamn(apar1, apar2, ...);

där apar står för aktuell parameter och metodnamn är den anropade metoden.

Självklart måste variabel och även alla aktuella parametrar vara definierade före

anropet på vanligt sätt i den anropande metoden – i vårt exempel i Main(). Para-

metrar som skrivs i en metods anrop kallas aktuella parametrar

, en beteckning

som ska framhäva deras skillnad till de formella parametrar som skrivs i metodens

definition. Med aktuell menas att de har aktuella värden som gäller vid anropet för

att skickas till metodens formella parametrar. Därför måste de vara konstanter eller

definierade och initierade variabler. I programmet ReturnMethod är de variabler:

year, months, weeks, days. De formella parametrarna däremot – i vårt exem-

pel y, m, w, d – måste alltid vara variabler som definieras i metodens parameter-

lista när denna definieras. Sina värden får de första gången inte tilldelade i meto-

dens kropp utan från de aktuella parametrarna vid metodens anrop.

Vad händer vid anropet av en metod?

Tre saker händer när en metod anropas från en annan metod. Låt oss som exempel

ta programmet ReturnMethod där metoden TotalDays() anropas från Main():

1. Parameteröverföring Då överförs de aktuella parametrarna year,

months, weeks, days till de formella parametrarna y, m, w, d. Observera

att korresponderande parametrar bestäms av ordningen i parameterlistan och

borde vara av samma datatyp. Anropet av metoden vidarebefordrar värdena till

metodens formella parametrar. Så hamnar de i kroppen till metoden To-

talDays().

2. Exekvering av koden i metodens kropp vilket i vårt fall innebär att utföra

den return-sats som står där dvs beräkna uttrycket 365*y + 30*m + 7*w

+ d och returnera resultatet till metodnamnet TotalDays. Med värdena från

parameteröverföringen (punkt 1 ovan) blir det 365*years + 30*months +

7*weeks + days.

 Andra beteckningar som förekommer i litteraturen är anropsparametrar eller argument.

Speciellt argument används ofta då det är en inkörd matematisk term: T.ex. är 3 ett anrop

av metoden x där x – i matematiska termer – är ”variabeln” och 3 ”argumentet”. I

programmeringstermer skulle x kallas för den formella och 3 den aktuella parametern.

 166

static void Main()

{
 int year, months, weeks, days;

 /* I n m a t n i n g */

 . . .

 /* U t m a t n i n g */
 Console.WriteLine("\n " +

 . . .
 TotalDays(year, months, weeks, days)… // Anrop av metoden

}

{
 /* B e a r b e t n i n g */

 return 365*y + 30*m + 7*w + d;

}

static int TotalDays(int y, int m, int w, int d)

3. Överföring av returvärdet sker i omvänd riktning jämfört med parameter-

överföringen, nämligen från den anropade metoden TotalDays() till den

anropande metoden Main(). Vi får returvärdet från metoden, i exemplet är det

heltalsvärdet till det uttryck som står efter return. Att returvärdet hamnar i

Main() beror på att anropet görs med metodnamnet TotalDays som fått

returvärdet.

Det som händer vid anrop av en metod är alltså att data byts ut mellan den

anropande och den anropade metoden, i vårt exempel mellan Main() och Total-

Days(), att koden i den anropade metoden utförs när anropet inträffar, samt att

returvärdet till sist hamnar i den anropande metoden. En översikt över dataflödet

mellan dessa två metoder (se pilarna nedan) och framför allt i vilken ordning deras

koder utförs ges i följande bild som illustrerar punkterna 1-3 ovan.

Dataflödet mellan Main() och TotalDays()

Observera att bilden visar det som händer när programmet ReturnMethod exe-

kveras, inte hur det skrivs i koden. Det är nämligen en skillnad mellan den ordning

i vilken koden skrivs och den när koden körs. Bilden visar själva aktionen som

startar vid exekveringen i Main(). När den den kommit till anropet av metoden

TotalDays() klistras metodens kod in just på detta ställe och utförs enligt

punkterna 1-3 på förra sidan. De båda metodernas aktioner är nästlade i varandra,

men det är absolut inte koden som är skriven i programmet ReturnMethod. Den

har en helt annan struktur: De båda metodernas koder är inte alls nästlade i

varandra, snarare tvärtom, de är isolerade från varandra. Och så måste det vara:

Koden till metoden TotalDays() får inte under några omständligheter skrivas i

Main(), den måste stå utanför Main(), antingen före eller efter Main(), ja den

167

kan t.o.m. ligga i en separat fil. Men när vi kör programmet i sin helhelt händer

saker och ting i den ordning som visas på bilden på förra sidan.

Bilden ovan visar dataflödet som går från de aktuella parametrarna 1, 6 till de for-

mella parametrarna a, b. Dessa bearbetas i metoden TotalDays() dvs formeln

efter return beräknas. Sedan skickas resultatet som returvärde via metodnamnet

till Main(). Metodens TotalDays():s kropp utförs precis på det stället där anro-

pet i Main() står. I den här processen spelar metodhuvudet static int Total-

Days(int y, int m, int w, int d) rollen av ett gränssnitt mellan Main() och

TotalDays(). Det är där kommunikationen mellan dessa separat skrivna moduler

äger rum. Därför har vi satt metodhuvudet i en extra ruta i bilden för att under-

stryka rollen som gränssnitt. Huvudet är nämligen åtkomligt både från Main() och

TotalDays(). De skulle annars inte kunna kommunicera med varandra eftersom

de ligger i olika block. Bilden ska nämligen även visa att metodanropet resulterar i

en blockstruktur som återges av ramarna i bilden. Motsvarande kod till denna

blockstruktur utgörs av klamrarna { } till både Main() och TotalDays().

Klamrarna bildar dessa modulers fasta gränser för kodens giltighet eller räckvidd.

För att överskrida dem måste vissa regler beaktas vilket vi kommer att precisera

senare. Blockstrukturen är den egentliga orsaken till att metoden TotalDays() in-

te kan kommunicera med Main() annat än via gränssnittet static int Total-

Days(int y, int m, int w, int d). Det motiverar dessutom varför metodernas

koder inte får nästlas i varandra när de skrivs. Om block läs på sid 117.

En viktig ingrediens av metoden TotalDays():s huvud har vi inte gått in på

hittills, nämligen att det står static framför namnet TotalDays(). Vi nöjer oss

med att konstatera att TotalDays() inte kan anropas i Main() utan att definiera

den med static. Vi ska avsluta behandlingen av metoder med returvärde med en

företeelse som liknar villkorlig initiering av variabler (sid 118):

Villkorlig return-sats

För det första måste man konstatera att return-satsen är en obligatorisk del av en

metod med returvärde dvs en metod vars huvud innehåller en returtyp. T.ex. har

metodhuvudet static int TotalDays(int y, int m, int w, int d)

returtypen int. Därför måste metodens kropp ha en return-sats, annars blir det

kompileringsfel. För det andra får return-satsen inte stå i en if-sats (utan else)

eller i andra kontrollstruktur där villkor är inblandade. Precis som variablers initie-

ring får inte heller return-satsen vara beroende av villkor utan alternativ.

Följande regel gäller för villkorliga return-satser:

Metoder vars return-sats är beroende av villkor

utan alternativ leder i C# till kompileringsfel.

 168

En villkorlig return-sats ger kompileringsfel oavsett villkorets sanningsvärde.

Förbudet gäller alltså även för sanna villkor, ja t.o.m. för sådana som i if(1 == 1)

eller if(true). Dvs till skillnad från villkorligt initierade variabler gäller förbudet

även för konstanta villkor, dvs sådana som inte involverar variabler.

Avslutningsvis ska vi nämna att return-satsen samtidigt avslutar en metod med

returvärde. Den är alltså en slags terminator efter vilken ingen kod mer utförs. All

kod efter den kommer att ignoreras. Därför borde den stå sist i en metods kropp.

169

7.3 Externlagrade metoder

Programmet ReturnMethod som behandlades i förra avsnitt (sid 161) hade två

moduler: Metoden Main() som organiserar inläsningen samt utskriften och

metoden TotalDays() som sköter beräkningen. Men nackdelen var att dessa

moduler inte var oberoende av varandra: Båda fanns i en och samma klass. Tanken

med modularisering är ju att kunna t.ex. använda metoden TotalDays() i helt

andra sammanhang än att bara skriva ut slumptal i tabellform, t.ex. som rådata till

sökning och sortering eller som statistiskt material eller för att överföra dem till en

databas, … . Då är det nödvändigt att renodla modulariseringstekniken och inte

bara separera modulerna på metodnivå, utan även på klassnivå. Detta åstad-

kommer man genom att separera metoden TotalDays() från allt annat och skriva

den i en klass för sig och lagra klassen i en fil för sig. Det menar vi med ex-

ternlagrade metoder som garanterar att man kan anropa dem från vilket program

som helst utan att i det nya programmet ha med sig kod som inte har att göra med

den nya applikationen. Följande klass ger nu vår gamla metod TotalDays() en

ny ram och gör den till en renodlad klassmodul:

// Total.cs

// Egen modul som kan användas i vilket program som helst

// Metoden TotalDays() är inkapslad i klassen Total

// public för att kunna anropas utifrån klassen Total

class Total

{
 public static int TotalDays(int y, int m, int w, int d)

 {
 return 365*y + 30*m + 7*w + d;

 }
}

I programmet nedan sker anrop av metoden TotalDays() från Main() som nu

finns i en annan klass, klassen TotalTest. Förutom den annorlunda syntaxen till

anropet av TotalDays()-metoden skiljer sig koden inte från programmet Re-

turnMethod. Men nu tillhör metoderna Main() och TotalDays() två olika

klasser, lagrade i två olika filer, varför Main() måste anropa den externlagrade

metoden TotalDays() med koden Total.TotalDays(). De två klasserna kan

hitta varandra om de lagras i samma mapp och i Visual Studio i samma projekt.

// TotalTest.cs

using System;

class TotalTest

{

 170

 static void Main()

 {
 int year, months, weeks, days;

 /* I n m a t n i n g */

 Console.Write("\n\tAnge antal år:\t\t"); // Ledtext

 year = int.Parse(Console.ReadLine()); // Inläsning

 Console.Write("\n\tAnge antal månader:\t");

 months = int.Parse(Console.ReadLine());

 Console.Write("\n\tAnge antal veckor:\t");

 weeks = int.Parse(Console.ReadLine());

 Console.Write("\n\tAnge antal dagar:\t");

 days = int.Parse(Console.ReadLine());

 /* U t m a t n i n g */

 Console.WriteLine("\n " +

 year + " år, " + months + " månader, " +

 weeks + " veckor och " + days + " dagar är " +

 Total.TotalDays(year, months, weeks, days) +

 " dagar totalt.\n");

 }
}

Programmet ger samma utskrift som programmet ReturnMethod (sid 162).

Pga den externa placeringen av metoden TotalDays() i klassen Total är syn-

taxen till metodanropet annorlunda än i förra avsnittet där både den anropande

metoden Main() och den anropade metoden TotalDays() fanns i samma klass.

Klassen TotalTest har ingen direkt tillgång till metoden TotalDays() och kan

därför inte anropa den endast med metodnamnet utan måste gå via klassen Total

för att göra det med punktnotation: Total.TotalDays().

Det är anmärkningsvärt att vi för detta anrop varken behöver inkludera klassen

Total till det nya programmet eller någon annan speciell åtgärd i koden. Det räc-

ker med att placera filerna TotalTest.cs och Total.cs som lagrar de resp.

klasserna i en och samma mapp på datorn. När C#-kompilatorn stöter på anropet

med det okända klassnamnet Total söker den automatiskt efter filen Total.cs i

den aktuella C#-filens mapp och inkluderar den i kompileringen. I Visual Studio

måste båda filerna ingå i det aktuella projektet.

171

En void-metod är en metod som inte returnerar något värde. I

metodhuvudet ersätter void returtypen.

En void-metod har antingen ingen return-sats alls eller en

tom return-sats: return;

7.4 Metoder utan returvärde

De flesta av de metoder vi hittills använt i våra programexempel hade returvärden.

Det var en typ av metod, en ganska viktig sådan. Metoder med returvärde kan

returnera endast ett värde, ett tal, ett tecken, ett sanningsvärde, en sträng eller en

referens till ett objekt. Med returvärde menar vi alltid det som returneras av re-

turn-satsen via metodnamnet. En annan kategori av metoder är sådana som inte

har något returvärde alls. Metoder utan returvärde kallas även för void-metoder.

void är i C# ett reserverat ord som kan tolkas som ”ingenting”. När void i metod-

huvudet ersätter datatypen till returvärdet (returtypen) och skrivs framför metod-

namnet, eliminerar det returvärdet och definierar en void-metod. Detta medför att

return-satsen i kroppen antingen måste strykas eller ersättas av en tom return-

sats dvs utan värde: return; vilket verkar vara onödigt: I våra exempel föredrar

vi att stryka den helt.

Metoden Test() i klassen Password var ett exempel på en void-metod utan

parametrar (sid 181). Här följer ett exempel med parametrar. Båda utelämnar re-

turn-satsen och lagras externt i en klass (i en separat fil) samt anrpas av Main() i

en testklass:

// VoidMethod.cs

// Klass med en void-metod: två parametrar utan returvärde

using System;

class VoidMethod

{
 public static void divSafe(int numerator, int denominator)

 {
 if (denominator != 0) // Förhindrar division med 0

 Console.WriteLine("\n\tSäker heltalsdivision:\n\n" +

 "\t\t" + numerator + " heltalsdividerad med " +

 denominator + " är " + numerator/denominator + '\n');

 else

 Console.WriteLine("\n\tOBS! Division med 0:\n\n\t\t" +

 "Du har matat in 0 för det tal som ska \n\t\t" +

 "delas med. Det går inte att dela med 0.\n\t\t" +

 "Division med 0 är odefinierad.\n");

 }
}

 172

I exemplet ovan står void exakt på samma plats som returtypen eller istället för

den för att indikera att metoden divSafe() inte ger något värde när den anropas.

Speciellt returnerar den inte divisionens värde. Allt den gör är att exekvera krop-

pens kod när den anropas. Då skrivs ut all relevant information från metodens

kropp: Endast om den andra parametern denominator är skilt ifrån 0, utförs divi-

sionen numerator/denominator och divisionens värde skrivs ut. På så sätt und-

viks division med 0. Pga datatypen int som både numerator och denominator

är deklarerade till (i parameterlistan), blir det inte vanlig utan heltalsdivision (sid

75). Att vi valt här int och inte float eller double beror på att C# beter sig olika

vid olika datatyper när det gäller division med 0. Medan vanlig decimaltalsdivision

med 0 inte leder till programavbrott utan producerar symbolen INF som står för in-

finity (oändligheten) och körningen avslutas regulärt, leder heltalsdivision med 0

till abrupt programavbrott (DivideByZeroException) som uppfattas som krasch. All

kod som följer exekveras inte längre. Det är den situation som klassen Void-

Method, närmare bestämt metoden divSafe() ska förebygga. Pga det modulari-

serade upplägget kan den användas i vilket program som helst. I längre program

kommer även all kod som följer efter en felaktig division med 0 att utföras som

vanligt och körningen avslutas regulärt. Däremot kommer ett egenkonstruerat fel-

meddelande att hänvisa till felet utan att avbryta exekveringen.

Fast void kan tolkas som ”ingenting” får det inte stå överallt i koden där man

misstänker ”ingenting”. T.ex. får void inte stå i parameterlistan till en metod för

att antyda att den inte har några parametrar: void Test(void) som metodhuvud

ger kompileringsfel. void får inte heller ersätta datatypen i definitionssatser till

vanliga variabler. C# som är strikt typbestämt tillåter inte att en variabel definieras

till ”ingen datatyp”. I följande program anropas nu void-metoden divSafe():

// VoidMethodTest.cs

// Testar klassen VoidMethod genom att från Main() anropa

// dess void-metod divSafe()

// Anropet står som en fristående sats eftersom divSafe()

// inte returnerar något värde

using System;

class VoidMethodTest

{
 static void Main()

 {
 int t, n;

 Console.Write("\n\tAnge ett heltal som ska delas:\t\t");

 t = int.Parse(Console.ReadLine());

 Console.Write("\n\tAnge ett heltal som ska delas med:\t");

 n = int.Parse(Console.ReadLine());

 VoidMethod.divSafe(t, n); // Anrop av void-metod

 }
}

173

Matar man in ett heltal skilt från 0 för det andra heltalet ger programmet ovan föl-

jande utskrift:

 Ange ett heltal som ska delas: 27

 Ange ett heltal som ska delas med: 4

 Säker heltalsdivision:

 27 heltalsdividerad med 4 är 6

Inmatning av 0 till det andra heltalet producerar däremot följande dialog:

 Ange ett heltal som ska delas: 27

 Ange ett heltal som ska delas med: 0

 OBS! Division med 0:

 Du har matat in 0 för det tal som ska

 delas med. Det går inte att dela med 0.

 Division med 0 är odefinierad.

En viktig praktisk konsekvens av void-metoder är att anropet till skillnad från me-

toder med returvärde inte behöver – ja inte får – inbäddas i en utskrifts- eller till-

delningssats. void-metoder anropas helt enkelt med namn och väl definierad para-

meterlista, om sådan finns. I vårt exempel finns två parametrar:

VoidMethod.divSafe(t, n);

Eftersom själva metodnamnet inte längre bär något värde, kan det varken skrivas ut

eller tilldelas någon variabel. Därför behöver vi inte längre någon variabel som tar

hand om returvärdet. Det enda anropet gör är att exekvera den kod som står i meto-

dens kropp, efter att ha överfört parametrarnas värde till metoden. Från metoden

kommer inget tillbaka.

 174

Övningar till kapitel 7

7.1 Modularisera lösningen till övn 4.4 (sid 83) som läser in två heltal, gör

beräkningar med dem och skriver ut resultaten. Separera en av beräkningar-

na, t.ex. multiplikationen från kodens andra delar inmatning och utmatning.

a) Flytta multiplikationen till en metod med returvärde med huvudet

static int Mult(int a, int b) i samma klass som Main(). Anropa

metoden Mult() från Main(). Bibehåll alla andra beräkningar. Se upp

med att inte placera den nya metoden i Main(), utan före eller efter.

b) Fortsätt med att flytta metoden Mult() till en annan klass i samma fil.

Anropet ska fortfarande göras från Main(). Även här: Se upp med att

inte placera den nya klassen i den gamla, utan före eller efter.

c) Flytta den nya klassen samt metoden Mult() till en separat fil.

d) Gör samma sak med alla andra beräkningssätt. Lagra var och en klass

med resp. metod i en separat fil. Anropa alla metoder från Main().

7.2 Modularisera programmet Operator (sid 71) genom att skriva dess bearbet-

ningsdel som en ny metod i samma klass. Bibehåll in- och utmatnigsdelen i

Main() och anropa den nya metoden från Main(). Avgör själv om den nya

metoden ska returnera ett värde och om den ska vara statisk. Ge den ett

beskrivande namn.

7.3 Vänd om problemet från övn 9.2: Modularisera programmet OverloadOp

(sid 76) genom att flytta bearbetnings- och utmatnigsdelen till en void-me-

tod. Dvs skriv ett program som läser in tiden i ett antal dagar, anropar void-

metoden som omvandlar tiden till antal år, månader, veckor och restdagar

och skriver ut resultaten. Använd för omvandlingen den algoritm som är im-

plementerad i programmet OverloadOp. Varför är det inte lämpligt här att

använda en metod med returvärde?

7.4 Skriv först ett program med endast Main()-metoden som läser in side till

en kub samt beräknar och skriver ut kubens volymside 3 och dess yta 6 x

side 2 . Flytta sedan dessa beräkningar till två metoder, en för volymen, en

för ytan, båda i en separat klass Cube. Definiera side som en datamedlem i

klassen Cube. Avgör om metoderna Volume() och Area() ska returnera

eller vara av void-typ. Anropa dem från Main(). Skriv först en variant med

statiska metoder, byt sedan till icke-statiska metoder. Testa båda varianter.

Avgör slutligen själv vilken variant som ska föredras om lösningen ska vara

objektorienterad.

7.5 Varför ger följande program kompileringsfel? Åtgärda felet genom att flytta

på kod, utan att ta bort någon klammer och utan att ha tomma klamrar:

175

using System;

class Ovn_7_5

{
 static void Main()

 {
 {
 int t = 30;

 }
 Console.WriteLine("t = " + t);

 }
}

7.6 Modularisera programmet MiniSort (kap 6, sid 116) efter eget godtycke.

7.7 Modularisera programmet OverloadOp (kap 4, sid 76) efter eget godtycke.

7.8 Collatz problemet (projekt)  Skriv följande pseudokod till ett C# pro-

gram:

 Läs in ett positivt heltal (startvärde)
 Så länge talet ≠ 1 REPETERA:
 OM talet är udda
 multiplicera med 3, addera 1
 ANNARS
 dividera talet med 2
 Skriv ut talet

För ≠ (inte lika med) kan du skriva C# koden != och för att avgöra om tal

är udda, koden if (tal % 2 == 1). Testa programmet för startvärdena 3,

6, 7, 13 och 50. Testa även gärna större startvärden.

Studera de talföljder som uppstår. Fundera på varför alla startvärden slutar

med 1 oavsett hur stora de är. Förmodan är att det är sant generellt, vilket

dock hittills inte har kunnat bevisas matematiskt.

