1.2 Olika paradigm inom programmering

Vad ar ett paradigm? Ett paradigm &ar den bakomliggande filosofin inom en veten-
skap. Inom ekonomi &r t.ex. fri marknadsekonomi ett paradigm, statligt styrd eko-
nomi ett annat. Inom programmering ar procedural programmering ett paradigm,
objektorienterad programmering ett annat. Man kan saga:

Ett paradigm ar en samling av regler, rekommendationer, normer,
konventioner, monster, standarder, metoder och teorier inom ett
amne, som delas och f6ljs av de flesta inom @mnet under en viss
tidsperiod.

Ett paradigm ger en orientering som styr handlingen och ligger dérfér fére erfaren-
heten (a priori), likt en férdom. Efter erfarenheten jamfoérs och bedéms handlingen
med paradigmet (a posteriori), likt en lardom. Overensstiammer resultatet inte med
paradigmet, kan paradigmet &tminstone delvis ifrdgaséttas. Amnets progression
leder ofta efter vissa tidsperioder till byten av paradigm, forutsatt att ett nytt para-
digm har stallts upp som battre uppfyller de énskade kraven. Man pratar om ett s.k.
paradigmskifte. | programmeringens historia ar vi vittnen fér manga sadana para-
digmskiften som vi nu ska studera i detalj. Sedan ska vi aterkomma till sjalva be-
greppet paradigmskifte och sammanfatta vara betraktelser (sid 14).

Maskinorienterad programmering

Aven kallad maskinnara programmierung, vilket innebdr att man skriver instruk-
tioner som enkelt och snabbt, ja nastan direkt kan utféras av datorns processor
(CPU). Maskinorienterade programmeringssprak ligger allra narmast hardvaran.
Ursprungligen kan sadana maskinorienterade instruktioner endast utféras pa en
konkret maskin, eftersom de &r definierade just for den aktuella hardvaran. Ett ty-
piskt exempel for ett sidant sprak ar Assembler som fortfarande &r lashar kallkod
som omvandlas till maskinkodens ettor och nollor av ett speciellt program som he-
ter assemblator. Sjalva Overséttningsprocessen kallas for assemblering. Fordelen
med maskinnara sprak ar den enkla och darmed snabba atkomsten till hardvaran,
vilket kan vara avgorande i vissa sammanhang, t.ex. for spelkonsoler. Nackdelen &r
den svart lasbara och icke-portabla koden.

Deklarativ programmering

Innebar att man anger vad som ska goras, inte hur det ska ga till. Man nojer sig med
att séga vad man vill ha. Tillvagagangssattet tas hand om av programmeringsspraket.
Ett typiskt exempel for ett sddant sprak ar SQL som star for Structured Query Lan-
guage och ar standardspraket for kommunikation med databaser. Med en SQL-sats
staller man en fraga till en databas. Man far som svar den dataméangd som ar efter-
frégad i SQL-satsen. Hur SQL letar efter och hittar denna dataméngd i den valdigt
komplexa databasen, behdver programmeraren inte bry sig om. Man deklarerar en-

11

dast sitt 6nskemal, precis som man bestéaller en matratt pa en restaurang. Deklarativ
programmering har manga underkategorier.

Funktionell programmering

En typ av deklarativ programmierung &r funktionell programmering. | detta para-
digm bestar ett program av en samling matematiska funktioner som definieras och
exekveras direkt med minsta méjliga tidsatgang (runtime). Man undviker kod som
anses vara onddig overhead och fokuserar pa effektivitet och funktionalitet hos de
mest sma moduler utan att behdva ange i vilken ordning de ska exekveras. Ett ty-
piskt funktionellt sprak — dessutom det &ldsta — &r Lisp. | Visual Studio finns dven
ett funktionellt sprdk som heter F#. Historiskt har funktionell programmering sitt
ursprung i ett matematiskt forskningsprojekt pa 30-talet som resulterade i den s.k.
Lambdakalkylen. | C# har man tagit ver dessa tankar genom att integrera Lamb-
dauttryck i spraket, vilket behandlades i Programmering 2.

