
 11

Ett paradigm är en samling av regler, rekommendationer, normer,
konventioner, mönster, standarder, metoder och teorier inom ett

ämne, som delas och följs av de flesta inom ämnet under en viss

tidsperiod.

1.2 Olika paradigm inom programmering

Vad är ett paradigm? Ett paradigm är den bakomliggande filosofin inom en veten-

skap. Inom ekonomi är t.ex. fri marknadsekonomi ett paradigm, statligt styrd eko-

nomi ett annat. Inom programmering är procedural programmering ett paradigm,

objektorienterad programmering ett annat. Man kan säga:

Ett paradigm ger en orientering som styr handlingen och ligger därför före erfaren-

heten (a priori), likt en fördom. Efter erfarenheten jämförs och bedöms handlingen

med paradigmet (a posteriori), likt en lärdom. Överensstämmer resultatet inte med

paradigmet, kan paradigmet åtminstone delvis ifrågasättas. Ämnets progression

leder ofta efter vissa tidsperioder till byten av paradigm, förutsatt att ett nytt para-

digm har ställts upp som bättre uppfyller de önskade kraven. Man pratar om ett s.k.

paradigmskifte. I programmeringens historia är vi vittnen för många sådana para-

digmskiften som vi nu ska studera i detalj. Sedan ska vi återkomma till själva be-

greppet paradigmskifte och sammanfatta våra betraktelser (sid 14).

Maskinorienterad programmering

Även kallad maskinnära programmierung, vilket innebär att man skriver instruk-

tioner som enkelt och snabbt, ja nästan direkt kan utföras av datorns processor

(CPU). Maskinorienterade programmeringsspråk ligger allra närmast hårdvaran.

Ursprungligen kan sådana maskinorienterade instruktioner endast utföras på en

konkret maskin, eftersom de är definierade just för den aktuella hårdvaran. Ett ty-

piskt exempel för ett sådant språk är Assembler som fortfarande är läsbar källkod

som omvandlas till maskinkodens ettor och nollor av ett speciellt program som he-

ter assemblator. Själva översättningsprocessen kallas för assemblering. Fördelen

med maskinnära språk är den enkla och därmed snabba åtkomsten till hårdvaran,

vilket kan vara avgörande i vissa sammanhang, t.ex. för spelkonsoler. Nackdelen är

den svårt läsbara och icke-portabla koden.

Deklarativ programmering

Innebär att man anger vad som ska göras, inte hur det ska gå till. Man nöjer sig med

att säga vad man vill ha. Tillvägagångssättet tas hand om av programmeringsspråket.

Ett typiskt exempel för ett sådant språk är SQL som står för Structured Query Lan-

guage och är standardspråket för kommunikation med databaser. Med en SQL-sats

ställer man en fråga till en databas. Man får som svar den datamängd som är efter-

frågad i SQL-satsen. Hur SQL letar efter och hittar denna datamängd i den väldigt

komplexa databasen, behöver programmeraren inte bry sig om. Man deklarerar en-

 12

dast sitt önskemål, precis som man beställer en maträtt på en restaurang. Deklarativ

programmering har många underkategorier.

Funktionell programmering

En typ av deklarativ programmierung är funktionell programmering. I detta para-

digm består ett program av en samling matematiska funktioner som definieras och

exekveras direkt med minsta möjliga tidsåtgång (runtime). Man undviker kod som

anses vara onödig overhead och fokuserar på effektivitet och funktionalitet hos de

mest små moduler utan att behöva ange i vilken ordning de ska exekveras. Ett ty-

piskt funktionellt språk – dessutom det äldsta – är Lisp. I Visual Studio finns även

ett funktionellt språk som heter F#. Historiskt har funktionell programmering sitt

ursprung i ett matematiskt forskningsprojekt på 30-talet som resulterade i den s.k.

Lambdakalkylen. I C# har man tagit över dessa tankar genom att integrera Lamb-

dauttryck i språket, vilket behandlades i Programmering 2.