7.9 Tillägg till Pyramiden (projekt) Modularisera projektet Pyramiden

från övn. 6.11 (sid 155) genom att flytta koden som bestämmer det tillåtna

antalet rader 1-13 till en metod som definieras i en separat klass och anropas

från Main() innan pyramiden ”ritas”.

 Känt även som Collatz förmodan eller (3n+1)-problemet och kallat efter den tyske matematikern Lo-

thar Collatz (1910-1990) som ställde upp det när han var student. Collatz var Professor för Tillämpad

Matematik vid Hamburgs Universitet på 60-talet.

Att talföljderna i Collatz problemet slutar med 1 för alla startvärden, är matematiskt hittills obevisat.
Men man kan testa: Kör koden till denna algoritm i appen app.mattekollen.se  En mobil pythonmiljö.

Där kan du själv övertyga dig om att körningen slutar med 1 för vilket startvärde som helst.

 176

7.10 Kalkylatorn (projekt) I detta projekt ska du komplettera kalkylatorn

som presenterades i klassen Switch i kap 6.4, sid 125, med ytterligare funk-

tionalitet. Du ska skriva en klass Calculator som stödjer funktionalitet för

addition, subtraktion, multiplikation, division och potensiering av två tal

precis som den ursprungliga kalkylatorn i Switch-klassen. Funktionaliteten

som du ska lägga till är att kalkylatorn skall kunna ange det största och min-
sta av två inmatade tal. Dessutom ska din kalkylator vara igång kontinuer-

ligt tills användaren väljer att stänga av den, vilket innebär att du måste

lägga in hela switch-satsen i en loop. Dessutom ska de olika räkneoperatio-

nerna definieras i separata metoder och anropas i switch-satsen.

Följande metoder ska definieras i klassen Calculator:

public double Add(double operand1, double operand2)

{

// Additon av operand1 och operand2

}

public double Sub(double operand1, double operand2)

{

// operand1 - operand2

// Även subtraktion av negativa tal ska vara möjligt

}

public double Mult(double operand1, double operand2)

{

 // Multiplikation av parametrarna

}

public double Div(double operand1, double operand2)

{

 // operand1 / operand2

 // Division med 0 får ej förekomma (operand2 != 0)

}

public double Potens(double operand1, double operand2)

{

 // Beräkning av potens: operand1 upphöjt till operand2

}

public double max(double operand1, double operand2)

{

 // Returnera det större värdet av operand1 och operand2

 // Här kan du använda dig av den födefinierade metoden

 // Math.Max(double a, double b) för att snabbt

 // avgöra vilken av operanderna som är större

}

public double Min(double operand1, double operand2)

{

 // Returnera det mindre värdet av operand1 och operand2

 // Math.Min(double a, double b) kan användas

}

177

Programmet skall exekvera kontinuerligt tills användaren väljer att avsluta

körningen. För att åstadkomma detta kan du exempelvis använda dig av

en do-sats. Kalkylatorn kan avslutas genom att användaren matar in t.ex.

tecknet ’q’ (Quit) istället för en operator.

Du får själv bestämma om du vill placera all kod i en fil eller om du hellre

skapar en separat fil för klassen Calculator med alla ovannämnda me-

toder och en klass med Main() i en annan fil som testar klassen Calcu-

lator. Det senare är att föredra.

Det är upp till dig om du lägger in kod för att kunna hantera fel inmatning

av operator eller andra felaktiga inmatningar.

 178

179

Kapitel 8

Klasser, objekt

och referenser

 Ämne Sida Program

8.1 Vad är en klass? 180 Password

­ Testa lösenord som klass 181 PasswordTest

8.2 Klass som egendefinierad datatyp 185

­ Vad är en referens? 186

8.3 Gissa tal som klass 188 GuessNo

Övningar till kapitel 8 (Projekt Automaten) 191

 180

En klass är kod som på ett generellt och modulärt sätt beskriver en

kategori av verkliga eller virtuella saker och ting. Den består av ett an-

tal datamedlemmar och ett antal metoder och används som en mall

för att skapa objekt (instanser, exemplar) av denna klass.

8.1 Vad är en klass?

I förra avsnitt besvarades frågan Vad är en klass? i allmänna termer av modellering

och design. Nu ska vi behandla samma fråga i mer konkreta termer av implemente-

ring dvs C# programmering. Den allmänna definitionen Program = Modell av

verkligheten som introducerades där kommer att preciseras här. Vi börjar med

klassbegreppet:

En klass är en del av ett program som isoleras och skrivs separat som en namn-

given modul för att kunna användas även av andra program. I denna bemärkelse är

en klass modulär. De saker och ting som den beskriver är objekt i den reala värl-

den som är föremål för datorisering. Varje klass är en abstrakt idé, en definition av

alla saker och ting (objekt) som tillhör en viss kategori. I denna bemärkelse är en

klass generell. Klassens centrala roll för programmering framgår redan av defini-

tionen för C# program (sid 43):

Ett C# program är en samling av klasser, av vilka en
och endast en måste innehålla metoden Main().

När programmet körs startar exekveringen i Main().

Alla C# program består av klasser som minsta beståndsdel. I alla procedurala

programmeringsspråk bildar funktioner och procedurer programmets byggstenar.

C# som är objektorienterat har klasser som minsta komponenter som i sin tur kan

innehålla funktioner och procedurer vilka då kallas metoder.

Varför klasser?

Frågan är berättigad för nybörjare: Varför ska man krångla till det hela? Kan man

inte helt enkelt skriva kod rakt ned i Main()? Det som i programmeringshistorien

gjorde att man behövde klasser var den växande komplexiteten hos program under

70-talet. Programmens storlek var avgörande för den växande komplexiteten. Man

förstod att det inte längre räckte till att skriva och testa program som fungerade

just då. Man insåg nödvändigheten att med rimliga kostnader även kunna under-

hålla stora program, förnya och vidareutveckla dem så att de fungerade även i

flera år och att de framför allt kunde anpassas till nyuppkomna situationer utan

oöverkomliga svårigheter. Men varför måste man använda sig av klasser för att

uppnå detta mål? Föreställ dig en verksamhet som dynamiskt växer med tiden, ett

expanderande företag eller en organisation med stigande antal medlemmar. Hur

organiserar man jobbet? Man genomför arbetsdelning och delegerar uppgifterna.

Var och en får en väl definierad specifik arbetsuppgift. Samma sak gör man med

program vars kod växer, vilket händer när man utvecklar program efter behov och

181

behoven bara blir större och större. Man delar upp det stora programmet i mindre

moduler för att kunna klara av komplexiteten. I objektorienterad programmering är

modulerna klasser. Program bryts ned i ett antal klasser. Varje klass beskriver en-

dast en kategori av saker och ting som är oberoende av andra och antagligen en-

klare att koda än det stora programmet. Sedan gäller det att sätta ihop modulerna

till det stora programmet. Detta kallas för modularisering på klassnivå.

Testa lösenord som klass

Vi kan i denna lärobok inte komma upp till att kunna presentera sådana komplexa

program som motiverade användningen av klasser i programmeringshistorien. Men

idén bakom klasser kan även illustreras med de små program som vi brukar visa

för att exemplifiera programmeringens koncept. Låt oss realisera klasskonceptet

genom att skriva vår första klass: I alla våra program hittills finns all kod rakt

nedskriven i Main() vilket inte ett dugg är objektorienterat, även om C#:s klass-

bibliotek används flitigt. Men man kan skriva om alla dessa program till objekt-

orienterade varianter. Vi ska demonstrera, hur man gör det, med det program vi

avslutade förra kapitlet med. Metodiken är viktigare än resultatet. Samtidigt blir

det en avslutning på programserien Testa lösenord. Här är klassvarianten:

// Password.cs

// Beskriver klassen Password med 2 datamedlemmar & en metod

// Innehåller endast kod som är relaterad till ett lösenord:

// En sträng för inmatning och ett sanningsvärde för test

// Att verifiera sig och skriva ut resultatet (metod)

// Kan kompileras men inte exekveras eftersom Main() saknas

using System;

class Password

{

 String input; // Datamedlemmar

 bool wrongPasswd;

 public void Test() // Metoden Test()

 {

 do

 {
 Console.Write("\n\tSkriv ditt lösenord:\t");

 input = Console.ReadLine();

 wrongPasswd = !input.Equals("hemligt") &&

 !input.Equals("HEMLIGT");

 if (wrongPasswd)

 Console.WriteLine("\n\tFel lösenord. " +

 "Försök igen!");

 } while (wrongPasswd);

 Console.WriteLine("\n\tOK, nu är du inloggad!\n");

 }
}

 182

För första gången i våra exempel består ett C# program av två klasser. I en separat

fil skrivs följande klass där Main() skapar ett objekt av den första klassen för att

testa den:

// PasswordTest.cs

// Testar klassen Password genom att skapa ett objekt av den

// Anropar metoden Test() som är definierad i Password

// Kan både kompileras och exekveras: Utgör med klassen Pass-

// word ett program som gör samma sak som PasswdCapsLock

using System;

class PasswordTest

{
 static void Main()

 {
 Password myPasswd = new Password(); // Objekt skapas

 myPasswd.Test(); // Metod anropas

 }
}

En körning av PasswordTest ger följande dialog:

 Skriv ditt lösenord: HEMLIGT

 OK, nu är du inloggad!

Med inmatningen HEMLIGT i versaler lyckas inloggningen. Inmatningen hemligt

i gemener skulle ge samma resultat. Alla andra inmatningar kommer att misslyc-

kas.

Observera att klassen Password som tillhör programmet och lagras i filen Pass-

word.cs, endast kan kompileras – antingen separat eller när PasswordTest

kompileras – men inte köras, för exekveringen ska starta i Main() när programmet

körs. Och någon Main() finns ju inte i Password, den finns i PasswordTest

istället. Men varför är det så? Jo, för det första kan ett program ha endast en

Main()-metod. Password och PasswordTest utgör ett program, så Main() får

skrivas antingen i den ena eller i den andra. Sedan hänger det ihop med hur vi

skrivit om progarmmet PasswdCapsLock till klassvarianten bestående av två klas-

ser. Nedan följer förfarandet att skriva om ett icke-objektorienterat program där all

kod är rakt nedskriven i Main(), till en objektorienterad version med klasser
*
:

* Generellt rekommenderas inte att skriva om ett icke-objektorienterat program till en

objektorienterad version, utan att helst från början tänka och skriva objektorienterat. Men

det är kanske lättare sagt än gjort. Vi måste ju först lära oss att modellera objektorienterat.

För många kan det vara enklare att (fortsätta) tänka i icke-objektorienterade banor. Men

strävan borde vara att lämna denna vana och modellera verkligheten så som den är,

nämligen som en samling av objekt – reella eller virtuella – som kommunicerar med

varandra genom att anropa varandras metoder. Att vi här ändå beskriver övergången från ett

icke-objektorienterat program till ett objektorienterat sådant har endast pedagogiska skäl.

183

1. Hitta på ett namn för den klass som du ska skriva. Namnet ska vara

beskrivande för de objekt som programmet är tänkt för att skapa enligt

klassmallen. I vårt fall var det naturligt att kalla klassen för Password. Här

följer vi förstås de vanliga namngivningsreglerna för identifierare som ställdes

upp tidigare (sid 59) samt att inleda klassnamn med versaler för att skilja dem

från andra identifierare som variabler, metoder osv. Därmed är även namnet på

filen som du ska skriva klassen i fastlagd: Password.cs.

2. Ta de lokala variablerna från den rakt nedskrivna Main()-koden och deklarera

dem som klassens datamedlemmar. Med lokala variabler menas de som är de-

finierade i Main()-blocket och är därför giltiga endast inom Main(). Klassen

kring Main() känner inte till dem. I vårt fall är det String-variabeln input

och bool-variabeln wrongPasswd som var lokala variabler i Main() och blir

nu datamedlemmar när vi flyttar dem till klassen Password. Med denna flytt-

ning sker samtidigt en ändring av dessa variablers status: De får ett större gil-

tighetsområde och blir nu giltiga i hela klassen och därmed i klassens alla

metoder. Dessutom blir de automatiskt initierade till vissa default-värden. Så

här inleds vår klass:
class Password

{
 String input;

 bool wrongPasswd;

 ...

}

 Vi gör så därför att varje lösenord som testas måste ha en strängvariabel för

lagring av användarens inmatning och en logisk variabel för lagring av san-

ningsvärdet som testar loopen och utskriften av testresultatet. Detta är typiskt

för alla lösenord.

3. Ta hela koden i den rakt nedskrivna Main()-metoden och skriv den till krop-

pen av en eller flera metoder i den nya klassen. Hur många och vilka metoder

det blir beror på de logiskt sammanhängande funktionaliteter dessa koder har. I

vårt fall är det hela do-loopen och utskriftssatsen efter do som utgör en enda

funktionalitet, nämligen att testa lösenordet och skriva ut testresultatet. Därför

gör vi en enda metod av det hela och döper den till Test(). Vi flyttar alltså

hela koden från PasswdCapsLock:s Main() till Password-klassens Test()-

metod som då blir en s.k. void-metod och får returtypen void därför att den

inte returnerar något värde alls. Förutom void måste metoden Test() skrivas

som public för att den ska vara åtkomlig för och ska kunna anropas av klas-

sen PasswordTest som lagras i en annan fil. Därmed är Main()-kroppen

tömd från all sin kod. Samtidigt är den nya klassen Password färdigskriven.

4. I den tomma Main()-kroppen skriver vi nu följande kod istället:

Password myPasswd = new Password();

myPasswd.Test();

 184

 Samtidigt döper vi om den gamla PasswdCapsLock-klassen till Password-

Test. Visserligen är frågan om beteckningen inte avgörande, men vi följer en

viss konvention som också ger en bättre förståelse om de två klassers samv-

erkan i programmet: PasswordTest är en slags test för klassen Password,

för i dess Main()-metod – med den första satsen i koden ovan – testas klassen

Password i den bemärkelsen att det skapas ett objekt av denna klass. Alla C#-

klasser som skrivs i separata filer och inte själva kan exekveras behöver ha ett

program som testar – eller instansierar – dem. Man säger så eftersom instans

är bara ett annat ord för objekt. Annars liknar klassen ett matrecept som ligger

i kökslådan och aldrig används. Man kan också jämföra PasswordTest med

en slags drivrutin för klassen Password. Det är drivrutinen som sätter igång

och gör något med klassen, skapar ett objekt av den och – med den andra sat-

sen i koden ovan – anropar det nyss skapade objektets metod Test().

Klassen Password beskriver kategorin lösenord som en abstrakt idé utan att skapa

ett verkligt lösenord (sid 181). Den är en mall för att skapa verkliga lösenord, en fö-

reskrift om hur ett verkligt lösenord med en viss inmatning och ett testvärde skulle

se ut och hur det skulle verifieras om det skapades. Ett verkligt, konkret lösenord

kallas för objekt. Det är objektet som behöver minnesutrymme för att lagras. Klas-

sen definierar inga objekt utan ställer bara till förfogande modellen för framtida

objektdefinitioner. Om man byter ut lösenord mot pepparkakor kan man säga att

pepparkaksformen är klassen och själva pepparkakorna är objekten. Formen be-

höver ingen pepparkaksdeg – motsvarigheten till minne – den framställs bara en

gång medan kakorna kan bakas i tusentals. Även klassen skrivs endast en gång, ob-

jekt däremot kan skapas hur många som helst. I exemplet PasswordTest skapas

bara ett Password-objekt. Hur man gör det med det reserverade ordet new och hur

man sedan kan komma åt objektet behandlas i nästa avsnitt. Sedan får vi också re-

da på varför myPasswd kan deklareras till klassen Password.

Slutligen kan man undra om det hade varit möjligt resp. rimligt att lagra båda klas-

ser Password och PasswordTest i en och samma fil. Svaret är: Möjligt ja, men

inte rimligt. Varför? Jo, därför att det går både att kompilera och köra programmet

när båda klasser lagras i en fil, följer man bara regeln att döpa filen efter den klass

som innehåller Main(). Men rimligt är det inte, för då går man miste om hela idén

med klasser, nämligen modularisering och återanvändning av kod. Meningen med

att skriva separata klasser var ju att kunna återanvända koden i andra program. Det

kan man inte längre om man stoppar allt i en fil. Då kan man ju lika bra köra med

den ursprungliga icke-klassvarianten PasswdCapsLock.

185

8.2 Klass som egendefinierad datatyp

Det är inte alls fel att jämföra klasser även med enkla datatyper som t.ex. int. Vad

är det som gör int till en datatyp? Definitionen säger att datatyp är en föreskrift

om hur en viss typ av data ska lagras i datorn, hur mycket minne den tar och vilka
operationer man får utföra med den. För int är det +, -, *, / och %. Även explicit

typkonvertering av en float till en int eller någon annan enkel datatyp, är en

operation som är implementerad i datatypen. Minnesstorleken – ett fast värde i an-

tal bytes – som måste lagras som ett konstant värde i datatypen, kan jämföras med

datamedlem. Vad som får göras med värden av en viss datatyp och hur allt detta

ska göras är metoder som är definierade för datatypen. Att samla data och metoder

som är relaterade till dessa data, i en enhet, är samma koncept som ligger bakom

klassbegreppet.

Den första satsen i PasswordTest-klassens Main() är:

Password myPasswd = new Password();

För att förstå vad den gör förenklar vi först läsligheten genom dela upp den i sina

beståndsdelar:
Password myPasswd;

myPasswd = new Password();

Vi börjar med att förklara det reserverade ordet new som förekommer i den andra

satsen ovan. new är en fördefinierad minnesallokeringsoperator i C#. Generellt ut-

för en operator en operation och returnerar ett värde. Den tar in en parameter (eller

flera), gör något med den (dem) och ger tillbaka ett värde. new tar in en klass som

parameter, allokerar (reserverar) minne av den storlek som klassen föreskriver, ko-

pierar ett exemplar av klassens datamedlemmars värden till det nyss skapade min-

net och returnerar det allokerade minnesutrymmets adress:

 Klass Adress till ett objekt

I exemplet ovan skapar new genom att sättas framför klassen Password ett Pass-

word-objekt med datamedlemmarna input och wrongPasswd och initierar dem

automatiskt. Skillnaden till traditionell allokering med vanlig definition av varia-

bler av enkel datatyp är att new allokerar minne under programmets körning – at

run time medan vanlig definition av variabler av enkel datatyp allokerar minne un-

der kompileringen – at compile time. Denna teknik kallas dynamisk minnesalloke-

ring. På så sätt skapar new ett objekt enligt klassen som mall. När objektets metod

anropas utökas det allokerade minnesutrymmet så att även metodens data (para-

metrar, returvärdet och lokala variabler) får plats vilket är möjligt pga att minnes-

allokeringen sker dynamiskt.

Operatorn
new

 186

Eftersom operatorn new returnerar en adress måste den tilldelas en variabel som

kan ta emot och lagra adresser, för att sedan kunna referera till data som lagras vid

denna adress. Med data menas det objekt som new skapar. Ingen av våra hittills

kända datatyper kan lagra adresser. Därför finns det i C# en helt ny typ av variabler

som är konstruerade endast för att lagra adresser: Referensvariabler eller kort refe-

renser.

Vad är en referens?

En referens är en ny typ av variabel, en förkortning för referensvariabel:

Ett exempel är variabeln myPasswd som ovan deklarerats till datatypen Password.

Lyckligtvis behöver vi varken bry oss om hur adresshantering sköts internt i C#

eller lära oss hexadecimala tal – formatet för lagring av adresser i datorn. Vi

behöver inte heller som i C++ lära oss pekare, för i C# finns inga pekare. Adress-

hanteringen sköts automatiskt. Det enda som vi måste känna till är användningen

av referensvariabler för att via dem kunna komma åt våra objekt, för det är det en-

da sättet att göra det i C#: Objekt kan bl.a. skapas med operatorn new. De har inga

direkta namn som vanliga variabler av enkel datatyp utan kan endast refereras

indirekt med referensvariabler. Det är jämförbart med tyglar till en häst eller fjärr-

kontrollen till en TV, båda är lätthanterade men avgörande verktyg för styrning av

tunga objekt. Även en referens är jämfört med stora objekt, minnesekonomisk och

tar så litet minne som en int: 4 bytes.

Med satsen Password myPasswd; skapas inget objekt av typ Password utan en-

dast en referens till ett sådant objekt. Så länge man inte initierar denna variabel till

ett värde behandlas den som vilken oinitierad variabel som helst, leder t.ex. till

kompileringsfel när den används. En referensvariabels värde däremot kan per

definition bara vara en adress. En sådan levereras av operatorn new:s returvärde

efter att med koden new Password() har allokerat minne för och därmed skapat

objektet. Först kopplingen av referensdefinitionen till skapandet av objekt med

hjälp av tilldelning ger resultat:

Password myPasswd = new Password();

Följande generell struktur är formen till kanske de mest förekommande satserna i

objektorienterade C# program:

Själva new:s syntax står höger om tilldelningstecknet. Till vänster definieras en re-

ferensvariabel som tar hand om new:s returvärde. Här ser man också att operatorn

new inte behöver parenteser kring sin parameter Klass(). Observera att klasserna på

tilldelningens båda sidor måste vara identiska: new Password() allokerar minne

Klass referensvariabel = new Klass();

Referens är en variabel vars datatyp är en klass.