Logikprogrammering

En annan typ av deklarativ programmierung ar logikprogrammering som baseras pa
matematisk logik. Ett logikprogram bestar i forsta hand av ett antal axiomer som kan
anses vara en bas av definitioner och regler som alla féljande instruktioner maste
folja. All kod som skrivs kommer att exekveras endast enligt dessa axiomer. Man
stdller en fraga och far svaret som en logisk slutsats ur axiomsystemet. Logik-
programmering har sitt ursprung i 70-talets forskningsaktiviteter kring artificiell
intelligens. Det mest k&nda logikprogrammet &r Prolog.

Handelsestyrd programmering

Detta paradigm dr typiskt for grafiska applikationer (GUI). Programkdérningen &r inte
langre till 100% forbestamd av utvecklarens kod utan kan &ven styras — atminstone
delvis — av anvédndaren under programkdrningen genom musklickningar och tan-
genttryckningar, s.k. handelser. Aven andra typer av hindelser ar tankbara som
paverkar bade programfarloppet och avslutningen i en mycket storre utstrackning an
det ar fallet med rent textbaserade program. Exekveringen startar ofta i ett fonster
med grafiska komponenter, som visas ndr programmet kors. Efter en handelse
atergar kontrollen till operativsystemet, vilket dock inte betyder att kdrningen &r
avslutad, utan att programmet ar redo att ta emot nésta handelse osv. Handelsestyrd
programmering anvands bl.a. i Windowsprogrammering och ar implementerad t.ex.
i C# Windows Forms Applications med sin stora verktygslada av forprogrammerade
grafiska komponenter, s.k. Controls.

Spaghettiprogrammering

Sjalvklart finns det inte ett uttalat paradigm som heter sa. Det ar snarare en ironisk
beteckning, ett smeknamn som man ur ett historiskt och kritiskt perspektiv gett den-
na typ av programmeringsvana som man anvant i de aldre spréken i brist pa béattre
I6sningar.

12

Sa lange det inte fanns kontrollstrukturer anvande man sig av s.k. hoppsatser for att
astadkomma loopar. Det reserverade ordet goto skickar programflodet till ett annat
stalle i koden vilket man markerar med en Label, t.ex. med L. En label &r ingen
variabel utan en symbol som endast markerar ett stélle i koden. Den anvénds i goto-
satsen for att skicka programflodet till det markerade stallet. Ironiskt nog finns det
reserverade ordet goto fortfarande i C#. T.e.x. kan det se ut s& har:

L: Console.Write("\n\tGissa ett tal mellan 1 och 20:\t");
guessedNo = int.Parse (Console.ReadLine()) ;

if (guessedNo != 17) goto L;

Om det gissade talet inte &r 17 dvs om anvandaren gissat fel, ska programmet hoppa
till L dar anvandaren ges ater mojligheten att géra en ny gissning som sedan prévas,
osv. Om déaremot det gissade talet ar 17, dvs om anvéndaren gissat rétt, dger hoppet
inte rum. Man har med en if-sats, som &r en enkel selektion, i kombination med
goto lyckats konstruera en loop.

Varfor kallar vi detta for spaghettiprogrammering nér koden ovan fungerar? An-
ledningen &r att hoppsatser leder i storre program till forvirring. Forestéall dig att man
har ett stort program, anvander valdigt manga goto-satser och utnyttjar fullt ut fri-
heten att placera labels var som helst. Resultatet blir en kod som &r svért att
kontrollera, uppdatera och underhalla. Programflodet liknar till sist en spaghettirétt.
Séadana program uppfyller inte langre kraven om laslighet, forstaelighet och an-
dringsbarhet. Det marks speciellt ndr en programmerare byter jobb och en efter-
tradare ska vidareutveckla programvaran. Ofta blir det helt omdjligt for eftertradaren
att satta sig in i koden. Redan pa 60-talet ledde detta till en programvarukris och
initierade utvecklingen av procedurala programmeringssprak som Algol, Simula,
Pascal, C, ... dir goto-satser kan och bor undvikas. Procedural programmering
bannlyser anvindningen av goto-satser da en okontrollerad anvandning av hoppsat-
ser i storre program leder till spaghettiprogram som inte langre ar lasliga, forstaeliga
och andringsbara. Procedural programmering ersatter alla hoppsatser med kontroll-
strukturer dar det inte langre finns nagra labels da dessa ar hardkodade och placerade
pa fasta platser. Man borde ersatta goto-satsen med en kontrollstruktur av typ repe-
tition, t.ex. en while-sats.