Logikprogrammering

En annan typ av deklarativ programmierung är logikprogrammering som baseras på

matematisk logik. Ett logikprogram består i första hand av ett antal axiomer som kan

anses vara en bas av definitioner och regler som alla följande instruktioner måste

följa. All kod som skrivs kommer att exekveras endast enligt dessa axiomer. Man

ställer en fråga och får svaret som en logisk slutsats ur axiomsystemet. Logik-

programmering har sitt ursprung i 70-talets forskningsaktiviteter kring artificiell

intelligens. Det mest kända logikprogrammet är Prolog.

Händelsestyrd programmering

Detta paradigm är typiskt för grafiska applikationer (GUI). Programkörningen är inte

längre till 100% förbestämd av utvecklarens kod utan kan även styras – åtminstone

delvis – av användaren under programkörningen genom musklickningar och tan-

genttryckningar, s.k. händelser. Även andra typer av händelser är tänkbara som

påverkar både programförloppet och avslutningen i en mycket större utsträckning än

det är fallet med rent textbaserade program. Exekveringen startar ofta i ett fönster

med grafiska komponenter, som visas när programmet körs. Efter en händelse

återgår kontrollen till operativsystemet, vilket dock inte betyder att körningen är

avslutad, utan att programmet är redo att ta emot nästa händelse osv. Händelsestyrd

programmering används bl.a. i Windowsprogrammering och är implementerad t.ex.

i C# Windows Forms Applications med sin stora verktygslåda av förprogrammerade

grafiska komponenter, s.k. Controls.

Spaghettiprogrammering

Självklart finns det inte ett uttalat paradigm som heter så. Det är snarare en ironisk

beteckning, ett smeknamn som man ur ett historiskt och kritiskt perspektiv gett den-

na typ av programmeringsvana som man använt i de äldre språken i brist på bättre

lösningar.

 13

Så länge det inte fanns kontrollstrukturer använde man sig av s.k. hoppsatser för att

åstadkomma loopar. Det reserverade ordet goto skickar programflödet till ett annat

ställe i koden vilket man markerar med en Label, t.ex. med L. En label är ingen

variabel utan en symbol som endast markerar ett ställe i koden. Den används i goto-

satsen för att skicka programflödet till det markerade stället. Ironiskt nog finns det

reserverade ordet goto fortfarande i C#. T.e.x. kan det se ut så här:

L: Console.Write("\n\tGissa ett tal mellan 1 och 20:\t");

 guessedNo = int.Parse(Console.ReadLine());

...
 if (guessedNo != 17) goto L;

Om det gissade talet inte är 17 dvs om användaren gissat fel, ska programmet hoppa

till L där användaren ges åter möjligheten att göra en ny gissning som sedan prövas,

osv. Om däremot det gissade talet är 17, dvs om användaren gissat rätt, äger hoppet

inte rum. Man har med en if-sats, som är en enkel selektion, i kombination med

goto lyckats konstruera en loop.

Varför kallar vi detta för spaghettiprogrammering när koden ovan fungerar? An-

ledningen är att hoppsatser leder i större program till förvirring. Föreställ dig att man

har ett stort program, använder väldigt många goto-satser och utnyttjar fullt ut fri-

heten att placera labels var som helst. Resultatet blir en kod som är svårt att

kontrollera, uppdatera och underhålla. Programflödet liknar till sist en spaghettirätt.

Sådana program uppfyller inte längre kraven om läslighet, förståelighet och än-

dringsbarhet. Det märks speciellt när en programmerare byter jobb och en efter-

trädare ska vidareutveckla programvaran. Ofta blir det helt omöjligt för efterträdaren

att sätta sig in i koden. Redan på 60-talet ledde detta till en programvarukris och

initierade utvecklingen av procedurala programmeringsspråk som Algol, Simula,

Pascal, C, … där goto-satser kan och bör undvikas. Procedural programmering

bannlyser användningen av goto-satser då en okontrollerad användning av hoppsat-

ser i större program leder till spaghettiprogram som inte längre är läsliga, förståeliga

och ändringsbara. Procedural programmering ersätter alla hoppsatser med kontroll-

strukturer där det inte längre finns några labels då dessa är hårdkodade och placerade

på fasta platser. Man borde ersätta goto-satsen med en kontrollstruktur av typ repe-

tition, t.ex. en while-sats.