187

för lagring av ett Password och returnerar en adress till ett Password. Därför

måste den också tilldelas en variabel av typ referens-till-Password. Tilldelning till

en referens-till-annan klass ger kompileringsfel. Man kan, om man inte har behov

av att komma åt objektet senare, även skapa anonyma objekt direkt när man be-

höver dem. T.ex. kan anropet myPasswd.Test(); i PasswordTest även ersättas

av new Password().Test(); vilket än en gång visar att det är inget annat än

new som skapar objektet. Testa gärna!

När det gäller vanliga variabler av enkel datatyp hänvisar vi till minnescellerna

direkt med variabelnamn. När det gäller objekt gör vi det indirekt med deras adres-

ser i form av objektens referenser. Vilken metod som är ”direkt” och vilken ”indi-

rekt” kan man ha olika åsikter om. När man vant sig vid att använda referenser kan

man t.o.m. tycka att hanteringen av data via adresser är det naturliga sättet, vilket

inte är någon dum idé med tanke på att variabelnamn ändå är en slags mjukvaru-

länk till hårdvarans minnesadress.

Det enda som vi inte förklarat ovan är de tomma parenteserna efter klassnamnet: I

den allmänna formen Klass() och i exemplet Password(). De får absolut inte ute-

lämnas även om de är tomma. De anropar klassens konstruktor, ett koncept som

har att göra med objektets initiering.

 188

8.3 Gissa tal som klass

Nu kan vi sammanföra våra kunskaper om klasser, objekt och referenser, för att

skriva en klassvariant till spelserien Gissa tal som introducerades på sid 128 och

vidareutvecklades sedan i ett antal steg. Samtidigt tillämpar vi idéerna om modula-

risering och återanvändning av kod: Klassen Random samt dess metod Next()

används – från biblioteket System – för att initiera programmets hemliga tal med

ett slumpvärde mellan 1 och 20. Följande klass anropar Next() för att förse varje

objekt av den med ett nytt slumptal:

// GuessNo.cs

// Klass som implementerar Gissa tal-spelet med två datamed-

// lemmar för det gissade och hemliga talet och en metod med

// spelets regler som hjälper användaren att gissa rätt

using System;

class GuessNo

{
 int guessedNo;

 int secretNo = new Random().Next(1, 21); // Anrop av metod

 // i anonymt objekt

 public void Play()

 {
 do

 {
 Console.Write("\n\tGissa ett tal mellan 1 och 20 " +

 "(Avsluta med 0):\t");

 guessedNo = int.Parse(Console.ReadLine());

 Console.Write("\n\t");

 if (guessedNo == 0)

 {
 Console.WriteLine("Avbrott: Programmets hemliga " +

 "tal var " + secretNo + '\n');

 break; // Bryter do-loopen

 }
 if (guessedNo < secretNo)

 Console.Write("För LITET, försök igen!\n");

 if (guessedNo > secretNo)

 Console.Write("För STORT, försök igen!\n");

 } while (guessedNo != secretNo);

 if (guessedNo == secretNo)
 Console.Write("\aGrattis, du har gissat rätt!\n\n");

 }
}

I klassen GuessNo anropas metoden Next() för att initiera datamedlemmen se-

cretNo med ett slumptal i intervallet [1, 20]. Anropet görs med ett s.k. anonymt

objekt new Random() dvs ett objekt som skapas med new utan att man tilldelar

minnesadressen till en referens. Dessutom är det inbakad i en tilldelningssats därför

189

att Next() är en metod med returvärde. Att initiera en datamedlem direkt i klassen

är inte så vanligt. I det här fallet är det motiverat eftersom variationen i slumpen

ger olika värden för de olika objekt som kommer att skapas av klassen GuessNo.

Annars hade det lika bra varit möjligt att initiera secretNo i metoden Play().

Dessutom ska varje spelomgång – och därmed varje objekt – ha endast ett hemligt

tal som användaren ska gissa fram sig till. Att initieringen görs i klassen betyder

inte att datamedlemmen secretNo är en klassvariabel. Då borde den vara deklare-

rad som static vilket den inte är. Utan den är en instansvariabel precis som den

andra datamedlemmen gissat som initieras först i metoden Play().

Klassen ovan kan kompileras för sig, men inte exekveras eftersom Main() saknas.

Programmet i sin helhet består av två klasser (moduler) i två filer som lagras i en

mapp: Klassen GuessNo och följande klass som ”testar” den i den bemärkelse att

Main() är placerad i den och ett GuessNo-objekt skapas samt dess metod Play()

anropas där. Man kan också säga att ”test”klassen (nedan) är en slags ”drivrutin”

eller ”drivklass” för klassen GuessNo. Den sätter igång (”driver”) hela program-

met. Utan den fungerar ingenting. Men huvudjobbet görs ändå av klassen GuessNo

eftersom den innehåller spelets egentliga kod i form av metoden Play().

// GuessNoTest.cs

// Testar klassen GuessNo genom att skapa ett objekt av den

// Anropar objektets metod Play()

// Utgör med klassen GuessNo ett program som gör samma sak

// som Gissa tal-spelets tidigare versioner

using System;

class GuessNoTest

{
 static void Main()

 {
 GuessNo g = new GuessNo(); // Objekt skapas

 g.Play(); // Metod anropas

 }
}

Allt går ut på att anropa void-metoden Play() som implementerar spelets regler

och genomför det i ordande former dvs låter användaren – med lite hjälp – gissa

flera gånger tills den gissat rätt eller på begäran avslöjar spelets hemliga tal. Den

innehåller i huvudsak en loop som håller igång, styr, kontrollerar och avslutar en

spelomgång. Vi har tagit över koden från Gissa tal-spelets senaste version Guess-

NEG och skrivit den i klassen GuessNo på förra sidan efter att ha eliminerat allt

som har att göra med den logiska operatorn NEGATION för att ha fokus på pro-

grammets objektorienterade aspekter.

Men metoder i C# och därmed även metoden Play() kan endast anropas utifrån

ett objekt eller en klass. När det sker från en klass måste de vara statiska vilket

Play() inte är (se klassen GuessNo). Därför behöver det ett objekt för att anropas.

 190

Ett sådant skapas i klassen GuessNoTest med new GuessNo() och tilldelas

referensvariabeln g. Sedan anropas metoden med denna objektreferens: g.Play(),

dvs metoden anropas i det objekt som g refererar till. Man skulle kunna anropa

Play() även med ett anonymt objekt i en enda sats: new GuessNo().Play();

och därmed spara undan referensvariabeln vilket inte just förbättrar kodens läslig-

het.

Mer om metoder kommer vi att lära oss i nästa kapitel (sid 157). Då kommer vi

även fullt förstå modifierarna public och void i metoden Play():s huvud.

En körning av GuessNoTest kan se ut så här:

 Gissa ett tal mellan 1 och 20 (Avsluta med 0): 12

 För STORT, försök igen!

 Gissa ett tal mellan 1 och 20 (Avsluta med 0): 6

 För LITET, försök igen!

 Gissa ett tal mellan 1 och 20 (Avsluta med 0): 9

 För LITET, försök igen!

 Gissa ett tal mellan 1 och 20 (Avsluta med 0): 10

 För LITET, försök igen!

 Gissa ett tal mellan 1 och 20 (Avsluta med 0): 11

 Grattis, du har gissat rätt!

Har man efter ett tag ingen lust att gissa vidare och vill avsluta, kan man mata in 0.

Man får då reda på programmets hemliga slumptal vid just den aktuella körningen:

 Gissa ett tal mellan 1 och 20 (Avsluta med 0): 0

 Avbrott: Programmets hemliga tal var 16

Körresultaten ovan är – bortsett från slumpens variation – identiska med dem från

prorammet GuessDoRand på sid 137, därför att GuessNoTest är en klassvariant

av samma program.

191

Övningar till kapitel 8

8.1 Skriv ett program som består endast av klassen All_in_Main som i sin tur

innehåller endast Main()-metoden. Läs in radien r till en cirkel och beräk-

na samt skriv ut cirkelns area r2 och dess omkrets 2r, där = 3.14159.

Du kan använda konstanten Math.PI från C#:s klassbibliotek för . Pro-

grammet ska inte vara objektorienterat eftersom du inte skapar några objekt,

utan endast lokala variabler (radie, area, omkrets). Programmet ska inte

heller vara modulariserat eller proceduralt eftersom all kod (inmatning-

bearbetning- utmatning) finns i en enda metod Main() som definieras i en

klass. Dessa steg ska tas i de efterföljande två övningarna. Deklarera alla va-

riabler till double.

8.2 Modularisera programmet All_in_Main från övn 8.1 på metodnivå, dvs:

Flytta bearbetningsdelen dvs beräkningen av area och omkrets ur Main()

till separata metoder Area() och Circumference(), men stanna i samma

klass. Döp om klassnamnet till Procedural. I Main() ska finnas kvar va-

riabeln för radien, inmatning, utmatning och anropen av Area() och Cir-

cumference(). Förse de nya metoderna med en parameter som överför

radiens värde från Main() till dem. Välj olika namn för den aktuella än för

den formella parametern. Dessutom ska Area() och Circumference()

returnera ett double-värde och vara statiska. För att testa, mata in 1 för ra-

dien. Då ska arean bli pga r 2 = och omkretsen bli 2pga 2 r = 2.

8.3 Modularisera programmet All_in_Main från övn 8.1 på klassnivå, dvs:

Dela upp programmet i två klasser, lagrade i två separata filer. Kalla den ena

klassen för Circle, den andra för CircleTest. Samla all information om

begreppet cirkel i klassen Circle, dvs: Deklarera radien r som datamed-

lem samt Area() och Circumference() som metoder. Ta bort från meto-

derna både static och parametern för radien. Den andra klassen Circle-

Test ska endast innehålla metoden Main(). Skapa i den ett objekt av klas-

sen Circle. Läs in ett värde till objektets datamedlem r och anropa samt

skriv ut returvärdena till objektets metoder Area() och Circumferen-

ce(). Båda klassfiler borde ligga i samma projekt.

8.4 Skriv en klass Fish som beskriver en fisk med datamedlemmarna sort,

weight och size. Testa din klass i en annan klass FishTest i en separat

fil som endast innehåller metoden Main() där två objekt av klassen Fish

skapas. Tilldela det första objektets datamedlemmar värdena Laxforell, 719

(gram) och 38,5 (cm). Enheterna gram och cm behöver inte anges. Välj själv

andra värden till det andra objektets datamedlemmar. Skriv ut dessa värden

till konsolen i en tabell av typ:

 192

8.5 Ta klassen Fish från övn 8.4. Förse den med en metod som beräknar priset

på fisken oberoende av sort, t.ex. 7,25 kr per hekto. Lägg till även en metod

som beräknar och returnerar frakten utifrån fiskens vikt och längd genom att

t.ex. multiplicera en viss kostnadsfaktor, säg 0,02, med vikten, en annan, säg

0,1, med längden och addera dem. Metoderna ska returnera priset och frak-

ten i hela kronor utan ören. Anropa metoderna från klassen FishTest:s

Main()-metod för de två Fish-objekten. Lägg till nya rubriker Pris och

Frakt i tabellen ovan och skriv ut deras värden till tabellens två rader.

8.6 Modifiera programmet från övn 8.5 så att datamedlemmarnas värden inte

hårdkodas utan läses in. Utskriften ska skickas till konsolen och läggas till

tabellen ovan. Skriv din kod så att den lätt kan generaliseras så att man kan

mata in flera fisksorter med hjälp av en loop och en array av referenser till

Fish-objekt som vi kommer att lära oss senare. Dessutom ska programmet

kunna modifieras till att skriva ut till en tabell i en fil eller en databas istället

för att skriva till konsolen.

8.7 Deklarera en klass Triangle med datamedlemmarna side_a, side_b,

side_c, height_b av typ int och metoderna Area(), Circumferen-

ce(). Skapa i en annan klass som innehåller Main(), ett objekt av klassen

Triangle och tilldela datamedlemmarna värden. Anropa metoderna och

skriv ut denna triangels area och omkrets. Skapa en andra referens som

pekar på samma objekt och anropa metoderna samt skriv ut deras returvär-

den med denna referens. Du borde få samma resultat som med den första

referensen. Anropa sedan metoderna Area() och Circumference() med

två anonyma objekt (utan referenser). Kolla om du får de förväntade

resultaten som är baserade på objektens default-initiering. Sist, peka om

Triangle-objektets första referens till null och försök att anropa metoder-

na med denna referens. Vad händer?

8.8 Automaten (projekt) Skriv ett program som simulerar interaktionen

med en automat. Följande klass beskriver i stora drag det som pågår i auto-

maten efter att användaren lagt in pengar och valt en vara:

class Automat

{
 string productName;

 double price;

193

 double payment;

 double change;

 void Automat_action(double money,

 char product)

 {
 switch(product)

 {
 . . .

 }
 payment = money;

 change = payment - price;

 }

 void Change_in_coins()

 {
 . . .

 }
}

 switch-satsen i metoden Automat_action() ska tilldela datamedlem-

marna productName och price värden beroende på valet av vara och

skriva ut ett meddelande om inlagt belopp samt varan som ska levereras.

Testa klassen Automat i en annan klass (testklassen) i en separat fil som en-

dast innehåller metoden Main().

 Börja i Main() med att skriva ut en meny över alla varor samt priserna. För

enkelhets skull kan du t.ex. börja med en meny för en kaffeautomat. Låt

sedan användaren lägga in pengar. Läs in beloppet till en double-variabel.

Låt användaren även välja en vara. Sedan kan ett objekt av den ovan dekla-

rerade klassen Automat skapas och metoden Automat_action() anropas.

Vid detta anrop skickas de inlästa värdena till det inlagda beloppet och den

valda varan som aktuella parametrar till Automat_action(). Efter att ob-

jektet skapats och datamedlemmarna initierats, kan metoden Change_in_-

coins() anropas.

 Komplettera programmet med att ta hand om en eventuellt felaktig eller

otillräcklig betalning från användarens sida.

 Metoden Change_in_coins() är till för att dela upp växeln i ”tillåtna”

myntslag (endast 10-kr, 5-kr, 1-kr och 50-öringar
*
) och skriva ut hur många

 Inkluderingen av myntslaget 50-öring som inte längre finns i det svenska myntsystemet,

beror inte på nostalgi utan på internationalisering. Vi vill hålla möjligheten öppen för en

översättning till andra språk resp.för en övergång till Euro eller andra valutor. Behandlingen

av en halv enhet (50-öring) vid omvandling av växelbeloppet till automatens tillåtna

myntsystem inkluderar en programmeringsteknisk finess som är värd att lära sig. Så kan

t.ex. våra program även användas för Euron där 50 cent ersätter 50-öringen.

 194

av varje ”tillåtet” myntslag som ska ges tillbaka. Växelbeloppet måste

omvandlas till detta mynt”system”. För att åstadkomma det, använd följande

algoritm:

Algoritm för omvandling av ett belopp till olika myntslag

Eftersom denna algoritm endast fungerar för heltal, måste change som är

ett belopp i kronor och ören av typ double, först räknas om till ett rent öre-

belopp av typ int, vilket kan göras genom att multiplicera det först med

100 och sedan avrunda resultatet till heltal:

int total = (int) Math.Round(change * 100);

I fortsättningen kommer alltså den givna växeln att stå som ett örebelopp i

int-variabeln total. Anledningen till konverteringen till int i satsen ovan

är att den fördefinierade metoden Round() som avrundar till närmaste hel-

tal, ändå returnerar ett värde av typ double.

1. För att få antalet 10-kronor heltalsdivideras total med 1000 eftersom

10-kronor är 1000 ören:
int ten = total / 1000;

Hur många gånger ryms 1000 – eller 10-kronor – i total? Det antalet till-

delas till ten. Eller med andra ord: 1000 dras av från total så många gån-

ger tills resten blivit mindre än total. Det antalet som tilldelas till ten blir

antalet 10-kronor. Divisionen ovan är inte vanlig division utan heltalsdivi-

sion (sid 75) eftersom både total och 1000 är heltal. Dvs total divideras

med 1000, resultatet tas, resten ignoreras, t.ex. 6975/1000 ger 6. Resten

975 ignoreras här, men används i fortsättningen.

2. För att få antalet 5-kronor divideras just resten som blev kvar från punkt

1 med 500 eftersom 5-kronor är 500 ören:

int five = (total % 1000) / 500;

”Resten som blev kvar från punkt 1” är just (total % 1000). Här används

modulooperatorn % (sid 75). T.ex. 6975 % 1000 ger 975. Efter att ha dragit

av alla 10-kronor från total divideras resten med 500 för att få reda på hur

många 5-kronor som finns i total. T.ex. 975/500 ger 1. Resultatet av

denna division ges till five, resten ignoreras och används i fortsättningen.

I ytterligare tre steg kan följande satser för beräkning av antalet 1-kr (one),

50-öringar (half) och resten i öre (rest) skrivas, när mönstret i algoritmen

(förhoppningsvis) har trätt fram. Om 50-öringar läs fotnoten på sid 193.

int one = ((total % 1000) % 500) / 100;

int half = (((total % 1000) % 500) % 100) / 50;

int rest = (((total % 1000) % 500) % 100) % 50;

195

Man tar förra stegets formel, ersätter / med % och lägger till en heltalsdivi-

sion med den nya enhetens örebelopp. I det allra sista steget däremot, där

man är ute efter allra sista resten i öre, måste % användas hela vägen. Själv-

klart är restörebeloppet inte av praktiskt intresse när automaten inte kan

spotta ut det.

 196

Kapitel 9

Array

 Ämne Sida Program

9.2 Vad är en array? 197

­ Deklaration och initiering av en array 199 Array

­ foreach-satsen 201

9.3 Arrayens initieringslista 204 ArrayInit

9.4 Texthantering med array av char 206 ArrayChar

­ Slumplösenord 207

 Övningar till kapitel 9 (Projekt Master Mind) 209

197

En array är en sammansatt datatyp – en ordnad mängd av variabler av

samma datatyp grupperade under samma namn.

En array består av ett antal element. Elementens position kallas för index.

9.1 Vad är en array?

Ordet array betyder i engelskan ordnad skara eller ordnad uppställning (battle ar-

ray = stridsordning). Som datalogisk term hittar man i litteraturen begreppen fält,

vektor, matris, lista, … . Ibland används även härledd datatyp som syftar åt att den

är baserad på en annan datatyp. Vi kommer dock att använda endast termen array.

Index är synonym till nummer och specificerar varje elements position i arrayen för

att ”adressera” elementet. Elementen kan i sin tur vara av enkel, sammansatt eller

av referenstyp. Så man kan även – med hjälp av referenser – gruppera objekt till en

array. En array är den enklast tänkbara sammansatta datatypen. Som exempel tar vi

en array som är sammansatt av den enkla datatypen int. Varje element i en sådan

array kan betraktas som en indexerad dvs numrerad variabel av typ int.

Anta att vi vill definiera 20 heltalsvariabler. Hittills behövde vi skriva 20 satser för

att göra det. Men array ger oss möjligheten att göra samma sak med endast en sats:

Hittills: enkel datatyp int: Nu: int-array med referens:

 int no1;

 int no2;

 . int[] no = new int[20];

 .

 .
 int no20;

Vi definierar en variabel no av datatypen int[], använder new och lägger till in-

formationen om antalet element inom hakparentes: [20]. Men vad är int[] för

datatyp? Det reserverade ordet new avslöjar att det är ett objekt. new allokerar min-

nesutrymme för ett objekt bestående av 20 int-värden och returnerar den samman-

hängande ”minneskedjans” adress – närmare bestämt adressen till dess första cell –

till referensvariabeln no. Därmed har vi att göra med en referenstyp: Datatypen

int[] är en referens till en int-array som i själva verket är ett objekt. För att göra

det ännu tydligare kan man skriva den nya koden även i två separata satser:

int[] no;
no = new int[20];

Det är inte den första utan den andra satsen, närmare bestämt koden new int[20]

som skapar själva arrayen. Därför står också storleken 20 där det behövs, nämligen

 198

Indexregeln: I en array börjar numreringen av index alltid med 0.

 Därför gäller: elementets position = index + 1

i satsen där new allokerar minne. Typiskt för array är hakparenteserna [], på eng.

brackets. I satserna ovan har [] två olika betydelser: I den första satsen specifice-

rar int[] variabeln no:s datatyp som en referens till en int-array, i den andra

satsen innehåller [20] arrayens storlek. Referensvariabeln no ersätter de 20 vanli-

ga int-variablerna no1, no2, …, no20, vilket medför en stor effektivitet i koden.

Tänk dig att det är inte 20 utan fler data vi vill jobba med. no pekar fysiskt på det

första elementet av arrayen som allokeras i ett sammanhängande minnesutrymme.

Därför kan man komma åt de andra elementen via indexering som är bara ett annat

namn för numrering.