Procedural programmering

Motsatsen till deklarativ programmierung ar imperativ programmering. Procedural
programmering dr den aldsta typen av imperativ programmering. Har anger man inte
bara vad som ska goras, utan dven — och framfor allt — hur det ska ga till. Tillviga-
gangssattet dr en vésentlig del av imperativa sprak. Ett tillvigagangssatt som exakt
och entydigt beskriver hur man ldser ett problem, kallas for algoritm. Man kan
beskriva en algoritm pa manga olika satt, t.ex. pa vanligt sprak, med hjalp av grafik,
med pseudokod, i form av ett flodesschema osv. Valjer man programkod for att

13

beskriva algoritmen, har man ett datorprogram. Ofta maste dven viss data (t.ex. in-
data) laggas till for att 16sa problemet. Darfor kan man saga:

[Program = algoritm + data]

Det var Niklaus Wirth, skaparen av programspréaket Pascal, som pa 60-talet stillde
upp denna definition. Data ar information i organiserad, strukturerad form. Men vad
exakt ar en algoritm, och framfor allt hur kan algoritmer beskrivas? Dessa fragor
kommer vi att dgna oss at i resten av det har kapitlet. Wirths definition aterspeglar
en algoritmorienterad syn pa programmering som &aven kallas procedural program-
mering. Procedur &r ett annat ord for algoritm. Modern till alla procedurala sprak ar
Algol.

Objektorienterad programmering (OOP)

Om man i Wirths definition Program = algoritm + data lagger betoningen pé data
istallet for p& algoritmen och inte langre betraktar data som ett slags bihang till
algoritmen utan som objekt kommer man till objektorienterad programmering. Den
nya definition som kom upp pa 80-talet och &terspeglar den objektorienterade synen
pa programmering &r:

[Program = Modell av verkligheten]

OOP syftar at att efterlikna verkligheten. Man vill avbilda den reala varlden — atmin-
stone den del som tillater datorisering — och konstruera en modell av den i sina dator-
program for att kunna simulera verkligheten genom att testa modellen. For att undvika
filosofiska diskussioner kan vi anta att den reala varlden bestar kort sagt av objekt.
Varlden kring oss ar full med objekt: Manniskor, byggnader, bilar, tag, flygplan, trad,
mobler, bdcker, butiker, skolor, bibliotek, kontor, anstéllda, kunder, varor, fakturor,
order, bokningar, kurser osv. Objekten kan vara verkliga eller virtuella. Ett dator-
program forsoker att beskriva dessa objekt. Beskrivningen kodas i klasser.

Ett objekt kan i regel utféra vissa aktioner eller operationer. | den objektorienterade
programmeringens terminologi kallas de for metoder — samma som i den procedurala
programmeringen heter funktioner. En metod &r en funktion som definieras i en Kklass.
Namnbytet beror pa att man i OOP maste definiera sina funktioner i klasser, darfor att
metoderna i regel ska vara bundna till objekt. Forenklat kan man séga: nér ett objekt-
orienterat program kors anropar metoder varandra och skickar dérvid objekt till va-
randra. Pa s satt simuleras verkligheten.

Paradigmskifte

Det som i programmeringshistorien gjorde att man behovde objektorienterad pro-
grammering var den véxande komplexiteten hos program under 70-talet. Program-
mens storlek var avgorande for den vixande komplexiteten. Man insdg att det inte
langre réckte till att skriva och testa program som fungerade just da. Det var nddvan-
digt att med rimliga kostnader kunna &ven underhalla stora program, férnya och

14

vidareutveckla dem sa att de fungerade aven i flera ar och att de framfor allt kunde
anpassas till nyuppkomna situationer utan odverkomliga svarigheter. Det i sin tur
kravde att man redan i designstadiet beh6vde ett annorlunda upplagg. Fokuset for-
skjots fran problemldsning till modellering av verkligheten. Objektorienterad design
kom in i bilden. Allt detta var endast med procedural programmering inte langre
mojligt. Ett s.k. paradigmskifte hade blivit nddvéandigt, dvs en &ndring av hel-
hetssynen pa programmering.

15