Procedural programmering

Motsatsen till deklarativ programmierung är imperativ programmering. Procedural

programmering är den äldsta typen av imperativ programmering. Här anger man inte

bara vad som ska göras, utan även – och framför allt – hur det ska gå till. Tillväga-

gångssättet är en väsentlig del av imperativa språk. Ett tillvägagångssätt som exakt

och entydigt beskriver hur man löser ett problem, kallas för algoritm. Man kan

beskriva en algoritm på många olika sätt, t.ex. på vanligt språk, med hjälp av grafik,

med pseudokod, i form av ett flödesschema osv. Väljer man programkod för att

 14

beskriva algoritmen, har man ett datorprogram. Ofta måste även viss data (t.ex. in-

data) läggas till för att lösa problemet. Därför kan man säga:

Program = algoritm + data

Det var Niklaus Wirth, skaparen av programspråket Pascal, som på 60-talet ställde

upp denna definition. Data är information i organiserad, strukturerad form. Men vad

exakt är en algoritm, och framför allt hur kan algoritmer beskrivas? Dessa frågor

kommer vi att ägna oss åt i resten av det här kapitlet. Wirths definition återspeglar

en algoritmorienterad syn på programmering som även kallas procedural program-

mering. Procedur är ett annat ord för algoritm. Modern till alla procedurala språk är

Algol.

Objektorienterad programmering (OOP)

Om man i Wirths definition Program = algoritm + data lägger betoningen på data

istället för på algoritmen och inte längre betraktar data som ett slags bihang till

algoritmen utan som objekt kommer man till objektorienterad programmering. Den

nya definition som kom upp på 80-talet och återspeglar den objektorienterade synen

på programmering är:

Program = Modell av verkligheten

OOP syftar åt att efterlikna verkligheten. Man vill avbilda den reala världen – åtmin-

stone den del som tillåter datorisering – och konstruera en modell av den i sina dator-

program för att kunna simulera verkligheten genom att testa modellen. För att undvika

filosofiska diskussioner kan vi anta att den reala världen består kort sagt av objekt.

Världen kring oss är full med objekt: Människor, byggnader, bilar, tåg, flygplan, träd,

möbler, böcker, butiker, skolor, bibliotek, kontor, anställda, kunder, varor, fakturor,

order, bokningar, kurser osv. Objekten kan vara verkliga eller virtuella. Ett dator-

program försöker att beskriva dessa objekt. Beskrivningen kodas i klasser.

Ett objekt kan i regel utföra vissa aktioner eller operationer. I den objektorienterade

programmeringens terminologi kallas de för metoder – samma som i den procedurala

programmeringen heter funktioner. En metod är en funktion som definieras i en klass.

Namnbytet beror på att man i OOP måste definiera sina funktioner i klasser, därför att

metoderna i regel ska vara bundna till objekt. Förenklat kan man säga: när ett objekt-

orienterat program körs anropar metoder varandra och skickar därvid objekt till va-

randra. På så sätt simuleras verkligheten.

Paradigmskifte

Det som i programmeringshistorien gjorde att man behövde objektorienterad pro-

grammering var den växande komplexiteten hos program under 70-talet. Program-

mens storlek var avgörande för den växande komplexiteten. Man insåg att det inte

längre räckte till att skriva och testa program som fungerade just då. Det var nödvän-

digt att med rimliga kostnader kunna även underhålla stora program, förnya och

 15

vidareutveckla dem så att de fungerade även i flera år och att de framför allt kunde

anpassas till nyuppkomna situationer utan oöverkomliga svårigheter. Det i sin tur

krävde att man redan i designstadiet behövde ett annorlunda upplägg. Fokuset för-

skjöts från problemlösning till modellering av verkligheten. Objektorienterad design

kom in i bilden. Allt detta var endast med procedural programmering inte längre

möjligt. Ett s.k. paradigmskifte hade blivit nödvändigt, dvs en ändring av hel-

hetssynen på programmering.