Indexering i en array

Låt oss anknyta till exemplet ovan där både arrayen och dess referens no definie-

ras:
int[] no = new int[20];

Låt oss ytterligare anta att vissa värden – de som visas i bilden nedan – har till-

delats arrayens element efter satsen ovan. Eftersom elementen lagras i ett samman-

hängande minnesområde uppstår följande minnesbild av arrayen i datorns RAM:

Index: 0 1 2 17 18 19

 190d11 25 1257 -10 ... 358 65 219

 no[0] no[1] no[2] ... no[17] no[18] no[19]

Medan själva arrayens allokering (den övre delen) görs av new int[20], allokeras

minnescellen no (den undre delen) av int[] no. Kopplingen mellan dem görs av

tilldelningsoperatorn, vilket gör att arrayens adress (t.ex. 190d11 – ett hexadecimalt

tal) som new har genererat, hamnar i minnescellen no. Den så uppkomna situatio-

nen innebär att no pekar på eller refererar till arrayen. Under arrayens minnes-

celler står varje elements värde: no[0] ger den första minnescellens värde 25 som

har index 0, no[1] ger den andra minnescellens värde 1257 som har index 1 osv.

no[0] lagras vid adressen till arrayens första minnescell. no[1] lagras vid adres-

sen till den andra minnescellen. no[2] lagras vid adressen som ligger 2 x 4 bytes

längre bort från no osv. Adressering i RAM sker byte-vis. Avgörande för denna in-

dexeringsteknik är att en array alltid allokeras i ett sammanhängande minnesområ-

de. Indexnumreringen börjar med 0 och inte med 1. Det gäller:

Med position menas numret som människan använder för att numrera elementen.

Människor är vana vid att påbörja numreringen av saker och ting med 1. Med index

menas numret som datorn använder för samma sak. C# och de flesta andra pro-

no 190d11

199

grammeringsspråken börjar numreringen av index i en array med 0. Tillämpad på

exemplet: Det 1:a elementet i den array som no refererar till har värdet 25 och in-

dex 0: Positionen är 1 medan indexet är 0. Det 2:a elementet (värdet 1257) har in-

dex 1 och koden no[1], det 3:e elementet (värdet –10) har index 2 och koden

no[2] osv. Det n:e elementet har alltid index n-1. Därför har också det 20:e ele-

mentet (värdet 219) index 19.

Det är avgörande när man arbetar med array och är samtidigt felkälla nr 1 – om

man glömmer det – att hålla isär det mänskliga sättet att numrera som börjar med 1

från C#-kodens sätt som börjar med 0. I exemplet ovan har vi definierat en array av

20 heltalselement med referenserna no[0], ..., no[19]. Antalet element är 20.

Indexen däremot går från 0 till 19. Felkälla nr 2 är att förväxla en arrayelements

index med dess värde: Det sista elementet i exemplet ovan har index 19, men vär-

det 219. Man har alltid med två tal att göra, index (position) och värde (innehåll).

Det gäller att hålla isär positionen från innehållet.

Tre egenskaper skiljer objekt från array:

 Indexering

 Allokering i ett sammanhängande minnesområde

 Alla arrayelement har samma datatyp.

Annars behandlas array i C# som objekt: Båda måste skapas med new och man kan

komma åt båda endast med referensvariabler. Båda initieras till default-värden

även om de kan förekomma som lokala variabler i metoder.

Deklaration och initiering av en array

Här testas allt vi sagt hittills om array speciellt indexregeln. Utöver det visas ytter-

ligare en egenskap hos array som relaterar den till objekt, nämligen en egenskap

Length som lagrar arrayens storlek när den skapas. Programmet demonstrerar

också vad som händer om man överskrider arrayens maximala index: Man kan

kompilera, men inte exekvera: arrayens allokering sker vid run time.

// Array.cs

// Definierar en array, skriver ut arrayens storlek,

// initieringsvärdena 0 och de nya tilldelade värdena

// Överskridning av arrayens index leder till exekveringsfel

using System;

class Array

{
 static void Main()

 {
 int[] no; // Deklarerar referensen no

 // utan att skapa arrayen

 no = new int[4]; // Skapar arrayen vars adress

 // tilldelas referensen no

// int[] no = new int[4]; // Alternativt i EN sats

 200
Att referera till icke-definierade element i en array leder till exekveringsfel.

 Console.Write("\n\tArrayens storlek:\t\t");

 Console.WriteLine(no.Length);

 Console.Write("\n\tArrayens default-initiering:\t");

 foreach (int element in no)

 Console.Write(element + "\t");

 no[0] = 64; // Tilldelar 1:a elementet

 no[1] = 86; // värdet 64 osv. Överskriver

 no[2] = 34; // default-initieringen

 no[3] = -6;

 Console.Write("\n\n\tArrayen efter tilldelning:\t");

 foreach (int element in no)

 Console.Write(element + "\t");

 Console.WriteLine(

 "\n\n\tÖverskridning av arrayens index leder till " +

 "programavbrott:\n\n\t\tno[4] inte definierad\n\t" +

 "\tIndex 4 överskrider gränsen: Exekveringsfel!") ;

 no[4] = 1; // no[4] kan kompileras, men

 } // leder till exekveringsfel

}

Inte alla satser i programmet Array exekveras. Det blir avbrott när den kompilera-

de koden no[4] i allra sista satsen ska exekveras där index 4 överstiger arrayens

tillåtna maximala indexgräns som är 3 därför att new i början av programmet allo-

kerar endast 4 minnesceller åt arrayen, nämligen de med index 0, 1, 2 och 3. Nå-

gon minnescell med index 4 är inte allokerad. Därför kan vi inte heller referera till

den med no[4]. Men eftersom arrayens allokering sker med new och därmed un-

der exekveringstid (eng. run time) leder detta till exekveringsfel, medan kompila-

torn godtar den syntaxmässigt korrekta koden no[4]. Programmet Array ger föl-

jande utskrift när man kör det:

 Arrayens storlek: 4

 Arrayens default-initiering: 0 0 0 0

 Arrayen efter tilldelning: 64 86 34 -6

 Överskridning av arrayens index leder till programavbrott:

 no[4] inte definierad

 Index 4 överskrider gränsen: Exekveringsfel!

Unhandled Exception: System.IndexOutOfRangeException: Index

was outside t bounds of the array.

 at Array.Main() in C:\Programmering\Programmering 2\2

OOP\Array.cs:line 32

Vi drar slutsatsen:

201

Man kan även säga att C#-interpretatorn (VM) kontrollerar indexgränserna och inte

tillåter åtkomsten till icke-allokerade minnesplatser, vilket ur allmän datasäker-

hetssynpunkt är en fördel. Programmen blir stabilare. Andra programmeringsspråk

som C++ har i detta avseende en mer liberal attityd. Där ligger ansvaret för kontroll

av indexgränserna helt och hållet hos programmeraren.

foreach-satsen

Denna sats som används i programmet Array (sid 199) är en ny kontrollstruktur

som inte kunde tas upp i kapitlet om kontrollstrukturer (Progr1) därför att den förut-

sätter array-begreppet eller liknande sammansatta datatyper, som vi inte hade

hunnit gå igenom då.

foreach-satsen är idealisk för att skriva ut sammansatta datatypers värden. Den

gör samma sak som for-satsen, men har en lite annorlunda – ja t.o.m. lite enklare

syntax, om man är förtrogen med arrays. I programmet Array (sid 199) ser satsen

ut så här:
foreach (int element in no)

 Console.Write(element + "\t");

Översatt till svenska:

För varje element av arrayen no

 Skriv ut elementet följt av en tabulator.

element – ett namn som är valt av oss – kallas för foreach-satsens iterations-

variabel. Den definieras till int och motsvarar for-satsens räknare. element pe-

kar på värdet (innehållet) som står i arrayen. Iteration betyder upprepning och inne-

bär här att satsens kropp upprepas: Programflödet fortskrider från element till ele-

ment tills alla element är genomgångna. Det reserverade ordet in betyder av eller

element av. no pekar på arrayen som ska loopas igenom. Därför: ” För varje ele-

ment av arrayen no”.

foreach-satsens enkelhet består i att den till skillnad från for-satsen varken

behöver ett start-, steg- eller slutvärde resp. avslutningsvillkor. Den går helt enkelt

igenom arrayens alla element, från det första till det sista. Det är själva arrayen

som bestämmer start-, steg- och slutvärdena. Variabeln element pekar i varje varv

av loopen på resp. arrayelementets värde och kan sedan användas i loopens kropp

för att göra det man önskar. I vårt exempel för att skriva ut arrayens element följt

av en tabulator.

foreach-satsens iterationsvariabel måste ha samma datatyp som arrayelementen

eller en sådan datatyp som arrayelementens datatyp automatiskt kan konverteras

till. I vårt exempel har vi int. Det är t.o.m. möjligt att ha egendefinierade dataty-

per dvs klasser.

 202

En viktig egenskap av iterationsvariabeln är att den inte kan ändra arrayelementens

värden i foreach-satsens kropp. Den är så att säga read only. I praktiken innebär

detta att iterationsvariabeln inte får förekomma till vänster om tilldelnings-

operatorn (=) i någon sats i foreach-satsens kropp. Vill man i foreach-satsens

kropp ändra på arrayelementens värden måste man använda for-satsen istället med

arrayens index som räknare.

Hakparentesernas tre olika betydelser

Man kan ju undra varför no[4] inte är definierat – som vi hävdar ovan – fast talet

4 ”förekommer” i definitionssatsen new int[4]. Detta beror på att hakparenteser-

na [] i no[4] inte har samma betydelse som i new int[4]. Den korrekta tolknin-

gen av [] beror på sammanhanget. Man kan också säga att [] är symbolen för tre

olika operatorer som överlagrar varandra dvs betyder olika i olika sammanhang:

1. [] som storleksoperator omsluter i definitioner med new antalet element i

arrayen specificerar därmed arrayens storlek. T.ex. innebär koden

new int[4]

i programmet Array att new skapar en array av int med 4 element dvs att 4

minnesceller reserveras för lagring av int-värden. Det gemensamma för dessa

element är att de lagras en efter den andra vid adressen eller referensen no:

 no 0 0 0 0

 Här är frågan om ”Hur många element?”. I matematiken kallas detta kardinal-

tal.

2. [] som indexeringsoperator omslutar indexet till varje element av en array.

Här handlar det om ett elements position i arrayen. Man anger index inom

hakparenteser för att referera till elementet när man vill hämta eller tilldela det

ett värde. Indexregeln (sid 198) tillämpas enligt vilken indexeringen börjar med

0. Därför är no[4] i arrayen ovan inte definierat:

 no no[0] no[1] no[2] no[3]

 Här är frågan om ”Vilket element?”. I matematiken kallas detta ordinaltal.

3. [] som en del av datatypen ”referens till array” omsluter ingenting utan är

tom och skrivs direkt efter en datatyp för att definiera en ny referenstyp. T.ex.

innebär satsen
int[] no;

i programmet Array att en minnescell allokeras (en referensvariabel med

namnet no definieras) för lagring av en adress till en int-array. Vi kan i

fortsättningen använda namnet no för att komma åt arrayen vid denna adress. I

satsen ovan har referensen no inte initierats. Det sker inte heller automatiskt,

203

Alla element i en array initieras automatiskt till default-värden (precis som

datamedlemmar i ett objekt) även om arrayen skapas lokalt i en metod.

för no är en lokal variabel i Main(). Det sker först med tilldelningen no =

new int[4]; som initierar referensen explicit.

Default-initiering av en array

Det anmärkningsvärda är nu att det som gäller för referensen no – att den är

oinitierad när den skapas – inte gäller för själva arrayen. Referensen no är oinitie-

rad och måste initieras explicit eftersom den är en lokal variabel i Main(). Men

trots att även arrayen är lokal i Main() initieras den till datamedlemmars default-

värden, vilket är ett tecken på att array även i detta avseende behandlas som objekt.

Programmet Array skriver ut arrayelementens värden en gång innan och en andra

gång efter att de har fått värdena 64, 86, 34 och -6. Utskriften på förra sidan visar

för arrayens alla element initialvärdet 0 som är den föreskrivna default-initieringen

för variabler av typ int vilket även gäller för element i en int-array. Generellt

gäller:

 204

9.2 Arrayens initieringslista

Man kan effektivisera hanteringen av arrays inte bara med foreach-satser utan

även genom att använda sig av en s.k. initieringslista som slår ihop definitionen

med initieringen – en kortform som ersätter koden newr:

// ArrayInit.cs

// Initieringslista: Kortform för definition och initiering

// av en array i en och samma sats utan new

// Utskrift av arrayens element med foreach-satsen

using System;

class ArrayInit

{
 static void Main()

 {
 int[] no = { 64, 86, 34, -6 }; // Initieringslista:

 // Deklaration OCH ini-

 // tiering av en array

 //int[] no = new int[4] { 64, 86, 34, -6 }; // Samma sak

 Console.Write("\nVärdena från arrayen skrivs ut med" +

 " referensen:\n\n\t");

 foreach (int element in no)

 Console.Write(element + "\t");

 int[] copy = no; // Ny referens till no

 // samma array

 Console.Write("\n\n\tArrayens värden skrivs ut" +

 " med den nya referensen copy:\n\n\t");

 foreach (int element in no)

 Console.Write(element + "\t");

 Console.WriteLine("\n\n\tEndast referensen kopieras,

 inte arrayen.\n");

 }
}

En körning visar att värdena i initieringslistan som först tillelas arrayen no

verkligen kopierats över till arrayen copy, för det är de som skrivs ut:

 Arrayens värden skrivs ut med referensen no:

 64 86 34 -6

 Arrayens värden skrivs ut med den nya referensen copy:

 64 86 34 -6

 Endast referensen kopieras, inte arrayen.

205

En array i C# är alltid ett objekt som behöver en referens.

Både definitionssatsen och initieringssatserna i programet Array (sid 199) – det är

de 5 första satserna i Main() – kan slås ihop till en enda sats:

int[] no = { 64, 86, 34, -6 };

Satsen ovan är bara en förkortning på:

int[] no = new int[4] { 64, 86, 34, -6 };

Dvs initieringslistan kan skrivas efter new int[4] som egentligen skapar eller de-

finierar arrayen. Men new int[4] får utelämnas. Detta visar att den förkortade

versionen gör två saker: Först, fram till tilldelningstecknet definieras referensen no

(utan någon uppgift om arrayens storlek). Sedan, från och med tilldelningstecknet

tilldelas arrayen no:s element fyra värden som står i en kommaseparerad lista grup-

perad inom klamrarna { } som kallas arrayens initieringslista. Kortformen gör

precis samma sak som satsen med new. Kompilatorn får informationen om arra-

yens storlek genom att i initieringslistan räkna antalet element inom klamrarna

{ }. Det är inte ens tillåtet att explicit ange det korrekta antalet element inom

hakparenteserna []. Det blir kompileringsfel om man gör det, därför att no en-

dast är en referens till en array, inte arrayen själv. Observera även att man inte får

använda initieringslistan separat utan endast i samma sats som definitionen.

Valet av variabelnamnet copy kan vara missledande i följande sats av programmet

ArrayInit om man inte beaktar skillnaden mellan referens och array:

int[] copy = no;

copy blir nämligen en kopia av referensen no i satsen ovan, inte av arrayen – en ny

referens som kommer att peka på samma array som den gamla referensen no pekar

på. Det skapas ingen ny array eftersom det varken finns någon new eller någon

initieringslista som skulle ersätta new. Anledningen till detta är – som vi

konstaterat tidigare – följande viktigt faktum:

För att skapa ett objekt måste en new-sats skrivas. En referens definieras utan new.

Minnesmässigt lagras arrayen på en och samma adress som från programmet kan

nås med referenserna no eller copy:

 no 64 86 34 -6

copy

 206

9.3 Texthantering med array av char

I början av detta kapitel motiverade vi behandlingen av arrayer med att kunna lagra

och bearbeta stora datamängder. Ett exempel på det är texthantering där stora text-

mängder snarare är regel än undantag. Textbehandling är ett klassiskt område för

datortillämpning just pga datorns förmåga att effektivt och snabbt kunna hantera

stora datamängder. Vanligtvis kan text framställas med datatypen String som är

en klass. En direkt ändring av en text som skapats med datatypen String är inte

möjlig. Har man däremot en array av datatypen char har man obegränsade möj-

ligheter till manipulation i och med man kan gå ned till elementnivå. Följande

program demonstrerar ett enkelt fall av texthantering med en array av char:

// ArrayChar.cs

// Deklaration och initiering av en array av char

// I C# är en array av char inte samma sak som String

// char-array tillåter ändring av innehållet, men inte String

using System;

class ArrayChar

{
 static void Main()

 {
 String str = "Russell";

 char[] text = str.ToCharArray(); // Omvandling av en

 // sträng till en array av char

 // char[] tex = "Russell"; // Kompileringsfel: sträng

 // är INTE array av char

 Console.WriteLine("\n\tArrayen har längden\t" +

 " text.Length);

 Console.Write("\n\tInnehållet är\t\t");

 foreach (char element in text)

 Console.Write(element); // Elementvis utskrift

 Console.WriteLine(); // FÖRE ändringen

 text[0] = 'r'; // Ändring av char-array

 text[1] = 'i';

 Console.Write("\tsom görs om till\t");

 foreach (char element in text)

 Console.Write(element); // EFTER ändringen

 Console.WriteLine('\n');

 }
}

Ett körresultat av programmet ovan ger följande utskrift:

 Arrayen har längden 5

 Innehållet är Russell

 som görs om till rissell

207

Utskriften visar arrayens innehåll före och efter ändringen av två bokstäver i

strängen Russell. För att kunna göra denna ändring var det nödvändigt att om-

vandla String-objektet Russell till en array av char med String-metoden

ToCharArray(). Resultatet används för att initiera den med char[] text defini-

erade referensen till en char-array. Närmare bestämt är satsen char[] text =

str.ToCharArray(); som gör detta, en kortform för satserna:

 char[] text; // Referens till en char-array
 text = new char[5]; // Deklaration av char-array
 text = str.ToCharArray(); // Initiering av char-array

Här måste arrayens storlek anges medan den i kortformen inte får anges. Program-

met tar själv reda på storleken från strängen Russell. Vi kan sedan få tag i

storleken med String-egenskapen Length som enligt utskriften ovan ger 5. En

gång omvandlad till char-array kan vi gå in på elementnivå och ändra strängens

innehåll med hjälp av arrayens index.

Slumplösenord

En mer intressant tillämpning av textbehandling med hjälp av char-array visas i

följande program som genererar ett slumplösenord:

// RandPasswd.cs

// Skriver ut ETT slumpvis genererat lösenord med policyn:

// 8 tecken = 3 små bokstäver: ASCII-intervall (97, 122) +

// 2 siffror (48, 57) +

// 3 stora bokstäver (65, 90)

using System;

class RandPasswd

{
 static void Main()

 {
 Random r = new Random();

 char[] password = new char[8];

 for (int i=0; i < 3; i++)

 password[i] = (char) r.Next(97, (122+1)); // 3 små

 // bokstäver

 for (int i=3; i < 5; i++)

 password[i] = (char) r.Next(48, (57+1)); // 2 siffror

 for (int i=5; i < 8; i++)

 password[i] = (char) r.Next(65, (90+1)); // 3 stora

 // bokstäver

 Console.Write("\n\t");

 Console.WriteLine(password);

 Console.WriteLine();

 }
}

 208

Ett antal körningar av programmet RandPasswd ger följande slumplösenord:

 gpf49ZLC

 lrn13VSZ

 ztk27CRC

 rmq53QMY

 rxg53JIM

209

Övningar till kapitel 9

9.1 Skriv ett program som läser in 10 heltal från konsolen, lagrar dem i en array

och skriver ut dem i omvänd ordning.

9.2 Skriv ett program som slumpar fram 1000 heltal mellan 60 och 140 (tänkbara

hastigheter på en motorväg), lagrar dem i en array kallad hastighet,

beräknar och skriver ut deras medelvärde med förklarande text.

9.3 Skriv ett program som läser in en sträng, lagrar den i en array av char och

skriver ut den baklänges. Använd tekniken i programmet EncryptChar-

Test för att omvandla den inlästa strängen i en array av char.

9.4 Skriv ett program som läser in text i gemener, lagrar den i en array av char

och skriver ut den framhävd i versaler och med mellanslag mellan varje te-

cken.

9.5 Skriv ett program som frågar efter användarens för- och efternamn, hälsar

sedan användaren i en utskrift med fullständiga namnet, förnamnets längd

samt efternamnets första och sista bokstav. Lös uppgiften generellt utan att

använda information om något speciellt för- och efternamn.

9.6 Skriv ett program där Main() läser in en persons fullständiga namn och häl-

sar tillbaka med namnets initialer. Dessa ska bestämmas och skrivas ut i en

annan metod – med huvudet static void Initials(char[] name) –

som anropas i Main().

9.7 Master Mind (projekt) är ett litet spel som låter användaren gissa ett

slumpmässigt genererat fyrsiffrigt heltal genom att leda spelaren med en in-

byggd hjälpprocedur vars regler är beskrivna nedan. Även här gäller det att

försöka hitta egna lösningar. Följande ska anses som ett förslag till lösning:

Börja med att behandla fyrsiffriga heltal som en serie av fyra ensiffriga tal

dvs som en array av heltal med fyra element.

Skriv först en metod med huvudet void Create(int[] secretNo) som

ska generera det hemliga fyrsiffriga talet och lagra det i en int-array, säg

secretNo, med 4 element. Varje element i arrayen secretNo kan genere-

ras som ett slumptal mellan 0 och 9. Dessutom ska metoden Create() kon-

trollera spelets regel enligt vilken alla fyra siffror måste vara olika.

 Skriv sedan en metod med huvudet void Help(int[] guessedNo,

int[] secretNo) som ska bearbeta spelarens gissning enligt följande reg-

ler:

 210

 För varje rätt siffra på rätt plats från vänster till höger skrivs ut ett R

 För varje rätt siffra på fel plats från vänster till höger skrivs ut ett S

 För varje fel siffra från vänster till höger skrivs ut ett mellanslag ?

 Om t.ex. det hemliga talet är 4693 och spelaren gissar 7498, så erhålls

hjälpen:

? S R ?

 När hjälpen skriver ut RRRR har spelaren lyckats och programmet avslutas

med att skriva ut ett lämpligt meddelande. Skriv ett program som tillåter

flera spelomgångar.

211

 212

Appendix

Vad är objektorienterad

programmering?

213

Program = Modell av verkligheten

En ny syn på programmering

En given definition på programmering är problemlösning med hjälp av datorn. Om

man då beskriver problemets lösning i form av en algoritm kan man säga Program

= algoritm + data. Denna definition ställdes upp av Niklaus Wirth på 60-talet och

återspeglar den procedurala synen på programmering. Fokuset ligger på algoritmen

dvs att inte bara hitta utan även beskriva tillvägagångssättet (proceduren) för att

lösa ett problem. Sedan återstår bara att koda denna beskrivning. En annan

definition som kom upp på 80-talet och återspeglar den objektorienterade synen på

programmering är:

Om man i formeln Program = algoritm + data lägger om betoningen på data istäl-

let för på algoritmen och inte längre betraktar data som ett slags bihang till algorit-

men utan som objekt kommer man till objektorienterad programmering. Denna

nya programmeringsfilosofi kommer att genomsyra hela boken, eftersom C# är ett

objektorienterat språk.

Paradigmskifte

Det som i programmeringshistorien gjorde att man behövde objektorienterad

programmering var den växande komplexiteten hos program under 70-talet.

Programmens storlek var avgörande för den växande komplexiteten. Man insåg att

det inte längre räckte till att skriva och testa program som fungerade just då. Det

var nödvändigt att med rimliga kostnader kunna även underhålla stora program,

förnya och vidareutveckla dem så att de fungerade även i flera år och att de framför

allt kunde anpassas till nyuppkomna situationer utan oöverkomliga svårigheter. Det

i sin tur krävde att man redan i designstadiet behövde ett annorlunda upplägg. Fo-

kuset förskjöts från problemlösning till modellering av verkligheten. Objektorien-

terad design kom in i bilden. Allt detta var endast med procedural programmering

inte längre möjligt. Ett s.k. paradigmskifte hade blivit nödvändigt, dvs en ändring

av helhetssynen på programmering.

Objektorienterad programmering syftar åt att efterlikna verkligheten. Man vill av-

bilda den reala världen – åtminstone den del som tillåter datorisering – och konstrue-

ra en modell av den i sina datorprogram för att kunna simulera verkligheten genom

att testa modellen. För att undvika filosofiska diskussioner kan vi anta att den reala

världen består kort sagt av objekt. Världen kring oss är full med sådana objekt: Män-

niskor, byggnader, bilar, tåg, flygplan, träd, möbler, böcker, butiker, skolor, biblio-

tek, kontor, anställda, kunder, varor, fakturor, order, bokningar, kurser osv. Objekten

kan vara verkliga eller virtuella. Ett datorprogram försöker att beskriva dessa objekt.

Låt oss precisera detta:

 214

Objekt, klass och metod

Ett objekt har vissa egenskaper. Generellt kan man säga att ett objekt är summan av

alla sina egenskaper. Ett annat ord för egenskap är attribut. Ett objekt består av alla

sina attribut. Attributen tillhör objektet. T.ex. har objektet bil som attribut fabrikat,

modell, färg, årsmodell, antal körda mil, antal hästkrafter, maximala hastigheten,

antal och storlek på cylindrar i motorn osv. Alla dessa data ger svar på frågan ”Vad

är det för bil?”. Men bilden vore ofullständig om vi nöjde oss med dessa intressanta,

men statiska data. Vi vill också veta vad man kan göra med bilen. Ett objekt kan i

regel även utföra vissa aktioner eller operationer. I den objektorienterade program-

meringens terminologi kallas de för metoder. Typiska metoder för en bil är t.ex. att

köra fram, att backa, att accelerera, att bromsa, att parkera, att byta olja osv. Den

fullständiga definitionen på en bil som objekt vore alltså att ange både dess attribut

och metoder. Bilfabrikanten måste förse bilen med alla dessa färdigheter för att kun-

na sälja den. Därför går man i bilfabriken efter en plan när man tillverkar bilen. I den

objektorienterade programmeringens terminologi kallas denna plan för bilens klass.

När vi skriver ett program måste vi först formulera klassen Bil för att sedan kunna

skapa objekt av den. Klassen skrivs bara en gång, medan objekt kan skapas enligt

klassens beskrivning i obegränsat antal. I klassen måste vi ta upp alla attribut och

metoder som är relevanta eller av någon anledning önskvärda för en bil. Den praktis-

ka användningen avgör från fall till fall vad som är relevant eller önskvärt.

Vad är skillnaden mellan objekt och klass? Om vi byter ut bilar mot pepparkakor

kan man säga att pepparkaksformen är klassen och själva pepparkakorna är objek-

ten. Klassen är alltså en slags mall, en förskrift för produktion av objekt: En enda

pepparkaksform kan producera tusentals pepparkaksgubbar. Gubbarna kan skiljas

från varandra i vissa detaljer, t.ex. materialet, smaken osv. Man kan t.o.m. måla

dem i olika färger eller modifiera på annat sätt efteråt. De förblir pepparkaksgubbar

av den ursprungliga formen. I formen ingår det som är gemensamt hos alla peppar-

kaksgubbar. Man har, när man byggde formen, bortsett från oväsentliga skillnader

och tagit hänsyn endast till det väsentliga, det gemensamma hos alla pepparkakor.

Att bortse från skillnader och att bibehålla det gemensamma hos olika verkliga

objekt, är en abstraktion (abstrahera betyder på latin: att ta bort, att dra av). Man tar

bort allt som skiljer saker och ting av samma kategori eller typ och kommer på det

viset till själva kategorin. Abstraktion leder till begreppsbildning, till klassificering

eller kategorisering av den reala världen. Ett växande barn går igenom samma

abstraktionsprocess, ser först sina föräldrar (objekt), abstraherar sedan via erfarenhet

så småningom till begreppet människa (klassen) och inser att sina föräldrar är två

konkreta exemplar av den abstrakta klassen människa. Så gör barnet med alla saker

och ting omkring sig och lär sig vuxenvärldens begreppsapparat. Det abstrakta be-

greppet penna (klassen) t.ex. bildas efter att man sett hundratals verkliga pennor (ob-

jekt). Objektorienterad programmering återspeglar denna naturliga tankeprocess från

det konkreta till det abstrakta, från objekt till klass.

215

Metoder

En metod är en funktionalitet som definieras i en klass. Den talar om vad ett objekt

av denna klass kan göra. Det finns två steg i hantering av metoder: Först definierar

man dem dvs skapar man deras kod i en klass. Sedan anropar dvs aktiverar man

dem i ett objekt av denna klass. Ofta är det första steget redan genomfört av andra,

så vi behöver bara anropa en redan fördefinierad metod. I klassen Bil t.ex. är meto-

derna att köra fram, att backa, att accelerera, att bromsa osv. definierade i huvuden

på bilkonstruktörerna och i deras konstruktionsritningar och dokumentationer. Se-

dan har man tillverkat massor med objekt av klassen Bil i fabriken och byggt in

dessa metoder i alla bilar. Vi behöver bara anropa dem i den bil vi kör. Den bil vi

kör är ett specifikt objekt av klassen Bil. Låt oss kalla det för minVolvo. Objektet

minVolvo har ett antal attribut som t.ex. fabrikat, modell, färg, årsmodell osv.,

men också ett antal metoder, bl.a. metoden Kör(). Parenteserna i metodens namn

brukar man skriva för att karakterisera Kör() som en metod och skilja den från

klassens attribut. I C# skriver man ett anrop av metoden Kör() så här:

minVolvo.Kör();

Observera att före punkten står ett objekt, inte klassen. Det är ju den specifika bil

som jag använder just nu som ska köras. Först efter punkten står själva anropet av

metoden kör(). Det här sättet att skriva kallas punktnotation. Metoder måste alltid

anropas med punktnotation, vilket har sin grund i att de endast är deklarerade i

klasser, så att de endast existerar i objekt av en klass. Till skillnad från fristående

funktioner kan metoder varken definieras utanför klasser eller anropas utanför

objekt. I C# finns endast metoder, inga funktioner. Om vi bortser från bilexemplet

kan det i andra sammanhang även förekomma en klass (istället för objekt) före

punkten i anropet av en metod. I så fall är metoden definierad i klassen på ett spe-

ciellt sätt nämligen som en statisk metod, vilket tas upp senare när vi behandlar

metoder i detalj.

En annan variant av metoden Kör() kan anropas på fäljande sätt:

minVolvo.Kör(40);

Det kan t.ex. betyda: Kör bilen med hastigheten 40 km/h. Värdet 40 kallas då en

parameter som skickas till metoden när den anropas. I så fall måste även metoden

Kör() vara definierad så att den har beredskapen att ta emot denna parameter. Så

det kan inte vara samma metod som anropades utan parameter. Det måste vara en

annan variant av den, exakt talat en annan metod med samma namn. Konceptet

kallas överlagring av metoder och innebär två eller flera metoder med samma

namn, men olika parametrar.

Klassdiagram

Låt oss ta som exempel en algoritm som beskriver hur man går upp, duschar, tar på

sig kläderna och åker till jobbet. Låt oss kalla algoritmen för Morgonsyssla, vilket är

ett typiskt fall av problemlösning: Det löser problemet hur man tar sig till jobbet.

 216

Person

- firstName

- lastname

- birthDate

+ Present()

+ MorningActivity()

Employee

- hireDate

- workingHour

+ Salary()

+ MorningActivity()

Employee

- firstName

- lastname

- birthDate

- hireDate

- workingHour

+ Salary()

+ Present()

+ MorningActivity()

Tillvägagångssättet och framför allt hur vi beskriver det, är föremål för algoritmer.

Men vem eller vilka gör det, dvs vilka objekt som är involverade i algoritmen och hur

man beskriver dessa objekt, är en annan aspekt på saken. Objektorienterad program-

mering prioriterar objektaspekten framför algoritmaspekten. Den primära frågan är

inte längre vad man gör utan vem man är dvs hur kan personen beskrivas? Hur man

gör för att ta sig till jobbet kommer att ingå som en del i denna beskrivning. Algorit-

men Morgonsyssla blir en metod i objektet Person. Det är objektet som utför meto-

dens instruktioner för att ta sig till jobbet.

Personen kan t.ex. vara en anställd vilket förresten skulle förklara varför han tar sig

till jobbet. I så fall är personen ett objekt av

kategorin eller klassen Employee. Därför defi-

nieras en klass som beskriver alla anställda.

Personen i fråga görs till ett objekt, ett exem-

plar av denna klass. På så sätt kan koden åter-

användas även för andra anställda. Återan-

vändning av kod gör utvecklingsarbetet av

programvara effektivare och är en av den ob-

jektorienterade synens fördelar. I klassen Em-

ployee ingår all typ av information som är rele-

vant för en anställd, det vi kallar för attribut,

t.ex. för- och efternamn, födelse- och anställ-

ningsdatum, arbetstid osv. Dessutom tar vi upp allt som en anställd kan göra, det vi

kallar för metoder, t.ex. att få lön, att presentera sig eller också att ta sig till jobbet.

På så sätt blir algoritmen Morgonsyssla i den objektorienterade programmeringens

terminologi en metod i klassen Employee. Ett

verktyg speciellt för objektorienterade modelle-

ringar är UML (Unified Modeling Language). En-

ligt det här modelleringsspråket skulle klassen

Employee beskrivas med diagrammet till vänster

som kallas för klassdiagram. Där står tecknet –

för attribut och + för metoder. Andra betecknin-

gar för attribut är datamedlem eller egenskap.

Dessa termer är synonymer. En klass består av

datamedlemmar och metoder. Klassen Employee

t.ex. har fem datamedlemmar och tre metoder.

Klassens konstruktor

Eftersom klassens datamedlemmar i regel är

inkapslade (privata) och inte åtkomliga utifrån

klassen – detta gör man bl.a. ur datasäkerhets-

synpunkt – måste programmeraren använda sig

av ett verktyg för att på ett kodat sätt ändå kunna

komma åt dem, läsa och ändra dem osv. Detta

verktyg kallas klassens konstruktor och är en spe-

ciell metod vars namn är identiskt med klassens

217

namn. Den initierar automatiskt klassens privata datamedlemmar när ett objekt

skapas. För enkelhetens skull har vi inte tagit upp den i klassdiagrammet ovan bland

klassens metoder. Konstruktorn har ju endast programmeringsteknisk karaktär och

behandlas i Programmering 2.

Arv

I den reala världen som vi vill efterlikna, finns inga isolerade objekt. Alla objekt är

mer eller mindre relaterade till andra objekt. En klok modellering måste dra nytta

av de befintliga relationer mellan objekt för att effektivisera och optimera utveck-

lingsarbetet. En sådan relation är arvrelationen.

Man kan alltid etablera en arvrelation mellan två begrepp om de står i en ”är”-rela-

tion till varandra. I exemplet ovan kan vi konstatera ett en anställd är en person.

Därför kan klassen Employee ärva klassen Person, närmare bestämt ärver klassen

Employee klassen Person:s alla datamedlemmar och metoder. Klassen Person

kallas bas- eller superklass. Klassen Employee kallas härledd eller subklass. Sub-

klassen ärver superklassens alla datamedlemmar och metoder, vilket i praktiken

innebär att klassen Employee tar över all kod som redan finns i klassen Person

och lägger till ny kod som närmare specificerar en anställd. På så sätt slipper man

skriva om kod som redan finns. T.ex. har en person ett för- och efternamn samt ett

födelsedatum. Vid modellering av en anställd ärvs dessa attribut, och man lägger

till de nya attributen hireDate och workingHour som är speciella för en anställd.

Klassdiagrammet ovan (till vänster) visar modellen där arvrelationen ritats med en

pil riktad mot superklassen. Följer man pilens riktning underifrån kan man avläsa

att det är klassen Employee som ärver klassen Person.

Objektorienterad programmering bygger på tre hörnstenar:

 Inkapsling

 Arv

 Polymorfism

De två sista har vi försökt att introducera här utan att behöva skriva en enda rad

kod. För den första behöver vi lite mer detaljerade kunskaper om programmering.

Några konventioner

När vi ritade UML-diagrammen ovan och skrev text i dem tillämpade vi några

konventioner som man i regel brukar använda inom programmering.:

1. Klasser och metoder inleds med versaler

För att bättre kunna känna igen klasser och metoder i objektorienterad kod,

inleds de med versaler. Så därför skriver vi klasserna Employee och Person

samt metoderna Salary(), MorningActivity(), så här. Följer man konse-

kvent alla konventioner kan man lätt avgöra att ett ord i koden som har en stor

begynnelsebokstav, är en klass eller en metod.

 218

2. Datamedlemmar och objekt inleds med gemener

Till skillnad från klasser och metoder inleds alla datamedlemmar och objekt

med gemener, t.ex. firstName, surname, workingHours, … . Även den här

konventionen höjer kodens läslighet när den följs i kombination med punkt 1.

3. Metoder skrivs med parentes

Till skillnad från en datamedlem som kan ha ett värde, beskriver en metod en

funktionalitet som kan anropas från en annan metod vilket medför att man vid

anropet kan skicka vissa parametrar till den anropade metoden. Dessa para-

metrar skrivs inom en parentes direkt efter metodens namn. På så sätt är paren-

tesen kännetecknet för en metod. Även om en viss metod inte har någon para-

meter alls som i våra exempel med Salary(), MorningActivity(), … bru-

kar man ändå skriva den tomma parentesen med. Detta är en regel för att skri-

va kod, men har blivit en konvention som man även följer utanför programkod.

219

Fullständiga lösningar till alla övningar (Facit) 

Kapitel 1 C# programmeringens miljö, sid 30:

Ovn_1_2.cs

Modifiera programmet MessageBox (sid 29) så att meddelanderutan

får rubriken ”Övning 1.1”. Hur man skriver ut en MessageBox med

egenvald rubrik har vi lärt oss i programmet Interaction (sid 26).

Form1.cs

using System;

using System.Windows.Forms;

namespace Messagebox

{
 public partial class Form1 : Form

 {
 public Form1()

 {
 InitializeComponent();

 }

 private void Form1_Load(object sender, EventArgs e)

 {
 MessageBox.Show("Hälsningar från Windows MessageBox " +

 "som visas när formen laddas.", "Övning 3.9");

 }
 }
}

**
Ovn_1_2, Ovn_1_3 och Ovn_1_4

Dessa övningar innehåller ingen kod utan löses med visuell program-

mering. Använd och modifiera anvisningarna på sid 23.

**

Kapitel 3 Att komma igång med C#, sid 53:

Ovn_3_1.cs

Mata in koden till programmet First (sid 42), kompilera och kör.

a) Skriv om programmet First genom att ta bort using-direktivet och

 modifiera istället utskriftssatsen så att den kan kompileras och

 ger samma resultat som programmet First.

b) Undersök skillnaderna mellan apostrof,citationstecken & accent.

a)

class Ovn_3_1

 För att uppmuntra till egna lösningar ges inga lösningsförslag till projektuppgifterna Löpande texten,

Pyramiden, Automaten, Kalkylatorn, Mater Mind eller uppgifter som är relaterade till ett projekt. Istället

finns det i projektenas lydelse alltid en mer eller mindre utförlig ledning (algoritm) till lösningen.

 220

{
 static void Main()

 {
 System.Console.WriteLine("\n\tMitt första C# program!\n");

 }
}

b)

Apostrof är ' (Tillsammans med * tangenten)
Citationstecken är " (Tillsammans med 2:ans tangent)

Två typer av accent är ´ och ` (Till höger om + tangenten)

OBS! Beakta skillnaden mellan apostrof & accent. De förväxlas lätt.

**

Ovn_3_2.cs

Sätt in följande kod i ett C# program för att testa vad den ger för

utskrift:

 Console.Write ("**\n");

 Console.WriteLine("***");

 Console.WriteLine("****");

 Console.Write ("*****\n");

 Console.WriteLine("******");

 Console.WriteLine("*****");

 Console.Write ("****\n");

 Console.WriteLine("***");

 Console.WriteLine("**\n");

a) Ersätt alla anrop av Console.Write() med Console.WriteLine()

 och ändra lite i koden utan att utskriften ändras.

b) Lägg till lite kod i varje sats så att hela den utskrivna

 figuren hamnar lite längre bort från konsolfönstrets vänstra

 och övre rand.

a)

using System;

class Ovn_3_2a

{
 static void Main()

 {
 Console.WriteLine("**");

 Console.WriteLine("***");

 Console.WriteLine("****");

 Console.WriteLine("*****");

 Console.WriteLine("******");

 Console.WriteLine("*****");

 Console.WriteLine("****");

 Console.WriteLine("***");

 Console.WriteLine("**\n");

 }
}

b)

using System;

class Ovn_3_2b

{
 static void Main()

 {
 Console.WriteLine("\n\t**");

221

 Console.WriteLine("\t***");

 Console.WriteLine("\t****");

 Console.WriteLine("\t*****");

 Console.WriteLine("\t******");

 Console.WriteLine("\t*****");

 Console.WriteLine("\t****");

 Console.WriteLine("\t***");

 Console.WriteLine("\t**\n");

 }
}
**

Ovn_3_3.cs

Skriv ett program och testa vilken utskrift följande satser ger:

 Console.Write ("Jag");

 Console.Write ("heter");

 Console.WriteLine("K.\n Vad heter du?\n");

Lägg till resp. ta bort mellanslag, radbyte och tabulator för att

få en snygg utskrift utan att slå ihop de tre satserna till en.

using System;

class Ovn_3_3

{
 static void Main()

 {
 Console.Write("\n\tJag ");

 Console.Write("heter ");

 Console.WriteLine("K.\n\n\tVad heter du?\n");

 }
}
**

Ovn_3_4.cs

Skriv ett program som först skickar följande kod till WriteLine():

 "Resultatet är " + 8 + 3

och sedan: "Resultatet är " + (8 + 3)

Förklara skillnaden i de två utskrifterna. Hur måste + tolkas?

using System;

class Ovn_3_4

{
 static void Main()

 {
 Console.WriteLine("\n\t Resultatet är " + 8 + 3);

 Console.WriteLine("\n\t Resultatet är " + (8 + 3) + '\n');

 }
}

Utskriften blir: Resultatet är 83

Resultatet är 11

 I den första utskriftssatsen tolkas båda + som konkateneringar.

 I den andra utskriftssatsen tolkas det första + tecknet som konka-

 tenerings- och det andra + tecknet som addititonsoperator, eftersom

 parentesen exekveras först och i parentesen tolkas + som addition.

**

 222

Ovn_3_5.cs

Vilka utskrifter ger följande satser? Sätt in dem i ett program.

 Console.WriteLine("*\n**\n***\n****\n*****");

 Console.WriteLine("*****\n****\n***\n**\n*");

Skriv om koden så att du får samma utskrift med EN utskriftssats.

using System;

class Ovn_3_5

{
 static void Main()

 {
 Console.WriteLine("*\n**\n***\n****\n*****" +

 "\n*****\n****\n***\n**\n*");

 }
}
**

Ovn_3_6.cs

Skriv in koden till programmet Concat (sid 51), kompilera och kör.

Modifiera det till att skriva ut en oval byggd av stjärnor (*).

using System;

class Ovn_3_6

{
 static void Main()

 {
 Console.Write("\n * * * * * * * * * * " +

 "\n * * " +

 "\n * * " +

 "\n * * " +

 "\n * * " +

 "\n * * " +

 "\n * * " +

 "\n * * " +

 "\n * * * * * * * * * * " +

 "\n\n");

 }
}
**

Ovn_3_7.cs

Skriv ett program som skriver ut en triangel byggd av stjärnor (*).

using System;

class Ovn_3_7

{
 static void Main()

 {
 Console.Write("\n * " +

 "\n * * " +

 "\n * * " +

 "\n * * " +

 "\n * * " +

 "\n * * " +

 "\n * * " +

 "\n * * " +

 "\n * * " +

 "\n * * * * * * * * * * " +

 "\n\n");

 }

223

}
**

Ovn_3_8.cs

Rita följande figur i konsolen med en enda utskriftssats.

Se upp för skillnaden mellan slash / och backslash \.

Använd två backslash \\ i koden – som en escapesekvens inbakad i
den konkatenerade strängen – för att åstadkomma en backslash \ i

utskriften. (Läs om escapesekvenser på sid 97).

using System;

class Ovn_3_8

{
 static void Main()

 {
 Console.Write("\n ______ " +

 "\n /_____/\\ " +

 "\n /____ \\\\ \\ " +

 "\n /_____\\ \\\\ / " +

 "\n /_____/ \\/ / / " +

 "\n /_____/ / \\//\\ " +

 "\n _____\\//\\ / / " +

 "\n _____/ / /\\ / " +

 "\n _____/ \\\\ \\ " +

 "\n _____\\ \\\\ " +

 "\n _____\\/ " +

 "\n\n\n");

 }
}
**

Kapitel 4 Grundbegrepp i programmering, sid 83:

Ovn_4_1.cs

Satsen Console.WriteLine(a); ger kompileringsfel till

skillnad från Console.WriteLine('a'); Sätt in båda i ett

C# program och testa. Ger även Console.WriteLine(6);

kompileringsfel? Testa vilka utskrifter följande satser ger:

 Console.WriteLine(6 + 6);

 Console.WriteLine('6' + '6');

 Console.WriteLine("6" + "6");

 Console.WriteLine(6.6 + 6.6);

 Console.WriteLine("6.6" + "6.6");

Förklara resultaten.

using System;

class Ovn_4_1

{
 static void Main()

 {
 Console.WriteLine(a); // Ger kompileringsfel

 Console.WriteLine('a'); // Teckenkonstant: a

 Console.WriteLine(6 + 6); // Addition av 6 med 6: 12

 Console.WriteLine('6' + '6'); // Addition av 54 med 54: 108

 Console.WriteLine("6" + "6"); // Konkatenering: 66

 224

 Console.WriteLine(6.6 + 6.6); // Addition av 6.6 med 6.6: 13,2

 Console.WriteLine("6.6" + "6.6"); // Konkatenering: 6.66.6

 }
}

Förklaringar:

Console.WriteLine(a); ger kompileringsfel därför att a är en odefinierad va-

riabel.

Console.WriteLine('a'); ger a därför att 'a' är ett tecken: bokstaven a.

Console.WriteLine(6 + 6); ger 12 därför att 6 är tal och + adderar talen.

Console.WriteLine('6' + '6'); ger 108 därför att '6' är tecknet med ASCII-ko-

den 54, dvs ASCII-koderna adderas: 54 + 54 = 108.

Console.WriteLine("6" + "6"); ger 66 därför att "6" är en sträng och + konka-

tenerar strängarna "6" och "6".

Console.WriteLine(6.6 + 6.6); ger 13,2 därför att 6.6 är decimaltal och + ad-

derar talen.

Console.WriteLine("6.6" + "6.6"); ger 6.66.6 därför att "6.6" är en sträng och

+ konkatenerar strängarna "6.6" och "6.6".

**

Ovn_4_2.cs

Komplettera programmet Variable (sid 60): Definiera ytterligare

variabler, säg diff, prod, div, mod, tilldela till dem uttryck

bildade med de andra räknesätten -, *, / och %. Skriv ut resultaten

med meningsfulla utskrifter. Bibehåll ändringen av variabeln no1:s

värde mellan de två utskrifterna.

using System;

class Ovn_4_2

{
 static void Main()

 {
 int no1, no2, sum, diff, // Deklaration av variabler

 prod, div, mod;

 no1 = 9; // Initiering av variabler

 no2 = 3;

 sum = no1 + no2; // Addition

 diff = no1 - no2; // Subtraktion

 Console.WriteLine("\n\tAddition definierad för int:\t" +

 no1 + " + " + no2 + " ger " + sum +

 "\n\tSubtraktion definierad för int:\t" +

 no1 + " - " + no2 + " ger " + diff);

 no1 = 11; // Variabelns värde ändras

 prod = no1 * no2; // Multiplikation

 div = no1 / no2; // Heltalsdivision

 mod = no1 % no2; // Modulo: resten vid div.

 Console.WriteLine("\n\tMultiplikation definierad för int:\t" +

 no1 + " * " + no2 + " ger " + prod +

 "\n\tHeltalsDivision definierad för int:\t" +

 no1 + " / " + no2 + " ger " + div +

 "\n\tModulo definierad för int:\t" +

 no1 + " % " + no2 + " ger " + mod + '\n');

 }
}
**

Ovn_4_3.cs

Vidareutveckla din lösning till övn 4.2 genom att ersätta den hård-

kodade initieringen av variablerna no1 och no2 med en initiering

genom inläsning som t.ex. kan göras med en ReadLine()-sats samt

225

ledtext. Stryk ändringen av variabeln no1:s värde.

using System;

class Ovn_4_3

{
 static void Main()

 {
 int no1, no2, sum, diff, prod, div, mod;

 string no1AsText, no2AsText;

 Console.Write("\n\tMata in ett heltal:\t\t"); // Ledtext

 no1AsText = Console.ReadLine(); // Inläsning

 no1 = int.Parse(no1AsText); // Omvandling

 Console.Write("\n\tMata in ett heltal till:\t"); // Ledtext

 no2AsText = Console.ReadLine(); // Inläsning

 no2 = int.Parse(no2AsText); // Omvandling

 sum = no1 + no2; // Addition

 diff = no1 - no2; // Subtraktion

 prod = no1 * no2; // Multiplikation

 div = no1 / no2; // Heltalsdivision

 mod = no1 % no2; // Modulo: resten vid div.

 Console.WriteLine("\n\tAddition definierad för int:\t" +

 no1 + " + " + no2 + " ger " + sum +

 "\n\tSubtraktion definierad för int:\t" +

 no1 + " - " + no2 + " ger " + diff +

 "\n\tMultiplikation definierad för int:\t" +

 no1 + " * " + no2 + " ger " + prod +

 "\n\tHeltalsDivision definierad för int:\t" +

 no1 + " / " + no2 + " ger " + div +

 "\n\tModulo definierad för int:\t" +

 no1 + " % " + no2 + " ger " + mod + '\n');

 }
}
**

Ovn_4_4.cs

Skriv ett program som läser in två heltal, multiplicerar dem

med varandra och skriver ut resultatet blandat med förklarande

text. Om du t.ex. matar in 3 till det första och 4 till det

andra heltalet, ska programmet skriva ut: 3 gånger 4 är 12.

Utveckla programmet vidare med ytterligare räkneoperationer,

kanske så småningom till en liten kalkylator.

using System;

class Ovn_4_4

{
 static void Main()

 {
 Console.Write("\n\tMata in ett heltal:\t\t"); // Ledtext

 int no1 = int.Parse(Console.ReadLine()); // Inläsning

 Console.Write("\n\tMata in ett heltal till:\t");

 int no2 = int.Parse(Console.ReadLine());

 Console.WriteLine("\n\n\t" +

 no1 + " plus " + no2 + " är " + (no1 + no2) + "\n\t" +

 no1 + " minus " + no2 + " är " + (no1 - no2) + "\n\t" +

 no1 + " gånger " + no2 + " är " + (no1 * no2) + "\n\t" +

 no1 + " heltalsdividerad med " +

 no2 + " är " + (no1 / no2) + "\n\t" +

 226

 no1 + " modulo " + no2 + " är " + (no1 % no2) + "\n\t");

 }
}
**

Ovn_4_5.cs

Ersätt i programmet DefInit (sid 63) de två satser som definierar &

initierar variablerna no1, no2 med satsen int no1 = 9, no2 = 2;

using System;

class Ovn_4_5

{
 static void Main()

 {
 int no1 = 9, no2 = 2; // Deklaration och initiering

 // i en och samma sats

 Console.WriteLine("\n\t" +

 "Summan av " + no1 + " och " +

 no2 + " är " + (no1 + no2) + '\n');

 }
}
**

Ovn_4_6.cs

Modifiera progr. Overwrite (sid 68) så att variabeln x:s gamla värde

skrivs ut, medan dess nya ökade värde visas senare.

Ersätt i din lösning satsen x = x + 1; med x++;

Blir det samma resultat om du ersätter den med x + 1; istället?

using System;

class Ovn_4_6

{
 static void Main()

 {
 Console.Write("\n\tMata in ett heltal:\t\t");

 int x = int.Parse(Console.ReadLine());

 Console.Write("\n\tTalet " + x);

 x = x + 1;

// x++; // Går: Samma som x = x + 1;

// x + 1; // Går ej! Ger kompilerings -
 // fel: Tilldelning saknas

 Console.WriteLine(" har ökats med 1 och är nu " + x + '\n');

 }
}
**

Ovn_4_7.cs

Skriv ett program som läser in tre heltal till timmar, minuter

och sekunder. Beräkna och skriv ut sedan hur många sekunder det

blir totalt. Gör utskriften användarvänlig.

using System;

class Ovn_4_7

{
 static void Main()

 {
 Console.Write("\n\t Ange antal timmar:\t\t");

 int hour = int.Parse(Console.ReadLine());

 Console.Write("\n\t Ange antal minuter:\t\t");

 int min = int.Parse(Console.ReadLine());

 Console.Write("\n\t Ange antal sekunder:\t\t");

227

 int sec = int.Parse(Console.ReadLine());

 int totalsek = 3600*hour + 60*min + sec;

 Console.WriteLine("\n\t" +

 hour + " timmar, " + min + " minuter och " +

 sec + " sekunder är " + totalsek + " sekunder totalt.\n");

 }
}
**

Ovn_4_8.cs

Varför ger följande program kompileringsfel? Åtgärda felet!

using System;

class Ovn_4_8

{
 static void Main()

 {
 int a, sum = 9; // sum måste initieras innan den används

 // I frågeställningen var sum inte initierad

 Console.Write("\n\tMata in ett heltal:\t");

 a = int.Parse(Console.ReadLine());

 sum += a; // Samma som: sum = sum + a; Här används

 // sum på höger sidan av tilldelningen

 Console.WriteLine("\n\tsum = " + sum + '\n');

 }
}
**

Övningarna 4.9 och 4.10 är projektuppgifter, se fotnoten på sidan 219.

**

Kapitel 5 Enkla datatyper, sid 109:

Ovn_5_1.cs

Skriv ett program som läser in tre tecken och skriver ut dem

i omvänd ordning.

using System;

class Ovn_5_1

{
 static void Main()

 {
 char ch1, ch2, ch3;

 Console.Write("\nMata in tre tecken skilda med mellanslag:\t");

 string text = Console.ReadLine();

 ch1 = text[0];

 ch2 = text[2];

 ch3 = text[4];

 Console.WriteLine("\nOmvänd ordning:\t\t\t\t\t" +

 ch3 + " " + ch2 + " " + ch1 + " " + "\n");

 }
}
**

Ovn_5_2.cs

Skriv ett program som läser in en gemen och skriver ut dess

 228

versal och sedan läser in en versal och skriver ut dess gemen.

using System;

class Ovn_5_2

{
 static void Main()

 {
 Console.Write("\nMata in en gemen:\t");

 String str = Console.ReadLine();

 Console.WriteLine("\nDess versal är:\t\t" + str.ToUpper());

 Console.Write("\nMata in en versal:\t");

 str = Console.ReadLine();

 Console.WriteLine("\nDess gemen är:\t\t" + str.ToLower() + '\n');

 }
}
**

Ovn_5_3.cs

Experimentera med programmet Int2char (sid 95) för att ta reda på

ASCII-koden till datorns ljudsignal. Dvs kör så länge tills du vid

inmatning av ett heltal hör ett pip från datorn. Ändra datatypen

till variabeln kod från int till char. Åtgärda kompileringsfelet.

Hör du fortfarande pipet när du matar in ASCII-koden för ljudsignal?

Förklara.

using System;

class Ovn_5_3

{
 static void Main()

 {
 Console.Write("\nMata in en siffra: ");

 char kod = Convert.ToChar(Console.ReadLine());

 Console.WriteLine("\nDet inmatade talet " + kod +

 " är ASCII-koden till tecknet " + kod + '\n');

 }
}
ASCII-koden till datorns ljudsignal är 7 som man får med programmet

Int2char (sid 95). Programmet ovan genererar inte ljudsignalen utan

läser in och skriver bara ut det inmatade tecknet 7. Bara om man

läser in ASCII-koden som int och explicit omvandlar den till char

får man ut ljudsignalen.

**

Ovn_5_4.cs

Kryptering av tecken: Skriv ett program som läser in ett tecken

och förskjuter det i teckentabellen med ett visst antal steg som en
slags krypteringsnyckel. Skriv ut både det inlästa och det

förskjutna tecknet på ett användarvänligt sätt. Börja med att

hårdkoda krypteringsnyckeln och fortsätt med att läsa in den.

using System;

class Ovn_5_4

{
 static void Main()

 {
 Console.Write("\nMata in ett tecken: ");

 char letter = Convert.ToChar(Console.ReadLine());

229

 Console.Write("\nMata in ett heltal (krypteringsnyckel): ");

 int steg = int.Parse(Console.ReadLine());

 String output = "\nDet inlästa tecknet " + letter;

 letter += (char) steg; // Kryptering av letter

 Console.WriteLine(output+ " har förskjutits med " +

 steg + " steg och är nu: " + letter + '\n');

 }
}
**

Ovn_5_5.cs

Kryptering av ord: Skriv ett program som läser in fem tecken

och skriver ut dem förskjutna med ett steg i ASCII-tabellen så

att t.ex. inmatningen Kalle ger utskriften Lbmmf. Återställ

sedan det krypterade ordet. Vidareutveckla programmet genom att

utöka och läsa in antalet steg (krypteringsnyckeln).

using System;

class Ovn_5_5

{
 static void Main()

 {
 String encrypt = "";

 Console.Write("\nMata in 5 tecken utan mellanslag: ");
 String word = Console.ReadLine();

 Console.Write("\nMata in ett heltal (krypteringsnyckel): ");

 int key = int.Parse(Console.ReadLine());

 encrypt += (char)(Convert.ToChar(word.Substring(0, 1)) + key);

 encrypt += (char)(Convert.ToChar(word.Substring(1, 1)) + key);

 encrypt += (char)(Convert.ToChar(word.Substring(2, 1)) + key);

 encrypt += (char)(Convert.ToChar(word.Substring(3, 1)) + key);

 encrypt += (char)(Convert.ToChar(word.Substring(4, 1)) + key);

 Console.WriteLine("\nDet krypterade ordet:\t\t\t" + encrypt);

 word = "";

 word += (char) (Convert.ToChar(encrypt.Substring(0, 1)) - key);

 word += (char) (Convert.ToChar(encrypt.Substring(1, 1)) - key);

 word += (char) (Convert.ToChar(encrypt.Substring(2, 1)) - key);

 word += (char) (Convert.ToChar(encrypt.Substring(3, 1)) - key);

 word += (char) (Convert.ToChar(encrypt.Substring(4, 1)) - key);

 Console.WriteLine("\nDet återställda ordet:\t\t\t" +word + '\n');

 }
}
**

Ovn_5_6.cs

Ersätt i följande program satsen letter++; med letter = letter + 1;

Varför får du kompileringsfel? Försök att åtgärda felet utan att

använda letter++;

using System;

 230

class Ovn_5_6

{
 static void Main()

 {
 char letter = 'Y';

 String output =

 "Tecknet " + letter + " har koden " + (int) letter;

 letter = (char) (letter + 1);

 Console.WriteLine(output +

 "\nTecknet " + letter + " har koden " + (int) letter);

 }
}
letter = letter + 1; ger kompileringsfelet: "possible loss of

precision" eftersom letter + 1 automatiskt konverteras till int, men

vid tilldelningen (=) inte automatiskt kan omvandlas till

vänstersidans char eftersom char har mindre plats (2 bytes) än int

(4 bytes). Lösningen är explicit typkonvertering.

**

Övning 5.7 är en projektuppgift, se fotnoten på sidan 219.

**

Kapitel 6 Kontrollstrukturer, sid 151:

Ovn_6_1.cs

Skriv ett program som läser in två tal och skriver ut OK om de

matats in i rätt ordning, dvs om det första är mindre än det

andra. Vad händer om de är lika stora?

using System;

class Ovn_6_1

{
 static void Main()

 {
 Console.Write("\n\tMata in no1:\t");

 int no1 = int.Parse(Console.ReadLine());

 Console.Write("\n\tMata in no2:\t");

 int no2 = int.Parse(Console.ReadLine());

 if (no1 < no2)

 Console.WriteLine("\n\tOK. Talen matades in i rätt " +

 "ordning.\n");

 }
}
Både om talen är lika stora eller det första är större än det andra,

avslutas programmet utan utskrift eftersom alternativ (else) saknas.

**

Ovn_6_2.cs

Modifiera din lösnig från övn 6.1 genom att läsa in två tecken

istället för tal. Skriv ut OK om de matats in i ordning. Annars ska

programmet skriva ut ett meddelande om att tecknen matades in i fel

ordning

231

using System;

class Ovn_6_2

{
 static void Main()

 {
 Console.Write("\n\tMata in char1:\t");

 String temp = Console.ReadLine();

 char char1 = Convert.ToChar(temp.Substring(0, 1));

 Console.Write("\n\tMata in char2:\t");

 temp = Console.ReadLine();

 char char2 = Convert.ToChar(temp.Substring(0, 1));

 if (char1 < char2)

 Console.WriteLine("\n\tOK. Du matade in i rätt ordning.\n");

 else

 Console.WriteLine("\n\tDu matade in i fel ordning.\n");

 }
}
**

Ovn_6_3.cs

Skriv ett program som läser in tre tal, hittar och skriver ut det

största av dem. Vilken ändring i koden leder till det minsta talet?

using System;

class Ovn_6_3

{
 static void Main()

 {
 int max;

 Console.Write("\n\tMata in no1:\t");

 int no1 = int.Parse(Console.ReadLine());

 Console.Write("\n\tMata in no2:\t");

 int no2 = int.Parse(Console.ReadLine());

 Console.Write("\n\tMata in tal3:\t");

 int tal3 = int.Parse(Console.ReadLine());

 max = no1

 if (no2 > max)

 max = no2;

 if (no3 > max)

 max = no3;

 Console.WriteLine("\n\tDet största talet är " + max + '\n');

 }
}
Genom att byta ut alla > mot < får man det minsta talet.

**

Ovn_6_4.cs

Skriv ett program som läser in begynnelsebokstaven till en veckodag,

med en switch-sats bestämmer vilken veckodag det är och skriver ut

den. Fixa problemet med tisdag/torsdag genom att nästla en

if-else-sats i switch-satsen för att läsa in och bearbeta den

andra bokstaven. Ta hand om felaktig inmatning.

using System;

 232

class Ovn_6_4

{
 static void Main()

 {
 char bokstav1, bokstav2;

 String temp, veckodag;

 Console.Write("\n\tMata in en veckodags begynnelsebokstav:\t");

 temp = Console.ReadLine();

 bokstav1 = Convert.ToChar(temp.Substring(0, 1));

 switch (bokstav1)

 {
 case 'm':

 veckodag = "måndag.";

 break;

 case 't':

 Console.Write("\n\tMata in veckodagens andra bokstav:\t");

 temp = Console.ReadLine();

 bokstav2 = Convert.ToChar(temp.Substring(0, 1));

 if (bokstav2 == 'i')
 veckodag = "tisdag.";

 else

 veckodag = "torsdag.";

 break;

 case 'o':

 veckodag = "onsdag.";

 break;

 case 'f':

 veckodag = "fredag.";

 break;

 case 'l':

 veckodag = "lördag.";

 break;

 case 's':

 veckodag = "söndag.";

 break;

 default:

 veckodag = "?";

 break;

 }

 if (veckodag != "?")

 Console.WriteLine("\n\tDet är " + veckodag + '\n');

 else

 Console.WriteLine("\n\tDetta är ingen veckodag! + '\n'");

 }
}
**

Ovn_6_5.cs

Vidareutveckla övn 6.2 så att användaren får flera chanser att

mata in två tecken i rätt ordning så länge han/hon matar in

dem i fel ordning. Du kan göra det genom att bygga in

inmatningen, bearbetningen och utmatningen i en do-loop.

using System;

class Ovn_6_5

{

233

 static void Main()

 {
 char char1, char2;

 String temp;

 do

 {
 Console.Write("\n\tMata in char1:\t");

 temp = Console.ReadLine();

 char1 = Convert.ToChar(temp.Substring(0, 1));

 Console.Write("\n\tMata in char2:\t");

 temp = Console.ReadLine();

 char2 = Convert.ToChar(temp.Substring(0, 1));

 if (char1 < char2)

 Console.WriteLine("\n\tOK. Du matade in i rätt " +

 "ordning.\n");

 else

 Console.WriteLine(

 "\n\tDu matade in i fel ordning. " +

 "Försök igen!\n");

 } while (char1 >= char2);

 }
}
**

Ovn_6_6.cs

Skriv ett program som läser in ett heltal och använder det som

stegvariabel för att skriva ut talen från 1 till 5000.

Om steget är t.ex. 5 skrivs var femte tal ut.

using System;

class Ovn_6_6

{
 static void Main()

 {
 Console.Write("\n\tMata in ett heltal för steget:\t");

 int steg = int.Parse(Console.ReadLine());

 Console.WriteLine();

 for (int i = 0; i <= 5000; i += steg)

 Console.Write(i + "\t");

 Console.WriteLine();

 }
}
**

Ovn_6_7.cs

Förbättra (effektivisera) lösningen till övn 5.5 (sid 109) med for-satser.

using System;

class Ovn_6_7

{
 static void Main()

 {
 String encrypt = "";

 234

 Console.Write("\nMata in 5 tecken utan mellanslag: ");
 String word = Console.ReadLine();

 Console.Write("\nMata in ett heltal (krypteringsnyckel): ");

 int nyckel = int.Parse(Console.ReadLine());

 for (int i = 0; i < 5; i++)

 encrypt += (char) (Convert.ToChar(word.Substring(i, 1)) + key);

 Console.WriteLine("\nDet krypterade ordet:\t\t\t" + encrypt);

 word = "";

 for (int i = 0; i < 5; i++)

 word += (char) (Convert.ToChar(encrypt.Substring(i, 1)) - key);

 Console.WriteLine("\nDet återställda ordet:\t\t\t" + word+ '\n');

 }
}
**

Kapitel 7 Metoder, sid 174:

Ovn_7_1a.cs

Modularisera lösningen (sid 225) till övn 4.4 (sid 83) som läser in

två heltal, gör beräkningar med dem och skriver ut resultaten.

Separera en av beräkningarna, t.ex. multiplikationen från kodens

andra delar inmatning och utmatning.

a) Flytta multiplikationen till en metod med returvärde med huvudet

 static int Mult(int a, int b) i samma klass som Main().

 Anropa metoden Mult() från Main(). Bibehåll alla andra

 beräkningar. Se upp med att inte placera den nya metoden i Main(),

 utan före eller efter.

using System;

class Ovn_7_1a

{
 static void Main()

 {
 Console.Write("\n\tMata in ett heltal:\t\t"); // Ledtext

 int no1 = int.Parse(Console.ReadLine()); // Inläsning

 Console.Write("\n\tMata in ett heltal till:\t");

 int no2 = int.Parse(Console.ReadLine());

 Console.WriteLine("\n\n\t" +

 no1 + " plus " + no2 + " är " + (no1 + no2) + "\n\t" +

 no1 + " minus " + no2 + " är " + (no1 - no2) + "\n\t" +

 // Anropet:

 no1 + " gånger " + no2 + " är " + Mult(no1, no2) + "\n\t" +

 no1 + " heltalsdividerad med " +

 no2 + " är " + (no1 / no2) + "\n\t" +

 no1 + " modulo " + no2 + " är " + (no1 % no2) + "\n\t");

 }

Metoden Mult() som tar in två heltal via sina parametrar a och b och

returnerar ett heltal som är a * b:

 static int Mult(int a, int b) // Metoden Mult()

 {
 return a * b;

 }
}

235

**

Ovn_7_1b.cs

Modularisera lösningen (sid 225) till övn 4.4 (sid 83) som läser in

två heltal, gör beräkningar med dem och skriver ut resultaten.

Separera en av beräkningarna, t.ex. multiplikationen från kodens

andra delar inmatning och utmatning.

b) Fortsätt med att flytta metoden Mult() till en annan klass i samma

 fil. Anropet ska fortfarande göras från Main(). Även här: Se upp

 med att inte placera den nya klassen i den gamla, utan före eller

 efter.

using System;

class Ovn_7_1b

{
 static void Main()

 {
 Console.Write("\n\tMata in ett heltal:\t\t"); // Ledtext

 int no1 = int.Parse(Console.ReadLine()); // Inläsning

 Console.Write("\n\tMata in ett heltal till:\t");

 int no2 = int.Parse(Console.ReadLine());

 Console.WriteLine("\n\n\t" +

 no1 + " plus " + no2 + " är " + (no1 + no2) + "\n\t" +

 no1 + " minus " + no2 + " är " + (no1 - no2) + "\n\t" +

 no1 + " gånger " + no2 + " är " + // Anropet:

 Multip.Mult(no1, no2) + "\n\t" +

 no1 + " heltalsdividerad med " +

 no2 + " är " + (no1 / no2) + "\n\t" +

 no1 + " modulo " + no2 + " är " + (no1 % no2) + "\n\t");

 }
}

Ny klass Multip i samma fil som Ovn_7_1b.cs

class Multip // Klassen Multip()

{
 public static int Mult(int a, int b) // Metoden Mult()

 {
 return a * b;

 }
}
**

Ovn_7_1c.cs

Modularisera lösningen (sid 225) till övn 4.4 (sid 83) som läser in

två heltal, gör beräkningar med dem och skriver ut resultaten.

Separera en av beräkningarna, t.ex. multiplikationen från kodens

andra delar inmatning och utmatning.

c) Flytta den nya klassen samt metoden Mult() till en separat fil.

using System;

class Ovn_7_1c

{
 static void Main()

 {
 Console.Write("\n\tMata in ett heltal:\t\t");

 int no1 = int.Parse(Console.ReadLine());

 Console.Write("\n\tMata in ett heltal till:\t");

 int no2 = int.Parse(Console.ReadLine());

 Console.WriteLine("\n\n\t" +

 236

 no1 + " plus " + no2 + " är " + (no1 + no2) + "\n\t" +

 no1 + " minus " + no2 + " är " + (no1 - no2) + "\n\t" +

 no1 + " gånger " + no2 + " är " + // Anropet:

 Multip.Mult(no1, no2) + "\n\t" +

 no1 + " heltalsdividerad med " +

 no2 + " är " + (no1 / no2) + "\n\t" +

 no1 + " modulo " + no2 + " är " + (no1 % no2) + "\n\t");

 }
}
--

Ovn_7_1cd.cs

Separat fil som borde ligga i samma projekt som filen Ovn_7_1c.cs och

när programmet Ovn_7_1d körs, i samma projekt som filen Ovn_7_1d.cs

class Multip // Klassen Multip

{
 public static int Mult(int a, int b) // Metoden Mult()

 {
 return a * b;

 }
}
**

Ovn_7_1d.cs

Modularisera lösningen (sid 225) till övn 4.4 (sid 83) som läser in

två heltal, gör beräkningar med dem och skriver ut resultaten.

Separera en av beräkningarna, t.ex. multiplikationen från kodens

andra delar inmatning och utmatning.

d) Gör samma sak med alla andra beräkningssätt. Lagra var och en

klass med resp. metod i en separat fil. Anropa alla metoder från

Main().

using System;

class Ovn_7_1d

{
 static void Main()

 {
 Console.Write("\n\tMata in ett heltal:\t\t");

 int no1 = int.Parse(Console.ReadLine());

 Console.Write("\n\tMata in ett heltal till:\t");

 int no2 = int.Parse(Console.ReadLine());

 Console.WriteLine("\n\n\t" + // Anropen:

 no1 + " plus " + no2 + " är " + Addit.Add(no1, no2) + "\n\t" +

 no1 + " minus " + no2 + " är " + Subtr.Sub(no1, no2) + "\n\t" +

 no1 + " gånger " + no2 + " är " + // Anropet:

 Multip.Mult(no1, no2) + "\n\t" +

 no1 + " heltalsdividerad med " +

 no2 + " är " + Div.IntDiv(no1, no2) + "\n\t" +

 no1 + " modulo " + no2 + " är " + Modu.Mod(no1, no2) + "\n\t");

 }
}
--

Ovn_7_1dA.cs

Separat fil i samma projekt som filen Ovn_7_1d.cs

class Addit // Klassen Addit

{
 public static int Add(int a, int b) // Metoden Add()

 {

237

 return a + b;

 }
}
--

Ovn_7_1dS.cs

Separat fil i samma projekt som filen Ovn_7_1d.cs

class Subtr // Klassen Subtr

{
 public static int Sub(int a, int b) // Metoden Sub()

 {
 return a - b;

 }
}
--

Ovn_7_1dD.cs

Separat fil i samma projekt som filen Ovn_7_1d.cs

class Div // Klassen Div

{
 public static int IntDiv(int a, int b) // Metoden IntDiv()

 {
 return a / b;

 }
}
--

Ovn_7_1dM.cs

Separat fil i samma projekt som filen Ovn_7_1d.cs

class Modu // Klassen Modu

{
 public static int Mod(int a, int b) // Metoden Mod()

 {
 return a % b;

 }
}
**

Ovn_7_2.cs

Modularisera programmet Operator (sid 71) genom att skriva dess

bearbetningsdel som en ny metod i samma klass. Bibehåll in- och

utmatnigsdelen i Main() och anropa den nya metoden från Main().

Avgör själv om den nya metoden ska returnera ett värde och om den

ska vara statisk. Ge den ett beskrivande namn.

using System;

class Ovn_7_2

{
 static void Main()

 {
 /* I n m a t n i n g */

 Console.Write("\n\tAnge antal år:\t\t");

 int year = int.Parse(Console.ReadLine()); // Nästlat anrop

 Console.Write("\n\tAnge antal månader:\t");

 int months = int.Parse(Console.ReadLine());

 Console.Write("\n\tAnge antal veckor:\t");

 int weeks = int.Parse(Console.ReadLine());

 Console.Write("\n\tAnge antal dagar:\t");

 int days = int.Parse(Console.ReadLine());

 238

 /* U t m a t n i n g */

 Console.WriteLine("\n\t" + year + " år, " +

 months + " månader, " + weeks + " veckor och " +

 days + " dagar är " + Total(year, months, weeks, days) +

 " dagar totalt." + '\n');

 }

 static int Total(int y, int m, int w, int d) // Ny metod Total()

 { // med returvärde
 /* B e a r b e t n i n g */

 return 365*y + 30*m + 7*w + d;

 }
}
**

Ovn_7_3.cs

Vänd om problemet från övn 9.2: Modularisera programmet OverloadOp

(sid 76) genom att flytta bearbetnings- och utmatnigsdelen till en

void-metod. Dvs skriv ett program som läser in tiden i ett antal

dagar, anropar void-metoden som omvandlar tiden till antal år, må-

nader, veckor och restdagar och skriver ut resultaten. Använd för

omvandlingen den algoritm som är implementerad i programmet Over-

loadOp. Varför är det inte lämpligt här att använda en metod med

returvärde?

using System;

class Ovn_7_3

{
 static void Main()

 {
 /* I n m a t n i n g */

 Console.Write("\n\tAnge antal dagar:\t");

 int totalDays = int.Parse(Console.ReadLine());

 Conversion(totalDays); // Anropet av void-metod

 }

 static void Conversion(int total) // void-metod

 {
 int year, months, weeks, restDays;

 /* B e a r b e t n i n g */

 year = total / 365;

 months = (total % 365) / 30;

 weeks = ((total % 365) % 30) / 7;

 restDays = ((total % 365) % 30) % 7;

 /* U t m a t n i n g */

 Console.WriteLine("\n\t" + total +

 " dagar är " + year + " år, " + months + " månader, " +

 weeks + " veckor och " + restDays + " dagar.\n");

 }
}
Det är inte lämpligt att använda en metod med returvärde, därför att

en metod med returvärde endast kan returnera ETT värde. Här behövs

FYRA värden som ska skrivas ut. Void-metoden beräknar OCH skriver ut

dem.

**

239

Ovn_7_4_Test.cs

Skriv först ett program med endast Main()-metoden som läser in sida

till en kub samt beräknar och skriver ut kubens volym sida
 3
 och dess

yta 6 x sida
 2
. Flytta sedan dessa beräkningar till två metoder, en

för volymen, en för ytan, båda i en separat klass Cube. Definiera

side som en datamedlem i klassen Cube. Avgör om metoderna Volume()

och Area() ska returnera eller vara av void-typ. Anropa dem från

Main(). Skriv först en variant med statiska metoder, byt sedan till

icke-statiska metoder. Testa båda varianter. Avgör slutligen själv

vilken variant som ska föredras om lösningen ska vara

objektorienterad. OBS! Följande lösningsförslag visar endast den

optimala varianten.

using System;

class CubeTest

{
 static void Main()

 {
 Cube myCube; // Definierar en referensvariabel

 // av typ Cube utan att skapa objektet

 myCube = new Cube(); // Skapar ett objekt av typ Cube och

 // tilldelar objektets adress till re-

 // ferensen. By default: side = 0.0

 // Sedan tilldelas side ett nytt värde:

 Console.Write("\n\tAnge sidan till en kub:\t");

 myCube.side = Convert.ToDouble(Console.ReadLine());

 Console.WriteLine("\n\tEn kub med sidan\t" + myCube.side +

 "\n\thar volymen\t\t" + myCube.Volume() +

 "\n\toch ytan\t\t" + myCube.Area() + '\n');

 }
}

--

Ovn_7_4_Class.cs

Separat fil i samma projekt som filen Ovn_9_4_Test.cs

class Cube

{
 public double side;

 public double Volume()

 {
 return side * side * side;

 }

 public double Area()

 {
 return 6 * side * side;

 }
}
**

Ovn_7_5.cs

Varför ger följande program kompileringsfel? Åtgärda felet

genom att flytta på kod, utan att ta bort någon klammer

 240

och utan att ha tomma klamrar:

 class Ovn_9_5

 {

 static void Main()

 {

 {

 int t = 30;

 }

 Console.WriteLine("t = " + t);

 }

 }

using System;

class Ovn_7_5

{
 static void Main()

 {
 int t;

 {
 t = 30;

 }
 Console.WriteLine("\n\tt = " + t + '\n');

 }
}
Kompileringsfelet i programmets första variant berodde på att varia-

beln t var definierad i ett inre block och att programmet refererade

till den utanför det inre blocket där t inte längre var giltig.

**

Ovn_7_6_Test.cs

Modularisera programmet MiniSort från kap 6 (sid 116).

using System;

class MiniSortTest

{
 static void Main()

 {
 Console.Write("\n\tTvå osorterade tecken:\n\n\t" +

 "Mata in två tecken skilda med mellanslag:\t");

 string str = Console.ReadLine();

 MiniSort m = new MiniSort(); // Objekt skapas

 m.char1 = Convert.ToChar(str.Substring(0, 1)); // Objektets data

 m.char2 = Convert.ToChar(str.Substring(2, 1)); // initieras

 m.sortera(); // Objektets metod anropas

 Console.WriteLine("\n\tDe två tecknen sorterade:\t\t\t" +

 m.char1 + ' ' + m.char2 + "\n\n");

 }
}

--

Ovn_7_6_Class.cs

Separat fil i samma projekt som filen Ovn_9_6_Test.cs

class MiniSort

241

{
 public char char1, char2;

 public void sortera()

 {
 char temp;

 if (char1 > char2) // Här tolkas tecknen som tal

 {
 temp = char1; // Algoritm för platsbyte

 char1 = char2; // av de två teckenvärdena

 char2 = temp; // char1, char2

 }
 }
}
**

Ovn_7_7_Test.cs

Modularisera programmet OverloadOp från kap 4 (sid 76).

using System;

class TidTest

{
 static void Main()

 {
 /* I n m a t n i n g */

 Console.Write("\n\tAnge antal dagar:\t");

 int totalDays = int.Parse(Console.ReadLine());

 Tidomvandling t = new Tidomvandling(); // Objekt skapas

 t.Conversion(totalDays); // Objektets metod anropas

 /* U t m a t n i n g */

 Console.WriteLine("\n\t" + totalDays + " dagar är " +

 t.year + " år, " + t.months + " månader, " +

 t.weeks + " veckor och " + t.restDays +" dagar.\n");

 }
}

--

Ovn_7_7_Class.cs

Separat fil i samma projekt som filen Ovn_9_7_Test.cs

class Tidomvandling

{
 public int year, months, weeks, restDays;

 public void Conversion(int total)

 {
 /* B e a r b e t n i n g */

 year = total / 365;

 months = (total % 365) / 30;

 weeks = ((total % 365) % 30) / 7;

 restDays = ((total % 365) % 30) % 7;

 }
}
**

 242

Kapitel 8 Klasser, objekt och referenser, sid 191:

Ovn_8_1.cs

Skriv ett program som består endast av klassen All_in_Main som i sin

tur innehåller endast Main()-metoden. Läs in radien r till en cirkel

och beräkna samt skriv ut cirkelns area pi*r*r och dess omkrets

2*pi*r, där pi=3.14159. Du kan använda konstanten Math.PI från C#:s

klassbibliotek för pi. Programmet ska inte vara objektorienterat

eftersom du inte skapar några objekt, utan endast lokala variabler

(radie, area, omkrets). Programmet ska inte heller vara

modulariserat eller proceduralt eftersom all kod (Input-Bearbetning-

Output) finns i en enda metod Main() som definieras i en klass.

Dessa steg ska tas i de efterföljande två övningarna. Deklarera alla

variabler till double.

using System;

class All_in_Main

{
 static void Main()

 {
 double radius, area, circumference; // Lokala variabler

 Console.Write("\n\tAnge radien till en cirkel:\t");

 radius = Convert.ToDouble(Console.ReadLine()); // Input

 area = Math.PI * radius * radius; // Bearbetning

 circumference = 2 * Math.PI * radius;

 Console.WriteLine(// Output

 "\n\tEn cirkel med radien " + radius +

 "\n\thar arean " + area +

 "\n\toch omkretsen " + circumference + '\n');

 }
}
**

Ovn_8_2.cs

Modularisera programmet All_in_Main från övn 8.1 på metodnivå, dvs:

Flytta bearbetningsdelen dvs beräkningen av area och omkrets ur

Main() till separata metoder Area() och Circumference(), men stanna

i samma klass. Döp om klassnamnet till Procedural. I Main() ska

finnas kvar variabeln för radien, inmatning, utmatning och anropet

av Area() och Circumference(). Förse de nya metoderna med en

parameter som överför radiens värde från Main() till dem. Välj olika

namn för den aktuella än för den formella parametern.Dessutom ska

Area() och Circumference() returnera ett double-värde och vara

statiska. För att testa mata in 1 för radien.Då ska arean bli pi pga

pi*r*r = pi och omkretsen bli 2*pi.

using System;

class Procedural

{
 static void Main()

 {
 double radius; // Lokal variabel

 Console.Write("\n\tAnge radien till en cirkel:\t");

 radius = Convert.ToDouble(Console.ReadLine()); // Input

243

 Console.WriteLine(// Output

 "\n\tEn cirkel med radien " + radius +

 "\n\thar arean " + Area(radius) +

 "\n\toch omkretsen " + Circumference(radius) + '\n');

 } // aktuell parameter
--

 static double Area(double r) // Metoden Area() med formell

 { // parameter r som tar emot
 return Math.PI * r * r; // aktuell parameter radius

 }
--

 static double Circumference(double r) // Metoden Circumference()

 {
 return 2 * Math.PI * r;

 }
}
**

Ovn_8_3_Class.cs

Modularisera programmet All_in_Main från övn 8.1 på klassnivå, dvs:

Dela upp programmet i två klasser, lagrade i två separata filer.

Kalla den ena klassen för Circle, den andra för CircleTest.

Samla all information om begreppet cirkel i klassen Circle, dvs:

Deklarera radien r som datamedlem samt Area() och Circumference()

som metoder. Ta bort från metoderna både static och parametern för

radien.

using System; // Krävs för Math

class Circle

{
 public double radius; // Publik datamedlem

 public double Area() // Publik metod

 {
 return Math.PI * radius * radius;

 }

 public double Circumference() // Publik metod

 {
 return 2 * Math.PI * radius;

 }
}
Datamedlemmen radius och metoderna Area() och Circumference() måste

vara publika för att den externa klassen CircleTest ska kunna komma åt

dem.

--

Ovn_8_3_Test.cs

Den andra klassen CircleTest ska endast innehålla metoden Main().

Ska-

pa i den ett objekt av klassen Circle. Läs in ett värde till

objektets

datamedlem r och anropa samt skriv ut returvärdena till objektets

me-

toder Area() och Circumference(). Båda klassfiler borde ligga i

samma

 244

projekt.

using System;

class CircleTest

{
 static void Main()

 {
 Circle myCircle; // Definirerar endast en

referensvariabel

 // av typ Circle utan att skapa

objekt

 myCircle = new Circle(); // Skapar ett objekt av typ Circle

 // och tilldelar objektets adress

till

 // referensvariabeln.

 Console.Write("\n\tAnge radien till en cirkel:\t");

 myCircle.radius = Convert.ToDouble(Console.ReadLine()); //

Input

 Console.WriteLine(//

Output

 "\n\tEn cirkel med radien " + myCircle.radius +

 "\n\thar arean " + myCircle.Area() +

 "\n\toch omkretsen " + myCircle.Circumference() +

'\n');

 }
}
**

Ovn_8_4_Class.cs

Skriv en klass Fish som beskriver en fisk med datamedlemmarna sort,

weight och size. Borde ligga i samma projekt som filen Ovn_8_4_Test.

class Fish

{
 public string sort;

 public double weight, size;

}

--

Ovn_8_4_Test.cs

Testa din klass i en annan klass FishTest i en separat fil som

endast

innehåller metoden Main() där två objekt av klassen Fish skapas.

Till-

dela det första objektets datamedlemmar värdena Laxforell, 719

(gram)

och 38.5 (cm). Enheterna gram och cm behöver inte anges. Välj själv

andra värden till det andra objektets datamedlemmar. Skriv ut dessa

värden till konsolen i en tabell av typ:

 Fisksort Vikt i g Längd i cm

 --

 Laxforell 719.0 38.5

 Torsk 423.0 28.7

using System;

245

class FishTest

{
 static void Main()

 {
 Fish f1 = new Fish(); // Objekt skapas (definieras)

 // och initieras by default

 f1.sort = "Laxforell"; // Objekt tilldelas värden

 f1.weight = 719;

 f1.size = 38.5;

 Fish f2 = new Fish(); // 2:a objekt skapas

 f2.sort = "Torsk\t"; // \t för layoutens skull

 f2.weight = 423;

 f2.size = 28.7;

 Console.WriteLine("\n\tFisksort\tVikt i g\tLängd i cm" +

 "\n\t--\n\t" +

 f1.sort + "\t " + f1.weight + "\t\t " + f1.size + "\n\t" +

 f2.sort + "\t " + f2.weight + "\t\t " + f2.size + "\n\n");

 }
}
**

Ovn_8_5_Class.cs

Ta klassen Fish från övn 8.4. Förse den med en metod som

beräknar priset på fisken oberoende av sort, t.ex. 7.25 kr per

hekto. Lägg till även en metod som beräknar och returnerar

frakten utifrån fiskens vikt och genom att t.ex. multip-

licera en viss kostnadsfaktor, säg 0.02, med vikten, en annan,

säg 0.1, med längden och addera dem. Metoderna ska returnera

priset och frakten i hela kronor utan ören.

using System;

class Fish

{
 public string sort;

 public float weight, size;

 public int Price()

 {
 return (int) Math.Round(weight * 7.25 / 100);

 }

 public int shipping()

 {
 return (int) Math.Round(weight * 0.02 + size * 0.1);

 }
}

--

Ovn_8_5_Test.cs

Anropa metoderna från klassen FishTest:s Main()-metod för de två

Fish-objekten. Lägg till nya rubriker Pris och Frakt i tabellen ovan

och skriv ut deras värden till tabellens två rader

using System;

 246

class FishTest

{
 static void Main()

 {
 Fish f1 = new Fish(); // 1:a objekt skapas (definieras)

 // och initieras by default

 f1.sort = "Laxforell"; // 1:a objekt tilldelas värden

 f1.weight = 719;

 f1.size = 38.5f;

 Fish f2 = new Fish(); // 2:a objekt skapas

 f2.sort = "Torsk\t"; // \t för layoutens skull

 f2.weight = 423; // 2:a objekt tilldelas värden

 f2.size = 28.7f;

 // Metoderna anropas i utskriften:

 Console.WriteLine("\nFisksort\tVikt i g\tLängd i cm" +

 "\tPris\tFrakt\n" +

 "---\n" +

 f1.sort + "\t " + f1.weight + "\t\t "+ f1.size + "\t\t " +

 f1.Price() + "\t " + f1.shipping() + "\n" +

 f2.sort +"\t " + f2.weight + "\t\t " + f2.size + "\t\t "+

 f2.Price() + "\t " + f2.shipping() + "\n\n");

 }
}
**

Ovn_8_6_Test.cs

Modifiera programmet från övn 8.5 så att datamedlemmarnas värden

inte hårdkodas utan läses in. Utskriften ska skickas till konsolen

och läggas till tabellen ovan. Skriv din kod så att den lätt kan

generaliseras så att man kan mata in flera fisksorter med hjälp av

en loop och en array av referenser till Fish-objekt som vi kommer

att lära oss senare. Dessutom ska programmet kunna modifieras till

att skriva ut till en tabell i en fil eller en databas istället för

att skriva till konsolen.

using System;

class FishTest

{
 static void Main()

 {
 Fish f1 = new Fish(); // 1:a objekt skapas

 Fish f2 = new Fish(); // 2:a objekt skapas

 Console.Write("\n\tMata in sorten till fisk1:\t");

 f1.sort = Console.ReadLine(); // Inputs:

 if (f1.sort. Length < 6) f2.sort += '\t';
 Console.Write("\tMata in vikten till fisk1:\t");

 f1.weight = (float) Convert.ToDecimal(Console.ReadLine());

 Console.Write("\tMata in längden till fisk1:\t");

 f1.size = (float) Convert.ToDecimal(Console.ReadLine());

 Console.Write("\n\tMata in sorten till fisk2:\t");

 f2.sort = Console.ReadLine(); // Input

 if (f2.sort.Length < 6) f2.sort += '\t';

 Console.Write("\tMata in vikten till fisk2:\t");

 f2.weight = (float) Convert.ToDecimal(Console.ReadLine());

247

 Console.Write("\tMata in en till fisk2:\t");

 f2.size = (float) Convert.ToDecimal(Console.ReadLine());

 Console.WriteLine("\n\nFisksort\tVikt i g\tLängd i cm" +

 "\tPris\tFrakt\n" +

 "---\n" +

 f1.sort + "\t " + f1.weight + "\t\t " + f1.size + "\t\t " +

 f1.Price() + "\t " + f1.shipping() + "\n" +

 f2.sort + "\t " + f2.weight + "\t\t " + f2. + "\t\t " +

 f2.Price() + "\t " + f2.shipping() + "\n\n");

 }
}
**

Ovn_8_7_Class.cs

Deklarera en klass Triangle med datamedlemmarna side_a, side_b,

side_c, height_b av typ int och metoderna Area(), Circumference().

class Triangle

{
 public int side_a, side_b, side_c, height_b;

 public int Area()

 {
 return side_b * height_b/2;

 }

 public int Circumference()

 {
 return side_a + side_b + side_c;

 }
}

--

Ovn_8_7_Test.cs

Skapa i en annan klass som innehåller Main(), ett objekt av klassen

Triangle och tilldela datamedlemmarna värden. Anropa metoderna och

skriv ut denna triangels area och omkrets. Skapa en andra referens

som pekar på samma objekt och anropa metoderna samt skriv ut deras

returvärden med denna referens. Du borde få samma resultat som med

den första referensen. Anropa sedan metoderna Area() och

Circumference() med två anonyma objekt (utan referenser). Kolla om

du får de förväntade resultaten som är baserade på objektens

default-initiering. Sist, peka om Triangle-objektets första referens

till null och försök att anropa metoderna med denna referens. Vad

händer?

using System;

class TriangleTest

{
 static void Main()

 {
 Triangle tri = new Triangle(); // Skapar ett objekt med en

 // första referens tri

 tri.side_a = 4;

 tri.side_b = 6;

 tri.side_c = 5;

 tri.height_b = 3;

 248

 Console.WriteLine("\n\tMed den första referensen:\n" +

 "\tArea = " + tri.Area() + '\n' +

 "\tOmkrets = " + tri.Circumference() + '\n');

 Triangle t = tri; // Ny referens till samma objekt

 Console.WriteLine("\n\tMed den andra referensen:\n" +

 "\tArea = " + t.Area() + '\n' +

 "\tOmkrets = " + t.Circumference() + '\n');

 Console.WriteLine

 ("\n\tAndra, anonyma objekt som default-initieras:\n" +

 "\tArea = " + new Triangle().Area() + '\n' +

 "\tOmkrets = " + new Triangle().Circumference() + '\n');

 tri = null; // Ompekning till null: tri

 // pekar på inget objekt längre

 Console.WriteLine("Användning av null-referens ger " +

 "exekveringsfel:\n");

 Console.WriteLine(tri.side_a);

 }
}
Det som händer, är att ett objekt skapas med referensen tri som

överförs till en ny referens t, så att både tri och t pekar på samma

objekt. Men sedan görs en ompekning av tri till null, dvs tri

kopplas bort från objektet. Programmets sista sats försöker att med

tri referera till objektet vilket leder till ett s.k.

NullReferenceException.

**

Kapitel 9 Array, sid 209:

Ovn_9_1.cs

Skriv ett program som läser in 10 heltal från konsolen, lagrar dem i

en array och skriver ut dem i omvänd ordning.

using System;

class Ovn_9_1

{
 static void Main()

 {
 int[] no = new int[10];

 Console.WriteLine("\n\tSkriv in 10 heltal:\n");

 for (int i = 0; i <= 9; i++)

 {
 Console.Write("\tTal nr " + (i+1) + ":\t");

 no[i] = int.Parse(Console.ReadLine());

 }

 Console.WriteLine("\nDina tal i omvänd ordning:\n");

 for (int i = 9; i >= 0; i--)

 Console.Write(no[i] + "\t");

 Console.WriteLine();

 }

249

}
**

Ovn_9_2.cs

Skriv ett program som slumpar fram 1000 heltal mellan 60 och 140

(tänkbara hastigheter på en motorväg), lagrar dem i en array kallad

hastighet, beräknar och skriver ut deras medelvärde med förklarande

text.

using System;

class Ovn_9_2

{
 static void Main()

 {
 Random r = new Random();

 int[] hastighet = new int[1000];

 RandArray.Rand(r, hastighet, 60, 140);

 int sum = 0;

 for (int i = 0; i <= 999; i++)

 sum += hastighet[i];

 Console.WriteLine("\tMedelvärdet av 1000 möjliga hastigheter " +

 "mellan 60 och 140 är: " + sum/1000 + '\n');

 }
}

--

RandArray.cs

Separat fil i samma projekt som filen Ovn_9_2.cs

Ny metod Rand() slumpar fram en array av heltal mellan

a och b, lagrar dem i arrayen no och skriver ut dem

Anropar biblioteksmetoden Next() i en loop

för att få ETT slumptal mellan a och b i varje varv

using System;

class RandArray

{
 public static void Rand(Random r, int[] no, int a, int b)

 {
 Console.Write("\n\t" + no.Length + " heltal mellan " +

 a + " och " + b + " slumpas fram:\n\n\t");

 for (int i=0; i < no.Length; i++)

 {
 no[i] = r.Next(a, b);

 Console.Write(no[i] + " ");

 if ((i % 16 == 0) && (i != 0))
 Console.Write("\n\t");

 }
 Console.WriteLine("\n\n");

 }
}

--

Ovn_9_3.cs

Skriv ett program som läser in en sträng, lagrar den i en array

av char och skriver ut den baklänges.

Använd tekniken i programmet EncryptCharTest för att omvandla

 250

den inlästa strängen i en array av char.

using System;

class Ovn_9_3

{
 static void Main()

 {
 Console.Write("\n\tSkriv in text:\t\t");

 char[] text = Console.ReadLine().ToCharArray();

 Console.Write("\n\tTexten baklänges:\t");

 for (int i = text.Length-1; i >= 0; i--)

 Console.Write(text[i]);

 Console.WriteLine('\n');

 }
}
**

Ovn_9_4.cs

Skriv ett program som läser in text i gemener, lagrar den i en array

av char och skriver ut den framhävd i versaler och med mellanslag

mellan varje tecken.

using System;

class Ovn_9_4

{
 static void Main()

 {
 Console.Write("\n\tSkriv in text:\t\t");

 char[] text = Console.ReadLine().ToCharArray();

 Console.Write("\n\tTexten framhävd:\t");

 for (int i = 0; i < text.Length; i++)

 Console.Write("" + (char) (text[i] - 32) + ' ');

 Console.WriteLine('\n');

 }
}
**

Ovn_9_5.cs

Skriv ett program som frågar efter användarens för- och efternamn,

hälsar sedan användaren i en utskrift med fullständiga namnet, för-

namnets längd samt efternamnets första och sista bokstav. Lös upp-

giften generellt utan att använda information om något speciellt

för- och efternamn.

using System;

class Ovn_9_5

{
 static void Main()

 {
 char surname0 = '0'; // Undviker villkorlig initiering

 Console.Write("\n\tSkriv in ditt för- och efternamn:\t");

 string input = Console.ReadLine();

 char[] name = input.ToCharArray();

 int i = 0;

 while (name[i] != ' ') // Går igenom endast förnamnet

 {
 i++;

251

 if (name[i] == ' ') // Hittar namnens avskiljare
 surname0 = name[i+1]; // Hittar efternamnets 1:a bokstav

 }

 Console.WriteLine("\n\tHej, " + input +

 "\n\tDitt förnamns längd är " + i +

 "\n\tDitt efternamns första bokstav är " + surname0 +

 "\n\tDitt efternamns sista bokstav är " +

 name[name.Length-1] + '\n');

 }
}
**

Ovn_9_6.cs

Skriv ett program där Main() läser in en persons fullständiga namn

och hälsar tillbaka med namnets initialer. Dessa ska bestämmas och

skrivas ut i en annan metod - med huvudet static void

Initials(char[] name) som anropas i Main().

using System;

class Ovn_9_6

{
 static void Main()

 {
 Console.Write("\n\tSkriv in ditt för- och efternamn:\t");

 string input = Console.ReadLine();

 char[] dittNamn = input.ToCharArray();

 Console.Write("\n\tHej, " + input +

 "\n\n\tDina initialer är\t\t\t");

 Initials(dittNamn); // Anropet

 Console.WriteLine('\n');

 }

 static void Initials(char[] name) // Metoden

 {
 int i = 0;

 Console.Write(name[i]); // Första initialen

 while (name[i] != ' ') // Går igenom endast förnamnet

 {
 i++;

 if (name[i] == ' ') // Hittar för- och efternamnets
 // avskiljare

 Console.Write(name[i+1]); // Andra initialen

 }
 }
}
**

 252

253

Programförteckning

Program Ämne Sida

Kapitel 1 C# programmeringens miljö

First Textbaserad utskrift: Ex. på en Console Application 18

Interaction Graf. gränssnitt: Ex. på en Windows Forms Application 26

MessageBox Utskrift av text till en grafisk meddelanderuta 29

Kapitel 3 Att komma igång med C#

First Utskrift av text från C# till konsolen 42

LineBreak Utskrift av text med radbyte och indragning 49

Output Metoderna Write() och WriteLine() 50

Concat Konkatenering: Sammanslagning av flera utskriftssatser 51

Kapitel 4 Grundbegrepp i programmering

Datatype Begreppet datatyp hos tal-, tecken- och strängar 56

Variable Definition och initiering av variabler 60

DefInit Dekl. och initiering av variabler i en och samma sats 63

Input Inläsning av data med metoden ReadLine() 66

Overwrite Överskrivning av variabelvärdet, skillnaden mellan lik-

 het och tilldelning, omvandling av string till int

 med metoden int.Parse() 68

Operator Aritmetiska operatorer och uttryck

 Inmatning – Bearbetning – Utmatning

 Nästlat anrop av metoder 71

OverloadOp Överlagring av divisionsoperatorn, modulooperatorn 76

Increment Ökningsoperatorn ++ med post- och prefixvarianten 77

CompAssign Sammansatta tilldelningar med +=, -=, *=, /= 81

Kapitel 5 Enkla datatyper

Primitives De enkla datatyperna i C# och deras minnesstorlekar

 Operatorn sizeof 87

Limits De enkla datatypernas gränser 89

Char Kodrepresentation av tecken med ASCII

 Datatypen char , teckenaritmetik 91

Int2char Tecken till inmatad kod: Explicit typkonvertering 95

Char2int ASCII-kod till inmatat tecken, omvandling av string

 till char med metoden Convert.ToChar() 96

 254

Program Ämne Sida

Escape Escapesekvenser, både symboliska och i Unicode 98

Unicode Teckenstandarden Unicode (Javaprogram) 100

Decimal Decimaltalstyperna float och double 101

AutoConv Automatisk typkonvertering 106

Kapitel 6 Kontrollstrukturer

SimpleIf Enkel selektion: if-satsen, jämförelseoperatorer 113

MiniSort Sortering av två objekt med flera satser i if 116

CondInit Villkorlig initiering av variabler ger kompileringsfel 119

UncondInit Ovillkorlig initiering av variabler 119

IfElse Tvåvägsval: if-else-satsen 122

Switch Flervägsval: switch-satsen 125

GuessIfElse Gissa tal med nästlad if-else (trevägsval) 128

GuessSwitch med kombination av switch och if-else 130

GuessDo i dialog med do-loop 132

DoRand Utskrift av slumptal med do-satsen (loop) 134

GuessDoRand Gissa tal med slumptal i dialog med do 136

Ascii Utskrift av ASCII-tabellen med while 139

ForRandom Utskrift av slumptal med for-satsen 144

NestedFor Nästlad for-sats skriver ut tabell över slumptal 147

MultipTab Multiplikationstabellen med nästlad for-sats 149

Kapitel 7 Metoder

ReturnMethod Definition och anrop av en metod med returvärde 161

 Två metoder i en klass: Main() och TotalDays()

 Placering av metoder, villkorlig return-sats

Total Klass som externlagrar metoden TotalDays() 169

TotalTest Test av klassen Total med anrop av TotalDays() 169

 Modularisering av programmet ReturnMethod

VoidMethod Klass med metod utan returvärde: void-metod 171

VoidMethodTest Test av VoidMethod: anrop av void-metoden 172

Kapitel 8 Klasser, objekt och referenser

Password Vår första klass: Testa lösenord som klass 181

PasswordTest Ett program i två filer: Test av klassen Password 182

GuessNo Gissa tal som klass med def. av metoden Play() 188

GuessNoTest Test av GuessNo med anrop av metoden Play() 189

255

Program Ämne Sida

Kapitel 9 Array

Array Deklaration och initiering av en array 199

 Datatypen array av int, default-initiering av en array

ArrayInit Initieringslista: Kortform för definition och initiering 204

Foreach Introducerar foreach-satsen 204

ArrayChar Texthantering med datatypen array av char 206

RandPasswd Slumpvis genererade lösenord med array av char 207

 256

Register

A

Abstraktion 214
Argument 165
Array 197

Default-initiering 203
Definition 199
Hakparenteser 202
Indexering 198
Indexregeln 198
Initiering 199

Arv 217
ASCII 93
ASCII-tabellen 93

med while 140

Attribut 214
Automaten (projekt) 192

B

Bibliotek 36
Block 117
Button 22

C

C# 35
C#-program 43
C#-programvara

konfiguration 13
Case sensitive 36
Console Application 13
Convert.ToInt32() 70

D

Datamedlem 216
Datatyp 58

Enkel 86
Sammansatt 86

Decimaltal 101
Deklaration vs. definition 64
do-sats 131

Programexempel 132

E

Editering 37
Element 197
Escapesekvenser 49, 97
Exekveringsfel 39

F

Filändelse 38
Formell parameter 163
for-sats

Nästlad
Flödesplan 149

Programexempel 149
Räcknarens räckvidd 145

Funktion
Definition 161

G

Gissa tal-spel 132, 135
Gissa tal-spel som klass 188
Grafiskt gränssnitt 22

H

Heltalsdivision 75
Händelsemetoder 27

I

IDE 34
if-else-sats 121

Nästlad 128
Programexempel 128

Programexempel 122
if-sats 113

Nästlad 128
Programexempel 113, 116

Indata 66
Index 197
Indexregeln 198
Indragningar 48
Inmatning 66

257

Inmatning – bearbetning – utmatning 72
Instans 184
Interaktion 22

J

Javaprogram 100
Jämförelseoperator 115

K

Kalkylatorn (projekt) 176
Klass 180

Varför klasser? 159, 180
Kommentar 42
Kompilering 37, 38
Kompileringsfel 39
Konkatenering 51
Konstant 56

Namngiven 106
Kontrollstruktur 112
Källkod 37

L

Labyrint I (projekt) 152
Loopar 131

M

Main() 44

Master Mind (projekt) 209
MessageBox 27
Metod 158, 216

Anrop 164
Nästlat 73

Begreppet 158
Externlagrad

Programexempel 169
Placering 164
Utan returvärde 171

Modularisering 159

N

Namngivning 59
Regler 59

new 185

O

Objekt 185, 214
Objektorienterad design 213
Objektorienterad programmering 213
Operand 71
Operator 71

Aritmetisk 71
Overflow 89

Exempel 106

P

Paradigmskifte 213
Parameter 158

Aktuell och formell 165
Parameterlista 162
Program i C# 43
Programmeringsstil 47
Punktnotation 215

R

Radbyte med \n 49

Referens 186
Repetition 131

Efter-testad 131
Reserverat ord 35
return-sats

Villkorlig 167
Returtyp 163
Returvärde 158

S

Sekvens 112
Selektion 112

Enkel 113
Flervägsval 123
Tvåvägsval 121

Slumplösenord 207
Slumptal 134
Sortering

Platsbyte 116
Strikt typbestämt 58

 258

Sträng 46
Svenska specialtecken 59
switch-sats 123

Kombination med if-else 130

Programexempel 126

T

Teckenaritmetik 92
Textbehandling 206
TILLS 133

Toolbox 22
Typkonvertering 104

Automatisk 104
int-regeln 105

Explicit 94

U

UML 213, 216
Unicode 99

using-direktivet 43

Uttryck 71
Aritmetiskt 71

V,W

Variabel 59
Initiering 62
Tilldelning 61

Villkorlig initiering 118
void-metoder 171

while-sats 139

Programexempel 139
Windowsprogrammering 28

Ö

Ökningsoperator 77
Postfixvariant 77
Prefixvariant 77

Överskrivning 68

